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We perform a dynamical finite-size scaling analysis of a nonequilibrium Bose gas which is confined
in the transverse plane. Varying the transverse size, we establish a dimensional crossover for universal
scaling properties far from equilibrium. Our results suggest that some aspects of the dynamical
universal behavior of anisotropic systems can be classified in terms of fractional spatial dimensions.
We discuss our findings in view of recent experimental results with quasi one-dimensional setups of
quenched ultracold quantum gases.

I. INTRODUCTION

The classification of universal many-body phenom-
ena far from equilibrium, similar to what has been suc-
cessfully achieved for systems close to thermal equilib-
rium [1], is an outstanding problem in physics. In the
past years, new forms of universal nonequilibrium be-
havior have been theoretically predicted [2, 3], which
represent essential ingredients in our understanding of
the (pre-)heating process in the early universe [4] and
the early stages of high-energy nuclear collisions [5].
While originally proposed in the context of high-energy
physics, the actual discovery of this dynamical univer-
sal phenomenon was first achieved in table-top experi-
ments with ultracold quantum gases [6–8]. These devel-
opments across subdisciplines trigger important progress
for a wide range of applications, see e.g. Refs. [9–12] and
[13] for a review.

For equilibrium universality classes it is well-
established that only general properties matter, such as
symmetries of the physical system, rather than micro-
scopic details. In particular, universal quantities like
scaling exponents characterizing critical phenomena in
equilibrium depend on the dimensionality of space d [14].
Much less is known about the dependence of universal
scaling properties far from equilibrium on the dimen-
sionality or geometry of space. This can be of consider-
able importance for the interpretation of experimental re-
sults, such as obtained from quenched ultracold quantum
gases in confined geometries. Corresponding experiments
were performed in quasi one-dimensional traps [6, 7],
where the longitudinal direction LL is much larger than
transverse trap sizes LT , while more recent results on
far-from-equilibrium scaling concern homogeneous Bose
gases with LT ' LL [8]. The different setups seem to
indicate a rather strong dependence of the scaling prop-
erties on the effective dimensionality of space, especially
close to one spatial dimension emerging from LT � LL.

In this work, we compute the universal scaling prop-
erties of a dilute Bose gas far from equilibrium, whose
properties are described by a non-relativistic theory for
a complex scalar field. Starting from a two-dimensional
geometry with equal longitudinal and transverse sizes,

LL = LT , we decrease LT successively until an effec-
tively one-dimensional behavior is observed. We per-
form a dynamical finite-size scaling analysis to extract
numerically the universal scaling exponents and scal-
ing functions as a function of LT , which represent the
main results of our study. Since the far-from-equilibrium
systems exhibit a self-similar spatio-temporal evolution,
our dynamical finite-size analysis involves comparisons
of systems with various spatial sizes at given different
times. Remarkably, several characteristic quantities ex-
hibit an apparently smooth crossover from two to one
spatial dimension. Our results may help to shed some
light on the experimental findings for the different quasi
one-dimensional setups of Ref. [7] showing much smaller
scaling exponents than Ref. [6].

II. DIMENSIONAL CROSSOVER ON A
LATTICE

Before presenting our main results, we briefly intro-
duce the model and our main observables in this section.
In subsection II B, we set the stage for the dimensional
crossover by identifying three qualitatively distinct pa-
rameter regimes that are analyzed in detail in the follow-
ing sections III and IV.

A. Non-relativistic scalar field theory

The dynamics of a dilute Bose gas may be described
by a non-relativistic scalar field theory. We consider a
complex valued field Ψ(t,x) characterized by the Gross-
Pitaevskii equation as the classical equation of motion,

i∂tΨ(t,x) =

(
−∇

2

2m
+ gΨ†(t,x)Ψ(t,x)

)
Ψ(t,x), (1)

where t and x denote the time and space variables, g
is the coupling constant, and m is the mass of the gas
particles.

For an arbitrary operator O[Ψ,Ψ†], observables are de-
fined for any given density matrix ρ0 specified at some ini-
tial time t0 as

〈
O[Ψ,Ψ†]

〉
≡ Tr

{
ρ0O[Ψ,Ψ†]

}
. In a quan-
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tum field theory the trace gives the expectation value
of the quantity, while in a classical-statistical field the-
ory it represents the ensemble average. Here we focus
on correlation functions of fields, such as the ‘statistical’
two-point correlation function

F (t,x− y) =

〈
1

2

{
Ψ(t,x)Ψ†(t,y) + Ψ†(t,y)Ψ(t,x)

}〉
(2)

for spatially homogeneous systems.

We evaluate the fields on a two-dimensional spatial
lattice with periodic boundary conditions, providing a
well-defined setup for a finite-size scaling analysis. The
physical longitudinal/transverse momenta pL/T,n on the
lattice are then obtained from the eigenvalues of the dis-
cretized form of the negative Laplace operator (−∇2) as

p2L/T,n =
4

a2S
sin2

(
πn

NL/T

)
, (3)

where n ∈
{

0, ..., NL/T − 1
}

with NL/T denoting the
number of lattice points in the longitudinal/transverse
direction with lattice spacing as. Apart from the case
LT = LL, we will consider mainly systems with LT < LL
and for small enough transverse lattice lengths finite-size
effects are expected to become relevant for the compu-
tation of observables. We set up the simulations with
LL much larger than all characteristic length scales of
the theory, such that we can essentially neglect longitu-
dinal finite-size effects. As a consequence, observables in
momentum space can be approximately taken to depend
on continuous longitudinal momenta whereas the discrete
nature of the transverse momenta can play an important
role.

B. Energy density and initial conditions

In our setup, for the Gross-Pitaevskii field theory de-
scribed by Eq. (1) we can estimate the (conserved) energy
for Gaussian initial conditions at time t0 as

〈H〉 ≈
∫

dxL

∫ LT

0

dxT

{
g〈Ψ†(t0, xL, xT )Ψ(t0, xL, xT )〉2

− 1

2m
〈Ψ†(t0, xL, xT )

(
∂2L + ∂2T

)
Ψ(t0, xL, xT )〉

}
. (4)

For the spatially translation invariant system in Fourier
space, with

〈Ψ†(t0, xL, xT )Ψ(t0, xL, xT )〉 =∫
dpL
2π

1

LT

∑
n

〈Ψ†nΨn〉(t0, pL), (5)

the energy density ε ≡ 〈H〉/(LLLT ) is given by a sum
over discrete momentum modes n:

ε =

∫
dpL
2π

1

LT

∑
n

p2L + (2πn/LT )2

2m
〈Ψ†nΨn〉(t0, pL)

+ g

(∫
dpL
2π

1

LT

∑
n

〈Ψ†nΨn〉(t0, pL)

)2

=
ε1D

LT
+
εex

LT
. (6)

In the last decomposition we identify with ε1D the en-
ergy density of a one-dimensional field theory for the zero
mode Ψ0, i.e.

ε1D =

∫
dpL
2π

p2L
2m
〈Ψ†0Ψ0〉(t0, pL)

+ g1D
(∫

dpL
2π
〈Ψ†0Ψ0〉(t0, pL)

)2

, (7)

where we introduced the effective coupling g1D ≡ g/LT ,
whose strength depends on the transverse lattice size.
The rest of the original energy density is taken into ac-
count in

εex =

∫
dpL
2π

p2L + (2π/LT )2

2m
〈Ψ†1Ψ1〉(t0, pL)

+ 2g1D
∫

dpL
2π
〈Ψ†0Ψ0〉(t0, pL)

∫
dkL
2π
〈Ψ†1Ψ1〉(t0, kL)

+ g1D
(∫

dpL
2π
〈Ψ†1Ψ1〉(t0, pL)

)2

+ (terms involving also modes Ψn with n ≥ 2) , (8)

which contains the interactions with all other modes.
One observes that fields Ψn with n 6= 0 exhibit an ef-
fective ‘chemical potential’ µ1D

n = −(2πn/LT )2/(2m).
As a consequence, their excitation becomes energetically
costly for sufficiently small transverse size LT .

We consider a class of Gaussian initial states that are
fully characterized by a vanishing field expectation value
〈Ψn〉 = 〈Ψ†n〉 = 0 and the correlation1.

〈Ψ†nΨn〉(t0, pL) =
A

mg
Θ
(
Q−

√
p2L + (2πn/LT )2

)
+

1

2
Θ
(

Λ−
√
p2L + (2πn/LT )2

)
. (9)

Using the Heaviside step function Θ, this initial corre-
lation is composed of excitations up to a characteristic
momentum scale Q and a vacuum ‘quantum-half’ up to
an ultraviolet scale Λ with Λ � Q. Again, LL is always
taken to be much larger than all characteristic length
scales of the theory such that LL � 2π/Q. We also

1 More precisely, for small transverse sizes the term 2πn/LT has
to be replaced by pT,n in this equation.
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ensure that Λ never exceeds the highest possible lattice
momenta related to the inverse lattice spacing a−1s .

The amplitude of the excitations will be taken to be
much larger than unity, A/(mg) � 1, such that the
system is far from equilibrium initially. For compari-
son, excitations of a thermal state exhibit at a charac-
teristic temperature amplitudes or ‘occupancies’ of order
unity. For given Λ we choose the amplitude A/(mg) large
enough such that the initial energy density is dominated
by contributions up to the momentum scale Q. In this
highly occupied case, the time evolution of the quan-
tum theory may be approximated by the corresponding
classical-statistical field theory dynamics while keeping
the same initial conditions for correlation functions as in
the original quantum theory [13]. In the following we
adopt the classical-statistical approximation also for the
lattice setup we consider.

By changing the transverse extension LT , with Eq. (9)
we change the initial condition for given other parame-
ters. For instance, if both the longitudinal and transverse
lattice sizes are much larger than the characteristic in-
verse momentum scale, i.e. also LT � 2π/Q, then all the
corresponding modes of the two-dimensional field theory
are excited initially. By contrast, for LT � 2π/Q only
the zero mode with n = 0 is excited, while all other
modes with n ≥ 1 up to the ultraviolet cutoff are in vac-
uum with amplitude given by the quantum-half. Finally,
once LT � 2π/Λ only the zero mode and no other modes
are excited initially2. This last scenario is not realized in
a realistic quantum field theory since LT cannot be sense-
fully made smaller than as. However, we keep this possi-
bility by also artificially separating the scales Λ and a−1s
in order to demonstrate that a full dimensional reduction
in the dynamics is observed in our setup only in the ab-
sence of initial vacuum fluctuations. Therefore, from the
initial distribution of the energy density across modes
we distinguish three parameter regimes, which may be
expected to lead to different subsequent dynamics:

1. LT � 2π/Q: two-dimensional dynamics,

2. 2π/Λ� LT � 2π/Q: effective dynamics for highly
occupied zero mode modified by interactions with
higher (vacuum) modes,

3. LT � 2π/Λ: one-dimensional dynamics for zero
mode, no other modes excited.

As the system evolves in time for t > t0, different scales
can arise dynamically, which was previously demon-
strated for the isotropic case [9]. In the next section

2 To be precise, whether or not modes other than the zero mode
are initially excited for a given LT depends on the value of the
lowest non-zero transverse momentum pT,1 given by Eq. (3) with
n = 1. For pT,1 < Q modes with n ≥ 1 up to Q are excited,
for Q < pT,1 < Λ only the zero mode is excited while modes
with n > 1 up to Λ are in vacuum and for Λ < pT,1 the initial
amplitude of all modes with n ≥ 1 is exactly zero.
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FIG. 1. Rescaled distribution as a function of the rescaled
momentum in two spatial dimensions with occupation expo-
nent α = 1.032, correlation exponent β = 0.536 (see Fig. 2)
and reference time t0 = 300. The inset shows the time evo-
lution without rescaling. The rescaled curves collapse to the
time independent scaling function fS .

we first show that for LT � 2π/Q we recover in our
setup the self-similar scaling results expected for the two-
dimensional field theory. In Sec. IV we then establish the
crossover from two to one spatial dimensions via the pa-
rameter regimes 2 and 3.

III. SELF-SIMILAR SCALING IN TWO
DIMENSIONS

To characterize the behavior of our nonequilibrium sys-
tem in two spatial dimensions, we employ the statistical
two-point correlation [Eq. (2)]. This allows us to define
a distribution function f(t,p) in momentum space via

f(t,p) +
1

2
=

∫
d2x e−ipxF (t,x). (10)

The vacuum quantum-half on the LHS of this definition is
identified with vanishing particle number, f = 0, and the
total particle number is conserved:

∫
d2p f(t,p) = const.

To compute the nonequilibrium time evolution, we re-
peatedly solve the classical field equation (1) numerically
on a spatial lattice as described in Sec. II A. To evolve in
time we use a split-step algorithm [16] and observables
are obtained from averaging the results over an ensemble
of initial field configurations sampled from a Gaussian
distribution [9]. The number of runs is increased until
convergence of results is observed. We employ a square
lattice with LL = LT = 1024, where all quantities are
given in units of appropriate powers of the lattice spac-
ing as. We checked that with this choice finite-size effects
can be neglected. The highly occupied initial conditions
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specified by Eq. (9) of Sec. II B are realized with an am-
plitude A = 25/(mg). For the further parameters of
the simulation we choose the characteristic momentum
to be Q = 0.5, the coupling as g = 1 and the mass as
m = 0.5. We emphasize that none of the universal prop-
erties we are going to extract depend on the detailed
choices of these parameters. Moreover, because of the
high occupancies of modes in this two-dimensional setup
the quantum-half in the initial condition can be neglected
to very good accuracy in this case.

Starting from the initial distribution function

f(t0 = 0,p) =
A

mg
Θ(Q− |p|), (11)

the time evolution of f(t,p) is illustrated in Fig. 1. The
inset shows the distribution at different snapshots in time
as a function of the modulus of spatial momentum |p|.
The main figure shows the same data but rescaled as
(t/t0)αf(t,p) as a function of the rescaled momentum
(t/t0)β |p|, where the reference time t0 is the earliest time
shown. The curves at different times collapse to a time-
independent scaling function fS defined via

f(t,p) = (t/t0)αfS
(
(t/t0)β |p|

)
(12)

after the rescaling with the ‘occupation’ exponent α and
the ‘correlation’ exponent β. This self-similar scaling be-
havior is associated with nonthermal infrared fixed points
whose universal low-momentum properties have been es-
tablished previousl [9]. A relation between α and β can
be obtained by imposing particle number conservation,∫

ddp f(t,p) = (t/t0)α−βd
∫
ddq fS(q) = const, (13)

such that α = βd with spatial dimension d.
Here the scaling exponents α and β are obtained

through a fitting procedure which considers a reference
time t0 together with two additional times t1 = 2t0 and
t2 = 3t0 such that the exponents minimize the differ-
ence of the corresponding rescaled curves. This is done
for many different reference times where self-similarity is
observable and the values of the scaling exponents are
obtained from averaging. Fig. 2 shows the scaling ex-
ponents as a function of the reference time, where the
solid lines illustrate the average values as well as the ref-
erence times included in the average. While during the
initial evolution there is a redistribution of modes, very
quickly self-similar scaling sets in and the exponents be-
come insensitive to the reference time chosen. We find
α = 1.032± 0.021 and β = 0.536± 0.008 consistent with
previous estimates [9].

To give uncertainties for the average exponents we cal-
culate the 16% and 84% percentile from all the values
included in the averaging. As the lower error bound we
give the difference of the average from the 16% and for
the upper bound the difference from the 84% percentile,
which in this case turn out to be symmetric. The er-
rorbars in Fig. 2 for the scaling exponents for a specific
reference time are estimated errors from the fitting pro-
cedure (for details see appendix A).
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FIG. 2. Occupation and correlation exponents for different
values of the reference time t0 for two spatial dimensions.
The solid lines depict the average exponents and the reference
times included in the averaging. The exponents are seen to
become insensitive to the choice of the reference time after
the onset of self-similar dynamics.

IV. CROSSOVER FROM TWO DIMENSIONS
TO ONE DIMENSION

A. Dynamical finite-size scaling analysis

Starting from the two-dimensional setup described in
the last section, we now consider simulations with de-
creasing transverse lattice size until the system becomes
essentially one-dimensional. For small transverse lattices
finite-size effects are expected to become relevant and the
correlation functions will in general depend explicitly on
LT . Following Eq. (10) we define the mode resolved dis-
tribution functions

fn(t, pL, LT ) +
1

2
=∫

dxL e
−ipLxL

∫ LT

0

dxT e
−i2πnxT /LTF (t, xL, xT ). (14)

Here we are interested in the low-frequency behav-
ior and study the scaling of the correlator zero-mode
f0(t, pL, LT ) for longitudinal infrared momenta pL. Sim-
ilar to Eq. (12), a self-similar regime is observed if

f0(t, pL, LT ) = (t/t0)αf0,S
(
(t/t0)βpL, (t/t0)−ζLT

)
(15)

where the additional exponent ζ describes the finite-size
scaling of the system. As a consequence, in order to
establish scaling for different times we have to consider
systems with various transverse sizes. For this purpose
we choose a reference time t0 in the evolution of a system
with transverse size LT,0 and compare it to some other
time ti in the evolution of a system with transverse size

LT,i = (ti/t0)ζLT,0 . (16)
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FIG. 3. Rescaled distribution f0 as a function of the rescaled momentum for different transverse lattice sizes. The various
LT,i at different times ti reflect the dynamical finite-size scaling. The inset shows the original curves without rescaling and the
initial distribution. After rescaling all curves lie well on top of each other, displaying the scaling function f0,S . For the left
plot (LT,0 = 32) the scaling exponents are α = 0.96, β = 0.50, ζ = 0.50 and for the right plot (LT,0 = 6) they are α = 0.55,
β = 0.52, ζ = 0.29.

According to Eq. (15) we can then extract a possi-
ble scaling function f0,S for any given size LT,0 by
plotting (ti/t0)−αf0(ti, pL, (ti/t0)ζLT,0) as a function of
(ti/t0)βpL. For this purpose we choose four different
lengths LT,i (i = 0, 1, 2, 3) and the corresponding times
ti are then calculated from Eq. (16). To obtain the scal-
ing exponents we apply the same fitting procedure as for
the two-dimensional case, but now additionally also vary
ζ and select the best fit value. From Eq. (16) it can
be seen that for different given lengths Li increasing the
value of ζ lowers the differences between the times ti. For
large values of ζ the fit therefore considers curves that lie
very close to each other such that the fit becomes less
precise. However, in practice it turns out to be sufficient
to limit the upper bound on the range of possible ζ val-
ues in order to find acceptable fits. While this works well
for not too small transverse lattice sizes, it becomes less
accurate when decreasing LT,0 such that rather large un-
certainties in the estimates for exponents can arise. The
final estimates for the scaling exponents and their uncer-
tainties are obtained by using multiple reference times
and then calculating averages in the same way as for the
isotropic two-dimensional system in Sec. III. Exemplify-
ing figures showing the scaling exponents as a function
of the reference time can be found in appendix B.

B. Dimensional crossover exponents and scaling
functions

We employ the initial conditions given in Eq. (9) with
the same parameter values as for the two-dimensional
setup of Sec. III except that now we vary the transverse
size as LT = 1024, 512, 256, 128, 64, 58, 48, 40, 32,
26, 22, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1. In contrast to

the two-dimensional case, for small transverse lattices it
is also crucial to include the quantum-half in the initial
condition [see Eq. (9)]. For LT � 2π/Q only the zero
mode is highly occupied initially while the higher modes
are initialized with their vacuum amplitude. Moreover,
for LT � 2π/Λ no higher modes are initialized such that
their classical dynamics becomes trivial and the highly
occupied zero-mode is governed by a one-dimensional
theory with the limitations as described in Sec. II B (we

choose Λ =
√

2.01).

Fig. 3 shows the rescaled distribution function as a
function of the rescaled momentum at four different times
for LT,0 = 32 and LT,0 = 6. For each time the distribu-
tion from a different LT is used, which captures the effect
of finite-size scaling. The inset shows the original curves
before rescaling, as well as the initial distribution. After
rescaling the curves for different times all collapse very
well to one curve, which is the scaling function of the
system.

The average exponents as a function of LT,0 are shown
in Fig. 4, which is the central result of this work. Here
LT,0 refers to the lowest transverse lattice size consid-
ered in the fitting procedure when finite-size scaling is
relevant (4 ≤ LT ≤ 64), or to the plain transverse lattice
size when no finite-size scaling is necessary and in which
case ζ is not computed. We note that ζ approaches β as
LT → LL, which is expected from dimensional analysis
for an isotropic scaling behavior. The three background
colors shown in the figure illustrate the three different
parameter regimes for the initial conditions as explained
in Sec. II B. The scaling exponents α and ζ decrease sig-
nificantly when decreasing LT , while β stays relatively
constant for not too small LT . We find the strongest
decrease when transitioning from one parameter regime
to another. In the green regime the dynamics for the
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FIG. 4. Scaling exponents as a function of the transverse lat-
tice size LT,0, which is the smallest lattice length considered
in the corresponding fitting procedure. The exponent ζ is as-
sociated to finite-size scaling, which is only computed in the
relevant regime as described in the main text. The dashed
lines indicate the boundaries between the three parameter
regimes at LT ≈ 2π/Q and LT ≈ 2π/Λ.

zero mode becomes effectively one-dimensional. In this
case we find exponents close to zero as expected for our
class of initial conditions since, e.g., number conserving
two-to-two scatterings are ineffective in one spatial di-
mension because of phase-space restrictions from energy
and momentum conservation.

As can already be seen from Fig. 3, additionally to the
scaling exponents the scaling function itself can change
when decreasing LT . For the relevant low-momentum
range the scaling function is well described by the fit

f0,S(p) = A/ (1 + (p/B)κ) . (17)

Here κ is the ‘scaling function’ exponent and the ampli-
tudes A and B are two non-universal constants, which
we have to extract from the data in order to compare
the distributions of different systems. This is done in
Fig. 5 which shows the normalized scaling function as

a function of the rescaled momentum in the three differ-
ent regimes. The solid lines depict the corresponding fits.
For the curve of LT = 2 no rescaling was performed since
in this regime we found α ≈ β ≈ 0. We observe that the
exponent κ changes between the three regimes, while the
overall shape of the curve remains relatively similar.

As the scaling function exponent κ is a universal quan-
tity, it is again interesting to see how it depends on the
transverse lattice size. Since the exponent κ does not
change under rescaling, we can perform a fit according
to Eq. (17) to the original distribution rather then the
scaling function and therefore obtain κ for each LT sepa-
rately. To compute κ and its uncertainties as a function
of LT , for each lattice size we compute the average over
time in the same way as for the other scaling exponents.
The results are shown in Fig. 6. One observes a seemingly
smooth transition when going from two dimensions with
κ ≈ 3 to one dimension with κ ≈ 2. The uncertainties of
the average again grow relatively large for lattices around
LT = 14, as the value of κ strongly oscillates around the
average as a function of time. This is in line with the
large uncertainties of the other scaling exponents in that
range and may hint at more complicated behavior not
captured by our fitting procedure.
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FIG. 5. Fixed-point distribution f0,S for different LT,0. The
solid lines represent the fit of the function fS(ξ) = A/(1 +
(ξ/B)κ), and the data is normalized by the amplitudes A and
B to allow comparison between the regimes. The power-law
exponent changes significantly with the transverse lattice size.

V. DISCUSSION AND CONCLUSIONS

Our results clearly demonstrate the change of the
nonequilibrium exponents and scaling functions from two
to one spatial dimension as the transverse lattice size is
reduced. The correlation exponent β turns out to be
always close to one-half until it rather abruptly drops
to zero for the one-dimensional system. This is consis-
tent with the observed insensitivity of β to changes in
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FIG. 6. Scaling function exponent κ as a function of the trans-
verse lattice size. One observes a rather smooth transition in
the crossover regime from two to one spatial dimension. The
dashed lines indicate the boundaries between the three pa-
rameter regimes at LT ≈ 2π/Q and LT ≈ 2π/Λ.

the dimensionality of space by comparison also to d = 3
systems [9]. One-dimensional systems are special in the
sense that the phase space for typical (two-to-two) scat-
tering processes between excitations is severely restricted
by energy and momentum conservation such that scaling
exponents vanish identically. However, we find that even
for LT � LL the vacuum modes turn out to modify
the effective interactions for the quasi one-dimensional
systems significantly, such that a non-zero β can be ob-
served up to the smallest values of LT for which we prop-
erly incorporate the quantum-half in our initial condi-
tions. This is consistent with the experimental obser-
vations that quasi one-dimensional setups yield non-zero
values for β. While for the spin-1 system of Ref. [6] a
universal value consistent with our result is found, the
measurements for the Bose gas of Ref. [7] yields a signif-
icantly smaller value for β. This indicates that an expla-
nation of the latter requires further ingredients, such as
a modified β from soliton dynamics [7].

In contrast to β, our results for the occupation expo-
nent α indicates significant variations for small LT . Since
number conservation constrains α = dβ, for constant β in
d > 1 the observed change from α ' 2β for LT ' LL to
α ' β for LT � LL indeed reflects the effective change
in dimensionality. In fact, both quasi one-dimensional
experiments of Ref. [6] and Ref. [7] are consistent with
α ' β.

Remarkably, our findings for the finite-size exponent ζ
and, in particular, the scaling function exponent κ clearly
indicate a relatively smooth crossover behavior as LT be-
comes small. Following the analytical approximate re-
sults of Refs. [10, 15] from effective kinetic theory, one
expects κ ' d + 1 which is consistent with our simula-
tions for the two-dimensional geometry with LT ' LL.
For small enough LT we find rather continuously decreas-

ing values for κ. For the smallest value of LT for which
we properly incorporate the quantum-half in our initial
conditions we find κ to be close to two, which accord-
ingly would be consistent with an interpretation as quasi
one-dimensional dynamics.

The fact that several characteristic quantities exhibit
a dimensional crossover by varying the finite-size geome-
try opens up very interesting possibilities also for further
experimental studies, in particular, in stronger coupling
regimes where our employed theoretical approximation
scheme fails. It would be striking if important aspects
of the universal behavior of anisotropic systems far from
equilibrium can be established to be classified in terms
of fractional dimensions.
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Appendix A: Self-similarity fitting procedure

To calculate the values of the scaling exponents given
in sections III and IV we apply a fitting procedure to the
numerically calculated distribution function. The result
of this procedure are the scaling exponents as a function
of a reference time t0, as shown, e.g., in Fig. 2. From
these values we then calculate an average as described in
the main text. For the isotropic system with LT = LL
the procedure is exactly the same as described in [9]. In
the following we therefore only shortly recapitulate the
isotropic case and and then explain how we adapt it to
systems with LT � LL, including finite-size scaling.

For the isotropic system self-similarity of the dis-
tribution function is described by the scaling form
f(t, p) = (t/t0)αfS

(
(t/t0)βp

)
, with p = |p| and a refer-

ence time t0. To find the exponents α and β, we define
the rescaled distribution

fresc.(t, p) = (t/t0)−αf(t, (t/t0)−βp). (A1)

Perfect self-similarity implies fresc.(t, p)− f(t0, p) = 0, so
in order to find the best estimates for the exponents we
minimize deviations from this behavour for the infrared
momentum modes. To this end, we define the function

χ2(α, β) =

1

Ncomp.

Ncomp.∑
i=1

∫
d(log p)[(fresc.(tk, p)− f(t0, p))/f(t0, p)]

2∫
d(log p)

,

(A2)
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where tk are the times considered for the fit and Ncomp.

are the number of times we compare. We integrate over
d(log p) to give a stronger weight to the infrared modes.
To calculate χ2 we linearly interpolate fresc.(tk, p) so that
the momenta coincide with the ones of f(t0, p). The es-
timates for the scaling exponents α(t0) and β(t0) are de-
fined as the values that minimize χ2.

To estimate the error of the scaling exponents for a
given t0 we define the likelihood function

W (α, β) =
1

N
exp

(
− χ2(α, β)

2χ2(α(t0), β(t0))

)
, (A3)

with the normalization N so that
∫
dα dβW (α, β) = 1.

We then approximate the marginal likelihood function
W (α) =

∫
dβW (α, β) with a Gaussian and take the stan-

dard deviation of the Gaussian σα as the estimate for the
error of α(t0). Analogously we obtain an estimate for the
error of β(t0). These errors are depicted as error bars in
Fig. 7.

For systems with LT � LL the distribution function
explicitly depends on the transverse size [see Eq. (15)]
such that it is necessary to perform finite-size scaling. In
this case we define the rescaled distribution as

f0,resc.(t, pL, LT,0) = (t/t0)−αf0(t, (t/t0)−βpL, (t/t0)ζLT,0).
(A4)

The corresponding definition of χ2(α, β, ζ) is then the
same as in A2, but with the fresc. and f(t0, p) replaced
by f0,resc. and f0(t0, pL, LT,0), respectively. The rescaled
distribution involves distributions for different times and
transverse sizes, which are chosen according to Eq. (16)
as described in the main text. The minimization for α
and β is done for a fixed ζ with the SciPy library for
python [17]. We repeat this for the relevant values of ζ
on a grid with a spacing of ∆ζ = 0.002 and select the
exponents with the minimal χ2 value as our estimates
for α, β and ζ. Here error estimation via the likely-
hood function as before is not applicable, as for fixed α
and β the χ2-function has many local minima, and ap-
proximating the resulting marginal likelihood functions,
e.g. W (ζ), with a Gaussian does not produce accurate
results. Instead we only calculate uncertainties for the
average value the same way as for the isotropic system
as explained in Sec. III. These averages and their uncer-
tainties are then the scaling exponents depicted in Fig.
4.

When including lattices from different param-
eter regimes in the fitting procedure, e.g. for
LT,i = 8, 10, 12, 14, we have not found scaling exponents
that produce a good fit which we attribute to a missing
normalization factor. Since the amplitudes A and B of
the scaling function [see Eq. (17)] are not universal and
since different initial conditions in the different parameter
regimes lead to significant changes in the energy density
also the amplitudes change significantly. We have not
found a suitable normalization that removes these differ-
ences. Additionally, we find that the scaling exponents
change the strongest at the boundaries between the two

regimes, which also causes problems in the convergence
of the fitting procedure. Therefore, we have excluded the
corresponding points for LT,0 = 8, 10, 12 in Fig. 4.

Appendix B: Time evolution of scaling exponents
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FIG. 7. Scaling exponents as a function of reference time t0
for LT,0 = 32 (top) and LT,0 = 6 (bottom). The solid lines
illustrate the average values as well as the times included in
the averaging.

To illustrate how the scaling exponents change with
time in the different parameter regimes, we give two ex-
emplifying plots in Fig. 7, which show the scaling expo-
nents as a function of the reference time t0, as well as
their average value, for the two lattice sizes LT,0 = 32
(top) and LT,0 = 6 (bottom). We observe relatively
large fluctuations of the exponents, especially for the ex-
ponents α and ζ. While the reason for this behavior is
not completely clear, we noticed that for different fixed
values of ζ the best fitting exponents α and β change
significantly. Stronger limits on the range that we sam-
ple ζ from therefore reduce the fluctuations in α and β
as well, but even for a constant ζ for all reference times
they are still significant. By inspecting the χ2-function
as defined in appendix A, we also noticed the existence
of multiple local minima. This explains the rather big
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jumps of the scaling exponents e.g. at t0 ≈ 1000 for
LT,0 = 32, where the location of the global minimum
changes between these local minima. As mentioned in
IV B the scaling function exponent κ also oscillates quite
strongly as a function of time, especially in the range

32 ≥ LT ≥ 14 (hence the large uncertainties). This indi-
cates that in this regime, the physical behavior might be
more complicated than what is captured by our fitting
procedure.
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