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We analyse the effects of the environment (solvent quality, presence of extended structures — crowded envi-
ronment) that may have impact on the order of the transition between denaturated and bounded DNA states
and lead to changes in the scaling laws that govern conformational properties of DNA strands. We find that the
effects studied significantly influence the strength of the first order transition. To this end, we re-consider the
Poland-Scheraga model and apply a polymer field theory to calculate entropic exponents associated with the
denaturated loop distribution. For the 𝑑 = 3 case, the corresponding diverging 𝜀 = 4 − 𝑑 expansions are
evaluated by restoring their convergence via the resummation technique. For the space dimension 𝑑 = 2, the
exponents are deduced from mapping the polymer model onto a two-dimensional random lattice, i.e., in the
presence of quantum gravity. We also show that the first order transition is further strengthened by the presence
of extended impenetrable regions in a solvent that restrict the number of the macromolecule configurations.
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Nucleic acids together with proteins and carbohydrates belong to macromolecules essential to all
known forms of life. Enormous experimental, theoretical, and simulational efforts have been involved to
understand and qualitatively describe their physical, chemical and biological properties. In this paper we
show how an insight from polymer field theory helps to shed light on properties of a DNA helix-to-coil
(also called denaturation, unwinding or unzipping) transition: a phenomenon, that lies at the origin of
biological processes involving DNA, as duplication or transcription. The latter phenomena occur in a cell
and are complex biological protein-mediated processes. An analogue of DNA unwinding is also observed
in vitro: when purified DNA solution is heated above the room temperature, the cooperative transition
from the hydrogen bound double-stranded helix structure to a single stranded one occurs, see [1] and
references therein for review. This phenomenon is known as DNA thermal denaturation and is the subject
of our study.
In statistical physics, the DNA thermal denaturation is described in terms of the Poland-Scheraga

model [2–4] that allows its treatment in terms of phase transition theory. In a recent paper [5] we have
shown that changes in the solvent quality may cause an essential impact on the order of the phase
transition between denaturated and bounded DNA states. To quantify this impact, we have calculated
𝜀 = 4 − 𝑑 expansions for the entropic exponents that govern the denaturated loop distribution in a
good solvent and in the 𝜃-solvent regimes and evaluated these (divergent) expansions in 𝑑 = 3. In this
paper, we complement such analysis by offering exact results for the exponents at 𝑑 = 2. Moreover, we
further analyse possible reasons that may have impact on the order of the transition. In particular, we are
interested in the effects caused by the presence of extended structures that restrict the swelling of polymer
chains. By such analysis we make an attempt to consider the situation in a more realistic condition of
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a. b.

Figure 1. Model of DNA thermal denaturation (unzipping) transition discussed in this paper. At low
temperatures 𝑇 , two DNA strands remain connected by hydrogen bonds and form a single long flexible
polymer chain (figure a). With an increase of 𝑇 , the chain unzips and a loop emerges: now the whole
structure consists of two different ‘species’: double stranded side chains, shown by solid lines, and a
single stranded loop shown by a thin line in the middle (figure b).

macromolecules in a crowded environment of a cell [6].
The rest of the paper is organized as follows. In the next section we repeat some of our results for the

scaling relations and entropic scaling exponents [5] and give their numerical estimates at 𝑑 = 3. Based
on the exact conformal scaling dimensions for two-dimensional copolymers derived from an algebraic
structure existing on a random lattice (quantum gravity) [7–9] we derive exact values of the exponents
at 𝑑 = 2 and discuss the whole sector 2 6 𝑑 6 4 in section 2. Crowded environment effects are analysed
in section 3, conclusions are summarized in section 4. It is our pleasure and a big honour to contribute
by this paper to the Festschrift devoted to Prof. Yu. Kalyuzhnyi on the occasion of his 70th birthday.
Doing so we deeply acknowledge his seminal contributions to the soft matter physics in general and to
the subject discussed in this paper in particular, see e. g., [10–15]. CvF and YuH also are indebted to the
jubilee for a long-lasting friendship, numerous discussions about physics and not only.

1. Poland-Scheraga model: scaling relations and 𝜺-expansion

The model suggested by Poland and Scheraga in middle-sixties [2, 3] describes the DNA thermal
denaturation by a proper account of energy-entropy interplay: at low temperatures 𝑇 , the bound state,
figure 1 a, is favoured by energy whereas at high 𝑇 the unbound state, figure 1 b, is favoured by entropy
as the one having more configurations. Poland and Scheraga’s theoretical works lead to a whole family of
DNAdenaturationmodels [4, 6, 16–24]. It was shown that the unzipping transitionmechanism is governed
by the universal loop exponent 𝑐 which describes scaling of the partition function of a single-stranded
DNA loop in double stranded side chains, see figure 1 b:

Zloop ∼ 𝜇ℓℓ−𝑐 , (1.1)

here, ℓ is loop length (number of unbound segments) and 𝜇 is non-universal fugacity. For 𝑐 > 1, the
model predicts the denaturation transition whereas for 0 6 𝑐 6 1 the order parameter (average number
of ordered bound pairs in a chain) is a continuous function of 𝑇 smoothly changing between 1 and 0
when 𝑇 increases from 0 to ∞. In turn, for larger values of 𝑐, the order parameter either continuously
vanishes at 𝑇 = 𝑇𝑐 for 1 < 𝑐 6 2 or disappears abruptly at 𝑇 = 𝑇𝑐 for 𝑐 > 2. The last two types of
behaviour correspond to the second and first order phase transitions, respectively. However, the value of
𝑐 is not obvious. First papers on the model suggested 𝑐 = 𝑑/2, which lead to the second order transition
and 𝑑 = 3 [2, 3]. Later Fisher has considered taking into account the self-avoiding nature of chains
that lead to 𝑐 = 𝑑𝜈 [16], where 𝜈 is polymer mean square end-to-end distance scaling exponent. Still,
with 𝜈(𝑑 = 3) ' 0.588 [25], the phase transition remains the second order. This result contradicts
experimental observations of the first order nature of the transition [1]. A more general approach to
analyze scaling properties of the macromolecule configurations shown in figure 1 was based on polymer
network theory, as interaction between the loop and the chain was taken into account [17–21, 26, 27].
Considering both the side chains and the loop as self-avoiding walks (SAWs), it was shown that the
phase transition is of the first order for 𝑑 = 2 and above. This result was further supported by numerical
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f1
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Figure 2. a: block copolymer of two polymer chains of different species, shown by solid and thin lines,
linked together. b: copolymer star consisting of 𝑓1 chains species 1 and 𝑓2 chains of species 2 tied together
at their end points. Its scaling properties are governed by universal copolymer star exponents 𝜂 𝑓1 𝑓2 . Note
that the block copolymer gives a trivial example of a two-arm copolymer star with an exponent 𝜂11.

simulations [26] and it was also suggested that possible heterogeneity in chain structure may strengthen
the transition.
Depending on temperature, the asymptotic scaling behaviour of a long flexible polymer macro-

molecule in a good solvent belongs either to random walk (RW), 𝑇 = 𝑇𝜃 , or to self-avoiding walk (SAW),
𝑇 > 𝑇𝜃 universality classes (𝑇𝜃 denoting the 𝜃-point) [28, 29]. Therefore, the only difference that may
be observed in asymptotic scaling of chains of different species (in our case these are the double- and
single-stranded chains) is due to the difference in asymptotic scaling properties of mutually interacting
SAWs and RWs. Based on this fact, recently [5] we have applied polymer field theory [9, 25, 32–34] to
derive scaling relations that express the loop exponent 𝑐 (1.1) in terms of the familiar copolymer star
exponents 𝜂 𝑓1 𝑓2 . The latter govern the scaling of star-like polymer structures that are created by linking
together the end points of polymer chains of two different species at a common core, as shown in figure 2.
When such a copolymer star is immersed in a good solvent, its asymptotic properties are universal in the
limit of long chains. In particular, the partition function (the number of configurations) of a copolymer
star made of two sets of 𝑓1 and 𝑓2 mutually avoiding RWs scales with its size 𝑅 as [9, 32–34]:

𝑍𝐺
𝑓1 𝑓2

∼ 𝑅
𝜂𝐺
𝑓1 𝑓2 . (1.2)

In turn, the partition function of a copolymer star made of mutually avoiding sets of 𝑓1 SAWs and 𝑓2
RWs scales as:

𝑍𝑈
𝑓1 𝑓2

∼ 𝑅
𝜂𝑈
𝑓1 𝑓2

− 𝑓1𝜂
𝑈
20 . (1.3)

The third case which is of interest here is the star of two sets of 𝑓1 and 𝑓2 SAWs. For its partition function,
one gets:

𝑍𝑆
𝑓1 𝑓2

∼ 𝑅
𝜂𝑆
𝑓1 , 𝑓2

−( 𝑓1+ 𝑓2)𝜂𝑆
20 . (1.4)

Indices 𝐺,𝑈, 𝑆 in the above formulae refer to the fixed points (FPs) of the renormalization group
transformation that govern the scaling of corresponding mutually avoiding structures: Gaussian FP
for RWs, unsymmetric FP for RW and SAW, and symmetric FP for SAWs, see [32–34] for more
details. Exponents 𝜂𝑆

𝑓1 , 𝑓2
are related to 𝜂𝑈

𝑓1 , 𝑓2
and to the homogeneous star exponents 𝜂 𝑓 [30, 31] via:

𝜂𝑆
𝑓1 , 𝑓2

= 𝜂𝑈
𝑓1+ 𝑓2 ,0 = 𝜂 𝑓1+ 𝑓2 .

With the above considerations in mind, one is led to four different cases that account for possible
inhomogeneities and, therefore, for different scaling exponents of the DNA denaturation model shown in
figure 1 b:

1. both bound chains and the unbound loop are SAWs (SAW-SAW-SAW);

2. bound chains are SAWs, the loop is RW (SAW-RW-SAW);

3. the chains are RW-like, while the loop is SAW (RW-SAW-RW);

4. both the chains and the loop are RW-like, though they do not intersect each other (RW-RW-RW).
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The scaling relations that express the loop exponent 𝑐 (1.1) in terms of copolymer star exponents 𝜂 𝑓1 𝑓2
for these four cases read [5]:

1. SAW-SAW-SAW: 𝑐1 = 𝜈SAW(3𝜂𝑆20 + 𝑑 − 2𝜂𝑆12) , (1.5)
2. SAW-RW-SAW: 𝑐2 = 𝜈RW(𝜂𝑆20 + 𝑑 − 2𝜂𝑈12) ,
3. RW-SAW-RW: 𝑐3 = 𝜈SAW(2𝜂𝑆20 + 𝑑 − 2𝜂𝑈21) ,
4. RW-RW-RW: 𝑐4 = 𝜈RW(𝑑 − 2𝜂𝐺21) .

Here, 𝜈RW = 1/2 and 𝜈SAW are the mean square end-to-end distance exponents for the random and self-
avoiding walks, correspondingly, and 𝑑 is space dimension. The exponents 𝜂 𝑓1 𝑓2 have been calculated
within field-theoretical renormalization group approach [9, 32–34] and are currently know in the fourth
order of the 𝜀 = 4− 𝑑 expansion [35]. Below, we list them together with the 𝜀-expansion for the exponent
𝜈SAW [36] in the corresponding order:

𝜂𝑆20(𝜀) = − 𝜀/4 − 9𝜀2/128 + 𝜀3 [264𝜁 (3) − 49]/2048 (1.6)
+ 𝜀4 [704π4 − 297600𝜁 (5) + 38160𝜁 (3) + 235]/655360 ,

𝜂𝑆12(𝜀) = − 3𝜀/4 − 3𝜀2/128 + 3𝜀3 [40𝜁 (3) + 23]/2048 (1.7)
+ 𝜀4 [64π4 − 32640𝜁 (5) − 6480𝜁 (3) + 3333]/131072 ,

𝜂𝑈12(𝜀) = − 3𝜀/4 + 𝜀2 [42𝜁 (3) − 13]/128 + 𝜀3 [384𝜁 (3) − 5]/2048 (1.8)
+ 𝜀4 [1024π4 − 528000𝜁 (5) + 14880𝜁 (3) + 7655]/655360 ,

𝜂𝑈21(𝜀) = − 𝜀 + 𝜀2 [42𝜁 (3) + 1]/64 + 17𝜀3/1024 (1.9)
− 𝜀4 [1056𝜁 (3) − 721]/65536 ,

𝜂𝐺21(𝜀) = −𝜀, (1.10)

𝜈SAW(𝜀) =1/2 + 𝜀/16 + 15𝜀2/512 + 𝜀3 [135/8192 − (33/1024)𝜁 (3)] + 𝜀4 [3799/524288 (1.11)
− (873/32768)𝜁 (3) − (11/40960)π4 + (465/4096)𝜁 (5)] ,

where 𝜁 (𝑥) is Riemann zeta-function. Note that the formula for the exponent 𝜂𝐺21 contains only linear in
𝜀 term and is exact.
Substituting expressions (1.6)-(1.11) into the scaling relations (1.5) one can evaluate loop exponents

𝑐𝑖 at any value of 𝑑. It is well known, however, that 𝜀-expansions of the field theory are asymptotic
at best and proper resummation technique is required to get a reliable numerical information on their
basis [37, 38]. Applying resummation technique based on the Borel-Leroy transformation enhanced by
conformal mapping of a cut-plane on a disc [39–41], we arrived at the following values of the loop
exponents 𝑐𝑖 for 𝑑 = 3 [5]:

𝑐1 = 2.147 ± 0.009, 𝑐2 = 2.169 ± 0.004, (1.12)
𝑐3 = 2.76 ± 0.03, 𝑐4 = 2.5.

Clearly, 𝑐 > 2 in all configurations, which confirms the first order transition.
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Figure 3. (Colour online) Loop closure exponents 𝑐𝑖 at different space dimension 𝑑. Triangles show exact
results at 𝑑 = 2 (2.3) and squares show most accurate results obtained by resummation at 𝑑 = 3 [5]. The
lines show analytic continuation to non-integer 𝑑 via 𝜀-expansion in the first and second orders, thick
solid and thin dashed lines, correspondingly. Note that in the case of mutually avoiding RWs (blue line),
loop closure exponents 𝑐4 (𝜀) are exact and linear in 𝜀.

2. Exact results at 𝒅 = 2 and quantum gravity

As has been discussed above, the 𝜀-expansions for the 𝑐𝑖 may serve as a basis for reliable numerical
estimates at 𝑑 = 3 provided appropriate resummation technique is applied. With the perturbative expan-
sions and their numerical estimates at hand, it is instructive to corroborate the results by comparing them
with the data for other space dimensions, if available. One obvious result is obtained for 𝑑 = 4: there, as
it is easy to check via equations (1.5), all exponents are equal: 𝑐𝑖 (𝑑 = 4) = 2. Besides, there is a tempting
opportunity to get exact values for the exponents at 𝑑 = 2. Indeed, to this end one can make use of the
exact results for the scaling exponents of 𝑑 = 2 copolymer stars of mutually avoiding bunches of SAW
and RW [7, 8]. There, the relations between exponents in fluctuating geometry (quantum gravity) and flat
𝑑 = 2 geometry have been used to extract the exact values of the exponents. In notations of the previous
section, the exponents read:1

𝜂𝐺𝑓1 𝑓2 =
1
48

{
4 −

[√︁
24 𝑓1 + 1 +

√︁
24 𝑓2 + 1 − 2

]2}
, (2.1)

𝜂𝑈𝑓1 𝑓2 =
1
48

{
4 + 5 𝑓1 −

[
3 𝑓1 +

√︁
24 𝑓2 + 1 − 1

]2}
. (2.2)

Substituting these formulae into equations (1.5) and taking into account that 𝜈SAW(𝑑 = 2) = 3/4 [25],
one gets the following exact values of the exponents 𝑐𝑖 at 𝑑 = 2:

𝑐1 =
77
32

' 2.406, 𝑐2 =
109
48

' 2.271, (2.3)

𝑐3 =
7
2
, 𝑐4 = 3 .

These values are shown by triangles in figure 3. The obtained result for the exponent 𝑐3 recovers the
value predicted at 𝑑 = 2 by the exact formula that follows from equation (1.5) and is also valid for other
values of 𝑑: 𝑐3 = 2 + 𝜀/2.
Comparing the values of the loop closure exponents 𝑐𝑖 at 𝑑 = 2 and at 𝑑 = 3 one can arrive at certain

conclusions about an impact of chain heterogeneity on the strength of the DNA thermal denaturation

1Cf. equations (100), (101) of [9].
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transition. The first observation is that passing from the homogeneous SAW composition within the
Poland-Scheraga model (as described by the exponent 𝑐1) usually leads to strengthening of the first order
transition. When the SAW side chains are substituted by RWs, the strength of the transition increases:
𝑐3 > 𝑐1, 𝑐4 > 𝑐2. In turn, when the side chains remain unchanged, the change of the SAW loop to the
RW loop decreases the strength of the first order transition: 𝑐3 > 𝑐4 and 𝑐1 > 𝑐2. The last effect is more
pronounced for the RW side chains and at space dimension 𝑑 = 2. In general, the following rule holds:
𝑐2 < 𝑐1 < 𝑐4 < 𝑐3 (with 𝑐2 ∼ 𝑐1 at 𝑑 = 3).
Another striking feature that follows from the comparison of the exact and perturbative results shown

in figure 3 is a rather unusual behaviour of the 𝜀-expansion curves. Indeed, the first order 𝜀-expansion
for the exponents 𝑐𝑖 (solid lines in the plot) nicely corresponds to the resummed 𝜀4-data at 𝑑 = 3 and
to the exact values at 𝑑 = 2. Such a behaviour is obvious for the exponent 𝑐3, where the first order
𝜀-expansion provides an exact number. However, for the other exponents, an account of the higher orders
of the perturbative expansion needs careful application of the resummation technique. Being evaluated
naïvely by simple adding higher order contribution, the 𝜀-expansion holds only very close to the upper
critical dimension 𝑑 = 4, as shown in the figure by the thin dashed lines for the case of 𝜀2-data. Therefore,
the first order 𝜀-expansion provides the so-called optimal truncation [38] for the 𝑐𝑖 (𝜀) series.

3. Crowded environment

In two former sections, 1 and 2, we discussed an impact of the solvent quantity on the order of the
DNA thermal denaturation transition. Another factor that may modify the scaling exponents of long
flexible polymer macromolecules is the presence of impurities — impenetrable regions in a solvent that
restrict the number of polymer configurations, see e.g., [42] and references therein. Statistics of polymers
in disordered medium is of interest for a number of reasons. In the context of our study it is important
to mention its relevance for treating macromolecules in a cell, composed of many different kinds of
biochemical species [43–45].
There exist different analytic frameworks to model an impact of disordered medium on the scaling

properties of (interacting) SAWs and RWs. To give a few examples, the latter are studied on a percolation
cluster [46, 47] or at presence of quenched defects [48–55]. Taking into consideration that the uncorrelated
defects do not influence polymer scaling [48, 49], the so-called ‘extended’ or long-range correlated
structural disorder has been shown to be relevant. A model of long-range correlated disorder has been
suggested in [50] and further exploited in studies of polymers [52–55]. Within this model, one considers
the defects, characterized by the density-density pair correlation function 𝑔(𝑟) decaying at a large distance
𝑟 according to the power law

𝑔(𝑟) ∼ 𝑟−𝑎 . (3.1)

For integer values of 𝑎, such defects have a direct interpretation: the case 𝑎 = 𝑑 corresponds to point-like
defects, while 𝑎 = 𝑑−1 (𝑎 = 𝑑−2) correspond to straight lines (planes) of defects of random orientation.
Sometimes non-integer values of 𝑎 are interpreted in terms of fractal structures.2 Detailed analysis of an
impact of the long-range correlated disorder (3.1) on possible changes in the exponents (1.5) and hence
on the DNA thermal denaturation is beyond the scope of this study. However, we will use some of the
previously obtained results in order to understand and qualitatively describe this possible impact.
It is easy to see that the presence of long-range correlated impurities may or may not be relevant and

change the polymer scaling exponents depending on the value of 𝑎. Indeed, large-distance asymptotics of
the pair correlation function (3.1) corresponds to the power-law behaviour of its Fourier-image at small
wave vector 𝑘 in the form 𝑘𝑎−𝑑 . Therefore, by simple power counting, one arrives at the conclusion
that such a term becomes relevant at small 𝑘 for 𝑎 < 𝑑. Applying field-theoretic renormalization group
technique, the corresponding polymer model has been analysed and the scaling exponents were calculated
in the two-loop approximation at fixed 𝑑 = 3 and different values of the correlation parameter 𝑎 as well
as in a one-loop order by the double expansion in 𝜀 = 4 − 𝑑 and 𝛿 = 4 − 𝑎 [52–54]. The derivation
given below is based on these double 𝜀, 𝛿 expansions. In particular, it has been shown that for certain

2See also [56–58], where the relation of fractal dimension to the analytically continued non-integer dimension is discussed in
more details.

33603-6



DNA thermal denaturation by polymer field theory approach: effects of the environment

region of parameters 𝜀/2 < 𝛿 < 𝜀, the scaling properties of a single flexible polymer chain in porous
environment with a long-range correlated structure are governed by a new, ‘long-range’ fixed point 𝐿.
The mean square end-to-end distance exponent 𝜈SAW in the first order of 𝜀, 𝛿 expansion reads [52]:

𝜈𝐿SAW = 1/2 + 𝛿/8 + . . . . (3.2)

In turn, the 𝜂 𝑓1 𝑓2 exponents for co-polymer stars in porous environment with long-range correlated
structure are given by:3

𝜂
𝑆𝐿

𝑓1 𝑓2
=

−( 𝑓1 + 𝑓2) ( 𝑓1 + 𝑓2 − 1)𝛿
4

, (3.3)

𝜂
𝑈𝐿

𝑓1 𝑓2
=

− 𝑓1( 𝑓1 + 3 𝑓2 − 1)𝛿
4

, (3.4)

𝜂
𝐺𝐿

𝑓1 𝑓2
= − 𝑓1 𝑓2𝛿 . (3.5)

In equations (3.3)–(3.5), the first exponent 𝜂𝑆𝐿

𝑓1 𝑓2
corresponds to the star of 𝑓1 + 𝑓2 SAWs, the second

exponent 𝜂𝑈𝐿

𝑓1 𝑓2
describes the star of mutually avoiding sets of 𝑓1 SAWs and 𝑓2 RWs, and the third

exponent 𝜂𝐺𝐿

𝑓1 𝑓2
describes the star of two mutually avoiding sets of 𝑓1 and 𝑓2 RWs.

Two cautions are at place here. First, the ‘long-range’ fixed point 𝑆𝐿 is accessible in the region where
the above mentioned power counting shows that the disorder is irrelevant. Second, the fixed points 𝑈𝐿

and 𝐺𝐿 can be reached only for specific initial conditions. Similar situation is also encountered when
the 𝜀, 𝛿 expansion is applied to study models of 𝑚-vector magnets with long-range correlated quenched
disorder [50]. However, an account of higher order contributions restores the physical region of stability
of the ‘long-range’ fixed point confirming a qualitatively correct result of the first-order analysis, see
e.g., [59] and references therein. Therefore, with an aim of getting a qualitative description of an impact
of extended long-range correlated impurities on the DNA thermal denaturation transition, we proceed
with formulae (3.2)–(3.5) substituting them into the scaling relations (1.5) and arrive at the following
first-order values for the 𝑐𝑖 exponents:

𝑐𝐿1 = 𝑐𝐿2 = 2 − 𝜀/2 + 5𝛿/4 , (3.6)
𝑐𝐿3 = 𝑐𝐿4 = 2 − 𝜀/2 + 2𝛿. (3.7)

As it follows from equation (3.1), the smaller is 𝑎, the stronger are the correlations in porous structure
that restricts the volume available for the macromolecule. Indeed, the density-density correlation function
𝑔(𝑟) decays slower with a decrease of 𝑎, attaining the fat-tail features. The positive sign at the linear
in 𝛿 terms in equations (3.6), (3.7) brings about an increase in the exponents 𝑐𝑖 with an increase of
𝛿 = 4 − 𝑎. This allows to conclude, that an increase in density correlations of the porous structure leads
to strengthening of the DNA thermal denaturation transition. Moreover, comparing equations (3.6) and
(3.7), one concludes that 𝑐𝐿3 , 𝑐

4
4 > 𝑐𝐿1 , 𝑐

𝐿
2 , similar to what was observed for the DNA denaturation in a

pure solvent without porous medium. The difference between the exponents increases with an increase
of 𝛿: 𝑐𝐿3,4 − 𝑐𝐿1,2 = 3𝛿/4. Of course, with all cautions mentioned above, these results should be considered
as qualitative predictions, rather than a quantitative description of DNA denaturation in a crowded
environment. The above obtained relations 𝑐𝐿1 = 𝑐𝐿2 and 𝑐𝐿3 = 𝑐𝐿4 may be (and perhaps indeed are)
violated in the second order of the perturbation theory. However, it is worth mentioning that the scaling
arguments supported by the renormalization group calculations predict the effect of strengthening the
order of the denaturation transition when it occurs in presence of extended structures that restrict the
swelling of the polymer coil.

4. Conclusions

The value of the loop closure exponent 𝑐 (1.1) discriminates between different ways the thermal
denaturation of the DNA occurs: for 𝑐 > 2, the denaturated loop emerges abruptly, in the first order

3Cf. equation (39) from [55].
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phase transition manner, for 1 < 𝑐 < 2, the transition is continuous, and for 𝑐 < 1, no transition happens.
Numerous attempts of theoretical description and numerical simulation of this phenomenon finally led
to the coherent picture, observed also in the in vitro experiments and simulations [1, 17, 27, 60]: the
transition is of the first order and 𝑐 > 2. Besides, the factors that may have an impact on the strength, and,
eventually, even on the order, of this transition are discussed in the literature [6]. In a recent paper [5],
we have derived scaling relations that express the loop closure exponent 𝑐 of the Poland-Scheraga
model in terms of the copolymer star exponents 𝜂 𝑓1 𝑓2 [32–34]. This enabled us to analyse an impact of
inhomogeneities in DNA chain composition and solvent quality on the order of the transition. As it has
been shown in [5] and as it is briefly discussed in the above section 1, consideration of the macromolecule
as sets of mutually avoiding SAWs and RWs (see figure 1) leads to an increase in value of 𝑐 and 𝑑 = 3 and,
hence, strengthens the first order transition. In the present paper, we support this observation providing
exact results at 𝑑 = 2. Moreover, we show that the effect of strengthening is further enhanced by the
so-called crowded environment with the long-range correlated inhomogeneities.
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Термiчна денатурацiя ДНК в пiдходi теорiї поля для
полiмерiв: вплив середовища

Ю. Головач1,2,3, К. фон Фербер2,3, Ю. Гончар1,2,3
1 Iнститут фiзики конденсованих систем Нацiональної академiї наук України,
вул. Свєнцiцького, 1, 79011 Львiв, Україна

2 Спiвпраця L4 i Коледж докторантiв ‘Статистична фiзика складних систем’,
Ляйпцiґ-Лотарингiя-Львiв-Ковентрi, Європа

3 Центр плинних i складних систем, Унiверситет Ковентрi, Ковентрi, CV1 5FB, Великобританiя

Ми розглянули вплив середовища (якiсть розчинника, присутнiсть витягнутих структур (перешкод) —
«зайняте» середовище), який може змiнити рiд переходу мiж денатурованим та зв’язаним станами ДНК
i привести до змiн законiв скейлiнґу для конформацiйних властивостей ланцюжкiв ДНК. Показано, що
дослiдженi ефекти значним чином впливають на iнтенсивнiсть переходу першого роду. З цiєю метою,
ми розглянули модель Поланда-Шераги i застосували пiдхiд теорiї поля для полiмерiв, щоби обчислити
ентропiйнi показники, пов’язанi з розподiлом денатурованих петель на ланцюгу. Для випадку 𝑑 = 3 про-
аналiзовано вiдповiднi розбiжнi 𝜀 = 4 − 𝑑 розклади, оцiнюючи їх за допомогою вiдновлення збiжностi
методами пересумовування степеневих рядiв. Для вимiрностi 𝑑 = 2 їх обчислено завдяки проектуванню
полiмерної моделi на двовимiрну випадкову ґратку, тобто розглянуто систему за присутностi квантової
ґравiтацiї. Ми також показуємо, що iнтенсивнiсть переходу першого роду посилюється за наявностi у роз-
чиннику протяжних непроникних областей, що обмежують кiлькiсть конфiгурацiй макромолекули.

Ключовi слова: денатурацiя ДНК, модель Поланда-Шераги, полiмернi мережi, невпорядковане
середовище
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