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We determine the phase diagram of the Abelian-Higgs model in one spatial dimension and time
(1+1D) on a lattice. We identify a line of first order phase transitions separating the Higgs region
from the confined one. This line terminates in a quantum critical point above which the two regions
are connected by a smooth crossover. We analyze the critical point and find compelling evidences
for its description as the product of two non-interacting systems, a massless free fermion and a
massless free boson. However, we find also some surprizing results that cannot be explained by our
simple picture, suggesting this newly discovered critical point to be an unusual one.

Introduction. Gauge theories in 1+1 dimensions (1D
in space and time) are ideal playgrounds to characterize
the effects of strong-coupling between matter and gauge
fields. Many of the non-perturbative aspects of 3+1 di-
mensional gauge theories relevant to our understanding
of particle physics, such as quark confinement and chiral
symmetry breaking, have a 1+1D analogue. Further-
more, 1+1D field theories can often be treated analyti-
cally [1, 2] providing important insights to the physics of
1+1D systems relevant also to condensed matter physics.

In this work, we study the lattice version of a rela-
tivistic bosonic field that interacts with a photonic field
[3], the bosonic version of the Schwinger model [4–7]. In
contrast to (polarized) fermions, bosons can have con-
tact interactions that are described by the well known
Abelian-Higgs model (AHM) in 1+1D (AHM2) [8–12].

In AHM2, a weak matter-field coupling limit [13] sug-
gests that the phase diagram is shared by two phases
characteristic of the Higgs mechanism [8–11], a superfluid
phase 1 with the quasi-condensation of bosons (Higgs
phase) and a Mott-insulating phase 2 with strong interac-
tions. However, non-perturbative calculations show that
the phenomenology in the phase 1 is the same as in the
phase 2, and bosons are always tightly confined [13] (for
a recent discussion see [14, 15]).

One can certify the presence of a phase transition in
d + 1 dimension for any d > 2 [16, 17], but due to the
(boring) expectation of a single phase in the continuum,
the phase diagram of AHM2 has never been computed on
the lattice in 1+1D. This work aims at filling this gap.

Our work is strongly motivated by the current
prospects of simulating lattice gauge theories using cold
atomic setups [18–23]. Since bosons are easier to cool
down than fermions, experiments along the lines pro-
posed in [24–30] should soon explore the phase diagram
of AHM2.
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FIG. 1. Phase diagram of the AHM2 (1) in the (µ2/q2, λ/q2)-
plane for a system of size L = 60. At small couplings, the
system occupies two qualitatively different regions, a confined
and a Higgs region, separated by a line of FOQPT as wit-
nessed by the average tunneling amplitude Otunn (left panel)
(effectively zero in the confined region, and finite in the Higgs
region) and the entanglement entropy SL/2 measured at the
center of the chain (right panel) (small in the confined region
and large in the Higgs region). The line of FOQPT ends at
a SOQPT, above which two regions are smoothly connected
representing different aspects of a single phase.

Physicists have been working hard to measure the
Higgs mode in experiments with cold atoms for a long-
time, as reviewed in [31]. In 2+1D, an explicit particle-
hole symmetry protects the decay of the Higgs mode into
Goldstone modes allowing a proper measurement of its
mass. These conditions are only met at the tip of the
lobe of the Mott insulator to superfluid transition in
Bose-Hubbard systems [32–34] which is, unfortunately,
in 1+1D of the Berezinskii-Kosterlitz-Thouless type (see
e.g., [35–38]) and is not particle-hole symmetric. This ob-
servation seems to strengthen the picture emerging from
the presence of a single phase in AHM2 and seems to sug-
gest that a proper Higgs mode does not exist in 1+1D.

The results we present indicate a different picture, still
characterized by a single phase, but with a reach land-
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scape of transitions.
By performing matrix product states (MPS) [39, 40]

simulations of the Hamiltonian version of AHM2, we con-
firm the presence of a single phase for all the values of the
mass of the bosons µ2/q2 and their interaction strength
λ/q2 (in unit of the bosonic charge q) in agreement with
the field theoretical analysis. However, unexpectedly, for
small λ/q2 we find a line of first order quantum phase
transitions (FOQPT) between the “Higgs” and the “con-
fined” regions. This line ends, for a finite value of λ/q2,
in a critical second order quantum phase transition (SO-
QPT), above which the two regions are continuously con-
nected through a smooth crossover. Close to FOQPT
line the two regions are well separated enabling identifi-
cation of a “Higgs” mode and its analysis in the contin-
uum limit (for a sufficiently small λ/q2). One can indeed
take a different continuum limit to the standard one by
approaching, from the Higgs region, the newly discovered
SOQPT.

We precisely identify the position and the nature of
the new critical point. By assuming Lorentz invariance at
the critical point and then using the machinery of confor-
mal field theories (CFT), we can understand the critical
point as the direct sum of two non-interacting fields: a
free fermionic field describing the Higgs mode and a free
bosonic field, a collective mode of the Goldstone modes
and the gauge field. Still the a complete characterization
of this critical point remains an outstanding challenge as
some results do not fit the above picture.

The model. Following [3], we discretize AHM2 on a
finite 1D lattice with L sites (with spacing a) (see [41] for
details) arriving at the Hamiltonian (with open boundary
conditions):

Ĥ =
∑
j

[
L̂2
j + 2x Π̂†jΠ̂j + (4x− 2µ2

q2
)φ̂†j φ̂j

+
λ

q2
(φ̂†j)

2φ̂2
j − 2x(φ̂†j+1Ûj φ̂j + h.c.)

]
, (1)

with x = 1/a2q2. The matter fields {φ̂j , φ̂†j , Π̂j , Π̂
†
j} oper-

ators act in Hilbert space at sites j, while the gauge-field
{L̂j , Ûj , Û†j } objects act in Hilbert space defined on the
bond linking sites j and j + 1. The operators fulfill the
standard commutation relations [φ̂j , Π̂k] = [φ̂†j , Π̂

†
k] =

iδjk, [L̂j , Ûj ] = −Ûj and [L̂j , Û
†
j ] = Û†j .

The usual continuum limit is x → ∞. Here we fix
x = 2 and characterize the phase diagram on the lattice.

We can define creation and annihilation operators for
particles ‘a’ and anti-particles ‘b’ as âj and b̂j fulfilling

[âj , â
†
k] = [b̂j , b̂

†
k] = δjk [42]. We use the density matrix

renormalization group (DMRG) algorithm [39, 40, 43–46]
to find the ground state of the Hamiltonian (1). Specif-
ically, we employ a strictly single-site variant of DMRG
with subspace expansion [47]. For numerics we limit the
occupations of bosonic modes to at most na0 = nb0 = 10
[48].

In absence of external charges, the local U(1) symme-
try implies the Gauss law Ĝj = 0, ∀j, where the genera-

tors are [3] Ĝj = L̂j−L̂j−1−Q̂j , and Q̂j = â†j âj−b̂†j b̂j en-
codes the density of dynamical charges. Using the Gauss
law, we can integrate-out the gauge-fields in a chain with
open-boundary conditions in favor of a long-range poten-
tial for the matter fields [4].

Confined and Higgs, two shades of the same phase.
The long-range interactions among bosons destroy the
phases of the standard 1+1D Bose Hubbard model – see
the phase diagram in Fig. 1. For λ/q2 ≥ 0, the system is
in the confined region as far as µ2/q2 ≤ 0. In this region
the model has a finite mass gap, and the elementary ex-
citations are mesons, bound pairs of particle-antiparticle.
The gauge bosons are in the lowest eigenstate of L̂j , so

that the variance σ2(L̂j) = 〈L̂2
j 〉 − 〈L̂i〉

2 ≈ 0.

For µ2/q2 � 0, the system enters the gapped Higgs re-
gion where the variance σ2(L̂j) becomes large. The effec-
tive gauge-field mediated tunneling amplitude Otunn =
1

2L

∑
j 〈φ̂
†
j+1Ûj φ̂j + h.c.〉 increases, so that it can distin-

guish the Higgs region from the confined one.
We can also characterize the two regions by considering

the behavior of the entanglement entropy of a block made
of l constituents starting from the boundary, defined as

Sl = −Tr [ρl ln ρl] , (2)

where ρl = Trl+1,l+2,...,L |ψ〉 〈ψ| is the reduced density
matrix. In the Higgs region, the entanglement entropy is
systematically larger than in the confined region. How-
ever, since both phases are gapped, the entropy follows
area-law scaling with respect to the bipartition size (see
[41]).

For sufficiently small λ/q2, the two regions are sepa-
rated by a FOQPT line characterized by discontinuous
jumps both in the tunneling amplitude Otunn and in SL/2
measured across the central bond [41]. This line termi-
nates at a critical SOQPT at a finite value of λc/q

2 and
µ2
c/q

2, identified by the red cross in Fig. 1. We discuss
precise location and characterization of this critical point
below. Above the SOQPT, the two regions are smoothly
connected as revealed by smooth changes in all the phys-
ical quantities while moving from one region to the an-
other.

Nature of the critical point. We can precisely locate
and characterize the critical point assuming its Lorentz
invariance, that implies an applicability of a CFT at low
energies. In a CFT, the finite-size scaling of the entan-
glement entropy of a block of first l consecutive sites in
a chain with open boundary conditions and length L is

S(l, L) =
c

6
W + b′, (3)

where c is the central charge of the corresponding
CFT, b′ is a non-universal constant and the chord
length W is a function of both L and l: W (l, L) =
ln
[

2L
π sin(πl/L)

]
[49–51].
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FIG. 2. Entropy scaling of the AHM2. (a) The fitted central
charge cfit according to (3) for fixed µ2/q2 = 0.447 and dif-
ferent system sizes. Curves for different system-sizes crosses
each other at λ/q2 ≈ 0.0565 and cfit ≈ 3/2. (b) The scaling
of the entanglement entropy at the critical point for different
system sizes yields the central charge of the critical theory as
c = 1.49(1).

We pin-point the SOQPT by adapting the idea of the
phenomenological renormalization group [52] to the scal-
ing of the entropy in (3) as explained in [53, 54]. At the
critical point, the c value should be independent of the
system’s size. For each L, we obtain cfit by fitting (3)
to our numerical data for S(l, L). The extracted values
in the (µ2/q2, λ/q2)-plane depend on L and become in-
dependent of the system size only at the critical point.
Our data suggest that the L dependent central charges
collapse to a single value at (µ2/q2 = 0.447(1), λ/q2 =
0.0565(1)) (see Fig. 2). The central charge at the criti-
cal point (µ2

c/q
2 = 0.447, λc/q

2 = 0.0565) is found to be
c = 1.49(1) [55].

The value of the central charge mentioned above sug-
gests that we are not dealing with a minimal model. How-
ever, we want to argue here that we are in the presence of
the direct sum of two different minimal models, each con-
tributing to a piece of the total central charge, a cf = 1/2
for a free Majorana fermion and a cb = 1 for free boson.
This scenario is strongly motivated by the standard Higgs
mechanism. The complex Higgs field separates into its
amplitude and its phase. The amplitude mode is effec-
tively described by a real λφ4 theory that undergoes the
standard Ising phase transition (the c = 1/2 part). The
phase, on the other hand, provides the longitudinal de-
gree of freedom to the photon field. The latter becomes
massless at the transition and provides the c = 1 free
bosonic part. The value of c = 1.5 furthermore suggests,
based on the c theorem, that the two parts should be
non-interacting [56].

In order to confirm this scenario we compute the en-
tanglement spectrum that is also known to encode the
central charge of the theory [57]. The entanglement spec-
trum, denoted by εs, is the spectrum of the entanglement
Hamiltonian Hl = − log(ρl). By assuming a factorized
ground state, we should observe that the smallest eigen-
value of Hl, ε0 diverge logarithmically. In particular we

should see that [57]

ε0 =
(
εIsing0 + εboson0

)
∝ (cf + cb)

12
W +O(1/W ). (4)

By fitting our numerical data to (4), we observe a per-
fect collapse on the functional form predicted by CFT,
but the numerical result for of ceff = 1.20(1) is not com-
patible with 1.5 (see Fig. 3(a)). This disagreement be-
tween the scaling of the entanglement entropy and that
for the entanglement ground state already suggests that
the critical point is unusual and exotic in nature.

We thus turn to analyze the operator content of the
model by studying the correlation functions of local op-
erators. We should be able to identify a set of pri-
mary operators, by studying the large distance two point
correlations function that should decay algebraically as
φ(0)φ(r) ∼ 1/r∆φ . The presence of gauge symmetry,
however, strongly reduces the set of operators we can
consider. Most of the candidates that should couple
to primary operators are either trivial (due to the low-
dimensionality of the system) or vanishing since they are
not gauge invariant. The only non-vanishing operators
are indeed Wilson lines terminating on a boson-antiboson
pair, and electric field correlations. We also have access
to local operators such as φ̂†φ̂ and Π̂†Π̂ that couple both
to the real part and the phase of the field. By assum-
ing we are dealing with a CFT, we can use the conformal
map that maps the profile of local operators to two points
correlation functions on the full plane (see e.g. [58]).

At first we analyze the behavior of 〈L̂2
l 〉 as function

of the chord coordinate W . The numerical results show
that 〈L̂2

l 〉 diverges linearly as a function of W , unveiling

that L̂2 behaves as a free-bosonic field. Furthermore,
the slope of such linear scaling is found to be 1.20(4)/12,
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FIG. 3. (a) The scaling of the entanglement ground state ε0

matches perfectly the functional form suggested by the CFT
analysis, reported in the text. However, the numerical value
for the central charge deviates by around the 20% from the
value we extract from the scaling of the entanglement entropy
as the best fit suggests ceff = 1.20(1). The red-dotted line

depicts the fit assuming c = 1.5. (b) The scaling of 〈Π̂†l Π̂l〉
according to the CFT prediction (Eq. (5)). It couples both to
the identity operator and one primary with scaling dimension
∆ that comes out to be ∆ = 0.51(2) from the fit, with a being
0.5474(2)

.
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matching that of the entanglement ground state energy.
Turning to analyzing the profile of 〈Π̂†l Π̂l〉 as a function
of W we find that

〈Π̂†l Π̂l〉 ' a+ b(exp(W ))−∆, (5)

where a and b encode the overlap of the above expec-
tation value with the identity operator and one of the
primaries. The numerical data (Fig. 3(b)) suggest that
∆ ' 0.5, the conjugate operator to the one that would
match to the derivative of the electric field.

Unfortunately, we do not find any operator that cou-
ples to the primary of the Ising part of the CFT. Summa-
rizing, our data seem to confirm that we have one part of
the system that behaves as free boson and suggest that
∂xL̂

2 should have a large overlap with the primary oper-
ator (the derivative of the free bosonic field), while Π̂†Π̂
should have a strong overlap with the conjugate primary
operator.

Now moving away from the critical point, we can use
the standard scaling hypothesis to extract the exponent
ν from the collapse of the fitted central charge as

cfit(L) = f
(

(µ2/λ− µ2
c/λc)L

1/ν
)
, (6)

where f(.) is a continuous function and ν is the cor-
responding critical exponent. Performing the data col-
lapse according to (6) in the neighborhood of the critical
point µ2

c/λc (see Fig. 4) we find the critical exponent
to be ν = 1/2 ± 0.02 that matches the value observed
in the transition from polarized to critical phase in the
XX model in a magnetic field [59–61]. The same tran-
sition can be understood in terms of free bosons that
pass from their Fock vacuum to the superfluid regime
as the chemical potential exceeds the width of the first
band. In our case, the strange thing is that there is no
superfluid regime, but just a single critical point where
the gauge-boson condense, while away from the critical
point our system passes from vacuum to a Mott insulator
phase. Now using the standard scaling hypothesis, once
we have figured out that ν = 1/2 we can deduce that
〈Π̂†Π̂〉 ' (µ2/λ− µ2

c/λc), meaning that β = 1.
It is worth pointing out that ν = 1/2, seems in-

consistent with a CFT, where we would expect, that
d − 1/ν = ∆ with ∆ the thermal critical exponent and
d being 2 for the 1+1D quantum system, while we find
d − 1/ν = 0. However, all our results so far have been
obtained by assuming a full conformal invariance in map-
ping the correlation function of our finite system to the
ones of an infinite plane by means of a conformal trans-
formations.

The appearance of ν = 1/2, together with the failure
to identify a local operator that couples to the primary
field of the Ising part of the CFT, contrasts with the fac-
torization on the critical point. However, by repeating a
similar analysis in a Z3 gauge theory coupled to bosonic
matter we find a c ' 0.8 + 0.5 [62]. As a result we still
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FIG. 4. The collapse of cfit according to the scaling hypoth-
esis (6) in the neighborhood of the critical point µ2

c/λc =
0.447/0.0565 for fixed µ2/q2 = 0.447 (left) and for fixed
λ/q2 = 0.0565 (right). Here, we vary (a) λ/q2 in the range
[0.056, 0.058] and (b) µ2/q2 in the range [0.435, 0.45] for the
data collapses. In both the cases, the critical exponent is
found to be ν = 0.5± 0.02 from data collapses.

believe that the factorization hypothesis is correct, but
it requires a further analysis to be appropriately con-
firmed. In particular, it would be interesting to analyze
the system under periodic boundary condition, which,
however, is impractical at current computational capa-
bilities using MPS ansatz but may become a possibility
using next-generation tensor network algorithms.

Discussion and Conclusions. We have analyzed the
phase diagram of AHM2 on a discrete lattice in 1+1D.
We have found two distinct regions, the confined and the
Higgs regions that are separated by line of FOQPT that
terminates at a SOQPT. Beyond the SOQPT the two
regions are connected by a smooth crossover. The pres-
ence of a SOQPT allows one to construct an unorthodox
continuum limit of the theory that should be described
by free fermions and free bosons that do not interact.

This would result in a CFT with central charge c =
3/2, compatible with our numerical result and would
have a compelling interpretation in terms of the standard
Higgs mechanism – the real part of the complex field un-
dergoes an Ising transition (the c = 1/2 part), while the
phase of it provides the transverse degree of freedom to
the photon that becomes dynamical and massless (the
c = 1 part).

However, further numerical analyses unveil surprizing
pieces of the puzzle that do not fit our interpretation.We
did not find a local operator that couples to the c =
1/2 part of the CFT. The scaling of the entanglement
ground state should follow a similar law to the one of
the entanglement entropy. The numerical value of the
central charge that we extract from it is c = 1.20(1). We
also obtain ν = 1/2 analyzing the collapse of the data
for the entanglement entropy close to the critical point,
in contrast to the expected ν = 1.

Are we actually observing a Lorentz invariant critical
point where the Higgs and photon mode factorize? We
believe this is the case as also supported by the presence
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of a linear dispersion relation witnessed by the non-zero
“sound velocity” extracted from a finite-size scaling anal-
ysis of the ground state energy [41]. Still our study leaves
some questions unanswered. We strongly believe that
our paper will open the debate, and that together with
the broader scientific community we will soon have a fi-
nal picture of the mechanism behind this newly observed
critical point.
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Supplementary Material:
Phase diagram of 1+1D Abelian-Higgs model and its critical point

From the continuum to the lattice

The Lagrangian density of the Abelian-Higgs model is
given by [12, 15]

L = − [Dµφ]
∗
Dµφ− 1

4
FµνF

µν − V (φ), (7)

with

V (φ) = −µ2|φ|2 +
λ

2
|φ|4. (8)

Here φ is the complex scalar field, Dµ = (∂µ + iqAµ) is
the covariant derivative with q and Aµ being the gauge
coupling and the electromagnetic vector potential re-
spectively, and Fµν = ∂µAν − ∂νAµ is the electromag-
netic field tensor. Here, we use the metric convection
(−1, 1, 1, 1) or (−1, 1) (in 1+1 dimension).

For µ2 < 0, the system describes the bosonic Schwinger
model (BSM) [3] with added |φ|4-interaction, while µ2 >
0 describes Abelian-Higgs model (AHM) where the po-

tential attains minimum (Vmin = −µ4

2λ ) at non-zero value

of the field-strength |φ0| =
√
µ2/λ, leading to the spon-

taneous symmetry breaking at semiclassical level.
After fixing the temporal gauge At(x, t) = 0, we get the

quantum 1+1D Hamiltonian (AHM2) in the continuum
as

Ĥ =

∫
dx

[
Π̂†(x)Π̂(x)− µ2φ̂†(x)φ̂(x) +

λ

2
(φ̂†(x))2(φ̂(x))2 +

+
1

2
Ê2
x(x) +

(
∂x − iqÂx(x)

)
φ̂†(x)

(
∂x + iqÂx(x)

)
φ̂(x)

]
,

(9)

where Êx(x), Π̂(x), and Π̂†(x) are the canonical conju-

gate operators corresponding to Âx(x), φ̂(x), and φ̂†(x)
respectively, satisfying the canonical commutation rela-
tions:

[Âx(x1), Êx(x2)] = [φ̂(x1), Π̂(x2)]

= [φ̂†(x1), Π̂†(x2)] = iδ(x1 − x2). (10)

Note: The quantization of the |φ|4 term may be done
in various manners. Here we do not enforce any normal

ordering but rather take |φ|4 quantization−−−−−−−−→ (φ†)2φ2.
Following [3], we can straightforwardly discretize the

above Hamiltonian on a 1D spatial lattice with the lattice
spacing a, and we ultimately arrive at the Hamiltonian
(1) in the main text.

The first order quantum phase transition

As reported in the main text, below the critical interac-
tion strength λc/q

2 = 0.0565 the confined and the Higgs
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FIG. 5. The study of the first order quantum phase transition
at fixed λ/q2 = 0.045 and varying µ2/q2 for different system-
sizes L ∈ [20, 120]. (a)-(c) respectively show the variations
of Otunn, the energy density and its derivative with respect to
the system parameter µ2/q2. (d) The entanglement scaling
with respect to the cord length W = ln

(
2L
π

sin(πl/L)
)

for
L = 120 at the first order transition that unveils the expected
area-law scaling of the entropy.

regions are separated by a first order quantum phase
transition (FOQPT) line. To clearly demonstrate the ex-
istence and features of the FOQPT, in Figs. 5 we present
different observables across the transition as a function
of µ2/q2 for fixed λ/q2 < λc/q

2. Specifically, we depict

the behaviors of Otunn = 1
2L

∑
j 〈φ̂
†
j+1Ûj φ̂j + h.c.〉, the

energy density and its derivative with respect to the sys-
tem parameter µ2/q2 respectively in Figs. 5(a)-(c) for
different system-sizes L ∈ [20, 120]. The average tunnel-
ing amplitude Otunn clearly shows discontinuous jumps
as we vary µ2/q2 across the phase transition for suffi-
ciently large system-sizes. On other hand, the ground
state energy shows non-analytic kinks in its profile at
the transition point, such that its derivative (with re-
spect to the parameter µ2/q2) manifests a discontinuity.
To observe the discontinuous jumps or kinks in the pro-
file of Otunn or of the energy, we need sufficiently large
system-size as FOQPTs are associated with large (but fi-
nite) correlation lengths, as a result smaller system sizes
cannot properly resolve the FOQPT. In Fig. 5(d), we
also show the scaling of the entanglement entropy at the
FOQPT that features the expected area-law behavior for
bipartitions larger than the correlation length.
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FIG. 6. The profile of the entanglement entropy with respect
to the cord length W at (a) the confined region and (b) the
Higgs region.
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FIG. 7. Finite-size scaling of the ground state energy E0 at
the critical point according to Eq. (11) that gives the sound
velocity vs ' 4.

Entanglement scaling in the gapped phases

As mentioned in the main text, apart from the crit-
ical point, the Hamiltonian in every point of the phase
diagram is gapped, therefore the entanglement entropy
follows asymptotically, for large enough blocks, the stan-
dard area-law scaling. To show this, we plot the the
entanglement entropy with respect to the cord length
W in the confined and the Higgs regions in Fig. 6. In
both cases, the entanglement entropy becomes flat with
increasing values of W , showing that for large enough
blocks it saturates to a value that does not depend on
the block size (area-law).

Evidence for Lorentz invariance of the critical point

In the main text, we have analyzed the critical point
(µ2
c/q

2 = 0.447, λc/q
2 = 0.0565) by means of predictions

from conformal field theory (CFT), assuming Lorentz in-
variance. In order to verify this assumption, we calculate
the “sound velocity” at the critical point from the scaling
of ground state energy. For a Lorentz invariant system
with open boundary condition (OBC) having a linear dis-
persion at low energies, the ground state energy E0 scales
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FIG. 8. The convergence of (a) the energy density (∆E0/L)
and (b) the half-chain entanglement entropy (∆SL/2) and the
half-chain entanglement ground state energy (∆εL/2) with re-
spect to the maximum bond dimension used in the simulation,
respectively χ ∈ {100, 200, 300, 400, 500, 600}. Here we plot
relative errors in the quantities as ∆O = |Oχ − Oχ+100|. In
(a) we consider three points in the phase diagram, namely (1)
a point in the confined region (µ2/q2 = 0.2), (2) the critical
point (µ2/q2 = 0.447), and (3) a point in the Higgs region
(µ2/q2 = 0.6) for a system of size L = 120. In (b) we show
the convergence of the entropic quantities as a function of the
bond dimension at the critical point.

with the system size L as [63–65]

E0(L) = ε∞0 L+ ε∞1 −
πcvs
24L

, (11)

where ε∞0 is the ground state energy density in the bulk
and ε∞1 is the surface free energy in the thermodynamic
limit, c is the central charge of the corresponding CFT,
and vs is the sound velocity. For a Lorentz invariant
system vs must be non-zero, while it vanishes for Lorentz
non-invariant critical points with a quadratic dispersion.

To estimate vs, we perform the finite-size scaling of the
ground state energy according to Eq. (11) at the critical
point (for similar analysis, see [66–69]). Such a finite-
size scaling (Fig. 7) yields cvs = 6.02 ± 0.08 (vs ' 4 for
c = 1.5), confirming the Lorentz invariance of the critical
point analyzed in the main text.

Details about numerical simulations

The results reported in the article have been obtained
using the density matrix renormalization group (DMRG)
method [39, 40, 43–46] with the matrix product state
(MPS) ansatz [39, 40]. Specifically, we use a strictly
single-site variant of DMRG (DMRG3S) with the sub-
space expansion [47]. In our calculations the gauge fields
are integrated out, and thus we do not need to use gauge-
invariant tensor network [70–73] but we can use standard
globally symmetric U(1) MPS [74, 75]. This residual
global symmetry corresponds to the conservation of the
total dynamical charge

∑
j Q̂j .

The results from DMRG simulations, that we report,
have been performed with maximum MPS bond dimen-
sion of χ = 600. To confirm the convergence of the
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FIG. 9. (a) The convergence with respect to the maximum
boson occupancy n0 in three different points in the phase
diagram, namely (1) a point in the confined region (µ2/q2 =
0.2), (2) the critical point (µ2/q2 = 0.447), and (3) a point in
the Higgs region (µ2/q2 = 0.6) for a system of size L = 120.
Here we plot the relative errors in the energy density ∆E0/L,
where ∆E0 = |E0(n0) − E0(n0 + 1)|. (b) The profile of the
entanglement entropy S with respect to the cord length W =
ln
(

2L
π

sin(πl/L)
)

at the critical point for L ∈ [40, 120] and for
different values of n0. From the results presented it is clear
that values of n0 < 10 are not sufficient to capture the proper
entropy scaling at the critical point.

DMRG sweeps, we continue the DMRG3S iterations un-
til the energy difference in subsequent sweeps falls below
10−13. On the other hand, Fig. 8 shows the convergence
of different quantities with respect to the bond dimen-
sion χ ≤ 600 for systems of sizes L ≤ 120. For example,
the energy density converges close to the machine pre-
cision within χ ≤ 500 in the gapped regions – confined
and Higgs. On the other hand, as expected, the conver-
gence is slower at the critical point due to the diverging
correlation length. However, as shown in Fig. 8(b), the
precision we attain at the critical point for χ = 500, 600
is sufficient to perform the precise scaling analysis that
we report in the main text.

Since, our system Hamiltonian does not conserve par-
ticle numbers for the individual bosonic species ‘a’ and
‘b’, but conserves their number difference, we verify the
convergence with respect to the maximum bosonic occu-
pancy n0 for both the species. Specifically, we vary the
bosonic cutoff n0 in the range [4, 15], and check for con-
vergence of different observables (see Fig. 9). Clearly, as
seen in Fig. 9(a), even a small n0 = 4 is sufficient to faith-
fully capture the confined phase. However, this is not the
case at the critical point or in the Higgs region. This is
due to the fact that semiclassically the field φ attains
non-zero expectation values in the Higgs region. It is to
be noted that in our calculations 〈φ̂〉 is trivially zero since

it violates the global symmetry, while 〈φ̂†φ̂〉, and thereby
individual 〈n̂a〉 and 〈n̂b〉, attain large expectation values
in the Higgs region. Moreover, Fig. 9(b) shows that the
smaller values of the bosonic cutoff n0 are insufficient to
capture the critical entropy scaling with respect to the
cord length W at the critical point. On the other hand,
the entropy profile for n0 = 10 is essentially identical to
the one with n0 = 15, capturing the proper entropy scal-
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FIG. 10. The scaling of the entanglement ground state energy
ε0 with respect to the cord length W for system-sizes (a)
L ∈ [40, 160] and (b) L ∈ [100, 160].

ing with respect to the cord length. Therefore, Fig. 9
clearly demonstrates that the results obtained with the
bosonic cutoff n0 = 10, provide accurate enough results,
and this is the reason we have used this cutoff in our
analysis.

We do not exceed n0 = 10 since the local Hilbert space
dimension is d = (n0 + 1)2 = 121, which is very large,
and the complexity of the DMRG3S algorithm scales as
∼ Ldχ3. For this reasons we are forced to consider mod-
erate bond dimensions (χ ≤ 600) that also limit the range
of system sizes (L ≤ 120) that we can analyze accurately.

On the other hand, Fig. 8(b) shows that the entangle-
ment ground state energy ε0 converges faster with respect
to the bond dimension than the convergence in the en-
tanglement entropy S (that requires the convergence of
the full entanglement spectrum, not only of its ground
state). Therefore, for this specific quantity, and just for
a comparison, we extend our finite size scaling analy-
sis to the range ε0 with L ∈ [40, 160] keeping the bond
dimension fixed at χ = 600. In Fig. 10 we show the
same scaling first in the whole range of L ∈ [40, 160] and
then for longer chains L ∈ [100, 160]. One could indeed
think that the discrepancy between the central charge
extracted from the entanglement entropy and the one
extracted from the scaling of the first eigenvalue is ulti-
mately a finite-size effect and that this would disappear
in the thermodynamics limit.

Unfortunately, in both the cases, the slopes are pretty
robust to the choice of system sizes that we use in our fit,
and remain fixed to 1.2/12. Even using only the larger
systems does not seem to induce a systematic deviation
towards the 1.5/12 extracted from the scaling of the en-
tanglement entropy reported in the main text. As a re-
sult, the level of accuracy, that we are able to achieve
with our computational resources, is extremely good and
under control. These extra analysis seems to confirm the
discrepancy between the value of the central charge ex-
tracted from the scaling of the entanglement ground state
with respect to the one extracted from the scaling of the
entanglement entropy.
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