
ar
X

iv
:2

10
7.

11
85

8v
2 

 [
m

at
h.

ST
] 

 1
0 

D
ec

 2
02

1

Estimation of Stationary Optimal Transport Plans

Kevin O’Connor

UNC-Chapel Hill

Kevin McGoff

UNC-Charlotte

Andrew B Nobel

UNC-Chapel Hill

December 13, 2021

Abstract

We study optimal transport for stationary stochastic processes taking values in finite spaces.

In order to reflect the stationarity of the underlying processes, we restrict attention to stationary

couplings, also known as joinings. The resulting optimal joining problem captures differences in

the long run average behavior of the processes of interest. We introduce estimators of both optimal

joinings and the optimal joining cost, and we establish consistency of the estimators under mild

conditions. Furthermore, under stronger mixing assumptions we establish finite-sample error rates

for the estimated optimal joining cost that extend the best known results in the iid case. Finally,

we extend the consistency and rate analysis to an entropy-penalized version of the optimal joining

problem.

1 Introduction

The application and theory of optimal transport has recently received a great deal of attention in

statistics and machine learning. This work has resulted in novel approaches to statistical estimation

[11, 40, 30, 3, 6], deep generative modeling [2, 81], clustering [37, 46, 56], cell modeling [71], and other

applications [13, 12, 28, 27, 86]. In most of this work the objects under study (for example, images, text

documents, graphs, and point clouds) are regarded as static and do not evolve over time. Accordingly,

the distributions and cost functions appearing in the optimal transport problem capture the behavior of

these objects at a fixed point in time. In this static setting the statistical properties of the optimal transport

problem, such as definition of estimators, consistency, and rates of convergence, have been well-studied

[65, 67, 79, 76, 68, 39, 20, 66, 72].

In contrast with the static situation, we are interested in optimal transport problems in settings where

the objects of interest are processes that evolve dynamically over time. Examples include the alignment

or generative modeling of text sequences or musical scores, or hybrid settings involving dynamic text

and images. Other examples include transportation of goods between a set of manufacturers and a set

of retailers when supply and demand vary over time in a stochastic fashion, or the comparison of brain

networks observed at multiple points in time. Problems involving sequential data or objects varying over

time are pervasive in statistics and machine learning. While standard optimal transport techniques can

be applied to such problems, they do not account for the structure of the underlying measures, which

reflect dynamic processes rather than static quantities.

In this paper we investigate optimal transport for finite alphabet stationary ergodic processes, to-

gether with cost functions that measure differences at a single time point (or finitely many time points).

Optimal transport for stationary processes is a special case of the ordinary optimal transport problem in

which the distributions of interest are shift invariant measures on infinite product spaces (the sequence

spaces associated with the given processes). As such, existing methods and theory apply. However, it is

easy to show that a coupling of two stationary processes need not be stationary, and the same is true of

optimal transport plans (see Examples 1 and 2 below). To address these, and other, issues arising in the

general setting, we restrict our attention to stationary couplings of stationary processes. This seemingly

mild restriction has far reaching consequences.
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In restricting to stationary couplings, also known as joinings, we draw connections between optimal

transport and ergodic theory. In particular, properties and theoretical applications of joinings have been

studied in ergodic theory for many years. Given two stationary processes, the optimal joining problem

is the problem of finding a joining of the processes having minimal expected cost. The primary focus

of this paper is estimating an optimal joining, and the associated optimal joining cost, of two finite

alphabet stationary ergodic processes using n observations from each process. Roughly speaking, we

use the available observations to estimate the k-dimensional distribution of each process, find an optimal

coupling of these k-dimensional estimates, and then use this coupling to construct a joint process that is

stationary. In order to ensure that the constructed process converges to an optimal joining, it is necessary

to balance estimating the k-dimensional distribution by letting the sample size n grow and learning the

dependence structure of the optimal joining by letting k grow. Thus the task of choosing an appropriate

sequence {k(n)} of block sizes indexed by sample size is critical for consistently estimating an optimal

joining.

Under the stated assumptions, we show that there exists a sequence {k(n)} for which the corre-

sponding joint processes will converge to an optimal joining of the marginal processes, and the expected

cost of the joint processes will converge to the cost of the optimal joining (Theorem 3). This result

generalizes existing results regarding the estimation of optimal joining costs and, to our knowledge, pro-

vides the first consistency result for estimating optimal joinings. Under additional mixing assumptions

on the observed processes, we identify an explicit growth rate for k and obtain rates of convergence

for estimates of the optimal joining cost (Theorem 5). To the best of our knowledge, these are the first

finite-sample bounds for estimation of an optimal joining cost. In the iid case, optimal joining and op-

timal transport coincide, and we recover existing, state-of-the-art bounds for estimation of the optimal

transport cost. As special cases of our results we obtain new, finite-sample bounds for estimation of the

d- and ρ-distances between stationary ergodic processes.

In recent years, there has been a substantial amount of work on regularized optimal transport, in

which the regularization is obtained by adding an entropic penalty to the usual optimal transport cost.

As with (unregularized) optimal transport, the regularized problem has been primarily studied in static

settings. In this work, we bring these ideas to a dynamic setting. More specifically, we propose and

analyze a regularized form of the optimal joining problem, which is obtained by adding a penalty based

on the entropy rate of a process to the expected cost. We then extend our estimation scheme from the

standard optimal joining problem to the regularized problem, and we establish both consistency and rate

results for the resulting estimates (Theorems 9 and 10). Existing algorithms for computing regularized

optimal transport plans may be applied to compute the proposed estimates in the regularized case more

efficiently compared to the unregularized case.

Organization of the Paper. The rest of the paper is organized as follows. Background on optimal

transport, optimal joinings, some initial results, and related work are presented in the next section. In

Section 3, we detail the proposed estimation scheme for an optimal joining and its expected cost and state

our main consistency result. Statement of our finite sample error bound under mixing assumptions, and

a corollary, are presented in Section 4. In Section 5, we introduce the entropic optimal joining problem

and discuss how our estimation scheme, consistency result, and error bound extend to this problem. We

close with a discussion of our results in Section 6. Proofs of the main results are presented in Section 7.

2 Preliminaries and First Results

We begin by defining the optimal transport problem. Let U and V be metric spaces and let M(U)
and M(V) denote the set of Borel probability measures on these spaces. Recall that a Borel probability

measure π ∈ M(U × V) on the product space U × V is said to be a coupling of µ ∈ M(U) and

ν ∈ M(V) if for every measurable A ⊂ U and B ⊂ V , π(A × V) = µ(A) and π(U × B) = ν(B),
that is, the U -marginal of π is µ and the V-marginal of π is ν. Given a non-negative cost function

c : U × V → R+, the optimal transport problem is to minimize the expectation of c over the set of
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couplings Π(µ, ν):

Tc(µ, ν) = inf
π∈Π(µ,ν)

∫

c dπ. (2.1)

Any optimal solution to (2.1) is referred to as an optimal transport plan (or coupling), and the quantity

Tc(µ, ν) is referred to as the optimal transport cost of µ and ν with respect to c. For an introduction to

couplings and the optimal transport problem, we refer the reader to [83].

As noted in Section 1, the optimal transport problem is general, and does not incorporate information

about about the structure of the sets U and V , or the measures µ and ν. Existing work has considered

different choices of U and V , including finite dimensional Euclidean spaces [81, 2], graphs [88, 89, 80],

trees [85], finite sets [76, 57], and sequence spaces [60, 45]. In what follows, we consider the latter

case in which µ and ν are shift-invariant probability measures on sequence spaces, equivalently the

distributions of stationary processes.

2.1 Couplings of Stationary Processes

We briefly cover some notation and background on stationary probability measures and processes.

Let X and Y be finite sets with their discrete topology, and let U = XN and V = YN be associated

sequence spaces. Elements x = (x1, x2, . . .) ∈ U and y = (y1, y2, . . .) ∈ V are infinite sequence

with entries in X and Y , respectively. For a Borel measure µ ∈ M(XN), let µk ∈ M(X k) denote the

distribution of the first k coordinates of x = (x1, x2, . . .) under µ, that is, µk(A) = µ(A×X ×X ×· · · )
for each A ⊆ X k. Let σ : XN → XN be the left-shift map on XN defined by σ(x1, x2, ...) = x2, x3, . . .;
note that σ is continuous under the usual product topology on XN. A Borel measure µ ∈ M(XN) is

said to be stationary if µ ◦ σ−1 = µ. A stationary measure µ is said to be ergodic if µ(A) ∈ {0, 1} for

any measurable set A ⊂ XN such that σ−1(A) = A. Let Ms(X
N) denote the set of stationary Borel

measures on XN. In the same way we may define the left-shift τ : YN → YN and the corresponding set

of stationary measures Ms(Y
N) on YN. For the remainder of the paper, we fix the finite spaces X and

Y , and consider stationary ergodic measures µ ∈ Ms(X
N) and ν ∈ Ms(Y

N).
It is helpful to recall the simple equivalence between stationary measures and stationary processes.

The measure µ ∈ Ms(X
N) corresponds to a stationary process X = X1,X2, . . . with Xi ∈ X via

the relation P(Xk
1 ∈ A) = µk(A) for all A ⊆ X k and all k ≥ 1. Ergodicity of µ is equivalent to

ergodicity of the process X. In the same way, the measure ν ∈ Ms(Y
N) corresponds to a stationary

process Y = Y1, Y2, . . . with values in Y . Each coupling π ∈ Π(µ, ν) corresponds to a joint process

(X̃, Ỹ ) = (X̃1, Ỹ1), (X̃2, Ỹ2), . . . such that X̃
d
= X and Ỹ

d
= Y . With a slight abuse of notation, we will

use Π(X,Y ) to refer to the set of couplings of stationary processes X and Y . Importantly, the definition

of coupling does not ensure that the joint process (X̃, Ỹ ) is stationary, even when X and Y are (see

Examples 1 and 2 below).

In what follows we will consider a non-negative, single letter cost function c : X × Y → R+ that is

defined on pairs of elements from X and Y . Note that c is necessarily bounded as X and Y are finite.

By considering sliding blocks, our results may be readily extended to cost functions depending on a

finite number of letters. Single (and finite) letter cost functions are the norm in information theory, and

are natural when making inferences about processes that are only partially observed. Note also that any

cost function c′ : XN × YN → R+ that is continuous in the usual product topology can be uniformly

approximated by a finite letter cost function.

Any single letter cost function c : X ×Y → R+ can be extended to a cost function c0 : X
N×YN →

R+ on infinite sequences by defining c0(x,y) = c(x1, y1). In this case, the optimal transport problem

for stationary measures µ ∈ Ms(X
N) and ν ∈ Ms(Y

N) can be written as

inf
π∈Π(µ,ν)

∫

c0 dπ = inf
π∈Π(µ,ν)

∫

c dπ1 = inf
(X̃,Ỹ )∈Π(X,Y )

Ec(X̃1, Ỹ1) (2.2)

where X and Y are the stationary processes associated with µ and ν respectively, and π1 is the one-

dimensional marginal distribution of π. In this case we will, with a slight abuse of notation, write

Tc(µ, ν) instead of Tc0(µ, ν).
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In order to motivate the consideration of stationary couplings, we present two elementary exam-

ples. The first shows that couplings of stationary processes can have very different properties than the

processes being coupled.

Example 1 ([60]). Let X and Y be Bernoulli(1/2) processes, which need not be defined on the same

probability space. Let Z = Z1, Z2, . . . be iid Bernoulli(1/2) random variables defined on a common

probability space. Define new processes X̃ = X̃1, X̃2, . . . and Ỹ = Ỹ1, Ỹ2, . . . in terms of Z as follows:

X̃i = Z2i and Ỹi =

{
Z2i+1 if i 6= 2k

Z2i if ∃k, i = 2k.

Clearly X̃
d
= X and Ỹ

d
= Y , and therefore the joint process (X̃, Ỹ ) = (X̃1, Ỹ1), (X̃2, Ỹ2), . . . is a

coupling of X and Y . However, it is easy to see that joint process (X̃, Ỹ ) is not stationary and that it

exhibits long-range dependence.

The next example shows that the optimal transport distance between two stationary processes can be

zero even when the processes are distinct.

Example 2. Suppose that X = Y and that c(x, y) = 1(x 6= y) is the 0-1 cost function. Let X and Y be

two stationary processes that are distinct but share the same one-dimensional distribution. (For example,

X might be a Bernoulli(1/2) process and Y a stationary Markov chain that cycles between 0 and 1.) We

may couple X and Y as follows. First, let X̃1 = Ỹ1. For k ≥ 2 generate X̃k according to the conditional

distribution of Xk given Xk−1
1 and independently generate Ỹk according to the conditional distribution

of Yk given Y k−1
1 . The resulting process (X̃, Ỹ ) is a non-stationary coupling of X and Y . Moreover

Ec(X̃1, Ỹ1) = 0 by design, and therefore the optimal transport cost between X and Y is zero in this

case, despite the fact that X and Y are distinct processes.

2.2 Joinings of Stationary Processes

Example 2 illustrates an important feature of the optimal transport problem for stationary processes:

for single or finite letter cost functions, an optimal coupling (X̃, Ỹ ) of processes X and Y need only

align the initial components of X̃ and Ỹ . If, for example, X and Y represent discrete-time audio and

video sequences, an optimal coupling will seek to align the initial sequence of audio and video, but will

be insensitive to differences at subsequent time points. While the use of infinite-letter cost functions

can address some of these issues, infinite or long-range costs can be problematic in practice. More

importantly, as the examples above illustrate, optimal couplings of stationary processes need not be

stationary. From a theoretical and practical perspective, it is natural to consider stationary couplings of

stationary processes, which are also known as joinings.

Definition 1. A probability measure λ is a joining of µ ∈ Ms(X
N) and ν ∈ Ms(Y

N) if λ is a coupling

of µ and ν and is itself stationary, that is, λ ∈ Ms(X
N × YN). The set of joinings of µ and ν will be

denoted by J (µ, ν).

Equivalently, a joining of two stationary processes X and Y is a coupling (X̃, Ỹ ) that is itself

stationary. This set of processes will be referred to as J (X,Y ). Note that J (µ, ν) is non-empty, as the

independent coupling µ⊗ν is always stationary. Joinings were introduced by Furstenberg [31], and have

been studied extensively in the ergodic theory literature since that time; an overview and more details

can be found in [19, 34].

Restricting the optimal transport problem (2.2) (with a single letter cost) to the set of stationary

couplings leads to the optimal joining problem: given measures µ ∈ Ms(X
N) and ν ∈ Ms(Y

N) find

Sc(µ, ν) = inf
λ∈J (µ,ν)

∫

c dλ1 = inf
(X̃,Ỹ )∈J (X,Y )

Ec(X̃1, Ỹ1) (2.3)
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where X and Y are the stationary processes associated with µ and ν respectively. We will denote

the set of joinings attaining the infimum in (2.3) by Jmin(µ, ν). Elements of Jmin(µ, ν) will be called

optimal joinings, and Sc(µ, ν) will be called the optimal joining cost. Note that when there is no risk of

confusion, we will omit the cost c in our notation for the optimal joining cost, writing S(µ, ν) instead

of Sc(µ, ν). The following proposition collects some standard properties of J (µ, ν) and Jmin(µ, ν); for

more details see [74] or [54] and the references therein.

Proposition 1. Under the stated assumptions, the set J (µ, ν) is non-empty, convex, and compact in

the weak topology, and its extreme points coincide with ergodic joinings of µ and ν. Moreover, the set

Jmin(µ, ν) of optimal joinings of µ and ν is non-empty, convex, and compact in the weak topology, and

its extreme points coincide with the set of ergodic optimal joinings.

It turns out that there are close connections between the optimal joining problem and the optimal

transport problem using long run average cost. For k ≥ 1 let ck : X k × Yk → R+ be the k-step

cumulative cost defined by ck(x
k
1 , y

k
1 ) =

∑k
ℓ=1 c(xℓ, yℓ), and let c(x,y) = lim supk→∞ k−1ck(x

k
1 , y

k
1 ).

Proposition 2. If X and Y are finite and µ ∈ Ms(X
N) and ν ∈ Ms(Y

N) are ergodic then

S(µ, ν) = lim
k→∞

1

k
Tck(µk, νk) = Tc(µ, ν).

The first equality in Proposition 2 was proven in [35] in the special case where X = Y and c is a

metric; a straightforward extension of their arguments establishes the general case above. The second

equality is proven in Section 7 using cyclical monotonicity of optimal couplings. We remark that the

arguments in the proof of Proposition 2 do not rely on the finiteness of X and Y and may be adapted to

the case of Polish spaces and continuous and bounded cost.

Proposition 2 shows that the optimal joining cost may be obtained as a limit of k-step optimal

transport costs, and that this limit is equal to the optimal transport cost under the long term average cost

function. In this sense, the optimal joining problem seeks couplings that have good long-run average

behavior, relative to the single letter cost, over the complete history of the joint process. This is a natural

objective when considering optimal transport for stationary processes. Whereas the limiting average

cost c may be highly irregular as a function, the set of joinings J (µ, ν) has a relatively simple structure

(e.g., compactness and convexity) and leads to an optimization problem that is easier to study.

Remark 1. Proposition 2 implies that the optimal joining problem S(µ, ν) satisfies Kantorovich duality

with respect to c. In particular,

S(µ, ν) = sup
f,g

{∫

f dµ+

∫

g dν : f ⊕ g ≤ c

}

, (2.4)

where the supremum is taken over µ-integrable f : XN → R and ν-integrable g : YN → R. The only

difference between (2.4) and the standard Kantorovich dual problem is the appearance of c instead of c.
More details on Kantorovich duality can be found in [83] and [70]. While we do not make use of the

dual optimal joining problem in this paper, we expect that it may be of use in future analyses.

Related Work. A special case of the optimal joining cost first appeared in the work of Ornstein under

the name d-distance [62]. For finite alphabets, the d-distance is equivalent to the optimal joining cost

with respect to the discrete metric. Subsequently, [35] generalized the d-distance to Polish alphabets and

metric costs. More recently, [69] considered the same problem for a specific class of examples in which

the optimal joining could be determined exactly and extended the problem to random fields. Subsequent

work has considered various aspects of stationary optimal transport in the context of dynamical systems

such as duality [91], decompositions [90], and the existence of optimal transport maps [45]. Another

line of work [42, 43], referred to as ergodic optimization, studies optimization of linear functionals

over the set of invariant measures. One may regard the optimal joining problem as a constrained ergodic
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optimization problem. Recent work in statistical inference [53, 54, 52] has shown that stationary optimal

transport problems arise naturally in the context of fitting dynamical models. In another direction, [60]

studied computational aspects of a constrained form of the optimal joining problem for Markov chains.

This constrained optimal joining problem was applied to the comparison and alignment of graphs in

[61].

3 Estimation of an Optimal Joining and its Expected Cost

In the rest of the paper, we consider the optimal joining problem in a statistical setting, focusing

on the problem of estimating an optimal joining and the optimal joining cost of two stationary, ergodic

processes from finite sequences of observations. Fix finite sets X and Y , a single-letter cost c : X ×Y →
R+, and stationary, ergodic process measures µ ∈ Ms(X

N) and ν ∈ Ms(Y
N) as in the previous section.

Let X = X1,X2, ... and Y = Y1, Y2, ... be two processes, possibly defined on different probability

spaces, with distributions µ and ν, respectively, and suppose that we observe X1, ...,Xn and Y1, ..., Yn.

The task of interest is to estimate an optimal joining λ ∈ Jmin(µ, ν) and the optimal joining cost S(µ, ν)
from the observed sequences. In this section, we define the proposed estimates and state our main result

regarding their consistency in the limit n → ∞.

Before describing our proposed estimation scheme in detail, we first provide some intuition. Propo-

sition 2 ensures that the optimal transport cost between the k-dimensional distributions of µ and ν
converges to the optimal joining cost as k tends to infinity. Thus when k is large we expect that a good

estimate of k−1Tck(µk, νk) will approximate the optimal joining cost S(µ, ν). Furthermore, a station-

ary coupling achieving the k-step optimal joining cost should be close to the set of optimal joinings

Jmin(µ, ν). In the setting of interest to us, we do not have access to the finite dimensional distributions

of the observed processes; instead we estimate these from the available observations. In what follows,

let k be a fixed integer between 1 and n. The choice of k is discussed below in Section 3.2.

We propose an estimation scheme that is comprised of three steps. First, we construct k-block

empirical measures from the available observations of each process. The resulting probability measures

act as empirical estimates of µk and νk. Second, we select an optimal transport plan between these

empirical k-block measures with respect to ck. The expected cost of this coupling acts as an estimate

of Tck(µk, νk). Finally, we construct a stationary process measure from the coupling in the second step.

This is done via a k-block process construction, described formally below in Definition 2.

Step 1: (Empirical k-block measure) Define the probability measure µ̂k,n := µ̂k[X
n
1 ] ∈ M(X k)

by

µ̂k,n(x
k
1) =

1

n− k + 1

n−k∑

ℓ=0

1(xk1 = Xℓ+k
ℓ+1 ),

for xk1 ∈ X k. This is referred to as the k-block empirical measure constructed from ob-

servations Xn
1 . Let ν̂k,n be the k-block empirical measure constructed from Y n

1 in the

same manner. Note that µ̂k,n is a probability measure on X k, and is an estimate of µk, the

k-dimensional distribution of µ; analogous remarks apply to ν̂k,n.

Step 2: (Optimal coupling of k-block measures) Find an optimal coupling of µ̂k,n and ν̂k,n with

respect to ck. Formally, let πk ∈ Π(µ̂k,n, ν̂k,n) be any coupling such that
∫
ck dπk ≤

∫
ck dπ

′
k for all π′

k ∈ Π(µ̂k,n, ν̂k,n). Thus
∫
ck dπk = Tck(µ̂k,n, ν̂k,n). To simplify notation

in what follows, define

Ŝk,n = Ŝk(X
n
1 , Y

n
1 ) = k−1Tck(µ̂k,n, ν̂k,n). (3.1)

We regard the number Ŝk,n defined in (3.1) as an estimate of the optimal joining cost of the observed

processes X and Y . We estimate an optimal joining of these processes by constructing a stationary

process measure from the optimal coupling πk appearing in Step 2 above. In order to do this, we

leverage a well-known construction described in Definition 2 below.
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Definition 2 (Block process construction). Let U be finite and k ≥ 1. Define Λ̃k : M(Uk) → M(UN)
to be the map that takes a probability measure γ ∈ M(Uk) to the unique probability measure on

UN obtained by independently concatenating γ with itself infinitely many times. Formally, for any ℓk-

dimensional cylinder set C = C1 × · · · × Cℓk × U × · · · ⊂ UN,

Λ̃k[γ](C) = γ(C1×· · ·×Ck)γ(Ck+1×· · ·×C2k) · · · γ(C(ℓ−1)k+1×· · ·×Cℓk)

=
ℓ−1∏

i=0

γ(Cik+k
ik+1 ).

Moreover, define Λk : M(Uk) → Ms(U
N) to be the map defined by randomizing the start of the output

of Λ̃k over the first k coordinates. Formally, for any set A ⊂ UN,

Λk[γ](A) =
1

k

k−1∑

ℓ=0

Λ̃k[γ](U ℓ ×A).

We will refer to Λ̃k[γ] as the independent k-block process induced by γ and Λk[γ] as the stationary

k-block process induced by γ.

The block process construction described above is standard in ergodic theory [64, 74], and ensures

that the process Λk[γ] is stationary.

Step 3: (Construct stationary process) Given the k-dimensional measure πk obtained in Step 2,

define the stationary joint measure λ̂k,n = Λk[πk] ∈ Ms(X
N × YN).

We regard λ̂k,n as an estimate of an optimal joining of the observed processes. We establish in

Appendix B that λ̂k,n is a joining of empirical estimates Λk[µ̂k,n] and Λk[ν̂k,n] of µ and ν with expected

cost equal to Ŝk,n.

3.1 Consistency

Having detailed the proposed estimators λ̂k,n and Ŝk,n, we now consider their behavior as the length

n of the observed sequences goes to infinity. Intuitively, for fixed k we expect that when n is large, Ŝk,n

will be close to k−1Tck(µk, νk). However, as Proposition 2 suggests, this quantity will only be close

to the optimal joining cost when k is large. Thus in order for our estimates to converge to the desired

targets, we must let k grow with n. In particular, we consider sequences of estimates {λ̂k(n),n}n≥1

and {Ŝk(n),n}n≥1 for some sequence k(n) such that k(n) → ∞ and ask whether the two sequences

converge to an optimal joining and the optimal joining cost, respectively. We show in Theorem 3 that

under the stated assumptions, such a sequence k(n) necessarily exists. We will say that a sequence

of Borel probability measures γ1, γ2, . . . ∈ M(U) converges weakly to a set Γ ⊂ M(U), written as

γn ⇒ Γ, if every subsequence of γn contains a further subsequence that converges weakly to an element

of Γ. Moreover, to simplify notation going forward, we will occasionally write k for k(n) when there is

no risk of confusion.

Theorem 3. Let X and Y be finite and µ ∈ Ms(X
N) and ν ∈ Ms(Y

N) be ergodic. Then there exists a

sequence k = k(n) with k(n) → ∞ such that Ŝk,n → S(µ, ν) and λ̂k,n ⇒ Jmin(µ, ν) almost surely as

n → ∞.

The problem of estimating optimal joinings appears to have not been considered explicitly in the

literature. However, the special case of estimating the d-distance between two ergodic processes from

finite observations has been considered. The focus of this line of work has been in finding universal

estimation schemes, including choices of the sequence k(n), such that the desired convergence holds

uniformly over all pairs µ and ν from some set. The estimate Ŝk,n for the optimal joining cost that we
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propose is an extension of that proposed in [64] for the d-distance. In the case that X = Y and c is

the 0-1 cost, it was shown that Ŝk,n with k = O(log n) converges to the optimal joining cost of µ and

ν whenever µ is a stationary coding of an iid process. Later work studied the limits of this estimation

scheme [51] and the properties of processes for which the scheme is consistent [63]. In this context, our

consistency results allow for relatively weak assumptions on µ and ν (ergodicity) at the expense of loss

of control over the sequence k(n).

Remark 2. The arguments underlying the proof of Theorem 3 may be adapted in a straightforward way

to show that the proposed estimates are consistent more generally whenever X and Y are compact and c
is continuous.

3.2 Choice of k(n)

Theorem 3 raises the question of how the sequence k(n) depends on the processes X and Y . In the

proof, we find that the choice of the sequence k(n) is related to a notion of admissibility, which we now

describe.

Definition 3. Let X and Y be finite and let c : X × Y → R+ be a cost function. Then the X -adapted

cost cX : X × X → R+ is defined by

cX (x, x
′) = sup

y∈Y
|c(x, y) − c(x′, y)|,

with the Y-adapted cost cY : Y × Y → R+ defined in the analogous way.

The adapted cost arises naturally when studying the Lipschitz properties of the optimal transport

and optimal joining costs (see Lemmas 13 and 15). Define cX,k : X k × X k → R+ to be the sum of

the X -adapted cost over k coordinates, and define cY,k similarly. Note that (X k, cX,k) and (Yk, cY,k) are

well-defined pseudometric spaces for every k ≥ 1.

Definition 4. Let X and Y be finite and let c : X × Y → R+ be a cost function. We will say that a

nondecreasing sequence k = k(n) with k → ∞ is c-admissible for µ ∈ Ms(X
N) if

µ

(

x ∈ XN : lim
n→∞

1

k
TcX,k

(µ̂k,n, µk) = 0

)

= 1.

We define c-admissibility for ν ∈ Ms(Y
N) in the analogous way.

The c-admissibility of a sequence k = k(n) ensures that the average transport distance between the

k-dimensional distributions of µ and their empirical counterparts tends to zero almost surely as the num-

ber of observations n increases. The property c-admissibility weakens the notions of admissibility (with

respect to total variation distance) and d-admissibility discussed in [74]. We note that certain sequences

growing like O(log n) are known to be admissible (and thus c-admissible) for aperiodic Markov chains

[51].

Proposition 4. Under the hypotheses of Theorem 3, if a sequence k = k(n) is c-admissible for both µ
and ν, then with P-probability one, Ŝk,n → S(µ, ν) and λ̂k,n ⇒ Jmin(µ, ν) as n → ∞.

Example 3. Let µ and ν be aperiodic Markov chains with entropy rates h(µ) and h(ν), respectively

(defined in Section 5). Then for any ε > 0, the sequence k(n) = (h(µ)∨h(ν)+ε)−1 log n is admissible

(and thus c-admissible) for both µ and ν [51]. Thus by Proposition 4, Ŝk,n → S(µ, ν) and λ̂k,n ⇒
Jmin(µ, ν) as n → ∞.

Remark 3. Other stationary process constructions may be used in Step 3 of the proposed estimation

scheme. For example, one may construct a finite-order, stationary Markov process from πk. However,

the expected cost of a stationary Markov chain constructed from πk will generally not be equal to Ŝk,n

and may require more care to control. On the other hand, the approach detailed in Step 3 enables us to

control the expected cost of the constructed process λ̂k,n, namely Ŝk,n, which we show converges to the

optimal joining cost.
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Remark 4. The optimal transport distance between k-block measures was proposed as an extension of

optimal transport to stationary time series in [58]. However, that work did not consider the relationship

of this approach to the optimal joining problem or the consistency of the proposed distance.

4 Finite-Sample Error Bound

In this section, we provide an upper bound on the expected error of the proposed estimate of the

optimal joining cost when the observed processes satisfy suitable mixing conditions. Our bounds are

derived from bounds on the optimal transport cost between a measure and an estimate of that measure

based on a finite number of samples detailed in [8]. A substantial body of work has considered this

problem for iid processes from both asymptotic and finite-sample perspectives [24, 8, 29, 87, 55, 33,

44]. Other work has focused on rates of convergence and central limit theorems for the 1-Wasserstein

distance (Td for a metric d) when samples are drawn from a stationary process satisfying a certain

mixing condition [21, 8, 22, 7]. In order to obtain an error bound for the estimated optimal joining cost,

we consider the case that the marginal processes µ and ν are φ-mixing.

Definition 5. Let U be finite. A process measure γ ∈ Ms(U
N) has φ-mixing coefficients φγ : N0 → R+

where φγ(0) = 1, and for any g ≥ 0,

φγ(g + 1) = sup
{

|γ(Ug ×B|A)− γ(B)| : A ⊂ U ℓ, ℓ ≥ 1, B ⊂ UN

}

,

where γ(Ug ×B|A) = γ(A×Ug ×B)/γ(A). The measure γ is called φ-mixing if limg→∞ φγ(g) = 0.

The φ-mixing condition is a standard strong mixing condition in the study of stochastic processes. Ex-

isting work on estimation of optimal transport costs under dependence has generally focused on weaker

mixing conditions such as α-mixing. We find φ-mixing to be particularly suited to our arguments in

proving an error bound for the estimated optimal joining cost. For more details on φ-mixing and its

relationship to other strong mixing conditions, we refer the reader to [9].

For a pseudometric space (U , d), let N (U , d, ε) denote the ε-covering number of U with respect to

the pseudometric d. We now present our finite sample error bound.

Theorem 5. Let µ and ν have φ-mixing coefficients φµ and φν , respectively. Then there exists a constant

C < ∞ such that for every n ≥ 1, k ∈ {1, ..., n}, g ≥ 0 and t ∈ (0, 14‖c‖∞],

E

∣
∣
∣Ŝk,n − S(µ, ν)

∣
∣
∣ ≤ ‖c‖∞

(
k(φµ(g + 1) + φν(g + 1))

k + g
+

3g

k

)

+ C (t+ ut(k, n) + vt(k, n)) ,

where

ut(k, n) =

(

1

n2

n∑

ℓ=0

(n− ℓ+ 1)φ
1/2
µ (ℓ)

)1/2 ∫ 1
4
‖c‖∞

t
N

(

X k,
1

k
cX,k, ε

)1/2

dε,

and vt(k, n) is defined similarly in terms of φν and Y .

Theorem 5 gives a general upper bound on the expected error of the estimate of the optimal joining

cost in terms of the φ-mixing coefficients of µ and ν and the covering numbers of the product spaces

X k and Yk with respect to cX,k and cY,k. When the cost c is less variable the covering numbers under cX
and cY will be smaller, and the upper bound of the theorem will be smaller as well.

Corollary 6. Let µ and ν have φ-mixing coefficients φµ and φν , respectively, satisfying

n∑

ℓ=0

(n− ℓ)φ
1/2
µ (ℓ) = O(np) and

n∑

ℓ=0

(n− ℓ)φ
1/2
ν (ℓ) = O(np)
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for some p ∈ [1, 2). Then there exists a constant C < ∞ depending only on φµ and φν such that for

every k ≥ 1, g ≥ 0, and n large enough,

E

∣
∣
∣Ŝk,n − S(µ, ν)

∣
∣
∣ ≤ ‖c‖∞

(

k(φµ(g + 1) + φν(g + 1))

k + g
+

3g

k
+

C(|X |k/2 + |Y|k/2)

n1−p/2

)

. (4.1)

In particular, if k(n) < (2−p) logn
log(|X |∨|Y|)∨1 and g(n) = o(k(n)) with k(n), g(n) → ∞, then the upper bound

converges to zero as n → ∞.

Corollary 6 provides finite-sample control of the mean error in the estimated optimal joining cost.

In particular, it sheds some light on how the choice of block size k interacts with the amount of depen-

dence of the marginal processes (as quantified by their φ-mixing coefficients) and the sample size n.

Previous work [15, 78, 77, 32, 10] has established error bounds and rates of convergence for Markov

approximations to ergodic processes. However, it appears that no previous work has established such

results for the k-block process estimate. We remark that Theorem 5 and Corollary 6 include the special

case of Ornstein’s d-distance and thus provide some additional insight into the estimation scheme for

this distance proposed in [64]. To provide further context for Corollary 6, we consider two examples

below.

Example 4 (IID Processes). If µ and ν are iid processes, then S(µ, ν) = Tc(µ1, ν1). Moreover, φµ(g) =
φν(g) = 0 for every g ≥ 1, and so we may let k = 1, g = 0, and p = 1. Then by Corollary 6, we see

that

E

∣
∣
∣Ŝ1,n − S(µ, ν)

∣
∣
∣ = O

(

n−1/2
)

.

The rate above is consistent with known rates for the estimation of the 1-Wasserstein distance on finite

spaces [8].

For iid processes, the optimal joining problem reduces to the optimal coupling problem of their

1-dimensional marginal measures. However, when at least one of the measures is not iid, the optimal

joining need not be Markov of any order [26], and one must let k tend to infinity in order to estimate the

full behavior of an optimal joining. As such, one expects to find slower rates outside the iid setting.

Example 5 (Markov Processes). If µ and ν are aperiodic irreducible Markov chains, then there exist

constants C < ∞ and ρ ∈ (0, 1) such that φµ(g) ≤ Cρg and φν(g) ≤ Cρg [18, 9] for each g ≥ 1.

Thus the summability conditions in Corollary 6 are satisfied with p = 1. Applying Corollary 6 with

k(n) =
⌊

α log(n)
log(|X |∨|Y|)∨1

⌋

and g(n) =
⌊
log(α log(n))

log(1/ρ)

⌋

for any α ∈ (0, 1) and n large enough, we find

E

∣
∣
∣Ŝk,n − S(µ, ν)

∣
∣
∣ = O

(
log(log(n))

log(n)

)

. (4.2)

It was established in [51] that any sequence k(n) growing faster than log n is inadmissible for every

ergodic process with positive entropy rate. Thus the sequence k(n) in Example 5 is the best achievable

rate (up to constant factors) for estimating the finite-dimensional distributions of aperiodic irreducible

Markov chains in general. However, the rate (4.2) is substantially slower than the polynomial rate typi-

cally observed when estimating marginal distributions of Markov chains in, for example, total variation

distance [8]. This disparity is due to the g/k term in (4.1), which arises when joining approximations of

the processes µ and ν in the proof of Theorem 5.

5 The Entropic Optimal Joining Problem

A large body of recent work in optimal transport has focused on studying the computational and

statistical properties of regularized versions of the optimal transport problem. Entropic regularization in

particular has attracted a great deal of interest from the machine learning and statistics communities as a

10



means of smoothing the optimal transport problem and enabling more efficient computation of solutions.

For any η > 0, the entropic optimal transport problem is obtained by subtracting the Shannon entropy

H(π) = −
∑

u,v π(u, v) log π(u, v) from the optimal transport objective:

T η
c (µ, ν) = inf

π∈Π(µ,ν)

{∫

c dπ − ηH(π)

}

.

Cuturi [16] showed that solutions to this problem have a special form and can be obtained via a ma-

trix scaling method known as the Sinkhorn-Knopp algorithm [75]. Subsequent work [1, 25, 47, 48, 36]

has analyzed the complexity of this and other algorithms for entropic optimal transport in detail, show-

ing that approximations of the optimal transport cost may be obtained in time that is nearly-linear in the

dimension of the couplings under consideration. Other work [44, 33, 55, 38] has studied the entropic

problem from a statistical perspective, proving estimation error bounds and central limit theorems for

the empirical entropic optimal transport cost. In some cases, these estimates exhibit better sample com-

plexity and faster rates of convergence than the best achievable quantities for the unregularized problem,

which are known to suffer from the “curse of dimensionality”. Recent work has found closed form solu-

tions to the entropic problem between Gaussian distributions [23, 82, 41] and examined the convergence

of solutions to solutions of the unregularized problem as the regularization coefficient η converges to

zero [67, 5, 59]. For additional details on entropic optimal transport, we refer the reader to [67].

In this section, we consider entropic regularization of the optimal joining problem. We identify

a natural penalty term for the optimal joining problem by viewing the regularized problem as a limit

of entropic optimal transport problems with increasing dimension. We observe that these problems

converge to a regularized optimal joining cost with the entropy rate as the penalty term. Entropy rates

have been studied in the context of stochastic processes and information theory for many years, dating

back to Shannon [73].

Definition 6. Let U be finite and let γ ∈ Ms(U
N) be a stationary measure. For k ≥ 1 define H(γk) =

−
∑

uk
1
γk(u

k
1) log γk(u

k
1). The entropy rate of γ is defined by h(γ) := limk→∞

1
kH(γk).

In other words, the entropy rate is the limiting joint entropy per symbol of the finite dimensional dis-

tributions of the process. By subadditivity, the limit in the definition exists and is equal to infk≥1
1
kH(γk).

An iid process with one dimensional distribution p has entropy rate equal to H(p). A stationary, ape-

riodic, irreducible Markov chain with stationary distribution p and transition matrix P has entropy rate

given by −
∑

ij piPij log Pij . Occasionally, we will use Hk(·) instead of H(·) to emphasize the depen-

dence on the dimension k. We remark that the entropy rate is known to be weakly upper semicontinuous

on finite-alphabet sequence spaces [84]. We make use of this fact in Section 7.5, for example, when

establishing the consistency of our entropically regularized estimates, defined below.

Remark 5. The entropy rate of certain processes is preserved under randomization, as in Definition 2.

In particular, if a process γ̃ is k-stationary for any k ≥ 1 and γ is the stationary process obtained by

randomizing the start of γ̃, then h(γ̃) = h(γ). A formal statement of this fact along with a proof may

be found in Appendix A. As our proposed estimate of an optimal joining is constructed by randomizing

the start of a k-stationary process, this fact is needed when considering the entropy rate of the estimate.

For η > 0, we define the entropic optimal joining problem by

Sη
c (µ, ν) = inf

λ∈J (µ,ν)

{∫

c dλ1 − ηh(λ)

}

. (5.1)

As in the unregularized problem, one can show under the stated assumptions that the infimum in (5.1) is

attained. We include a proof of this fact in Appendix C. From now on, we will denote the set of joinings

achieving the infimum in (5.1) by J η
min(µ, ν). Moreover, we will drop the cost c in our notation, writing

Sη(·, ·) for Sη
c (·, ·) when there is no risk of confusion. Note that (5.1) is still well-defined when η = 0

but in that case, we recover the standard optimal joining problem and thus refer to it by that name.

Proposition 2 shows that the optimal joining cost may be obtained as a limit of k-step optimal

transport costs. The next proposition extends this result to the entropic optimal joining problem.
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Proposition 7. Let X and Y be finite and µ ∈ Ms(X
N) and ν ∈ Ms(Y

N). Then for any η ≥ 0,

lim
k→∞

1

k
T η
ck
(µk, νk) = Sη(µ, ν).

In other words, the entropic optimal joining cost can be obtained as a limit of the average entropic

optimal transport costs. Thus the entropy rate emerges as a natural regularizer for the optimal joining

problem. Moreover, the proposition suggests that the approach to estimating an optimal joinings may

extend to the regularized setting. In particular, when k is large, a good estimate of k−1T η
ck(µk, νk) should

be a good estimate of Sη(µ, ν), and existing algorithms for efficient computation of k−1T η
ck(µk, νk) will

translate to faster estimates of Sη(µ, ν).
Entropic penalization has appeared in some related work. In [52], a regularized optimal joining

problem with fiber entropy as the penalty term arises naturally in the context of Bayesian estimation of

dynamical models. Another line of work [50, 49] has investigated the role of entropic regularization in

the thermodynamic formalism, which consists of an optimization of a linear functional over the set of

invariant measures. More recently, [60] proposed an extension of entropic techniques to a constrained

optimal transport problem specifically for Markov chains. In that work, the entropy constraint implies

a constraint on the entropy rate of the set of joinings in question and leads to improved computational

efficiency. Existing work has yet to propose a principled regularization scheme for the optimal joining

problem considered here.

Before moving on to the proposed estimation scheme, we consider the stability of the entropic

optimal joining cost in η, and in particular, the limiting behavior of Sη(µ, ν) when η tends to zero.

Proposition 8. Let X and Y be finite and µ ∈ Ms(X
N) and ν ∈ Ms(Y

N). Then the entropic optimal

joining cost satisfies

lim
η→0

Sη(µ, ν) = S(µ, ν).

Thus the entropic optimal joining cost converges to the unregularized optimal joining cost as the

penalty parameter shrinks. This behavior is consistent with analogous results in optimal transport [67].

5.1 Extension of the Estimation Procedure

The proposed estimation scheme (described in Section 3) may be easily extended to the entropic

optimal joining problem. One need only consider a modification of Step 2 in which one solves an

entropic optimal transport problem for η > 0:

Step 2’: (Entropic optimal coupling) Find an entropic optimal coupling of µ̂k,n and ν̂k,n. For-

mally, let πk ∈ Π(µ̂k,n, ν̂k,n) be any coupling such that
∫
ck dπk − ηH(πk) ≤

∫
ck dπ

′
k −

ηH(π′
k) for all π′

k ∈ Π(µ̂k,n, ν̂k,n). Thus, πk has expected entropic k-step cost equal to

T η
ck(µ̂k,n, ν̂k,n). To simplify notation in what follows, define

S̃η
k,n = S̃η

k(X
n
1 , Y

n
1 ) = k−1T η

ck
(µ̂k,n, ν̂k,n). (5.2)

One may then construct a stationary process from πk via the block process construction detailed in

Definition 2. In particular, define λ̃η,k,n = Λk[πk] ∈ Ms(X
N × YN). We propose λ̃η,k,n as an estimate

of an entropic optimal joining of µ and ν and S̃η
k,n as an estimate of the entropic optimal joining cost.

Note that we will regard η as a fixed quantity in all but Proposition 8 and thus omit it in our notation,

writing λ̃k,n for λ̃η,k,n and S̃k,n for S̃η
k,n whenever there is no risk of confusion.

As in the unregularized case, we establish in Appendix B that the estimate λ̃k,n is a joining of

empirical estimates of µ and ν with the desired expected entropic cost S̃k,n.
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5.2 Consistency and Error Bound

If one is interested in consistency of the proposed estimates as n goes to infinity, reasoning simi-

lar to that in Section 3 suggests that on consider sequences {λ̃k,n}n≥1 and {S̃k,n}n≥1 for appropriate

sequences k(n) → ∞. The following result extends Theorems 3 and 5 to the regularized setting.

Theorem 9. Let X and Y be finite and µ ∈ Ms(X
N) and ν ∈ Ms(Y

N) be ergodic. Then for any

η > 0, there exists a sequence k = k(n) with k → ∞ such that S̃k,n → Sη(µ, ν) and λ̃k,n ⇒ J η
min(µ, ν)

almost surely as n → ∞.

The proof of Theorem 9 is similar to that of Theorem 3: we construct a c-admissible sequence k(n)
for µ and ν and apply a Lipschitz property of the entropic optimal transport cost to obtain the desired

convergence. An analog of Proposition 4 holds for the regularized estimation scheme above. The proofs

of Theorem 5 and Corollary 6 can be extended to obtain an error bound for the estimated entropic

optimal joining cost.

Theorem 10. Let µ and ν have φ-mixing coefficients φµ and φν , respectively, satisfying

n∑

ℓ=0

(n− ℓ)φ1/2
µ (ℓ) = O(np) and

n∑

ℓ=0

(n− ℓ)φ1/2
ν (ℓ) = O(np)

for some p ∈ [1, 2). Then there exists a constant C < ∞ depending only on φµ and φν such that for

every η > 0, k ≥ 1, g ≥ 0, and large enough n,

E

∣
∣
∣S̃k,n − Sη(µ, ν)

∣
∣
∣ ≤ ‖c‖∞(φµ(g + 1) + φν(g + 1))

k

k + g
+ (3‖c‖∞ + 2η(log |X |+ log |Y|))

g

k

+ u(k, n)

(
‖c‖∞
2

+
η

k
log

(
|X |3k

u(k, n)

))

+ v(k, n)

(
‖c‖∞
2

+
η

k
log

(
|Y|3k

v(k, n)

))

,

where u(k, n) = C|X |k/2np/2−1 and v(k, n) = C|Y|k/2np/2−1. In particular, if k(n) < (2−p) logn
log(|X |∨|Y|)∨1

and g(n) = o(k(n)) with k(n), g(n) → ∞, then the upper bound converges to zero as n → ∞.

The introduction of entropy rate regularization into the optimal joining problem results in an error

bound that is strictly worse than that for the unregularized optimal joining problem. This reflects the

increased difficulty of estimating an entropic optimal joining, which entails simultaneously learning the

finite-dimensional distributions as well as the entropies of the marginal processes from observations.

Despite the worse error bound, we find that the sequence k(n) may be chosen in the same way as in the

unregularized case. Moreover, for non iid processes (for which k, g → ∞), one finds that the bound

is of the same order as in the unregularized case. For example, in the setting of Example 5, we have

E|S̃k,n−Sη(µ, ν)| = O
(
log(log(n))

log(n)

)

. Thus from an asymptotic perspective, there is no additional price

paid for using entropic regularization when estimating the optimal joining cost.

6 Discussion

The extension of optimal transport techniques to stochastic processes is an important problem in

statistics and machine learning. In this paper, we presented a step in this direction, considering the case

of finite-alphabet, stationary and ergodic processes. We argued that, in this setting, one should consider a

constrained form of the optimal transport problem, referred to as the optimal joining problem, in order to

account for the long-term dynamics of the processes of interest. Given finite sequences of observations,

we proposed estimates of an optimal joining and the optimal joining cost, and we proved that these

estimates are consistent in the large sample limit. We presented an upper bound on the expected error

of the estimated optimal joining cost in terms of the mixing coefficients of the two processes of interest.

13



Finally, building upon recent work in optimal transport, we also proposed a regularized problem, the

entropic optimal joining problem, and extended the proposed estimation scheme, consistency result, and

error bound to this new problem.

This work enables the principled application of optimal transport techniques to data arising as ob-

servations from stationary processes. Future work may investigate additional properties and uses of the

entropic optimal joining problem. For example, are there conditions under which the entropic optimal

joining cost exhibits a faster rate of convergence compared to the unregularized optimal joining cost?

Other work may extend our results to the setting of Polish spaces. It was noted in Section 3 that the

arguments in the proof of Theorem 3 may be adapted to the case when X and Y are compact and c is

continuous. However, it is not clear whether the entropic optimal joining is always well-defined in that

setting. Moreover, the arguments in the proof of Theorem 5 do not extend easily to continuous spaces,

and so further consideration is necessary.

7 Proofs

In this section, we prove our stated results. We begin by proving Proposition 2 from Section 2. Next,

we state and prove an inequality for the estimated optimal joining cost that will be used throughout the

rest of this section. Then, we prove our main results from Sections 3, 4, and 5 in the order that they

appear in the text. A small selection of auxiliary results are proven in the appendix and will be referred

to throughout this section.

7.1 Proofs from Section 2

Here we establish the second equality in Proposition 2, which states that the optimal joining cost is

equal to the optimal transport cost with respect to the averaged cost c. We remind the reader that the

first equality in Proposition 2 was established in [35]. We begin by showing that solutions to the optimal

joining problem are characterized by a cyclical monotonicity property.

Definition 7. For two sets U and V and a cost function c : U × V → R, a set C ⊂ U × V is called

c-cyclically monotone if for every N ≥ 1 and every sequence (u1, v1), ..., (uN , vN ) ∈ C ,

N∑

ℓ=1

c(uℓ, vℓ) ≤
N∑

ℓ=1

c(uℓ, vℓ+1),

with the convention that vN+1 = v1. A probability measure γ on U ×V is called c-cyclically monotone

if there exists a c-cyclically monotone set C ⊂ U × V such that γ(C) = 1.

The characterization of optimal couplings in terms of cyclical monotonicity has been studied in the

optimal transport literature. We require the following result.

Theorem A ([4]). Let U and V be Polish, µ ∈ M(U), ν ∈ M(V), and c : U × V → [0,∞) be

measurable. Then any c-cyclically monotone coupling π ∈ Π(µ, ν) satisfying
∫
c dπ < ∞ is a solution

to Tc(µ, ν).

Under stronger assumptions on c (lower semicontinuity and integrability), one may also establish the

reverse implication, namely that any optimal coupling is c-cyclically monotone (see [83]). An analogous

result holds for the optimal joining problem.

Lemma 11. Let X and Y be finite and µ ∈ Ms(X
N) and ν ∈ Ms(Y

N) be ergodic. Then an ergodic

joining λ ∈ J (µ, ν) is a solution to S(µ, ν) if and only if it is c-cyclically monotone.

Proof. The limiting average cost c is invariant under the joint left-shift map σ × τ , and therefore by

the pointwise ergodic theorem
∫
c dλ1 =

∫
c dλ for every λ ∈ J (µ, ν). Taking infima, we find that
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S(µ, ν) = Sc(µ, ν). Let λ ∈ J (µ, ν) be an ergodic c-cyclically monotone joining. Then λ is a solution

to Tc(µ, ν) by Theorem A, and therefore

∫

c dλ1 =

∫

c dλ = Tc(µ, ν) ≤ Sc(µ, ν) = S(µ, ν)

and it follows that λ is necessarily a solution to S(µ, ν).
We now show that any ergodic optimal joining is c-cyclically monotone. Let λ ∈ Jmin(µ, ν) be

ergodic. As λ, µ, and ν are ergodic, the pointwise ergodic theorem ensures that

1. There exists a set D ⊂ XN × YN with λ(D) = 1 on which c is constant and equal to
∫
c dλ1.

2. There exist sets E ⊂ XN and F ⊂ YN such that µ(E) = ν(F ) = 1, and for any x ∈ E,

y ∈ F , the probability measures µn
x
:= 1

n

∑n−1
ℓ=0 δσℓx

and νn
y
:= 1

n

∑n−1
ℓ=0 δτℓy satisfy µn

x
⇒ µ

and νn
y
⇒ ν.

Let C = D ∩ (E × F ). Then λ(C) = 1, so we need only show that C is c-cyclically monotone. Let

N ≥ 1 and (x1,y1), ..., (xN ,yN ) ∈ C , and suppose by way of contradiction that

N∑

ℓ=1

c(xℓ,yℓ) >
N∑

ℓ=1

c(xℓ,yℓ+1),

where we use the convention y
N+1 = y

1. Define a sequence of probability measures λn on XN × YN

as follows

λn :=
1

nN

N∑

ℓ=1

n−1∑

k=0

δ(σkxℓ,τkyℓ+1),

For each n the measure λn is a coupling of µn = 1
N

∑N
ℓ=1 µ

n
xℓ and νn = 1

N

∑N
ℓ=1 ν

n
yℓ where µn

xℓ and νn
yℓ

are defined as in the definitions of the events E and F above. The definition of C ensures that µn ⇒ µ
and νn ⇒ ν as n → ∞. Applying Lemma 23 in Appendix E we find that there is a subsequence λnk

converging weakly to some λ̃ ∈ J (µ, ν). To simplify notation, we drop the subscript and refer to this

subsequence as λn. Using the fact that c is constant on C and that c is continuous and bounded, we have

∫

c dλ̃1 = lim
n→∞

∫

c dλn
1

= lim sup
n→∞

1

nN

N∑

ℓ=1

n∑

k=1

c(xℓk, y
ℓ+1
k )

≤
1

N

N∑

ℓ=1

lim sup
n→∞

1

n

n∑

k=1

c(xℓk, y
ℓ+1
k )

=
1

N

N∑

ℓ=1

c(xℓ,yℓ+1)

<
1

N

N∑

ℓ=1

c(xℓ,yℓ)

=

∫

c dλ1

= S(µ, ν),

a contradiction. Thus C is c-cyclically monotone and the result follows.
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Proposition 2. If X and Y are finite and µ ∈ Ms(X
N) and ν ∈ Ms(Y

N) are ergodic then

S(µ, ν) = lim
k→∞

1

k
Tck(µk, νk) = Tc(µ, ν).

Proof. Under the stated conditions, it is known [74] that there exists an ergodic joining λ ∈ Jmin(µ, ν).
Lemma 11 ensures that λ is c-cyclically monotone, and therefore, by Theorem A, λ is a solution to

Tc(µ, ν). It follows that S(µ, ν) =
∫
c dλ1 = Tc(µ, ν).

7.2 Preliminary Results

Before proving the main results from Sections 3-5, we establish a bound on the discrepancy between

two entropic optimal transport costs in Lemma 13 below. Let U and V be finite, α ∈ M(U) and

β ∈ M(V), c : U × V → R+, and η > 0. Recall that the optimal transport cost satisfies

Tc(α, β) = max
f :U→R

g:V→R

{∫

f dα+

∫

g dβ : f(u) + g(v) ≤ c(u, v), ∀(u, v) ∈ U × V

}

. (7.1)

This equivalence is known as Kantorovich duality and is detailed, for example, in [83]. Moreover, it is

established in [17, Proposition 2.4] that the entropic optimal transport problem satisfies

T η
c (α, β) = max

f :U→R

{∫

f dα+

∫

f̃β dβ

}

= max
g:V→R

{∫

g̃α dα+

∫

g dβ

}

, (7.2)

where

f̃β(v) = η log β(v) − η log

(
∑

u

exp

{
1

η
(f(u)− c(u, v))

})

and

g̃α(u) = η log α(u)− η log

(
∑

v

exp

{
1

η
(g(v) − c(u, v))

})

.

The formulation (7.2) is referred to as the semidual of the entropic optimal transport problem while

the quantities f̃β and g̃α are referred to as the (c, η)-transforms of f and g with respect to β and α,

respectively. In what follows, we will let

g̃(u) = −η log

(
∑

v

exp

{
1

η
(g(v) − c(u, v))

})

,

to simplify notation. Note that g̃α(u) = η log α(u) + g̃(u). Our proof of Lemma 13 will leverage the

duality (7.1) and (7.2) as well as the following basic facts about f̃ and g̃.

Lemma 12. Let (U , dU ) and (V, dV ) be finite pseudometric spaces, and let f : U → R and g : V → R

be real-valued functions. Furthermore, let c : U × V → R+ be a non-negative cost function satisfying

|c(u, v)− c(u′, v′)| ≤ M(dU (u, u
′) + dV(v, v

′)) for all u, u′ ∈ U and v, v′ ∈ V for some M ∈ R. Then

for any η > 0, f̃ and g̃ satisfy |f̃(v) − f̃(v′)| ≤ MdV(v, v
′) and |g̃(u) − g̃(u′)| ≤ M dU (u, u

′) for all

u, u′ ∈ U and v, v′ ∈ V .

A proof of Lemma 12 is provided in Appendix D. A detailed discussion of the (c, η)-transform and its

use in optimal transport can be found in [67]. Now we may proceed to the result of interest.

Lemma 13. Let U and V be finite and let c : U × V → R+ be a cost function. Then for any η ≥ 0, any

α,α′ ∈ M(U), and any β ∈ M(V), it holds that

T η
c (α, β) − T η

c (α
′, β) ≤ TcU (α,α

′) + η(H(α′)−H(α)). (7.3)

The analogous bound for a pair of measures in M(V) also holds.
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Proof. We begin by considering the case η > 0. Let α, α′ ∈ M(U) and let β ∈ M(V). By (7.2) there

exists g : V → R be such that

T η
c (α, β) =

∫

g̃α dα+

∫

g dβ. (7.4)

Rewriting g̃α, we have

T η
c (α, β) =

∫

(g̃ + η logα) dα+

∫

g dβ

=

∫

g̃ dα+

∫

g dβ − ηH(α).

As g is feasible for the semidual problem of T η
c (α′, β), (7.2) implies that

T η
c (α

′, β) ≥

∫

g̃α′ dα′ +

∫

g dβ

=

∫

g̃ dα′ +

∫

g dβ − ηH(α′). (7.5)

Combining (7.4) and (7.5), we find that

T η
c (α, β) − T η

c (α
′, β) ≤

∫

g̃ dα−

∫

g̃ dα′ + η(H(α′)−H(α)).

Note that |c(u, v)−c(ũ, ṽ)| ≤ cU(u, ũ)+cV(v, ṽ), and therefore by Lemma 12, g̃ satisfies g̃(u)− g̃(ũ) ≤
cU(u, ũ). Thus the pair (g̃,−g̃) is feasible for the dual (7.1) of TcU (α,α

′) and it follows that

T η
c (α, β) − T η

c (α
′, β) ≤ TcU (α,α

′) + η(H(α′)−H(α)).

Taking the limit as η → 0 of (7.3) and applying [17, Proposition 2.1], we obtain the result for η = 0.

The next proposition details the implication of Lemma 13 for the k-step entropic optimal transport

cost. The proof follows from a straightforward application of Lemma 13 and the pointwise inequalities

(ck)Xk ≤ cX,k and (ck)Yk ≤ cY,k.

Proposition 14. For any η ≥ 0, n ≥ 1, and k ∈ {1, ..., n},

∣
∣
∣
∣
S̃k(X

n
1 , Y

n
1 )−

1

k
T η
ck
(µk, νk)

∣
∣
∣
∣
≤

1

k
TcX,k

(µ̂k,n, µk) +
η

k
|H(µk)−H(µ̂k,n)|

+
1

k
TcY,k(ν̂k,n, νk) +

η

k
|H(νk)−H(ν̂k,n)| .

7.3 Proofs from Section 3

In this section, we prove Theorem 3 regarding the consistency of the proposed estimates without

entropic regularization.

Theorem 3. Let X and Y be finite and µ ∈ Ms(X
N) and ν ∈ Ms(Y

N) be ergodic. Then there exists a

sequence k = k(n) with k(n) → ∞ such that Ŝk,n → S(µ, ν) and λ̂k,n ⇒ Jmin(µ, ν) almost surely as

n → ∞.

Proof. We begin by constructing a sequence {k(n)} such that the k(n)-step empirical optimal transport

cost converges to the optimal joining cost almost surely. As noted by [51], due to the ergodic theorem,

µ and ν have admissible sequences {ℓ(n)} and {m(n)}. Using the same reasoning, one may verify that

{k(n)} where k(n) = min{ℓ(n),m(n)} is also admissible for both processes. Since any admissible

sequence is also c-admissible, {k(n)} is c-admissible for both µ and ν. In order to simplify notation in
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the rest of the proof, we suppress the dependence of k(n) on n. For any n ≥ 1, an application of the

triangle inequality gives

∣
∣
∣Ŝk(X

n
1 , Y

n
1 )− S(µ, ν)

∣
∣
∣ ≤

∣
∣
∣
∣
Ŝk(X

n
1 , Y

n
1 )−

1

k
Tck (µk, νk)

∣
∣
∣
∣
+

∣
∣
∣
∣

1

k
Tck (µk, νk)− S(µ, ν)

∣
∣
∣
∣
. (7.6)

Applying Proposition 14, we have

∣
∣
∣
∣
Ŝk(X

n
1 , Y

n
1 )−

1

k
Tck(µk, νk)

∣
∣
∣
∣
≤

1

k
TcX,k

(µ̂k[X
n
1 ], µk) +

1

k
TcY,k(ν̂k[Y

n
1 ], νk),

which by the c-admissibility of k for µ and ν implies that the first term on the right hand side in (7.6)

goes to zero, almost surely as n → ∞. An application of Proposition 2 with the fact that k(n) → ∞
shows that the second term on the right hand side in (7.6) goes to zero. It follows that

∣
∣
∣Ŝk(X

n
1 , Y

n
1 )− S(µ, ν)

∣
∣
∣→ 0, almost surely. (7.7)

Next we show that the sequence of estimated optimal joinings indexed by k converges weakly to the

set of optimal joinings Jmin(µ, ν), almost surely. Fix sequences X = X1,X2, ... and Y = Y1, Y2, ... in

sets of µ- and ν-measure one on which (7.7) holds. Let {λ̂k,n}n≥1 be the corresponding sequence of

estimated optimal joinings. By Lemma 23 in Appendix E, for any subsequence {λ̂k,nℓ}ℓ≥1, there is a

further subsequence converging weakly to a joining λ ∈ J (µ, ν). For ease of notation, we refer to this

further subsequence again as {λ̂k,nℓ}ℓ≥1. Then

∫

c dλ1 = lim
ℓ→∞

∫

c dλ̂k,nℓ

1 = lim
ℓ→∞

Ŝk(X
nℓ
1 , Y nℓ

1 ) = S(µ, ν),

where the first equality follows from the continuity and boundedness of c, the second equality follows

from Proposition 21 in Appendix B, and the third equality follows from (7.7). Thus, λ ∈ Jmin(µ, ν) and

since the subsequence was arbitrary, we conclude that λ̂k,nℓ ⇒ Jmin(µ, ν). By the choice of sequences

X and Y , this convergence occurs almost surely.

7.4 Proofs from Section 4

In this section, we prove Theorem 5 regarding the expected error of the estimated optimal joining

cost Ŝk,n. Our argument may be broken down into three steps. First, we prove a Lipschitz result for

the optimal joining cost akin to Lemma 13 in terms of Ornstein’s d-distance. Second, we prove a novel

upper bound on these d terms using the φ-mixing coefficients of the process measures µ and ν. Finally,

we use a covering number bound to control the error of the estimated k-step optimal transport cost.

Bound on Optimal Joining Cost Discrepancy. To begin, we establish an inequality for the difference

between the entropic optimal joining costs of two pairs of processes akin to the result stated in Lemma

13. Since we will require the bound for the proof of Theorem 9 as well, we prove Lemma 15 more

generally for the regularized optimal joining cost Sη(µ, ν). Briefly, we remind the reader that the d-

distance between two processes, introduced in [62], may be defined as the optimal joining cost with

respect to the single-letter Hamming metric (u,u′) 7→ 1(u1 6= u′1). The distance d may be thought of

as the process analogue to the total variation distance.

Lemma 15. Let α,α′ ∈ Ms(X
N) be stationary process measures. Then for any η ≥ 0 and β ∈

Ms(Y
N),

Sη(α, β) − Sη(α′, β) ≤ ‖c‖∞d(α,α′) + η(h(α′)− h(α)).

The analogous bound for stationary process measures in Ms(Y
N) also holds.

18



Proof. Fix k ≥ 1, η ≥ 0, α, α′ ∈ Ms(X
N), and β ∈ Ms(Y

N). Recall that by Lemma 13,

T η
ck
(αk, βk)− T η

ck

(
α′
k, βk

)
≤ T(ck)

X
k
(αk, α

′
k) + η(H(α′

k)−H(αk)).

Let δk(x
k
1 , x̃

k
1) =

∑k
ℓ=1 1(xℓ 6= x̃ℓ) be the k-step Hamming distance and note that the pointwise upper

bound (ck)Xk ≤ ‖c‖∞δk holds. Thus,

T η
ck
(αk, βk)− T η

ck

(
α′
k, βk

)
≤ ‖c‖∞Tδk(αk, α

′
k) + η(H(α′

k)−H(αk)).

Dividing by k, letting k → ∞, and applying Proposition 7, we find

Sη(α, β) − Sη(α′, β) ≤ ‖c‖∞Sδ(α,α
′) + η(h(α′)− h(α)).

Recognizing that Sδ(α,α
′) = d(α,α′), the result follows.

Bound on d. Next, we prove an upper bound on the d-distance between a stationary process mea-

sure and an approximation constructed from its finite dimensional distributions. The approximation of

interest is defined as follows:

Definition 8 (Block approximation with gaps). Let U be a finite space and k, g ≥ 1. We define Λ̃k :
Ms(U

N) × M(Ug) → M(UN) to be the map that takes a process γ ∈ Ms(U
N) and a probability

measure α ∈ M(Ug) to the unique probability measure on UN obtained by independently concatenating

γk and α together infinitely many times. Formally, for any ℓ(k + g)-dimensional cylinder set C ⊂ UN,

Λ̃k[γ, α](C) =
ℓ−1∏

i=0

γk(C
i(k+g)+k
i(k+g)+1 )α(C

(i+1)(k+g)
i(k+g)+k+1).

Moreover, we define Λk : Ms(U
N) × M(Ug) → Ms(U

N) to be the map defined by randomizing the

start of the output of Λ̃k over the first k + g coordinates. Formally, for any set U ⊂ UN,

Λk[γ, α](U) =
1

k + g

k+g−1
∑

ℓ=0

Λ̃k[γ, α](U ℓ × U).

We will refer to Λ̃k[γ, α] as the independent k-block process approximation of γ with gap g and Λk[γ, α]
as the stationary k-block process approximation of γ with gap g.

Note the abuse of notation for the block approximation with gaps compared to the block approxi-

mations without gaps. In the rest of the paper, it will be understood that we omit gaps when Λ̃k or Λk

take one argument and include gaps when either takes two arguments. Note also that we omit α when

referring to either approximation because our arguments do not depend on the choice of α. For simplic-

ity, we will use the same notation for these approximations regardless of the alphabet of the processes

under consideration. As such, Λk[µ, α] and Λk[ν, β] are well-defined. We will show later that Λk[µ, α]
and Λk[ν, β] arise naturally in the proof of Theorem 5. In particular, it will be necessary to control the

error of these approximations as measured by the d-distances to µ and ν, respectively.

Lemma 16. Let U be finite and γ ∈ Ms(U
N) have φ-mixing coefficient φγ . Then for every k ≥ 1,

g ≥ 0 and α ∈ M(Ug),

d(γ,Λk[γ, α]) ≤
g

k + g
+

k

k + g
φγ(g + 1).

Proof. Fix k ≥ 1, g ≥ 0, α ∈ M(Ug). To simplify notation, let ξ̃ = Λ̃k[γ, α] and ξ = Λk[γ, α]. We

begin by defining an intermediate process ζ ∈ Ms(U
N). Let ζ̃ ∈ M(UN) be the probability measure

corresponding to the distribution of the process V = V1, V2, . . . generated by drawing a sequence
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U = U1, U2, ... according to γ and replacing the g-blocks of U with independent draws (Gi
1, ..., G

i
g)

from α to obtain

V = U1, . . . , Uk
︸ ︷︷ ︸

k−block 1

, G1
1, . . . , G

1
g

︸ ︷︷ ︸

g−block 1

, Uk+g+1, . . . , U2k+g
︸ ︷︷ ︸

k−block 2

, G2
1, . . . , G

2
g

︸ ︷︷ ︸

g−block 2

, . . . . (7.8)

Then, let ζ ∈ Ms(U
N) be the stationary process measure obtained by randomizing the start of ζ̃ over

the first k + g coordinates. By the triangle inequality for d,

d(γ, ξ) ≤ d(γ, ζ) + d(ζ, ξ).

Since the d-distance is defined as an infimum over joinings, we may upper bound both terms on the right

hand side by the expected cost of some suitably chosen joinings of γ and ζ , and ζ and ξ, respectively.

We will first bound d(γ, ζ) by constructing a coupling of γ and ζ̃ with low expected cost and then

randomizing the start to obtain a joining of γ and ζ . Since the k-blocks of ζ̃ are equal in distribution

to those of γ by construction, we may couple them so that the k-blocks are equal with probability one.

Formally, define the coupling π ∈ Π(γ, ζ̃) to be the probability measure corresponding to the distribution

of the process (U ′, V ′) generated by drawing the sequence U ′ = U ′
1, U

′
2, . . . according to γ and letting

V ′ = U ′
1, . . . , U

′
k, G

1
1, . . . G

1
g, U

′
k+g+1, . . . as in (7.8), replacing the g-blocks of U ′ with independent

draws (Gi
1, . . . , G

i
g) from α. In particular, U ′

ℓ = V ′
ℓ with π-probability one when ℓ = i(k + g) + j for

some i ≥ 0 and j ∈ {1, ..., k}. Letting λ ∈ J (γ, ζ) be the joining obtained by randomizing the start of

π over the first k + g coordinates, we obtain

d(γ, ζ) ≤

∫

1(u 6= v) dλ1(u, v)

=

∫
(

1

k + g

k+g
∑

ℓ=1

1(uℓ 6= vℓ)

)

dπk+g(u
k+g
1 , vk+g

1 )

=

∫
(

1

k + g

k+g
∑

ℓ=k+1

1(uℓ 6= vℓ)

)

dα(uk+g
k+1, v

k+g
k+1)

≤
g

k + g
.

Next we bound d(ζ, ξ). By Proposition 2,

d(ζ, ξ) = lim
m→∞

1

m
Tδm (ζm, ξm)

and thus, fixing a subsequence m(ℓ) := ℓ(k + g) + k for ℓ ∈ N0, we have

d(ζ, ξ) = lim
L→∞

1

m(L)
Tδm(L)

(
ζm(L), ξm(L)

)
. (7.9)

It suffices to obtain a bound on
1

m(L)
Tδm(L)

(
ζm(L), ξm(L)

)

for fixed L ∈ N and take a limit as L → ∞. Similar to the first bound, we will achieve this by

constructing a coupling of ζ̃m(L) and ξ̃m(L) with low expected cost and randomizing the start to obtain

a coupling of ζm(L) and ξm(L). Fix L ∈ N and recall that both ζ̃ and ξ̃ are comprised of alternating

blocks of size k and g, with the difference between the two measures being that the k-blocks of ζ̃
depend upon one another while those of ξ̃ are independent of one another. In order to obtain the desired

bound, we will bridge the gap between ζ̃m(L) and ξ̃m(L) with a series of intermediate process measures
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ρ0, ..., ρL ∈ M(UN) where the first ℓ+1 k-blocks of ρℓ are dependent on one another (as in ζ̃m(L)) and

the rest are independent (as in ξ̃m(L)). In other words, ρℓ describes the distribution of the process

U1, . . . , Uk
︸ ︷︷ ︸

k−block 1

, G1
1, . . . , G

1
g

︸ ︷︷ ︸

g−block

, . . . , Um(ℓ)−k+1, . . . , Um(ℓ)
︸ ︷︷ ︸

k−block ℓ+1

, . . .
︸︷︷︸

g−block

, Ũ1
1 , . . . , Ũ

1
k

︸ ︷︷ ︸

k−block ℓ+2

, . . .
︸︷︷︸

g−block

, Ũ2
1 , . . . , Ũ

2
k

︸ ︷︷ ︸

k−block ℓ+3

, . . .

where the sequence U1, U2, . . . is drawn according to γ and for each i ≥ 1, (Gi
1, . . . , G

i
g) and (Ũ i

1, ..., Ũ
i
k)

are independent draws from α and γk, respectively. In other words, ρℓ is equal to ζ̃ on the first ℓ + 1
(k + g)-blocks and equal to ξ̃ on the remaining blocks. Note that ρ0 = ξ̃ and ρLm(L) = ζ̃m(L). Applying

the triangle inequality for the optimal transport cost,

Tδm(L)

(

ζ̃m(L), ξ̃m(L)

)

≤
L−1∑

ℓ=0

Tδm(L)

(

ρℓm(L), ρ
ℓ+1
m(L)

)

. (7.10)

In order to bound the terms on the right hand side of (7.10), we will couple each pair ρℓm(L) and

ρℓ+1
m(L) so that they are equal on the first ℓ + 1 (k + g)-blocks, close on the next k-block, and equal

again on the remaining k- and g-blocks. Fix ℓ ∈ {0, ..., L − 1} and consider the coupling of ρℓm(L) and

ρℓ+1
m(L) corresponding to the distribution of the paired process (U ′, V ′) = (U ′

1, V
′
1), . . . , (U ′

m(L), V
′
m(L)),

defined as

U ′ = U1, . . . , Uk, . . . , . . . , Um(ℓ)−k+1, . . . , Um(ℓ), . . . , Ũ
′
1, . . . , Ũ

′
k, . . . , Ũ

1
1 , . . . , Ũ

1
k , . . .

V ′ = U1, . . . , Uk
︸ ︷︷ ︸

k−block 1

, . . .
︸︷︷︸

g−block

, . . . , Um(ℓ)−k+1, . . . , Um(ℓ)
︸ ︷︷ ︸

k−block ℓ+1

, . . .
︸︷︷︸

g−block

, Ṽ ′
1 , . . . , Ṽ

′
k

︸ ︷︷ ︸

k−block ℓ+2

, . . .
︸︷︷︸

g−block

, Ũ1
1 , . . . , Ũ

1
k

︸ ︷︷ ︸

k−block ℓ+3

, . . . (7.11)

with elements defined as follows: The sequence U1, U2, · · · is drawn according to γ. The g-blocks of

U ′ and V ′, which are omitted from (7.11), are equal and drawn independently according to α. The

k-blocks (Ũ i
1, . . . , Ũ

i
k) are drawn independently of one another according to the k-dimensional distri-

bution γk of γ. And the paired sequence (Ũ ′
1, Ṽ

′
1), . . . , (Ũ ′

k, Ṽ
′
k) is drawn according to an optimal

coupling of γk and γk(·|[U
m(ℓ)
1 ]k) with respect to δk, where γk(·|[U

m(ℓ)
1 ]k) ∈ M(Uk) is the distribution

of Um(ℓ+1)−k+1, ..., Um(ℓ+1) conditioned on the previous k-blocks (U1, . . . , Uk), . . . , (Um(ℓ)−k+1, . . . ,
Um(ℓ)).

It is clear from (7.11) that the coupling (U ′, V ′) only incurs a cost at k-block ℓ+2. By construction,

this cost is equal to the optimal transport cost of γk and γk(·|[U
m(ℓ)
1 ]k) with respect to δk. Thus

Tδm(L)

(

ρℓm(L), ρ
ℓ+1
m(L)

)

≤ E
[
δm(L)(U

′, V ′)
]
= E

[

Tδk

(

γk, γk(·|[U
m(ℓ)
1 ]k)

)]

.

Finally, using the fact that for any (uk1 , v
k
1 ), δk(u

k
1 , v

k
1 ) ≤ kδ(uk1 , v

k
1 ), we have

Tδm(L)

(

ρℓm(L), ρ
ℓ+1
m(L)

)

≤ kE
[

Tδ

(

γk, γk(·|[U
m(ℓ)
1 ]k)

)]

≤ kmax
u
m(ℓ)
1

Tδ

(

γk, γk(·|[u
m(ℓ)
1 ]k)

)

.

Finally, using the fact that the optimal transport cost with respect to δ is equal to the total variation

distance, we have

Tδm(L)

(

ρℓm(L), ρ
ℓ+1
m(L)

)

≤ kmax
u
m(ℓ)
1

max
A∈Uk

∣
∣
∣γk(A|[u

m(ℓ)
1 ]k)− γk(A)

∣
∣
∣ .

Letting φγ : N → R+ be the mixing coefficient of γ, it follows that

Tδm(L)

(

ρℓm(L), ρ
ℓ+1
m(L)

)

≤ kφγ(g + 1).
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Plugging this result into (7.10),

Tδm(L)

(

ζ̃m(L), ξ̃m(L)

)

≤
L−1∑

ℓ=0

kφγ(g + 1) = Lkφγ(g + 1).

By randomizing the start of the couplings considered above, one may further establish that

Tδm(L)

(
ζm(L), ξm(L)

)
≤ Lkφγ(g + 1).

Plugging this into (7.9) and recalling that m(L) = L(k + g) + k, we find that

d(ζ, ξ) = lim
L→∞

Lk

L(k + g) + k
φγ(g + 1) =

k

k + g
φγ(g + 1).

Combining this and the earlier bound yields the result.

Bound on the Mean k-step Optimal Transport Cost. In the final step before proving Theorem 5, we

prove an upper bound on the mean optimal transport cost between µ̂k,n and µk in terms of φµ (and the

analogous result for ν). In order to do this, we leverage [8, Proposition 1.7], stated below as Theorem B,

regarding the expectation of the p-Wasserstein distance from an empirical measure to its target measure

for stationary, ρ-mixing sequences. We will say that a process measure γ ∈ Ms(U
N) has ρ-mixing

coefficient ργ : N0 → R+ if ργ(0) = 1 and for g > 1 and any random variable U = (U1, U2, ...) : Ω →
UN distributed according to γ,

ργ(g) := sup
{
|Corr(F,G)| : ℓ ≥ 1, F ∈ L2(σ(U1, ..., Uℓ)), G ∈ L2(σ(Uℓ+g, ...))

}
,

where for i ≤ j ≤ ∞, σ(Ui, ..., Uj) is the smallest sigma field in (Ω,B,P) with respect to which U j
i is

measurable and for a sigma field F ⊂ B, L2(F) is the set of square-integrable, F-measurable random

variables. The result is stated below in a form that is adapted to our notation and the case of p = 1.

Theorem B ([8]). Let γ ∈ Ms(UN) be a stationary process measure on a Polish space U with metric d
and let γ have ρ-mixing coefficient ργ . Define χn = n−2

∑n
m=0

∑m
g=0 ργ(g) and let ∆ = Diam(U). If

γn1 := γn1 [U
n
1 ] ∈ M(U) is the empirical measure constructed from samples Un

1 drawn according to γ,

then there exists a constant C < ∞ such that for any t ∈ (0,∆/4],

ETd(γ
n
1 , γ1) ≤ C

(

t+ χ
1/2
n

∫ 1
4
∆

t
N (U , d, ε)

1/2 dε

)

.

As we show in the next proposition, we may translate this result into an upper bound on the expec-

tation of the adapted optimal transport costs between µ̂k,n and µk, and ν̂k,n and νk under a φ-mixing

assumption.

Proposition 17. Let µ and ν have φ-mixing coefficients φµ and φν , respectively. Then, there exists a

constant C < ∞ such that for any n ≥ 1, k ∈ {1, ..., n}, and t ∈ (0, 14‖c‖∞],

E

[
1

k
TcX,k

(µ̂k,n, µk) +
1

k
TcY,k(ν̂k,n, νk)

]

≤ C




t+




1

n2

n∑

g=0

(n− g + 1)φ
1/2
µ (g)





1/2
∫ 1

4
‖c‖∞

t
N

(

X k,
1

k
cX,k, ε

)1/2

dε

+

(

1

n2

n∑

ℓ=0

(n− g + 1)φ
1/2
ν (g)

)1/2 ∫ 1
4
‖c‖∞

t
N

(

Yk,
1

k
cY,k, ε

)1/2

dε



 .
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Proof. The result follows from two applications of Theorem B for µ and ν. Considering first the case

of µ, let U = X k with pseudo-metric d = 1
kcX,k. Moreover, let µ̃ ∈ Ms((X

k)N) be the distribution of

the stationary process (X1, ...,Xk), (X2, ...,Xk+1), .... Note that the ρ- and φ-mixing coefficients of µ̃

satisfy ρµ̃(g) ≤ 2φ
1/2
µ̃ (g) for every g ≥ 0 [9]. One may also easily establish that φµ̃(g) ≤ φµ(g) for

every g ≥ 0. Then a direct application of Theorem B to µ̃ yields

E

[
1

k
TcX,k

(µ̂k,n, µk)

]

≤ C




t+




2

n2

n∑

m=0

m∑

g=0

φ
1/2
µ (g)





1/2
∫ 1

4
∆

t
N

(

X k,
1

k
cX,k, ε

)1/2

dε






= C




t+




2

n2

n∑

g=0

(n− g + 1)φ
1/2
µ (g)





1/2
∫ 1

4
∆

t
N

(

X k,
1

k
cX,k, ε

)1/2

dε




 ,

for some constant C < ∞ and any t ∈ (0, 14∆], where the n− k+1 term comes from the fact that there

are n − k + 1 k-blocks in the sequence Xn
1 . In this case ∆ = ‖c‖∞ and an identical argument for ν

yields the result.

Proof of Main Results. Gathering the results proven above, we may proceed with the proofs of The-

orem 5 and Corollary 6.

Theorem 5. Let µ and ν have φ-mixing coefficients φµ and φν , respectively. Then there exists a constant

C < ∞ such that for every n ≥ 1, k ∈ {1, ..., n}, g ≥ 0 and t ∈ (0, 14‖c‖∞],

E

∣
∣
∣Ŝk,n − S(µ, ν)

∣
∣
∣ ≤ ‖c‖∞

(
k(φµ(g + 1) + φν(g + 1))

k + g
+

3g

k

)

+ C (t+ ut(k, n) + vt(k, n)) ,

where

ut(k, n) =

(

1

n2

n∑

ℓ=0

(n− ℓ+ 1)φ
1/2
µ (ℓ)

)1/2 ∫ 1
4
‖c‖∞

t
N

(

X k,
1

k
cX,k, ε

)1/2

dε,

and vt(k, n) is defined similarly in terms of φν and Y .

Proof. Let n, k and g be as in the statement of the theorem. By the triangle inequality,

∣
∣
∣Ŝk(X

n
1 , Y

n
1 )− S(µ, ν)

∣
∣
∣ ≤

∣
∣
∣
∣
Ŝk(X

n
1 , Y

n
1 )−

1

k
Tck(µk, νk)

∣
∣
∣
∣
+

∣
∣
∣
∣

1

k
Tck(µk, νk)− S(µ, ν)

∣
∣
∣
∣
.

We begin by establishing an upper bound on
∣
∣ 1
kTck(µk, νk)− S(µ, ν)

∣
∣. Note by Proposition 2 that

1
kTck(µk, νk) ≤ S(µ, ν), so it suffices to upper bound S(µ, ν) − 1

kTck(µk, νk). Let π ∈ Π(µk, νk)
achieve the minimum in the problem Tck(µk, νk) and let γ ∈ M(X g × Yg) be a probability measure

with marginals α ∈ M(X g) and β ∈ M(Yg). Finally, let λk,g ∈ Ms(X
N × YN) be the stationary

process measure satisfying λk,g = Λk+g[π ⊗ γ]. In other words, λk,g is obtained by independently

concatenating π and γ infinitely many times and randomizing the start over the first k + g coordinates.

Note that λk,g ∈ J (Λk[µ, α],Λk [ν, β]). Then by the construction of λk,g,

S
(

Λk[µ, α],Λk [ν, β]
)

≤

∫

c dλk,g =
1

k + g

(∫

ck dπ +

∫

cg dγ

)

≤
1

k + g
(Tck(µk, νk) + g‖c‖∞) .

Rearranging terms, multiplying by (k+g)/k, and adding S(µ, ν) to both sides, we obtain that

S(µ, ν)−
1

k
Tck(µk, νk) ≤ S(µ, ν)−

k + g

k
S
(

Λk[µ, α],Λk[ν, β]
)

+
g

k
‖c‖∞

23



≤ S(µ, ν)− S
(

Λk[µ, α],Λk[ν, β]
)

+
g

k
‖c‖∞, (7.12)

where in (7.12) we use the fact that the cost c, and thus the optimal joining cost, is non-negative. By

Lemmas 15 and 16, we see that

S(µ, ν)− S
(

Λk[µ, α],Λk [ν, β]
)

≤ ‖c‖∞
(

d
(

Λk[µ, α], µ
)

+ d
(

Λk[ν, β], ν
))

≤ ‖c‖∞

(
2g

k + g
+

k

k + g
(φµ(g + 1) + φν(g + 1))

)

≤ ‖c‖∞

(
2g

k
+

k

k + g
(φµ(g + 1) + φν(g + 1))

)

.

It follows that
∣
∣
∣
∣

1

k
Tck(µk, νk)− S(µ, ν)

∣
∣
∣
∣
≤ ‖c‖∞

(
k(φµ(g + 1) + φν(g + 1))

k + g
+

3g

k

)

.

In order to bound the other term, we apply Proposition 14 to obtain the bound

∣
∣
∣
∣
Ŝk(X

n
1 , Y

n
1 )−

1

k
Tck(µk, νk)

∣
∣
∣
∣
≤

1

k
TcX,k

(µ̂k,n, µk) +
1

k
TcY,k(ν̂k,n, νk).

Combining the bounds proven above, taking an expectation, and applying Proposition 17, we obtain the

result.

Corollary 6. Let µ and ν have φ-mixing coefficients φµ and φν , respectively, satisfying

n∑

ℓ=0

(n− ℓ)φ
1/2
µ (ℓ) = O(np) and

n∑

ℓ=0

(n− ℓ)φ
1/2
ν (ℓ) = O(np)

for some p ∈ [1, 2). Then there exists a constant C < ∞ depending only on φµ and φν such that for

every k ≥ 1, g ≥ 0, and n large enough,

E

∣
∣
∣Ŝk,n − S(µ, ν)

∣
∣
∣ ≤ ‖c‖∞

(

k(φµ(g + 1) + φν(g + 1))

k + g
+

3g

k
+

C(|X |k/2 + |Y|k/2)

n1−p/2

)

. (4.1)

In particular, if k(n) < (2−p) logn
log(|X |∨|Y|)∨1 and g(n) = o(k(n)) with k(n), g(n) → ∞, then the upper bound

converges to zero as n → ∞.

Proof. The summability condition for φµ implies that n−2
∑n

ℓ=0(n − ℓ + 1)φ
1/2
µ (ℓ) = O(np−2) and

thus (n−2
∑n

ℓ=0(n − ℓ + 1)φ
1/2
µ (ℓ))1/2 = O(np/2−1). Moreover, for every ε ∈ (0, 14‖c‖∞], we have

N (X k, 1kcX,k, ε) ≤ |X |k . Thus for large enough n, there is a constant C < ∞ such that

ut(k, n) ≤ Cn
p/2−1

(
1

4
‖c‖∞ − t

)

|X |
k/2 ≤

C|X |k/2

n1−p/2
.

Using the same line of reasoning, one may prove the analogous bound for vt(k, n). Plugging these

bounds into Theorem 5, we obtain the result by letting t → 0.

7.5 Proofs from Section 5

In this section, we prove the results stated in Section 5. We begin with Lemma 18, which states that

the limit in Proposition 7 exists and is equal to a supremum.
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Lemma 18. For any η ≥ 0,

lim
k→∞

1

k
T η
ck
(µk, νk) = sup

k≥1

1

k
T η
ck
(µk, νk).

Proof. By Fekete’s lemma, it suffices to show that the sequence {T η
ck(µk, νk)}k≥1 is superadditive. Fix

k, ℓ ≥ 1 and let π ∈ Π(µk+ℓ, νk+ℓ) be a solution to T η
ck+ℓ

(µk+ℓ, νk+ℓ). Let πk ∈ M(X k × Yk) and

πℓ ∈ M(X ℓ × Yℓ) be the measures corresponding to the first k coordinates and last ℓ coordinates of

π, respectively. Using the stationarity of µ and ν, it is straightforward to show that πk ∈ Π(µk, νk) and

πℓ ∈ Π(µℓ, νℓ). Moreover, using the subadditivity of Hk+ℓ(·),

T η
ck+ℓ

(µk+ℓ, νk+ℓ) =

∫

ck+ℓ dπ − ηHk+ℓ(π)

≥

∫

ck dπk − ηHk(πk) +

∫

cℓ dπℓ − ηHℓ(πℓ)

≥ T η
ck
(µk, νk) + T η

cℓ
(µℓ, νℓ).

So the sequence {T η
ck(µk, νk)}k≥1 is superadditive and the conclusion follows.

Proposition 7. Let X and Y be finite and µ ∈ Ms(X
N) and ν ∈ Ms(Y

N). Then for any η ≥ 0,

lim
k→∞

1

k
T η
ck
(µk, νk) = Sη(µ, ν).

Proof. Fix ε > 0 and η ≥ 0 and let λ ∈ J (µ, ν) be a joining of µ and ν such that

∫

c dλ1 − ηh(λ) ≤ Sη(µ, ν) + ε.

Since the k-dimensional distribution of λ, written as λk, satisfies λk ∈ Π(µk, νk), we have

T η
ck
(µk, νk) ≤

∫

ck dλk − ηH(λk).

As λ is stationary and h(λ) ≤ 1
kH(λk),

Sη(µ, ν) + ε ≥

∫

c dλ1 − ηh(λ)

=
1

k

∫

ck dλk − ηh(λ)

≥
1

k

∫

ck dλk −
η

k
H(λk)

≥
1

k
T η
ck
(µk, νk).

By Lemma 18 we may take a limit in k and let ε → 0 to establish that

Sη(µ, ν) ≥ lim
k→∞

1

k
T η
ck
(µk, νk).

Now let {πk} be a sequence with πk ∈ Π(µk, νk) such that

1

k

∫

ck dπ
k −

η

k
H(πk) ≤

1

k
T η
ck
(µk, νk) + εk,

where εk → 0. From this sequence, we wish to construct a sequence of joinings converging to a joining

of µ and ν. For every k ≥ 1, let λk ∈ Ms(X
N × YN) be the stationary process measure satisfying
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λk = Λk[πk]. We will now show that the XN- and YN-marginals of λk converge weakly to µ and

ν. Let σ : XN → XN and τ : YN → YN be the left-shift maps on XN and YN, respectively. Fix a

measurable cylinder set C = C1 × · · · × Cm ⊂ Xm and let C̃ ⊂ XN be its extension to XN such that

C̃ = C × X × X · · · . Then for k ≥ m,

λk(C̃ × YN) =
1

k

k−1∑

ℓ=0

Λ̃k[πk](σ−ℓC̃ × τ−ℓYN)

=
1

k

k−1∑

ℓ=0

Λ̃k[πk](σ−ℓC̃ × YN)

=
1

k

k−1∑

ℓ=0

Λ̃k[µk](σ
−ℓC̃)

=
k −m+ 1

k
µm(C) +

1

k

m−1∑

ℓ=1

µm−ℓ (C1 × · · · × Cm−ℓ)µℓ (Cm−ℓ+1 × · · · × Cm) .

Fixing m and taking a limit in k, we see that

lim
k→∞

λk(C̃ × YN) = µm(C) = µ(C̃).

Thus the XN-marginal of λk converges weakly to µ and one may use a similar argument to show that the

YN-marginal of λk converges weakly to ν. So by Lemma 23, λkℓ ⇒ λ ∈ J (µ, ν) for some subsequence

{λkℓ}. Now for each ℓ ≥ 1, one may show using the definition of λkℓ that
∫
c dλkℓ

1 = 1
kℓ

∫
ckℓ dπ

kℓ and

h(λkℓ) = 1
kℓ
H(πkℓ). Thus, by the upper semicontinuity of h(·) and the continuity and boundedness of

c,

Sη(µ, ν) ≤

∫

c dλ1 − ηh(λ)

≤ lim inf
ℓ→∞

{∫

c dλkℓ
1 − ηh(λkℓ)

}

= lim inf
ℓ→∞

{
1

kℓ

∫

ckℓ dπ
kℓ −

η

kℓ
H(πkℓ)

}

≤ lim inf
ℓ→∞

{
1

kℓ
T η
ckℓ

(µkℓ , νkℓ) + εkℓ

}

= lim
k→∞

1

k
T η
ck
(µk, νk),

giving the result.

Proposition 8. Let X and Y be finite and µ ∈ Ms(X
N) and ν ∈ Ms(Y

N). Then the entropic optimal

joining cost satisfies

lim
η→0

Sη(µ, ν) = S(µ, ν).

Proof. Let {ηn} be a sequence of non-negative integers such that ηn → 0 and for every n ≥ 1 let

λn ∈ J ηn
min (µ, ν). As J (µ, ν) is compact in the weak topology, there exists a subsequence of {λn},

which we also refer to as {λn}, such that λn ⇒ λ for some λ ∈ J (µ, ν). Now let λ∗ ∈ Jmin(µ, ν).
Using the feasibility of λn for S(µ, ν) and λ∗ for Sηn(µ, ν), it follows that for every n ≥ 1,

∫

c dλ∗
1 ≤

∫

c dλn
1

and ∫

c dλn
1 − ηnh(λ

n) ≤

∫

c dλ∗
1 − ηnh(λ

∗).
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Rearranging, we obtain

0 ≤

∫

c dλn
1 −

∫

c dλ∗
1 ≤ ηn(h(λ

n)− h(λ∗)). (7.13)

As h(·) is bounded, we have limn→∞ ηn(h(λ
n) − h(λ∗)) = 0. Taking limits in (7.13) and using the

continuity and boundedness of c,
∫

c dλ1 = lim
n→∞

∫

c dλn
1 =

∫

c dλ∗
1 = S(µ, ν).

It follows that λ ∈ Jmin(µ, ν) and limn→∞

∫
c dλn

1 = S(µ, ν). Again using the boundedness of h(·),

lim
n→∞

Sηn(µ, ν) = lim
n→∞

{∫

c dλn
1 − ηnh(λ

n)

}

= lim
n→∞

∫

c dλn
1 = S(µ, ν).

Since {ηn} was arbitrary, we obtain the result.

Theorem 9. Let X and Y be finite and µ ∈ Ms(X
N) and ν ∈ Ms(Y

N) be ergodic. Then for any

η > 0, there exists a sequence k = k(n) with k → ∞ such that S̃k,n → Sη(µ, ν) and λ̃k,n ⇒ J η
min(µ, ν)

almost surely as n → ∞.

Proof. Fix some η > 0. To begin, we would like to construct a sequence {k(n)} satisfying

lim
n→∞

∣
∣
∣S̃k(X

n
1 , Y

n
1 )− Sη (µ, ν)

∣
∣
∣ = 0, almost surely. (7.14)

Our approach will be similar to the unregularized case with the exception that we also have to control

the error in the entropies of the estimates. In particular, by Proposition 14,

∣
∣
∣
∣
S̃k(X

n
1 , Y

n
1 )−

1

k
T η
ck
(µk, νk)

∣
∣
∣
∣
≤

1

k
TcX,k

(µ̂k,n, µk) + η

∣
∣
∣
∣

1

k
H(µ̂k,n)−

1

k
H(µk)

∣
∣
∣
∣

+
1

k
TcY,k(ν̂k,n, νk) + η

∣
∣
∣
∣

1

k
H(ν̂k,n)−

1

k
H(νk)

∣
∣
∣
∣
.

So it is necessary to ensure that the entropy error terms also decay to zero along the sequence {k(n)}
that we construct. To see that such a sequence exists, fix ε > 0 and i ∈ N and recall that since µ̂i,n ⇒ µi

and H(·) is weakly continuous, there exists an n(i) ∈ N such that

µ

(∣
∣
∣
∣

1

i
H(µ̂i,n(i))−

1

i
H(µi)

∣
∣
∣
∣
> ε

)

≤ 2−i.

Then by Borel-Cantelli,

µ

(

lim sup
i→∞

∣
∣
∣
∣

1

i
H(µ̂i,n(i))−

1

i
H(µi)

∣
∣
∣
∣
> ε

)

= 0,

and it follows that
∣
∣1
iH(µ̂i,n(i))−

1
iH(µi)

∣
∣ → 0, µ-almost surely. Abusing notation somewhat, we

obtain a sequence {i(n)} by letting i(n′) = inf i{n(i) = n′}. Thus

lim
n→∞

∣
∣
∣
∣

1

i(n)
H(µ̂i(n),n)−

1

i(n)
H(µi(n))

∣
∣
∣
∣
→ 0, µ-almost surely.

Let {j(n)} be a sequence constructed in the analogous manner for ν and let {ℓ(n)} and {m(n)} be

admissible sequences for µ and ν. Then letting {k(n)} be the sequence defined by k(n) = min{ i(n),
j(n), ℓ(n), m(n)}, we obtain the desired convergence.

Next we show that the sequence of estimated entropic optimal joinings indexed by k(n) converges

weakly to the set of entropic optimal joinings J η
min(µ, ν), almost surely. In order to simplify notation,
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we will suppress the dependence of k(n) on n in the rest of the proof. Fix sequences X1,X2, ... and

Y1, Y2, ... in the sets of µ- and ν-measure one on which (7.14) holds. Let {λ̃k,n}n≥1 be the corresponding

sequence of estimated entropic optimal joinings. By Lemma 23 in Appendix E, for any subsequence

{λ̃k,nℓ}ℓ≥1, there is a further subsequence converging weakly to a joining λ ∈ J (µ, ν). For ease of

notation, we refer to this further subsequence again as {λ̃k,nℓ}ℓ≥1. Using the upper semicontinuity of

h(·) and the continuity and boundedness of c, one may establish

∫

c dλ1 − ηh(λ) ≤ lim inf
ℓ→∞

{∫

c dλ̃k,nℓ

1 − ηh(λ̃k,nℓ)

}

= lim inf
ℓ→∞

1

k
T η
ck
(µnℓ

k , νnℓ

k )

= T η(µ, ν).

Thus, λ ∈ J η
min(µ, ν) and since the subsequence was arbitrary, we conclude that λ̃k,n ⇒ J η

min(µ, ν). By

the choice of sequences X1,X2, ... and Y1, Y2, ..., we conclude that λ̃k,n ⇒ J η
min(µ, ν) almost surely.

Before proving Theorem 10, we state a lemma regarding the entropy of the k-block empirical mea-

sure µ̂k,n.

Lemma 19. Suppose that for some u : N×N → R+ with limn→∞ u(k, n) = 0 for every k ≥ 1, it holds

that

E‖µk − µ̂k,n‖1 ≤ u(k, n)

for large enough n. Then for any k ≥ 1 and n large enough,

E|H(µk)−H(µ̂k,n)| ≤ u(k, n) log

(
|X |3k

u(k, n)

)

.

A proof of Lemma 19 may be found in Appendix A.

Theorem 10. Let µ and ν have φ-mixing coefficients φµ and φν , respectively, satisfying

n∑

ℓ=0

(n− ℓ)φ1/2
µ (ℓ) = O(np) and

n∑

ℓ=0

(n− ℓ)φ1/2
ν (ℓ) = O(np)

for some p ∈ [1, 2). Then there exists a constant C < ∞ depending only on φµ and φν such that for

every η > 0, k ≥ 1, g ≥ 0, and large enough n,

E

∣
∣
∣S̃k,n − Sη(µ, ν)

∣
∣
∣ ≤ ‖c‖∞(φµ(g + 1) + φν(g + 1))

k

k + g
+ (3‖c‖∞ + 2η(log |X |+ log |Y|))

g

k

+ u(k, n)

(
‖c‖∞
2

+
η

k
log

(
|X |3k

u(k, n)

))

+ v(k, n)

(
‖c‖∞
2

+
η

k
log

(
|Y|3k

v(k, n)

))

,

where u(k, n) = C|X |k/2np/2−1 and v(k, n) = C|Y|k/2np/2−1. In particular, if k(n) < (2−p) logn
log(|X |∨|Y|)∨1

and g(n) = o(k(n)) with k(n), g(n) → ∞, then the upper bound converges to zero as n → ∞.

Proof. Let η ≥ 0 and fix k ≥ 1, g ≥ 0, and n ≥ k. By the triangle inequality,

∣
∣
∣S̃k(X

n
1 , Y

n
1 )− Sη(µ, ν)

∣
∣
∣ ≤

∣
∣
∣
∣
S̃k(X

n
1 , Y

n
1 )−

1

k
T η
ck
(µk, νk)

∣
∣
∣
∣

︸ ︷︷ ︸

T1

+

∣
∣
∣
∣

1

k
T η
ck
(µk, νk)− Sη(µ, ν)

∣
∣
∣
∣

︸ ︷︷ ︸

T2

,

where T1 and T2 denote the two differences on the right hand side, respectively. By Proposition 14, T1

is bounded as

T1 ≤
1

k
TcX,k

(µ̂k,n, µk) +
η

k
|H(µk)−H(µ̂k,n)|+

1

k
TcY,k(ν̂k,n, νk) +

η

k
|H(νk)−H(ν̂k,n)|
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≤
‖c‖∞
2

(‖µ̂k,n − µk‖1 + ‖ν̂k,n − νk‖1) +
η

k
(|H(µk)−H(µ̂k,n)|+ |H(νk)−H(ν̂k,n)|).

Taking an expectation of both sides, we obtain

ET1 ≤
‖c‖∞
2

(E‖µ̂k,n − µk‖1 + E‖ν̂k,n − νk‖1) +
η

k
(E|H(µk)−H(µ̂k,n)|+ E|H(νk)−H(ν̂k,n)|).

As the ℓ1 norm is equivalent (up to a constant factor) to the optimal transport cost with respect to the

Hamming cost δ, one has E‖µ̂k,n − µk‖1 = 2ETδ(µ̂k,n, µk). Then one may repeat the arguments in the

proof of Proposition 17 with 1
k cX,k replaced by δ to show that there exists a constant C < ∞ such that

E‖µ̂k,n − µk‖1 ≤ C



t+

(

1

n2

n∑

ℓ=0

(n− ℓ+ 1)φ
1/2
µ (ℓ)

)1/2 ∫ 1/4

t
N (X k, δ, ε)

1/2 dε



 ,

for any t ∈ (0, 1/4]. Using the summability condition for φµ and the fact that N (X k, δ, ε) ≤ |X |k for

every ε > 0, we obtain for large enough n,

E‖µ̂k,n − µk‖1 ≤ C

(

t+

(
1

4
− t

)
|X |k/2

n1−p/2

)

,

where we have absorbed any additional constants arising from the summability condition on φµ into

C . Finally, taking the limit t → 0, we have that for large enough n, E‖µ̂k,n − µk‖1 ≤ u(k, n) where

u(k, n) = C|X |k/2np/2−1, thereby satisfying the conditions of Lemma 19. Using the same arguments,

one may also establish the analogous bound E‖ν̂k,n − νk‖1 ≤ v(k, n) where v(k, n) = C|Y|k/2np/2−1.

Thus, Lemma 19 implies

ET1 ≤ u(k, n)

(
‖c‖∞
2

+
η

k
log

(
|X |3k

u(k, n)

))

+ v(k, n)

(
‖c‖∞
2

+
η

k
log

(
|Y|3k

v(k, n)

))

,

for n large enough.

Next we upper bound T2. Note that according to Lemma 18 and Proposition 7, k−1T η
ck(µ, ν) ≤

Sη(µ, ν). Thus it suffices to bound Sη(µ, ν)−k−1T η
ck(µ, ν). In order to do this, we will approximate an

optimal joining of µ and ν by an iid block process with gaps. Let π ∈ Π(µk, νk) achieve the minimum in

the problem T η
ck(µk, νk) and let γ ∈ M(X g×Yg) be a probability measure with marginals α ∈ M(X g)

and β ∈ M(Yg). Finally, let λk,g ∈ Ms(X
N×YN) be the stationary process measure satisfying λk,g =

Λk+g[π ⊗ γ]. In other words, λk,g is the stationary process obtained by independently concatenating

π⊗ γ and randomizing the start over the first k+ g symbols. Note that λk,g ∈ J (Λk,g[µ, α],Λk,g[ν, β])
and by Lemma 20,

h(λk,g) = h(Λk[π ⊗ γ]) = h(Λ̃k[π ⊗ γ]) =
1

k + g
(H(π) +H(γ)).

Then by the construction of λk,g,

Sη
(

Λk[µ, α],Λk [ν, β]
)

≤

∫

c dλk,g − ηh(λk,g)

=
1

k + g

(∫

ck dπ +

∫

cg dγ − ηH(π)− ηH(γ)

)

≤
1

k + g

(
T η
ck
(µk, νk) + g‖c‖∞

)
.

Rearranging terms, multiplying by (k+g)/k, and adding Sη(µ, ν) to both sides, we obtain

T2 ≤ Sη(µ, ν)−
k + g

k
Sη
(

Λk[µ, α],Λk[ν, β]
)

+
g

k
‖c‖∞
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= Sη(µ, ν)− Sη
(

Λk[µ, α],Λk[ν, β]
)

−
g

k
Sη
(

Λk[µ, α],Λk[ν, β]
)

+
g

k
‖c‖∞.

By Lemmas 15 and 16, we see that

Sη(µ, ν)− Sη
(

Λk[µ, α],Λk[ν, β]
)

≤ ‖c‖∞
(

d
(

Λk[µ, α], µ
)

+ d
(

Λk[ν, β], ν
))

+ η(h(µ) − h(Λk[µ, α]) + h(ν)− h(Λk[ν, β]))

≤ ‖c‖∞

(
2g

k + g
+

k

k + g
(φµ(g + 1) + φν(g + 1))

)

+ η(h(µ) − h(Λk[µ, α]) + h(ν)− h(Λk[ν, β])).

In order to simplify this bound, note that

h(µ)− h(Λk[µ, α]) = h(µ)−
1

k + g
(H(µk) +H(α))

≤
1

k
H(µk)−

1

k + g
H(µk)

=
g

k(k + g)
H(µk)

≤
g log |X |k

k(k + g)

=
g log |X |

k + g
,

and similarly h(ν)− h(Λk[ν, β]) ≤ g log |Y|
k+g . Thus,

Sη(µ, ν)− Sη
(

Λk[µ, α],Λk [ν, β]
)

≤ ‖c‖∞(φµ(g + 1) + φν(g + 1))
k

k + g
+ (2‖c‖∞ + η(log |X |+ log |Y|))

g

k + g
.

Moreover, using the fact that the independent joining has maximal entropy rate among all joinings with

the same marginals, one may establish

−Sη
(

Λk[µ, α],Λk [ν, β]
)

≤ ηh(Λk[µ, α]⊗ Λk[ν, β]) =
η

k + g
(H(µk) +H(α) +H(νk) +H(β)) .

As the measure γ ∈ M(X g ×Yg) and marginals α ∈ M(X g) and β ∈ M(Yg) were arbitrary, there is

no loss of generality in assuming that H(α) = H(β) = 0. Thus

−Sη
(

Λk[µ, α],Λk [ν, β]
)

≤
η

k + g
(H(µk) +H(νk))

≤
η

k + g

(

log |X |k + log |Y|k
)

=
ηk

k + g
(log |X |+ log |Y|) .

Combining this and our earlier bounds, we have

T2 ≤ ‖c‖∞(φµ(g + 1) + φν(g + 1))
k

k + g
+ (2‖c‖∞ + η(log |X |+ log |Y|))

g

k + g

+
ηg

k
(log |X |+ log |Y|) + ‖c‖∞

g

k

≤ ‖c‖∞(φµ(g + 1) + φν(g + 1))
k

k + g
+ (3‖c‖∞ + 2η(log |X |+ log |Y|))

g

k
.

Combining the bounds on ET1 and T2 proven above, we obtain the result.
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A Properties of Entropy and Entropy Rate

Lemma 20. Let U be finite, let σ be the left-shift on UN, and let γ̃ ∈ M(UN) be n-stationary, i.e.

satisfying γ̃ ◦ σ−n = γ̃. Then if γ = 1
n

∑n−1
ℓ=0 γ̃ ◦ σ−ℓ, it holds that h(γ) = h(γ̃).

Proof. The proof follows the argument outlined in [74]. We find it most convenient to adopt the notation

of random variables: let X̃ = X̃1, X̃2, ... be an n-stationary process with distribution γ̃, let S be uni-

formly distributed on the set {0, ..., n − 1}, and let X = X1,X2, ... be the stationary process such that

for any s ∈ {0, ..., n − 1}, X|S = s is equal in distribution to X̃s, X̃s+1, .... Note that, by construction,

X has distribution equal γ. We will assume that X̃, X and S are all defined on a probability space

(Ω,B,P).
Fix some k ≥ 1 and note that by the chain rule for entropy, we have

H(Xk
1 )−H(Xk

1 |S) = H(S)−H(S|Xk
1 ).

This implies that

∣
∣
∣
∣

1

k
H(Xk

1 )−
1

k
H(Xk

1 |S)

∣
∣
∣
∣
=

1

k
|H(S) −H(S|Xk

1 )| ≤
log n

k
.

Letting k → ∞, we find

h(X) = lim
k→∞

1

k
H(Xk

1 ) = lim
k→∞

1

k
H(Xk

1 |S). (A.1)

Now writing out H(Xk
1 |S),

H(Xk
1 |S) =

n−1∑

s=0

P(S = s)H(Xk
1 |S = s) =

1

n

n−1∑

s=0

H(Xk
1 |S = s) =

1

n

n−1∑

s=0

H(X̃s+k
s+1 ). (A.2)

The rest of the argument will follow by showing that limk→∞
1
kH(X̃s+k

s+1 ) is independent of s and equal

to the entropy rate h(X̃) of the n-stationary process X̃. To see this, note that the chain rule for the

entropy implies

H(X̃s+k
1 ) = H(X̃s+k

s+1 ) +H(X̃s
1 |X̃

s+k
s+1 )

for every s = 0, ..., n − 1. This implies the bound

∣
∣
∣
∣

1

k
H(X̃s+k

s+1 )−
1

k
H(X̃s+k

1 )

∣
∣
∣
∣
≤

log |X |s

k
.

Letting k → ∞ once again, we have

lim
k→∞

1

k
H(X̃s+k

s+1 ) = lim
k→∞

1

k
H(X̃s+k

1 ) = lim
k→∞

1

s+ k
H(X̃s+k

1 ) = h(X̃).

Now, using this fact with (A.1) and (A.2), we obtain

h(X) =
1

n

n−1∑

s=0

lim
k→∞

1

k
H(X̃s+k

s+1 ) =
1

n

n−1∑

s=0

h(X̃) = h(X̃).

Translating this result back to the measures γ and γ̃, we obtain the desired result.
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Next we prove Lemma 19 regarding the entropy of the k-block empirical measure µ̂k,n. Our proof

relies on the following well-known bound in information theory. A proof may be found in [14, Theorem

17.3.3].

Lemma C. Let α and β be two probability measures on a finite set U such that ‖α− β‖1 ≤
1
2 . Then

|H(α)−H(β)| ≤ ‖α− β‖1 log

(
|U|

‖α − β‖1

)

.

Lemma 19. Suppose that for some u : N×N → R+ with limn→∞ u(k, n) = 0 for every k ≥ 1, it holds

that

E‖µk − µ̂k,n‖1 ≤ u(k, n)

for large enough n. Then for any k ≥ 1 and n large enough,

E|H(µk)−H(µ̂k,n)| ≤ u(k, n) log

(
|X |3k

u(k, n)

)

.

Proof. Fix k ≥ 1 and n ≥ k to be chosen later on, and let ∆k,n = ‖µk − µ̂k,n‖1. For a fixed sequence

Xn
1 , Lemma C gives us

|H(µk)−H(µ̂k,n)| ≤ ∆k,n log

(
|X |k

∆k,n

)

1(∆k,n ≤ 1/2) + (log |X |k)1(∆k,n > 1/2)

≤ ∆k,n log

(
|X |k

∆k,n

)

+ (log |X |k)1(∆k,n > 1/2).

Taking an expectation, we have

E|H(µk)−H(µ̂k,n)| ≤ E

[

∆k,n log

(
|X |k

∆k,n

)]

+ P(∆k,n > 1/2) log |X |k

≤ E

[

∆k,n log

(
|X |k

∆k,n

)]

+ 2(E∆k,n) log |X |k

≤ E

[

∆k,n log

(
|X |k

∆k,n

)]

+ u(k, n) log |X |2k,

for n large enough. An application of Jensen’s inequality to the first term yields

E

[

∆k,n log

(
|X |k

∆k,n

)]

≤ (E∆k,n) log

(
|X |k

E∆k,n

)

.

Since E∆k,n ≤ u(k, n) and limn→∞ u(k, n) = 0, for large enough n, E∆k,n and u(k, n) are both less

than or equal to 1/2. Since x 7→ x log(|X |k/x) is increasing on x ∈ [0, 1/2], this implies that

E

[

∆k,n log

(
|X |k

∆k,n

)]

≤ u(k, n) log

(
|X |k

u(k, n)

)

.

Combining this with our earlier bound and gathering terms, we obtain the result.

B Properties of the Proposed Estimates

Proposition 21. For any η ≥ 0, the proposed estimates satisfy λ̃k,n ∈ J (Λk[µ̂k,n],Λ
k[ν̂k,n]) and

∫

c dλ̃k,n
1 − ηh(λ̃k,n) = S̃k,n.
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Proof. Let π ∈ M(X k×Yk) be as defined in Section 5. We start by proving that λ̃k,n is invariant under

the left-shift σ × τ on XN × YN. Note first that by construction, Λ̃k[π] ◦ (σ × τ)−k = Λ̃k[π]. Then,

kλ̃k,n ◦ (σ × τ)−1 =
k−1∑

ℓ=0

Λ̃k[π] ◦ (σ × τ)−ℓ−1

=

k−1∑

ℓ=1

Λ̃k[π] ◦ (σ × τ)−ℓ + Λ̃k[π] ◦ (σ × τ)−k

=
k−1∑

ℓ=1

Λ̃k[π] ◦ (σ × τ)−ℓ + Λ̃k[π]

=

k−1∑

ℓ=0

Λ̃k[π] ◦ (σ × τ)−ℓ

= kλ̃k,n.

Thus λ̃k,n ∈ Ms(X
N × YN). Next we prove that λ̃k,n ∈ Π(Λk[µ̂k,n],Λ

k[ν̂k,n]). Fix a measurable set

C ⊂ XN. Then

λ̃k,n(C × YN) =
1

k

k−1∑

ℓ=0

Λ̃k[π](σ−ℓC × τ−ℓYN)

=
1

k

k−1∑

ℓ=0

Λ̃k[π](σ−ℓC × YN)

=
1

k

k−1∑

ℓ=0

Λ̃k[µ̂k,n](σ
−ℓC)

= Λk[µ̂k,n](C).

Since C was arbitary, it follows that the XN-marginal of λ̃k,n is Λk[µ̂k,n]. A similar argument will

show that the YN-marginal of λ̃k,n is Λk[ν̂k,n]. Thus λ̃k,n ∈ J (Λk[µ̂k,n],Λ
k[ν̂k,n]). Finally, by the

construction of λ̃k,n,

∫

c dλ̃k,n
1 − ηh(λ̃k,n) =

1

k

∫

ck dπ −
η

k
H(π) =

1

k
T η
ck
(µ̂k,n, ν̂k,n) = S̃k,n,

where the first equality follows Lemma 20.

C Existence of an Entropic Optimal Joining

Proposition 22. Let X and Y be finite, µ ∈ Ms(X
N), ν ∈ Ms(Y

N), and c : X × Y → R+ be

a non-negative cost function. Then for every η ≥ 0, the set of entropic optimal joinings J η
min(µ, ν) is

non-empty.

Proof. Fix η ≥ 0 and a sequence {λn} ⊂ J (µ, ν) such that
∫
c dλn

1 −ηh(λn) → Sη(µ, ν). As J (µ, ν)
is compact in the weak topology, we may extract a subsequence {λnℓ} such that λnℓ ⇒ λ as ℓ → ∞ for

some λ ∈ J (µ, ν). As the entropy rate h(·) is weakly upper semicontinuous on Ms(X
N × YN) and c

is continuous and bounded,

∫

c dλ1 − ηh(λ) ≤ lim inf
ℓ→∞

{∫

c dλnℓ
1 − ηh(λnℓ)

}

= Sη(µ, ν).

Thus we conclude that λ ∈ J η
min(µ, ν) and J η

min(µ, ν) is non-empty.
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D Properties of the (c, η)-Transform

Lemma 12. Let (U , dU ) and (V, dV ) be finite pseudometric spaces, and let f : U → R and g : V → R

be real-valued functions. Furthermore, let c : U × V → R+ be a non-negative cost function satisfying

|c(u, v)− c(u′, v′)| ≤ M(dU (u, u
′) + dV(v, v

′)) for all u, u′ ∈ U and v, v′ ∈ V for some M ∈ R. Then

for any η > 0, f̃ and g̃ satisfy |f̃(v) − f̃(v′)| ≤ MdV(v, v
′) and |g̃(u) − g̃(u′)| ≤ M dU (u, u

′) for all

u, u′ ∈ U and v, v′ ∈ V .

Proof. We will prove the bound for g̃ and the bound for f̃ will follow from a similar argument. Let the

conditions of the proposition hold. Then for any u, u′ ∈ U ,

g̃(u) = −η log

(
∑

v

exp

{
1

η
(g(v) − c(u, v))

})

= −η log

(
∑

v

exp

{
1

η
(g(v) − c(u′, v) + c(u′, v)− c(u, v))

})

= −η log

(
∑

v

exp

{
1

η
(g(v) − c(u′, v))

}

exp

{
1

η
(c(u′, v)− c(u, v))

})

≤ −η log

(

exp

{

−
M

η
dU (u, u

′)

}
∑

v

exp

{
1

η
(g(v) − c(u′, v))

})

= MdU (u, u
′) + g̃(u′).

Applying the same argument after exchanging u and u′ and using the symmetry of dU (·, ·), the result for

g̃ follows.

E Weak Convergence of Couplings and Joinings

Lemma 23. Let U and V be Polish spaces and {µn} ⊂ M(U) and {νn} ⊂ M(V) be sequences

satisfying µn ⇒ µ and νn ⇒ ν for some µ ∈ M(U) and ν ∈ M(V). Then for any sequence {πn}
satisfying πn ∈ Π(µn, νn) for every n ≥ 1, there exists a subsequence {πnℓ} such that πnℓ ⇒ π for

some π ∈ Π(µ, ν). Moreover, if U = XN and V = YN for Polish alphabets X and Y and for every

n ≥ 1, µn ∈ Ms(X
N), νn ∈ Ms(Y

N) and πn ∈ J (µn, νn), then π ∈ J (µ, ν).

Proof. The first part of the lemma follows from basic weak convergence arguments (see for example

[83]). Suppose that the second set of conditions hold. Then from the first part of the lemma, it suffices

to show that π is invariant under the joint left-shift σ × τ : XN × YN → XN × YN. Since σ × τ is

continuous, for any bounded and continuous f : XN × YN → R, f ◦ (σ × τ) is also bounded and

continuous and it follows that
∫

f d[π ◦ (σ × τ)−1] =

∫

f ◦ (σ × τ) dπ = lim
ℓ→∞

∫

f ◦ (σ × τ) dπnℓ = lim
ℓ→∞

∫

f dπnℓ =

∫

f dπ.

Since f was arbitrary, we conclude that π is invariant under the left-shift σ × τ and the second part of

the lemma follows.
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