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We analyse the effects of the environment (solvent quality, presence of extended structures – crowded environ-
ment) that may impact on the order of the transition between denaturated and bounded DNA states and lead
to changes in the scaling laws that govern conformational properties of DNA strands. We show that different
environments may shift the transition towards or away from the first order regime. To this end, we re-consider
the Poland-Scheraga model and apply a polymer field theory to calculate entropic exponents associated with
the denaturated loop distribution. For the d = 3 case the corresponding diverging ε = 4 − d expansions are
evaluated by restoring their convergence via the resummation technique. For the space dimension d = 2
the exact values of the exponents are derived from mapping the polymer model onto a two-dimensional ran-
dom lattice, i.e. in the presence of quantum gravity. We also show that the first order transition is further
strengthened by the presence of extended impenetrable regions in a solvent that restrict the number of the
macromolecule configurations.
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Nucleic acids together with proteins and carbohydrates belong to macromolecules essential
to all known forms of life. Enormous experimental, theoretical, and simulational efforts have been
involved to understand and qualitatively describe their physical, chemical and biological properties.
In this paper we show how an insight from polymer field theory helps to shed light on properties
of a DNA helix-to-coil (also called denaturation, unwinding or unzipping) transition: phenomenon,
that lies at origin of biological processes involving DNA, as duplication or transcription. The latter
phenomena occur in a cell and are complex biological protein-mediated processes. An analogue
of DNA unwinding is also observed in vitro: when purified DNA solution is heated above the
room temperature, the cooperative transition from of the hydrogen bound double-stranded helix
structure to a single stranded one occurs, see [1] and references therein for review. This phenomenon
is known as DNA thermal denaturation and will be the subject of our study.

In statistical physics, the DNA thermal denaturation is described in terms of the Poland-
Scheraga model [2, 3] that allows its treatment in terms of phase transition theory. In a recent
paper [4] we have shown that changes in the solvent quality may cause an essential impact on
the order of the phase transition between denaturated and bounded DNA states. To quantify this
impact, we have calculated ε = 4−d expansions for the entropic exponents that govern denaturated
loop distribution in the good solvent and in the θ-solvent regimes and evaluated these (divergent)
expansions in d = 3. In this paper we complement such analysis by offering exact results for the
exponents at d = 2. Moreover, we further analyse possible reasons that may impact the order of
the transition. In particular, we will be interested in the effects caused by presence of extended
structures that restrict swelling of polymer chains. By such analysis we make an attempt to consider
the situation in a more realistic condition of macromolecules in crowded environment of a cell [5].

It is worth noting here, that in its classical settings the Poland-Scheraga model has been devised
to explain universal features of DNA denaturation by an energy-entropy interplay. As we specify
in more details below, the model is based on a minimal set of assumptions. In a bulk of literature
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a. b.

Figure 1. Model of DNA thermal denaturation (unzipping) transition discussed in this paper.
At low temperatures T , two DNA strands remain connected by hydrogen bonds and form a
single long flexible polymer chain (Fig. a). With an increase of T , the chain unzips and a loop
emerges: now the whole structure consists of two different ‘species’: double stranded side chains,
shown by solid lines, and a single stranded loop shown by a thin line in the middle (Fig. b).

initiated by the pioneering papers [2, 6] the denaturation transition is studied in terms of scaling of
interacting random and self-avoiding walks [7, 16]. On the one hand, such description allows getting
access to the universal features of the transition (as the loop closure exponent c analysed in our
paper), on the other hand it does not address specific for each system non-universal properties (as
values of the transition temperature or thermodynamic characteristics). Numerous generalizations
of this model that has been suggested to tailor it in a way suitable to describe specific substances
and their non-universal features are beyond the scope of our analysis.

The rest of the paper is organized as follows. In the next section we repeat some of our results for
the scaling relations and entropic scaling exponents [4] and give their numerical estimates at d = 3.
Based on the exact conformal scaling dimensions for two-dimensional copolymers derived from an
algebraic structure existing on a random lattice (quantum gravity) [9, 10] we derive exact values of
the exponents at d = 2 and discuss the whole sector 2 ≤ d ≤ 4 in Section 2. Crowded environment
effects are analysed in Section 3, conclusions are summarized in Section 4. It is our please and
a big honour to contribute by this paper to the Festschrift devoted to Prof. Yu. Kalyuzhnyi on
the occasion of his 70th birthday. Doing so we deeply acknowledge his seminal contributions to
the soft matter physics in general and to the subject discussed in this paper in particular, see e.g.
Refs. [11]. CvF and YuH also are indebted to the jubilee for a long-lasting friendship, numerous
discussions about physics and not only.

1. Poland-Scheraga model: scaling relations and ε-expansion

The model suggested by Poland and Scheraga in middle-sixties [2] describes the DNA thermal
denaturation by a proper account of energy-entropy interplay: at low temperatures T the bound
state, Fig. 1 a, is favoured by energy whereas at high T the unbound state, Fig. 1 b, is favoured
by entropy as the one having more configurations. Poland and Scheraga’s theoretical works lead
to a whole family of DNA denaturation models [3, 5, 6, 12–15]. It was shown that the unzipping
transition mechanism is governed by the universal loop exponent c which describes scaling of the
partition function of a single-stranded DNA loop in double stranded side chains, see Fig. 1 b:

Zloop ∼ µ``−c, (1.1)

here ` is loop length (number of unbound segments) and µ is non-universal fugacity. For c > 1 the
model predicts the denaturation transition whereas for 0 ≤ c ≤ 1 the order parameter (average
number of ordered bound pairs in a chain) is a continuous function of T smoothly changing between
1 and 0 when T increases from 0 to ∞. In turn, for larger values of c the order parameter either
continuously vanishes at T = Tc for 1 < c ≤ 2 or disappears abruptly at T = Tc for c > 2. The
last two types of behaviour correspond to the second and first order phase transitions respectively.
However, the value of c is not obvious. First papers on the model suggested c = d/2, which lead
to the second order transition and d = 3 [2]. Later Fisher has considered taking into account the
self-avoiding nature of chains that lead to c = dν [6], where ν is polymer mean square end-to-end
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distance scaling exponent. Still, with ν(d = 3) ' 0.588 [16], the phase transition remains the second
order. This result contradicts experimental observations of the first order nature of the transition
[1]. A more general approach to analyze scaling properties of the macromolecule shown in Fig. 1
was based on polymer network theory, as interaction between the loop and the chain was taken
into account [12–14, 17, 18]. Considering both the side chains and the loop as self-avoiding walks
(SAWs), it was shown that the phase transition is of the first order for d = 2 and above. This
result was further supported by numerical simulations [17] and it was also suggested that possible
heterogeneity in chain structure may strengthen the transition.

Depending on temperature, the asymptotic scaling behaviour of a long flexible polymer macro-
molecule in a good solvent belongs either to random walk (RW), T = Tθ, or to self-avoiding walk
(SAW), T > Tθ universality classes (Tθ denoting the θ-point) [19]. Therefore, the only difference
that may be observed in asymptotic scaling of chains of different species (in our case these are
the double- and single-stranded chains) is due to the difference in asymptotic scaling properties of
mutually interacting SAWs and RWs. Based on this fact, recently [4] we have applied polymer field
theory [16, 20] to derive scaling relations that express the loop exponent c (1.1) in terms of the fa-
miliar copolymer star exponents ηf1f2 . The latter govern scaling of the star-like polymer structures
that are created by linking together the end points of polymer chains of two different species at a
common core, as shown in Fig. 2. When such a copolymer star is immersed in a good solvent its
asymptotic properties are universal in the limit of long chains. In particular, the partition function
(the number of configurations) of a copolymer star made of two sets of f1 and f2 mutually avoiding
RWs scales with its size R as [10, 21]:

ZGf1f2 ∼ R
ηGf1f2 . (1.2)

In turn, the partition function of a copolymer star made of mutually avoiding sets of f1 SAWs and
f2 RWs scales as:

ZUf1f2 ∼ R
ηUf1f2

−f1ηU20 . (1.3)

The third case which is of interest here is the star of two sets of f1 and f2 SAWs. For its partition
function one gets:

ZSf1f2 ∼ R
ηSf1,f2

−(f1+f2)η
S
20 . (1.4)

Indices G,U, S in the above formulas refer to the fixed points (FPs) of the renormalization group
transformation that govern scaling of corresponding mutually avoiding structures: Gaussian FP
for RWs, Unsymmetric FP for RW and SAW, and Symmetric FP for SAWs, see [21] for more
details. Exponents ηSf1,f2 are related to ηUf1,f2 and to the homogeneous star exponents ηf [20] via:

ηSf1,f2 = ηUf1+f2,0 = ηf1+f2 .

f1

f2

a. b.

Figure 2. a: block copolymer of two polymer chains of different species, shown by solid and
thin lines, linked together. b: copolymer star consisting of f1 chains species 1 and f2 chains
of species 2 tied together at their end points. Its scaling properties are governed by universal
copolymer star exponents ηf1f2 . Note that the block copolymer gives a trivial example of a
two-arm copolymer star with an exponent η11.

With the above considerations in mind, one is lead to four different cases1 that account for

1We follow the numbering of Ref. [4], which is completely arbitrary and is introduced just to discriminate between
different loop-chain compositions.
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possible inhomogeneities and, therefore, for different scaling exponents of the DNA denaturation
model shown in Fig. 1 b:

1. both bound chains and the unbound loop are SAWs (SAW-SAW-SAW);

2. bound chains are SAWs, the loop is RW (SAW-RW-SAW);

3. the chains are RW-like, while the loop is SAW (RW-SAW-RW);

4. both the chains and the loop are RW-like, however they do not intersect each other (RW-
RW-RW).

The scaling relations that express the loop exponent c (1.1) in terms of copolymer star exponents
ηf1f2 for these four cases read [4]:

1. SAW-SAW-SAW: c1 = νSAW(3ηS20 + d− 2ηS12) , (1.5)

2. SAW-RW-SAW: c2 = νRW(ηS20 + d− 2ηU12) ,

3. RW-SAW-RW: c3 = νSAW(2ηS20 + d− 2ηU21) ,

4. RW-RW-RW: c4 = νRW(d− 2ηG21) .

Here, νRW and νSAW are the mean square end-to-end distance exponents for the random and
self-avoiding walks, correspondingly, and d is space dimension. The exponents ηf1f2 have been
calculated within field-theoretical renormalization group approach [10, 21] and are currently know
in the fourth order of the ε = 4−d expansion [22]. Below, we list them together with the ε-expansion
for the exponent νSAW [23] in the corresponding order:

ηS20(ε) =− ε/4− 9ε2/128 + ε3(264ζ(3)− 49)/2048 (1.6)

+ ε4(704π4 − 297600ζ(5) + 38160ζ(3) + 235)/655360,

ηS12(ε) =− 3ε/4− 3ε2/128 + 3ε3(40ζ(3) + 23)/2048 (1.7)

+ ε4(64π4 − 32640ζ(5)− 6480ζ(3) + 3333)/131072,

ηU12(ε) =− 3ε/4 + ε2(42ζ(3)− 13)/128 + ε3(384ζ(3)− 5)/2048 (1.8)

+ ε4(1024π4 − 528000ζ(5) + 14880ζ(3) + 7655)/655360,

ηU21(ε) =− ε+ ε2(42ζ(3) + 1)/64 + 17ε3/1024 (1.9)

− ε4(1056ζ(3)− 721)/65536,

ηG21(ε) = −ε, (1.10)

νSAW(ε) =1/2 + ε/16 + 15ε2/512 + ε3(135/8192− (33/1024)ζ(3)) + ε4(3799/524288 (1.11)

− (873/32768)ζ(3)− (11/40960)π4 + (465/4096)ζ(5)) .

Where ζ(x) is Riemann zeta-function. Note that the formula for the exponent ηG21 contains only
linear in ε term and is exact.

Substituting expressions (1.6)-(1.11) into the scaling relations (1.5) one can evaluate loop ex-
ponents ci at any value of d. It is well known however, that ε-expansions of the field theory
are asymptotic at best and proper resummation technique is required to get reliable numerical
information on their basis [24, 25]. Applying resummation technique based on the Borel-Leroy
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transformation enhanced by conformal mapping of a cut-plane on a disc [26, 27], we arrived at the
following values of the loop exponents ci for d = 3 [4]:

c1 = 2.147± 0.009, c2 = 2.169± 0.004, (1.12)

c3 = 2.76± 0.03, c4 = 2.5 .

The value of the exponent c1 is in a good agreement with typical MC estimates c1 = 2.10(4) [14],
c1 = 2.18(6) [17]. Up to our knowledge, no MC simulations for the loop-chain compositions that are
governed by the exponents c2–c4 are available. Clearly, c > 2 in all configurations, which confirms
the first order transition.
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Figure 3. (Colour online) Loop closure exponents ci at different space dimension d. Triangles
show exact results at d = 2 (2.3) and squares show most accurate results obtained by resumma-
tion at d = 3 [4]. The lines show analytic continuation to non-integer d via ε-expansion in the
first and second orders, thick solid and thin dashed lines, correspondingly. Note that in the case
of mutually avoiding RWs (blue line) loop closure exponents c4(ε) is exact and linear in ε.

2. Exact results at d = 2 and quantum gravity

As has been discussed above, the ε-expansions for the ci may serve as a basis for reliable
numerical estimates at d = 3 provided appropriate resummation technique is applied. With the
perturbative expansions and their numerical estimates at hand, it is instructive to corroborate the
results by comparing them with data for other space dimensions, if available. One obvious result is
obtained for d = 4: there, as it is easy to check via Eqs. (1.5), all exponents are equal: ci(d = 4) = 2.
Besides, there is a tempting opportunity to get exact values for the exponents at d = 2. Indeed,
to this end one can make use of the exact results for the scaling exponents of d = 2 copolymer
stars of mutually avoiding bunches of SAW and RW [9]. There, the relations between exponents
in fluctuating geometry (quantum gravity) and flat d = 2 geometry have been used to extract the
exact values of the exponents. In notations of the previous section, the exponents read:2

ηGf1f2 =
1

48

{
4−

[√
24f1 + 1 +

√
24f2 + 1− 2

]2}
, (2.1)

ηUf1f2 =
1

48

{
4 + 5f1 −

[
3f1 +

√
24f2 + 1− 1

]2}
. (2.2)

2Cf. Eqs. (100), (101) of Ref. [10].
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Substituting these formulas into Eqs. (1.5) and taking into account that νSAW(d = 2) = 3/4 [16],
one gets the following exact values of the exponents ci at d = 2:

c1 =
77

32
' 2.406, c2 =

109

48
' 2.271, (2.3)

c3 =
7

2
, c4 = 3 .

These values are shown by triangles in Fig. 3. The obtained result for the exponent c3 recovers
the value predicted at d = 2 by the exact formula that follows from Eq. (1.5) and is valid also for
other values of d: c3 = 2 + ε/2.

Comparing the values of the loop closure exponents ci at d = 2 and at d = 3 one can ar-
rive at certain conclusions about an impact of chain heterogeneity on the strength of the DNA
thermal denaturation transition. The first observation is that passing from the homogeneous SAW
composition within the Poland-Scheraga model (as described by the exponent c1) usually leads
to strengthening of the 1st order transition. When the SAW side chains are substituted by RWs,
the strength of the transition increases: c3 > c1, c4 > c2. In turn, when the side chains remain
unchanged, the change of the SAW loop to the RW one decreases the strength of the 1st order
transition: c3 > c4 and c1 > c2. The last effect is more pronounced for the RW side chains and at
space dimension d = 2. In general, the following rule holds: c2 < c1 < c4 < c3 (with c2 ∼ c1 at
d = 3).

Another striking feature that follows from the comparison of the exact and perturbative results
shown in Fig. 3 is rather unusual behaviour of the ε-expansion curves. Indeed, the first order ε-
expansion for the exponents ci (solid lines in the plot) nicely corresponds to the resummed ε4-data
at d = 3 and to the exact values at d = 2. Such behaviour is obvious for the exponent c3, where the
first order ε-expansion provides an exact number. However, for the other exponents, an account
of the higher orders of the perturbative expansion needs careful application of the resummation
technique. Being evaluated näıvely by simple adding higher order contribution, the ε-expansion
holds only very close to the upper critical dimension d = 4, as shown in the figure by the thin
dashed lines for the case of ε2-data. Therefore, the first order ε-expansion provides the so-called
optimal truncation [25] for the ci(ε) series.

3. Crowded environment

In two former sections, 1 and 2, we discussed an impact of the solvent quality on the order
of the DNA thermal denaturation transition. Another factor that may modify scaling exponents
of long flexible polymer macromolecules is the presence of impurities – impenetrable regions in
a solvent that restrict the number of polymer configurations, see e.g. [28] and references therein.
Statistics of polymers in disordered medium is of interest for number of reasons, in the context of
our study it is important to mention its relevance for treating macromolecules in a cell, composed
of many different kinds of biochemical species [29].

There exist different analytic frameworks to model an impact of disordered medium on scaling
properties of (interacting) SAWs and RWs. To give a few examples, the latter are studied on
a percolation cluster [30] or at presence of quenched defects [31–35]. Whereas the uncorrelated
defects do not influence polymer scaling [31], the so-called ‘extended’ or long-range correlated
structural disorder has been shown to be relevant. A model of long-range correlated disorder has
been suggested in Ref. [32] and further exploited in studies of polymers [34, 35]. Within this model,
one considers defects, characterized by the density-density pair correlation function g(r) decaying
at large distance r according to a power law

g(r) ∼ r−a . (3.1)

For integer values of a such defects have a direct interpretation: the case a = d corresponds to point-
like defects, while a = d− 1 (a = d− 2) correspond to straight lines (planes) of defects of random
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orientation. Sometimes non-integer values of a are interpreted in terms of fractal structures.3

Detailed analysis of an impact of the long-range correlated disorder (3.1) on possible changes in
the exponents (1.5) and hence on the DNA thermal denaturation is beyond the scope of this
study. However, we will use some of the previously obtained results in order to understand and
qualitatively describe this possible impact.

It is easy to see that the presence of long-range correlated impurities may or may not be
relevant and change the polymer scaling exponents depending of the value of a. Indeed, large-
distance asymptotics of the pair correlation function (3.1) corresponds to the power-law behaviour
of its Fourier-image at small wave vector k in the form ka−d. Therefore, by simple power counting
one arrives at the conclusion that such term becomes relevant at small k for a < d. Applying field-
theoretic renormalization group technique, the corresponding polymer model has been analysed and
the scaling exponents were calculated in the two-loop approximation at fixed d = 3 and different
values of the correlation parameter a as well as in a one-loop order by the double expansion in
ε = 4− d and δ = 4− a [34]. The derivation given below is based on these double ε, δ expansion.
In particular, it has been shown that for certain region of parameters ε/2 < δ < ε the scaling
properties of a single flexible polymer chain in porous environment with a long-range correlated
structure are governed by a new, ‘long-range’ fixed point L. The mean square end-to-end distance
exponent νSAW in the first order of ε, δ expansion reads [34]:

νLSAW = 1/2 + δ/8 + . . . . (3.2)

In turn, the ηf1f2 exponents for co-polymer stars in porous environment with long-range correlated
structure are given by:4

ηSL

f1f2
=
−(f1 + f2)(f1 + f2 − 1)δ

4
, (3.3)

ηUL

f1f2
=
−f1(f1 + 3f2 − 1)δ

4
, (3.4)

ηGL

f1f2
= −f1f2δ . (3.5)

In Eqs. (3.3)–(3.5), the first exponent ηSL

f1f2
corresponds to the star of f1 + f2 SAWs, the second

exponent ηUL

f1f2
describes the star of mutually avoiding sets of f1 SAWs and f2 RWs, and the third

exponent ηGL

f1f2
describes the star of two mutually avoiding sets of f1 and f2 RWs.

Two cautions are at place here. First, the ‘long-range’ fixed point SL is accessible in the region
where the above mentioned power counting shows that the disorder is irrelevant. Second, the
fixed points UL and GL can be reached only for specific initial conditions. Similar situation is
encountered also when the ε, δ expansion is applied to study models of m-vector magnets with
long-range correlated quenched disorder [32]. However, an account of higher order contributions
restores physical region of stability of the ‘long-range’ fixed point confirming qualitatively correct
result of the first-order analysis, see e.g. [37] and references therein. Therefore, with an aim of
getting qualitative description of an impact of extended long-range correlated impurities on the
DNA thermal denaturation transition, we proceed with formulas (3.2)–(3.5) substituting them into
the scaling relations (1.5) and arrive at the following first-order values for the ci exponents:

cL1 = cL2 = 2− ε/2 + 5δ/4 , (3.6)

cL3 = cL4 = 2− ε/2 + 2δ . (3.7)

As it follows from Eq. (3.1), the smaller the a, the stronger correlations in porous structure that
restricts the volume available for the macromolecule. Indeed, the density-density correlation func-
tion g(r) decays slower with a decrease of a, attaining the fat-tail features. The positive sign at the
linear in δ terms in Eqs. (3.6), (3.7) brings about an increase in the exponents ci with an increase of

3See also Refs. [36], where the relation of fractal dimension to the analytically continued non-integer dimension
is discussed in more details.

4Cf. Eq. (39) from Ref. [35].
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δ = 4− a. This allows to conclude, that an increase in density correlations of the porous structure
leads to strengthening of the DNA thermal denaturation transition. Moreover, comparing Eqs.
(3.6) and (3.7) one concludes that cL3 , c

4
4 > cL1 , c

L
2 , similar as it was observed for the DNA denatu-

ration in a pure solvent without porous medium. The difference between the exponents increases
with an increase of δ: cL3,4−cL1,2 = 3δ/4. Of course, with all cautions mentioned above, these results
have to be considered as a qualitative predictions, rather as a quantitative description of DNA de-
naturation in crowded environment. Moreover, obtained above relations cL1 = cL2 and cL3 = cL4 may
be (and perhaps indeed are) violated in the second order of the perturbation theory. However, it is
worth mentioning that the scaling arguments supported by the renormalization group calculations
predict effect of strengthening the order of the denaturation transition when it occurs in presence
of extended structures that restrict swelling of the polymer coil.

4. Conclusions

The value of the loop closure exponent c (1.1) discriminates between different ways the thermal
denaturation of the DNA occurs: for c > 2 the denaturated loop emerges abruptly, in the first
order phase transition manner, for 1 < c < 2 the transition is continuous, and for c < 1 no
transition happens. Numerous attempts of theoretical description and numerical simulation of this
phenomenon finally lead to the coherent picture, observed also in the in vitro experiments and
simulations [1, 12, 18, 38]: the transition is of the first order and c > 2. Besides, the factors that
may impact the strength, and, eventually, even the order, of this transition are discussed in the
literature [5]. In a recent paper [4] we have derived scaling relations that express the loop closure
exponent c of the Poland-Scheraga model in terms of the copolymer star exponents ηf1f2 [21]. This
enabled to analyse an impact of inhomogeneities in DNA chain composition and solvent quality
on the order of the transition. As it has been shown in [4] and as it is briefly discussed in Sec. 1
above, consideration of the macromolecule as sets of mutually avoiding SAWs and RWs (see Fig.
1) leads to an increase in value of c and d = 3 and, hence, strengthens the first order transition.
In the present paper, we support this observation providing exact results at d = 2. Moreover, we
show that the effect of strengthening is further enhanced by the so-called crowded environment
with the long-range correlated inhomogeneities.

We acknowledge useful discussions with Maxym Dudka, Ralph Kenna, Mar’jana Krasnytska,
and Dmytro Shapoval. This work was supported in part by the National Academy of Sciences of
Ukraine, project KPKBK 6541230.
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Lehr U., Duplantier B., Nucl. Phys. B, 1992, 374, 473. DOI: 10.1016/0550-3213(92)90397-T

21. von Ferber C., Holovatch Yu., Phys. Rev. E, 1997, 56, 6370. DOI: 10.1103/PhysRevE.56.6370 ; von
Ferber C., Holovatch Yu., Europhys. Lett., 1997, 39, 31. DOI: 10.1209/epl/i1997-00309-6 ; Schulte-
Frohlinde V., Holovatch Yu., von Ferber C., Blumen A., Condensed Matter Physics, 2003, 6 , No.
4(36), 703-711. DOI: 10.5488/CMP.6.4.703

22. Schulte-Frohlinde V., Holovatch Yu., von Ferber C., Blumen A., Phys. Lett. A, 2004, 328, 335. DOI:
10.1016/j.physleta.2004.06.063

23. Kleinert H., Schulte-Frohlinde V., Critical Properties of φ4-theories, World Scientific, Singapore, 2001.
DOI: 10.1142/4733

24. Zinn-Justin. J., Quantum Field Theory and Critical Phenomena, 4th ed., Oxford University Press,
New York, 2002. DOI: 10.1093/acprof:oso/9780198509233.001.0001

25. Hardy G., Divergent Series, Oxford University Press, Oxford, 1949.
26. Le Guillou J.C., Zinn-Justin J., Phys. Rev. B, 1980, 21, 3976. DOI: 10.1103/PhysRevB.21.3976
27. Delamotte B., Dudka M., Holovatch Yu., Mouhanna D., Condensed Matter Physics, 2010, vol. 13, 4,

43703:1-16 DOI:10.5488/CMP.13.43703 ; Delamotte B., Dudka M., Mouhanna D., and Yabunaka S.,
Phys. Rev. B, 2016, 93, 064405. DOI: 10.1103/PhysRevB.93.064405

28. Chakrabarti B. K. (Editor), Statistics of Linear Polymers in Disordered Media, Elsevier, Amsterdam,
2005. DOI: 10.1016/B978-0-444-51709-8.X5000-2

29. Goodesel D.S., Trends Biochem. Sci., 1991, 16, 203, DOI: 10.1016/0968-0004(91)90083-8 ; Minton
A., J. Biol. Chem., 2001, 276, 10577, DOI: 10.1074/jbc.R100005200 ; Blavatska V., von Ferber C.,
Holovatch Yu., Condens. Matter Phys., 2012, 15, 33603, DOI: 10.5488/CMP.15.33603

30. Meir Y., Harris A.B., Phys. Rev. Lett., 1989, 63, 2819. DOI: 10.1103/PhysRevLett.63.2819 ; Blavatska
V., Janke W., Physics Procedia, 2010, 3, 1431. DOI: 10.1016/j.phpro.2010.01.202

31. Kim Y., J. Phys. C, 1983, 16, 1345. DOI: 10.1088/0022-3719/16/8/005; Harris A.B., Z. Phys. B:
Condens. Matter, 1983, 49, 347. DOI: 10.1103/PhysRevB.28.2614

32. Weinrib A., Halperin B.I., Phys. Rev. B, 1983, 27, 413. DOI: 10.1103/PhysRevB.27.413
33. Blavatska V., Haydukivska K., Eur. Phys. Journ. ST, 2013, 216, 191. DOI: 10.1140/epjst/e2013-01742-

2
34. Blavatska V., von Ferber C., Holovatch Yu., Phys. Rev. E, 2001, 64, 041102. DOI: 10.1103/Phys-

RevE.64.041102 ;
Blavatska V., von Ferber C., Holovatch Yu., J. Mol. Liq., 2001, 92, 77. DOI: 10.1016/S0167-
7322(01)00179-9 ; Blavatska V., von Ferber C., Holovatch Yu., Phys. Rev. E, 2006, 74, 031801. DOI:
10.1103/PhysRevE.74.031801

35. Blavatska V., von Ferber C., Holovatch Yu. Phys. Rev. E, 2011, 83, 011803. DOI: 10.1103/Phys-

?????-9



Yu. Holovatch, C. von Ferber, Yu. Honchar

RevE.83.011803
36. Wu Y. K., Hu B., Phys. Rev. A, 1987, 35, 1404. DOI: 10.1103/PhysRevA.35.1404 ; Holovatch Yu.,

Shpot M., J. Stat. Phys., 1992, 66, 867. DOI: 10.1007/BF01055706 ; Holovatch Yu., Yavorskii T., ibid.,
1998, 92, 785. DOI: 10.1023/A:1023032307964

37. Holovatch Yu., Blavatska V., Dudka M., von Ferber C., Folk R., Yavorskii T., Int. J. Mod. Phys. B,
2002, 16, pp.4027-4079. DOI: 10.1142/S0217979202014760

38. Blake R.D. et al., Bioinformatics, 1999, 15, 370. DOI: 10.1093/bioinformatics/15.5.370

Термiчна денатурацiя ДНК в пiдходi полiмерної теорiї поля: вплив
середовища

Ю.Головач1,2,3, К.фон Фербер2,3, Ю.Гончар1,2,3

1 Iнститут фiзики конденсованих систем НАН України, Львiв, 79011, Україна
2 Спiвпраця L4 i Коледж докторантiв ‘Статистична фiзика складних систем’,
Ляйпцiґ-Лотарингiя-Львiв-Ковентрi, Європа

3 Центр плинних i складних систем, Унiверситет Ковентрi, Ковентрi, CV1 5FB, Великобританiя

Розглянуто ефекти середовища (якiсть розчинника, присутнiсть протяжних структур – "зайняте"
середовище), якi можуть вплинути на рiд переходу мiж денатурованим та зв’язаним станами
ДНК i привести до змiн законiв скейлiнґу для конформацiйних властивостей ланцюжкiв
ДНК. Показано, що дослiдженi ефекти значним чином впливають на iнтенсивнiсть переходу
першого роду. З цiєю метою, ми розглянули модель Поланда-Шераги i застосували полiмерну
теорiю поля для обчислення ентропiйних показникiв, пов’язаних з розподiлом денатурованих
петель на ланцюгу. Для випадку d = 3 вiдповiднi розбiжнi ε = 4 − d розклади оцiнено за
допомогою пересумовування степеневих рядiв. Для вимiрностi d = 2 точнi значення показникiв
отримано вiдображаючи полiмерну модель на двовимiрну випадкову ґратку, тобто розглянуто
систему за присутностi квантової ґравiтацiї. Показано, що iнтенсивнiсть переходу першого роду
посилюється за наявностi у розчиннику протяжних непроникних областей, що обмежують кiлькiсть
конфiгурацiй макромолекули.
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