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We study a lattice model of a single magnetic polymer chain, where Ising spins are located on
the sites of a lattice self-avoiding walk in d = 2. We consider the regime where both conformations
and magnetic degrees of freedom are dynamic, thus the Ising model is defined on a dynamic lattice
and conformations generate an annealed disorder. Using Monte Carlo simulations, we characterize
the globule-coil and ferromaget-to-paramagnet transitions, which occur simultaneously at a critical
value of the spin-spin coupling. We argue that the transition is continuous—in contrast to d = 3
where it is first-order. Our results suggest that at the transition the metric exponent takes the
theta-polymer value ν = 4/7 but the crossover exponent φ ≈ 0.7, which differs from the expected
value for a θ-polymer.

I. INTRODUCTION

A linear polymer in thermal equilibrium in a solvent
can be either extended (“swollen”), or collapsed into a
dense globule, depending on the interplay between the
excluded volume effects, van der Waals attraction be-
tween monomers and its screening by the solvent [1]. The
physics of the phase transition between these two states,
the so-called globule-coil transition or θ-transition, is well
captured by a simple lattice model of an interacting self-
avoiding walk (ISAW), with an attractive interaction be-
tween monomers on the nearest neighboring sites of the
lattice [2].

For magnetic polymers, where monomers carry mag-
netic moments (“spins”), the key parameter is the ratio
of the relaxation times of magnetic and conformational
degrees of freedom [3]: if spins are fast, conformations
generate a quenched disorder for the magnetic subsys-
tem [3–6]; in the opposite limit, the chain with quenched
spins is qualitatively equivalent to a disordered copoly-
mer; several models of this kind have been discussed in
the literature [7–10].

The regime where both spins and conformations have
comparable relaxation times has so far received much less
attention. In this regime, spins are defined on a dynamic
lattice, whose thermal fluctuations need to be taken into
account self-consistently, on an equal footing with spin
fluctuations. In this direction, Ref. [11] introduced a
model where monomers of a SAW carry Ising spins,
which interact via a short-range ferromagnetic interac-
tion. The model is investigated on a three-dimensional
(3D) cubic lattice using a mean-field approximation and
Monte-Carlo (MC) simulations. In the absence of ex-
ternal magnetic field, Ref. [11] finds a first-order mag-
netic induced collapse transition—from a swollen param-
agnetic phase to a ferromagnetic globular phase. (Upon
increasing the magnetic field, the transition is reported
to become continuous.) In Ref. [12] we considered a dy-
namic Hydrophobic-polar (HP) model in two dimensions
(2D). The collapse transition was found to be consistent
with a (continuous) θ-transition of a nonmagnetic ISAW.

In this paper, we consider a ferromagnetic Ising model

with spins placed on a self-avoiding walk (SAW) on a 2D
square lattice. Using MC simulations, we also find a joint
ferromagnetic and globule-coil transition, however our re-
sults indicate that it is continuous—unlike the 3D model,
where it is first order [11]. We argue that the transition is
characterized by the theta-point metric exponent ν, but
the crossover exponent θ is markedly different. We also
explore geometric properties of the model, and stress the
role of the surface terms.

II. MODEL AND METHOD

We consider the model of Ref. [11]: Let UN be a set
of all SAW conformations of N monomers joined by N −
1 links on a 2D square lattice. Each monomer i in a
conformation u ∈ UN carries an Ising spin, si = ±1, see
Fig. 1. The spin-spin interaction is short-ranged: two
spins interact if they are nearest neighbors on the lattice.
Given a SAW conformation u ∈ UN and a sequence of N
spins, {s}, the Hamiltonian is

E({s}, u) = −J
∑
〈i,j〉∈u

sisj − h
∑
j∈u

sj . (1)

Here the summation in the first term runs over pairs of
spins, i, j ∈ u, which are nearest neighbors on the 2D lat-
tice, and J > 0 is the ferromagnetic exchange coupling.
In the second term, h is the magnetic field.

The partition function corresponding to Eq. (1) reads

Z =
∑
u∈UN

∑
{s}

e−βE({s},u), (2)

where β = 1/kT is the inverse temperature. To set the
energy units, we take β = 1 without loss of generality.
Note that the summations in Eq. (2) run over both con-
formations and spin configurations.

For h = J = 0, spins decouple from conformations, and
the model (1)-(2) reduces to a non-interacting SAW. In
the limit h� J , all spins are aligned, and Eq. (1)-(2) re-
duces to the ISAW model. In this work we only consider
the case h = 0. In the limit J � 1, the model (1)–(2)
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describes Ising spins located on a non-interacting SAW—
for the spins, the geometry is effectively one-dimensional
and spontaneous magnetization is absent in the thermo-
dynamic limit [3–5]. For J � 1, it is natural to expect a
dense ferromagnetically ordered globule.

We note that since Eq. (1) only involves a single cou-
pling constant, it is natural to expect that the ferromag-
netic ordering sets in simultaneously with the globule-coil
transition. In the next sections we verify this expectation
and characterize the corresponding transition.

Method.— Most popular methods for Monte Carlo
(MC) simulations of SAW-like model are based on chain
growth techniques with pruning and enrichment [13], and
their flat-histogram generalizations [14]. We use a differ-
ent strategy: we work directly with fixed-length configu-
rations and employ a variant of the worm algorithm [15]
for interacting SAW-like models [16]. Specifically, the
method uses two sets of MC updates. First is a bilo-
cal reptation update, where we simultaneously remove a
monomer from one end of a chain and add a monomer
to the other end— the direction of the new edge and
the value of the new spin are selected at random, see
Fig. 1(a)-(b). This is nothing but the BEE move of
Ref. [17]. Second, to render the reptation dynamics er-
godic and improve convergence for dense configurations,
we also use the “reconnect” update, where we rotate a
single edge in the middle of the chain and attach it to
the end of the chain—which needs to be adjacent to an
internal monomer, see Fig. 1(a)-(c). The reconnect up-
date is non-local since it reverses directions of O(N) links
of the SAW. However the Metropolis acceptance proba-
bility [18] equals unity since the update does not change
the energy, Eq. (1). The reconnect update allows the
simulation to escape from conformations where the end
of the chain is trapped inside a dense configuration [16].
Furthermore, to improve convergence of magnetic observ-
ables, we also use standard Wolff cluster updates [19] for
spins which keep the conformation fixed.

FIG. 1. Spin/SAW configurations and MC updates. Straight
lines show a sample SAW, open circles denote spins-up, sj =
+1, and closed circles denote spins-down, sj = −1. The BEE
move is changing (a) to (b), where the edge shown in dashed
red line in (a) is removed and the edge shown in dashed red
line in (b) is added. The reconnect update is changing the
configuration between (a) and (c). Note that configurations
(a) and (c) have the same energy Eq. (1).

III. NUMERICAL SIMULATIONS

We simulate our model on a square 2D lattice for chains
of up to N = 104 monomers. We typically use up to 109

MC updates for thermalization and collect statistics for
1010 to 1011 MC steps. Here in a single MC step we
select an update (a BEE move, a reconnect or a spin
cluster update) at random.

We perform simulations for h = 0 and 0 < J < 2.
We collect statistics for the mean energy, Eq. (1), per
spin, ε = 〈E〉/N , the mean magnetization per spin,
〈m〉 ≡ 〈

∑
j∈u sj〉/N and its powers, 〈m2〉 and 〈m4〉. To

characterize the structural properties of the model, we
measure the mean end-to-end distance of the SAW, 〈R2

N 〉.
[20] Here and elsewhere in the text, angular brackets de-
note the MC average approximating the average over the
Gibbs distribution (2).

Fig. 2(top) shows simulation results for mean square
magnetization, 〈m2〉, as a function of J for several repre-
sentative values of the SAW lengths N . At small values
of J , 〈m2〉 → 0 at increasing N , which is consistent with
the spontaneous magnetization being zero in the ther-
modynamic limit [3–5]. For larger values of the coupling
constant, magnetization increases with increasing J and
starts saturating for J & 0.88, which suggests a ferro-
magnetic ordering for large J .

Fig. 2(bottom) illustrates the behavior of the mean en-
ergy, which approaches the asymptotic N →∞ value of
−2J for a densely packed fully magnetized walk. Finite-
size corrections are clearly visible for both 〈m2〉 and 〈ε〉,
and we note that corrections are more pronounced for
J & 0.82, especially in Fig. 2(bottom).

Fig. 3 shows the dependence of the mean end-to-end
distance, 〈R2

N 〉, on N for several values of the coupling
constant J . For N � 1 the scaling is visually consistent
with a power-law,

〈R2
N 〉 ∼ N2ν(1 + · · · ) , (3)

where dots represent corrections-to-scaling. For compar-
ison, Fig. 3 also shows the asymptotic power laws N2ν

with ν = 3/4—which is a non-interacting SAW value
(see e.g.,[21]),— and ν = 4/7—which is the exact value
for the 2D ISAW at the θ-point [22].

Numerical data in Fig. 3 seem to indicate that the scal-
ing of the end-to-end distance for our model crosses over
from a non-interacting SAW limit for small J to a θ-point
scaling for J ∼ 0.83, and further on towards ν = 1/2,
which is expected for a dense globular phase. [23] Taken
together, our numerical results shown in Figs. 2 and 3,
indicate that both magnetic and structural properties of
the model undergo a change at around J ∼ 0.83.

The joint transition.—To locate the magnetic transi-
tion between paramagnetic and ferromagnetic phases, we
compute the fourth-order Binder cumulant,

U4 = 1− 〈m4〉
3〈m2〉2

, (4)
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FIG. 2. (top) mean squared magnetization as a function
of J for several values of N . Solid squares with errorbars
are MC results, lines are to guide an eye only. Errorbars are
estimated via binning analysis. In these simulations we use at
least 7×109 MC steps per data point. (bottom) Mean energy
as a function of J for several values of N . Squares are MC
data with errorbars, and lines are to guide an eye. See text
for discussion.

which is expected to become scale-independent at the
transition [24].

Fig. 4(top) shows the dependence of the Binder cumu-
lant (4) on interaction J for several values of N . For
large values of the coupling constant (not shown in Fig.
4), U4 tends to the value 2/3 from below, as expected for
a ferromagnetic state [24]. Curves of the cumulant U4

for varying N cross around J ≈ 0.834, indicative of the
paramagnetic-to-ferromagnetic phase transition. Finite-
size corrections are clearly visible in Fig. 4(top), thus
to get a more precise estimate for the transition tem-
perature, we analyze the pairwise crossings of the U4 vs
N curves for a series of N values from N = 2000 to
N = 9000. The final estimate for the critical values is

Jc = 0.8340(5) , U
(c)
4 = 0.308(8) . (5)

FIG. 3. Mean squared end-to-end distance as a function of
N from N = 100 to N = 3000 for several values of J . Stars
are MC data with errorbars, dashed lines are to guide an eye,
and solid lines are R2 ∼ N2ν with ν = 3/4 (the solid red line)
and ν = 4/7 (the solid black line). See text for discussion.

This result (5) is close to, but distinct from the estimate
Jc = 1/1.18 ≈ 0.847, stated as preliminary without much
discussion in Ref. [11].

Fig. 4(bottom) shows the dependence of the mean
squared end-to-end distance (3). Here we rescale the
values of R2

N by N2ν with ν = 4/7, as suggested by
the analysis in the previous section. With this rescaling,
〈R2〉/N2ν becomes N -independent (modulo corrections-
to-scaling) at Jθ = 0.833(1) which is consistent with Eq.
(5) within the combined errorbars.

We also checked that the existence of the crossing is
sensitive to the value of the metric exponent ν: if ν is
changed by more then 0.07, the crossing disappears.

We thus conclude that our numerical data suggest that
(i) the ferromagnetic and globule-coil transition occur si-
multaneously at the critical coupling constant given by
Eq. (5), and (ii) the scaling of the end-to-end distance at
the transition is consistent with the θ-point metric expo-
nent ν = 4/7.

The crossover exponent.—We turn our attention to
estimating the crossover exponent φ which quantifies
the deviation from criticality via the scaled coupling
x = (J − Jc)/N−φ [21]. Specifically, the end-to-end dis-
tance is expected to follow 〈R2

N 〉 = N2νf(x) where f(·)
is a dimensionless function of a dimensionless variable.
To probe this Ansatz, we perform data collapse of the
end-to-end distance, where we keep ν = 4/7 fixed at its
theta-point value [22], and vary Jc and φ. This procedure
is illustrated in Fig. 5.

We find that our MC data are consistent with Jc =
0.833(1) and φ = 0.7(1), where the errorbars are con-
servative estimates from visual inspection of the quality
of the data collapse. We note that the value of Jc is
consistent with Eq. (5). The crossover exponent clearly
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FIG. 4. (top) Binder cumulants (4) as a function of J for
several values of N . Solid squares with errorbars are MC
results, lines are to guide an eye only. Errorbars are estimated
via a Gaussian resampling from errorbars of 〈m4〉 and 〈m2〉.
(bottom) Scaled mean end-to-end distance (3) with ν = 4/7,
which is the exact value for the 2D ISAW at the θ-point [22].
Squares are MC data with errorbars, and lines are to guide
an eye. See text for discussion.

differs from the θ-point value for the ISAW model, where
the Coulomb gas prediction is φ = 3/7 [22] and numeri-
cal estimates are somewhat larger (see Ref. [25] and the
discussion therein).

We also perform a similar data collapse analysis for
the magnetization, where the scaling Ansatz is 〈m2〉 =
N−2βφg(x), where g(x) is a scaling function and β is
the order parameter exponent. Fig. 6 illustrates the pro-
cedure where we take β = 1/8—which is the value for
the 2D Ising universality class. While the quality of our
numerical data does not allow for estimating critical ex-
ponents with accuracy of any less then, say, 50%, we find
that our data are consistent with the order parameter
exponent taking the 2D Ising value, and the crossover
exponent φ ≈ 0.7.

We stipulate that a high-precision estimate of the

FIG. 5. Data collapse for the scaled end-to-end distance,
〈R2

N 〉/N2ν , vs the scaled coupling x = (J − Jc)Nφ. We fix
ν = 4/7 and vary Jc and φ. On this plot, Jc = 0.832 and
φ = 0.7. From visual inspection of the quality of the col-
lapse, we estimate Jc = 0.833(1) and φ = 0.7(1). See text for
discussion.

FIG. 6. Data collapse for the second moment of magneti-
zation 〈m2〉. In this plot we use φ = 0.71, Jc = 0.832 and
β = 1/8. See text for discussion.

crossover exponent and/or the order parameter exponent
should take into account two sources of corrections. First,
for a disordered Ising model, logarithmic corrections [26],
are known to lead to apparently varying exponents [27].
Second, non-universal corrections due to the surface ten-
sion are strong for 2D SAWs [28] because the surface-to-
volume ratio in 2D scales as ∼ N−1/2 which is close to
the universal θ-point values ν = 4/7 and φ = 3/7.

Bulk to surface ratio.— Strictly speaking, the very no-
tions of bulk and surface are not well defined for J < Jc,
where typical conformations are coil-like. To come up
with a quantitative characteristic which is meaningful
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across the globule-coil transition and can be interpreted
as a bulk-to-surface ratio in the globular phase, we con-
sider a local neighborhood of a monomer. We note that
each monomer (apart from two endpoints of the chain)
can be classified according to the number of its neigh-
bor monomers as being either 1D-like (two neighbors),
2D-like (four neighbors) or surface-like (3 neighbors).

For a length-N conformation, we count the numbers
of monomers of each kind; dividing by N we obtain the
fractions, nα (α = 2, 3, 4), so that n2+n3+n4 = 1−2/N .
Qualitatively, the ratio n2/(n3+n4) characterizes a blob-
and-link structure of a coil-type conformation, and n4/n3
can be interpreted as a proxy for a bulk-to-surface ratio.

Fig. 7 shows the fractions of each kind of monomers as
a function of J for chains of length N = 1000 to 4900. For
comparison, we also compute the corresponding fractions
for an ISAW model (i.e., Eqs. (1)-(2) with h� J).

Several features stand out in Fig. 7. First, even in
the non-interacting SAW limit, J → 0, conformations
are not fully 1D-like, as n2 ≈ 0.75 only (the finite-size
corrections become negligible for N & 100). The “bulk”
fraction, n4, is vanishingly small in the J → 0 regime,
and the fraction of the “surface” monomers, n3, tends to
0.25 for J → 0. In the opposite limit of large J , the 1D-
like fraction tends to zero and the “bulk” fraction grows.
Most surprisingly, the “surface” fraction, n3, develops a
peak for both ISAW and Ising models in the vicinity of
their respective collapse transitions.

While the relation between these results to a
bulk/surface ratio of real polymer chains is qualitative
at best, and that more work is needed to understand the
nature of the peaks of n3(J), these results do illustrate
the importance of surface effects and stress the quali-
tative difference between the magnetic SAW models and
spin networks with mixed 1D / 2D local connectivity [29].

Relation to the Ising model on rectangular lattices.—
It is instructive to compare the critical value of the

Binder cumulant, U
(c)
4 , Eq. (5), to the values for a usual

Ising model on a regular grid. For the Ising model on a
rectangular L×W lattice, the critical value of U4 depends
on the boundary conditions and on the aspect ratio of the
lattice, L/W [30, 31]. The dependence on the boundary
conditions is strong: on an L × L lattice with periodic
boundary conditions, U (c) ≈ 0.61, while open boundary
conditions lead to U (c) ≈ 0.4. Furthermore, on the lattice
with open boundary conditions, U (c) decreases continu-
ously for increasing aspect ratio L/W down to ≈ 0.35 for
L/W = 2 [31] and further down for larger aspect ratios.

The critical value U
(c)
4 , Eq. (5), is approximately com-

patible with the result for the Ising model on a rectangu-
lar lattice with open boundary conditions and the aspect
ratio given by the ratio of the eigenvalues of the gyration
tensor of an interacting SAW at the θ-point [25]. More
work is needed to accurately trace this connection.

The nature of the transition.— In 3D, the transition
is clearly first-order [11]. Our simulations indicate that
the transition is continuous in 2D. First of all, the Binder
cumulant (4) is a monotonic function of J for fixed N ,

cf Fig. 4(top). This is consistent with a continuous
transition, and is in contrast to the expected behavior
for a first-order transition, where the cumulant is non-
monotonic and develops a dip at Jc as N increases [32].

We then perform simulations for the specific heat ca-
pacity per monomer, which is given by the second mo-
ment of the energy, Eq. (1)–(2),

C =
1

N

(
〈E2〉 − 〈E〉2

)
(6)

For finite values of N , the heat capacity is expected to
have a peak in the critical region. The peak can be
rounded and shifted by finite-size corrections, and the
evolution of the peak height and shape is expected to be
very different for first-order and continuous transitions:
For a first order transition, the height of the peak of C(J)
is expected to be linear in N , while the width is expected
to shrink as ∼ N−1 [32]. For continuous transitions, the
structure of C(J) in the vicinity of Jc is controlled by
the heat capacity exponent α, which is typically different
from unity.

Fig. 8 shows our numerical results for the specific heat
capacity. We note that numerical cancellations in Eq. (6)
magnify statistical errors of MC simulations, thus limit-
ing the values of N accessible in these simulations to be
about an order of magnitude smaller then those in Figs.
2-6—which is comparable to the values reported in Ref.
[11]. At these values of N 6 500, shown in Fig. 8, finite-
corrections are very strong. Nevertheless, the available
numerical data suggest that the peak height dependence
on N is sublinear and the peak widths shrinks slower
then 1/N . The overall shape of C(J) curves in Fig. 8 is
drastically different from those observed for a first-order
transition in 3D in Ref. [11]. We interpret these obser-
vations, however limited, as an additional indication of
a transition being continuous, with the heat capacity ex-
ponent α < 1.

We also note that we observe a single peak of C(J),
not a two-peak structure reported for a site-diluted Ising
model [33] and a network of Ising spins with mixed
1D/2D local connectivity [29]. The difference with the
latter is not surprising given the role of the surface-like
spins, cf Fig. 7.

To further check the nature of the transition, we com-
pute distributions of observables. Fig. 9 shows the distri-
bution of the magnetization for N = 104 in the vicinity of
the transition, Eq. (5). The distribution is Gaussian-like
on the paramagnetic side, J < Jc, broadens on approach
to the critical coupling, and develops a clear ferromag-
netic structure (m = ±1) for J > Jc. In the critical re-
gion, we see no signs of a phase coexistence which would
signal a first-order transition.

IV. CONCLUSIONS AND OUTLOOK

Concluding, we study a 2D model of a magnetic poly-
mer chain where monomers of a self-avoiding walk on a
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FIG. 7. Fractions of monomers with two neighbors, n2, (left), three neighbors, n3, (center) and four neighbors, n4, (right).
Solid circles are the MC data for the Ising model (1)-(2), stars are the MC data for the ISAW model, and dotted lines are to
guide an eye. The vertical solid black line is the theta-point for the ISAW, taken from Ref.[25]. The vertical dashed brown line
is Eq. (5).

FIG. 8. The specific heat capacity per monomer, Eq. (6),
as a function of the coupling constant J . Errorbars are esti-
mated via statistical resampling from MC data for the first
and second moments of the energy. See text for discussion.

lattice carry Ising spins [11]. We use a variant of the
worm algorithm to simulate fixed-length chains of up to
104 monomers. We find a joint transition—where both
spins order ferromagnetically and the SAW collapses into
a globular phase—at J/T = 0.8340(5). The very fact
that the transitions occur simultaneously can be traced
to the specifics of the model, which only has a single
coupling constant, the exchange integral for the short-
range spin-spin interaction. What is less clear a priori,
is the nature of the transition. Our results suggest that
the transition is continuous, in contrast to a similar 3D
model, where it is reported to be first-order [11]. Our nu-
merical results suggest that some critical exponents (but
not all of them) are inherited from the “parent” models,
namely the θ-polymer ISAW model, and the Ising model.
Specifically, we present numerical evidence that the met-
ric exponent ν at the transition takes the θ-point value

FIG. 9. Distribution of the magnetization m =
∑
j∈u sj/N

for N = 10000. The coupling constants are J = 0.830 < Jc
(blue points), J = 0.833 ≈ Jc (orange), J = 0.836 (just above
the Jc, green), and J = 0.840 > Jc (red). Each simulation
uses ∼ 7× 109 MC steps.

ν = 4/7, but the crossover exponent φ ≈ 0.7, which is
clearly different from the θ-polymer value of 3/7. We
also present indications that the magnetic order parame-
ter exponent β is consistent with the 2D Ising universality
class value β = 1/8, however the accuracy of this obser-
vation given our simulation results is relatively weak.

We study geometric properties of the model and clas-
sify the local connectivity of monomers of the chain into
1D-like, bulk-like and surface-like. A possible interpreta-
tion of our numerical results is that the surface-to-bulk
ratio has a peak in the vicinity of the transition. Inci-
dentally, we also find numerical evidence that for a non-
interacting SAW, the fraction of 1D-like monomers is 1/4
in the thermodynamic limit. To the best of our knowl-
edge, this was previously not discussed in the literature.
More work is needed to clarify the status and physical
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meaning of these numerical results.

Concerning future work, it would be interesting to ex-
plore more realistic models of magnetic polymers, e.g.
by considering Potts or Heisenberg type models and gen-
eral dipole-dipole couplings in two and three dimensions.
Models with separate coupling constants might gener-
ate richer phase diagrams with separate globule-coil and
magnetic transitions.

Possible experimental realizations of magnetic poly-
mers, for which our model and its suggested general-
izations may be applicable, include magnetic filaments
where magnetic nanoparticles are either cross-linked by
a polymer to form linear structures—these can be real-
ized via e.g. biotemplaing [34]— or self-organize into one-
dimensional like structures at liquid-liquid interfaces [35].
Monte Carlo simulations of models of magnetic polymers
may complement molecular dynamics studies of magnetic

filaments [36].
When this work was completed, we became aware of an

independent study of the same model in Ref. [37]. Our
estimates of the location of the transition and critical
exponents and those of Ref. [37] are consistent within
the combined errorbars.
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