
A CLOSED GRAPH THEOREM FOR HYPERBOLIC ITERATED
FUNCTION SYSTEMS

ALEXANDER MUNDEY

Abstract. In this note we introduce a notion of a morphism between two hyperbolic iterated
function systems. We prove that the graph of a morphism is the attractor of an iterated
function system, giving a Closed Graph Theorem, and show how it can be used to approach the
topological conjugacy problem for iterated function systems.

1. Introduction

Since Hutchinson’s seminal paper [Hut81], iterated function systems have remained close to
the heart of fractal geometry. Iterated function systems have continued to be studied and
generalised in numerous directions.

In this article we focus on the dynamics of hyperbolic iterated function systems from a topo-
logical viewpoint, rather than geometric or measure theoretic perspectives. Although we work
in the hyperbolic setting, we take a viewpoint similar to that of topological iterated function
systems [BWL14; Kam93; Kie02]. Determining whether two iterated function systems are topo-
logically conjugate (in the sense of Definition 3.1 below) is a subtle problem, as highlighted in
Example 4.6. In contrast to symbolic dynamical systems, the topology of the space and attractor
play a greater role determining conjugacy for iterated function systems.

The main results of this article—Theorem 4.2 and Corollary 4.3—establish a Closed Graph
Theorem for an elementary notion of morphism between hyperbolic iterated function systems.
Closed Graph Theorems are prevalent throughout mathematics with the most well-known results
being those for continuous maps between Banach spaces and for continuous maps between
compact Hausdorff spaces. In the latter case, the Closed Graph Theorem states that a continuous
function f : X → Y between compact Hausdorff spaces is closed if and only its graph Gr(f) =
{(x, f(x)) | x ∈ X} is a closed subspace of X × Y . An alternate formulation—which is perhaps
more relevant to our context—is that f : X → Y is continuous if and only if Gr(f) is itself a
compact Hausdorff space. Applying a set-theoretic lens to functions—where f is defined as its
graph—one can interpret f itself as a compact Hausdorff space.

In Theorem 4.2, we show that the graph of a morphism between two iterated function systems
is itself the attractor of an associated iterated function system. We show that by using this Closed
Graph Theorem it is sometimes possible to deduce that two iterated function systems are not
topologically conjugate. We also obtain a characterisation of the code map from a labelled
Cantor space as the attractor of a certain iterated function system.

Acknowledgements. The author would like to thank Adam Rennie for helpful discussions
and careful proofreading. This research was supported by an Australian Government Research
Training Program (RTP) Scholarship.

2. Iterated function systems

Although many generalisations of iterated function systems exist in the literature, in this
article we restrict our attention entirely to the setting of hyperbolic systems. That is iterated
function systems consisting of contractions.
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Definition 2.1. A (hyperbolic) iterated function system (X,Γ) consists of a complete metric
space (X, d) together with a finite collection Γ of proper contractions on X. That is for each
γ ∈ Γ there exists 0 ≤ cγ < 1 such that d(γ(x), γ(y)) ≤ cγd(x, y) for all x, y ∈ X.

Denote by K(X) the collection of non-empty compact subsets of X. Recall that the Hausdorff
metric dH on K(X) is defined by

dH(A,B) = max
{

sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)
}

for all A, B ∈ K(X). It is well-known that if (X, d) is a complete metric space then so is
(K(X), dH) (see for example [Kig01, Proposition 1.1.5]).

Given an iterated function system (X,Γ) we abuse notation and also use Γ to denote the
Hutchinson operator Γ: K(X)→ K(X) defined, for all K ∈ K(X), by

Γ(K) =
⋃
γ∈Γ

γ(K).

Hutchinson [Hut81] showed that Γ is a contraction on (K(X), dH), and consequently has a unique
fixed point A ∈ K(X) by the Contraction Mapping Principle. The fixed-point A is called the
attractor of (X,Γ). In particular, Γ(A) = A and for any K ∈ K(X) we have dH(Γk(K),A)→ 0
as k →∞. This result is collectively referred to as Hutchinson’s Theorem. Hutchinson’s original
result was stated for X = Rn, however the proof of the result for general hyperbolic systems
remains nearly identical (cf. [Kig01, Theorem 1.1.7]).

A non-empty compact subset K of X is said to be backward invariant if K ⊆ Γ(K). Backward
invariant sets were also called sub-self-similar sets by Falconer [Fal95]. In hyperbolic iterated
function systems, backward invariant sets are necessarily contained in the attractor. We require
the following lemma in the sequel.

Lemma 2.2. Let (X, d) be a complete metric space. Suppose that (Ki)∞i=1 is a sequence in K(X)
such that Ki ⊆ Ki+1 for all i ∈ N and dH(Ki,K) → 0 for some K ∈ K(X). Then Ki ⊆ K for
all i ∈ N. In particular, if (X,Γ) is a hyperbolic iterated function system with attractor A and
K ∈ K(X) is backward invariant, then K ⊆ A.

Proof. Suppose for contradiction that there exists i ∈ N and x0 ∈ Ki \K. Since K is compact
infy∈K d(x0, y) > 0. As x0 ∈ Ki ⊆ Kj for all j ≥ i it follows that

dH(Kj ,K) = max
{

sup
x∈Kj

inf
y∈K

d(x, y), sup
y∈K

inf
x∈Kj

d(x, y)
}
≥ inf

y∈K
d(x0, y).

As K is compact, infy∈K d(x0, y) is strictly positive. This contradicts that dH(Ki,K)→ 0.
For the second statement note that if K ⊆ Γ(K), then Γk(K) ⊆ Γk+1(K) for all k ∈ N.

Hutchinson’s Theorem implies that dH(Γk(K),A) → 0, so the second statement follows from
the first. �

3. Morphisms of iterated function systems

Topological conjugacy of iterated function systems is a well-established notion and the prob-
lem of determining whether two systems are topologically conjugate can be approached in nu-
merous ways (see for example [Kam00, Corollary 1.27]). When generalising conjugacy there are
choices to be made about selecting an appropriate notion of morphism, and several approaches
have been taken previously. Kieninger, for instance, describes semiconjugacy of topological iter-
ated function systems [Kie02, Definition 4.6.3], which is analogous to the corresponding notion
in symbolic dynamics. Another approach is via the fractal homeomorphisms of Barnsley [Bar09]
which use shift invariant sections of a code map.
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Expanding on the established definition of conjugacy we use the following—somewhat naïve—
notion of morphism, related to Kieninger’s semiconjugacies.

Definition 3.1. A (topological) morphism from an iterated function system (X,Γ) to (Y,Λ) is
a pair (f, α) consisting of a continuous map f : X → Y and a function α : Γ → Λ such that for
each γ ∈ Γ the diagram

X X

Y Y

γ

f f

α(γ)

commutes. We write (f, α) : (X,Γ) → (Y,Λ) to mean that (f, α) is a morphism from (X,Γ) to
(Y,Λ). We mention some special types of morphism.

(i) (f, α) is an embedding if both f and α are injective.
(ii) (f, α) is a semiconjugacy if both f and α are surjective.
(iii) (f, α) is an isomorphism or conjugacy if f is a homeomorphism and α is bijective. In

this case we say that (X,Γ) is isomorphic or conjugate to (Y,Λ).
Morphisms may be composed by setting (f, α) ◦ (g, β) = (f ◦ g, α ◦ β).

In Definition 3.1 we have not made use of the metric space structure of either X or Y , and
this has its drawbacks. In particular, if (f, α) : (X,Γ) → (Y,Λ) is a morphism, then it is not
typically true that (f(X), α(Γ)) is an iterated function system since f(X) is not necessarily
a complete metric space. This could be amended by insisting that f is also a closed map or
that X is compact (for example if X is the attractor itself), however we do not require either
assumption in what follows.

Morphisms in the sense of Definition 3.1 occur fairly naturally.

Example 3.2. Let ΩN := {1, . . . , N}N. For each w ∈ ΩN we write w = w1w2w3 · · · , where each
wi ∈ {1, . . . , N}. Equip ΩN with the metric d : ΩN × ΩN → [0,∞) defined by

d(w, v) =
{

21−min{k : wk 6=vk} if w 6= v,

0 if w = v,

for each w, v ∈ ΩN , so that ΩN is a Cantor space. For each 1 ≤ i ≤ N consider the contraction
σi : ΩN → ΩN defined by σi(w1w2 · · · ) = iw1w2 · · · . Then (ΩN ,ΣN := {σ1, . . . , σN}) is a
hyperbolic iterated function system. Since ΩN is invariant under the Hutchinson operator ΣN ,
it is necessarily the attractor.

Now suppose that (X,Γ) is an iterated function system with attractor A, and suppose that
L : {1, . . . , N} → Γ is a bijective labelling of the maps in Γ. Denoting L(i) by γi, there is
a continuous surjection πL : ΩN → A called the code map associated to the labelling L which
satisfies πL ◦σi = γi ◦πL for all 1 ≤ i ≤ N , [Hat85, Theorem 3.2]. The code map may be defined
explicitly by

{πL(w1w2 · · · )} =
∞⋂
k=1

γw1 ◦ · · · ◦ γwk(A).

Let βL : ΣN → Γ denote the bijection βL(σi) = γi. Then (πL, βL) : (ΩN ,ΣN ) → (A,Γ) is a
semiconjugacy.

Example 3.3. Subsystems of iterated function systems give examples of embeddings. Indeed, if
(X,Λ) is an iterated function system and Γ ⊆ Λ, then the pair (idX ,Γ ↪→ Λ) is an embedding.

Example 3.4. Consider the iterated function system (R,Γ = {γ1, γ2}) with γ1(x) = x
2 and

γ2(x) = 1+x
2 . Then [0, 1] is the attractor of (R,Γ). Now let (R2,Λ = {λ1, λ2, λ3}) with λ1(x, y) =

(x2 ,
y
2 ) , λ2(x, y) = (1+x

2 , y2 ), and λ3(x, y) = (2x+1
4 , 2y+

√
3

4 ). The attractor of (R2,Λ) is a Sierpinski
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gasket with outer vertices at (0, 0), (1, 0) and (1
2 ,
√

3
2 ). Let f : R→ R2 be the closed embedding

given by f(x) = (x2 ,
√

3x
2 ) and let α : Γ → Λ be given by α(γ1) = λ1 and α(γ2) = λ3. Then

(f, α) : (R,Γ)→ (R2,Λ) is an embedding.

In the previous examples α was an injection, but this is not always the case.

Example 3.5. Let (X,Γ) be an iterated function system and consider the product system
(X2,Γ2 = {γ×γ′ | γ, γ′ ∈ Γ}), where γ×γ′(x, y) = (γ(x), γ′(y)). The pair ((x, y) 7→ x, γ×γ′ 7→
γ) defines a semiconjugacy.

Morphisms intertwine the induced dynamics on compact sets.

Lemma 3.6 (cf. [Kie02, Proposition 4.6.4 (vi)]). Let (f, α) : (X,Γ)→ (Y,Λ) be a morphism and
consider the dH-continuous map f : K(X) → K(Y ) induced by f . Then f is a homomorphism
between the single-map dynamical systems (K(X),Γ) and (K(Y ), α(Γ)) in the sense that f ◦Γ =
α(Γ) ◦ f . Here, α(Γ) is the Hutchinson operator for the system (Y, α(Γ))

Proof. For K ∈ K(X) we simply compute

f(Γ(K)) =
⋃
γ∈Γ

f ◦ γ(K) =
⋃
γ∈Γ

α(γ) ◦ f(K) = α(Γ)(f(K)). �

Remark 3.7. A morphism (π, α) : (X,Γ)→ (Y,Λ) is distinct from a homomorphism between the
single-map systems (K(X),Γ) and (K(Y ), α(Γ)). Indeed, if X = Y and Γ(K) = Λ(K) for all
K ∈ K(X), then as a single-map system (K(X),Γ) is equal, not just conjugate, to (K(X),Λ).

For example, fix γ ∈ Γ and let γ0 be a distinct copy of γ. Form the disjoint union Γ0 = Γt{γ0}
so that γ0 is a “redundant” map. Then (idX ,Γ ↪→ Γ0) is a morphism that is not a conjugacy as
Γ ↪→ Γ0 does not surject, but the single-map systems (K(X),Γ) and (K(Y ),Γ0) are equal.

For hyperbolic systems, morphisms always map attractors to compact subsets of attractors
so that the image is a subsystem of the codomain.

Lemma 3.8. Let (X,Γ) and (Y,Λ) be iterated function systems with attractors A and B, re-
spectively. If (f, α) : (X,Γ)→ (Y,Λ) is a morphism, then f(A) ⊆ B. In particular, (f(A), α(Γ))
embeds in (B,Λ).

Proof. Lemma 3.6 implies that f(A) is backward invariant as f(A) = f(Γ(A)) = α(Γ)(f(A)) ⊆
Λ(f(A)). Since f(A) is compact it follows from Lemma 2.2 that f(A) ⊆ B. �

4. A closed graph theorem for morphisms

In this section we prove the main result of this article, a Closed Graph Theorem for morphisms
of hyperbolic iterated function systems. We show that, when restricted to attractors, the graph
of a morphism is itself the attractor of an iterated function system. To this end, we introduce
a fibred system.

Definition 4.1. Let (X,Γ) and (Y,Λ) be hyperbolic iterated function systems and suppose that
α : Γ→ Λ. For each γ ∈ Γ define γα : X × Y → X × Y by

γα(x, y) = (γ(x), α(γ)(y))

and let Γ ×α Λ := {γα | γ ∈ Γ}. Equipping X × Y with the metric d∞((x1, y1), (x2, y2)) =
max{dX(x1, x2), dY (y1, y2)} the pair (X × Y,Γ ×α Λ) is a hyperbolic iterated function system
which we call the system fibred over α†.

†Any metric for which (X × Y, Γ ×α Λ) is hyperbolic may be used.
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When X = ΩN and |Λ| = N the system fibred over α is referred to as the lifted system by
Barnsley in which it is used to describe fractal tops [Bar06, Definition 4.9.1]. We now come to
the main result.

Theorem 4.2. Let (X,Γ) and (Y,Λ) be hyperbolic iterated function systems with attractors A
and B, respectively. If (f, α) : (X,Γ) → (Y,Λ) is a morphism, then the attractor of the system
(X × Y,Γ×α Λ) is the graph

Gr(f |A) := {(x, f(x)) ∈ X × Y | x ∈ A}
of f restricted to A. Moreover, suppose that β : Γ→ Λ and D is the attractor of (X×Y,Γ×β Λ).
Then there is a continuous function g : A → B making (g, β) : (A,Γ) → (B,Λ) a morphism if
and only if D is the graph of a function from A to B (continuity is automatic).

Proof. Lemma 3.8 implies that f(A) ⊆ B, so Gr(f |A) is a subset of the compact set A×B. Since
f is continuous, Gr(f |A) is closed in A×B and therefore compact. The iterated function system
(X × Y,Γ ×α Λ) has a unique attractor by Hutchinson’s Theorem. Hence, it suffices to show
that

Gr(f |A) =
⋃
γ∈Γ

γα(Gr(f |A)).

Since f ◦ γ = α(γ) ◦ f it follows that if (x, f(x)) ∈ Gr(f |A), then γα(x, f(x)) ∈ Gr(f |A) for all
γ ∈ Γ. For the reverse inclusion fix (x, f(x)) ∈ Gr(f |A). Since A =

⋃
γ∈Γ γ(A), for each x ∈ A

there exists γ ∈ Γ and x0 ∈ A such that x = γ(x0). Then
γα(x0, f(x0)) = (γ(x0), α(γ) ◦ f(x0)) = (x, f ◦ γ(x0)) = (x, f(x)),

so (x, f(x)) ∈ γα(Gr(f |A)). As such, Gr(f |A) is the attractor of (X × Y,Γ×α Λ).
The “only if” direction of the second statement follows from the first statement. For the “if”

direction suppose that D is the graph of a function g : A → B. Since D is closed in A × B it
follows from the Closed Graph Theorem for compact Hausdorff spaces that g is continuous. If
(x, g(x)) ∈ D, then invariance under the Hutchinson operator implies that for each γ ∈ Γ, we
have (γ(x), β(γ)◦g(x)) ∈ D. Since D = Gr(g) it follows that β(γ)◦g(x) = g◦γ(x). Consequently,
(g, β) : (A,Γ)→ (B,Λ) is a morphism. �

Restricting to attractors yields the following Closed Graph Theorem.

Corollary 4.3 (Closed Graph Theorem). Let (A,Γ) and (B,Λ) be hyperbolic iterated function
systems with attractors A and B, respectively. Suppose f : A→ B and α : Γ→ Λ. Then (f, α) is
a morphism if and only if Gr(f) is the attractor of (X × Y,Γ×α Λ).

Remark 4.4. Set theoretically, a function is its graph. Consequently, Corollary 4.3 may be
interpreted as saying that f is the attractor of an iterated function system.

Theorem 4.2 also implies that morphisms between hyperbolic iterated function systems are
rare, and completely determined by α on the attractor.

Corollary 4.5 (Morphism rigidity). If (f, α) : (X,Γ)→ (Y,Λ) is a morphism between hyperbolic
iterated function systems, then f |A is determined entirely by α. In particular, if (g, α) : (X,Γ)→
(Y,Λ) is another morphism, then f |A = g|A.

Proof. Theorem 4.2 implies that Gr(f) and Gr(g) are both attractors of (X × Y,Γ ×α Λ), so
uniqueness of the attractor gives the result. �

In light of Corollary 4.5 we may use Theorem 4.2 to approach the problem of determin-
ing whether there exists a morphism between two hyperbolic iterated function systems. If
(f, α) : (X,Γ) → (Y,Λ) is a morphism, then so is (f |A, α) : (A,Γ) → (B,Λ). Since f |A is deter-
mined completely by α, it suffices to check whether the attractor of (X×Y,Γ×αΛ) is the graph
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of a function for each of the |Λ||Γ| possible choices of α. Moreover, if |Γ| = |Λ| we can determine
whether a conjugacy exists by checking each of the |Γ|! possible choices of α.

For concrete iterated function systems, the attractor of (X×Y,Γ×αΛ) may be approximated
numerically using the Chaos Game algorithm. This can inform existence or non-existence results
about morphisms or conjugacy as seen in Example 4.6 below.

Example 4.6. Consider the unit interval [0, 1] with the Euclidean metric, and define iterated
function systems ([0, 1],Γ = {γ1, γ2}) and ([0, 1],Λ = {λ1, λ2}), where

γ1(x) = 2x
3 , γ2(x) = 2x

3 + 1
3 , λ1(x) = 3x

4 , and λ2(x) = 3x
4 + 1

4 .

At a first glance, the systems ([0, 1],Γ) and ([0, 1],Λ) exhibit a similar behaviour. Both have
attractor [0, 1], and the sets of overlap are closed intervals given by γ1([0, 1])∩ γ2([0, 1]) = [1

3 ,
2
3 ]

and λ1([0, 1]) ∩ λ2([0, 1]) = [1
4 ,

3
4 ], respectively. It is natural to ask whether these two systems

are conjugate.
In Figure 1 a Chaos Game approximation for the attractor D of ([0, 1]2,Γ ×α Λ) is pictured

for the bijection α : Γ → Λ given by α(γ1) = λ1 and α(γ2) = λ2. The attractor of the other
bijection is given by a horizontal reflection of Figure 1. The approximation makes it easy to see
that the systems ([0, 1],Γ) and ([0, 1],Λ) are not conjugate as D is not the graph of a bijection.
Formalising the observation, (0, 0) and (1, 1) belong to D as the respective fixed points of γα1

(0, 0)

(1, 1)

( 4
9 ,

9
16 )

( 5
9 ,

7
16 )

Figure 1. A Chaos Game approximation of the attractor D of the system
([0, 1]2,Γ×α Λ) from Example 4.6.

and γα2 . Then (5
9 ,

7
16) = γα2 ◦ γα2 (0, 0) and (4

9 ,
9
16) = γα1 ◦ γα1 (1, 1) also belong to D. If D were

the graph of a (necessarily continuous) function f , then f(0) = 0, f(1) = 1, f(4
9) = 9

16 , and
f(5

9) = 7
16 . The Intermediate Value Theorem implies that f could not be injective.

Corollary 4.3 also gives an alternative definition of the code map.

Example 4.7. Consider an iterated function system (A,Γ) with attractor A. Let L : {1, . . . , N} →
Γ be a bijective labelling of the maps in Γ and let βL : ΣN 7→ Γ denote the induced map as in
Example 4.7. Then the code map πL : ΩN → A is uniquely determined as the function whose
graph is the attractor of the fibred system (ΩN × A,ΣN ×βL Γ).

Restricting to attractors, the fibred system associated to a morphism is always conjugate to
the domain.

Corollary 4.8. Suppose that (f, α) : (A,Γ)→ (B,Λ) is a morphism of hyperbolic iterated func-
tion systems with respective attractors A and B. Then (Gr(f),Γ×α Λ) is conjugate to (A,Γ).

Proof. Theorem 4.2 implies that Gr(f) is the attractor of (Gr(f),Γ ×α Λ). Let p : Gr(f) → A
denote the projection onto the first factor. Since Gr(f) is the graph of a function, p is a
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continuous bijection from a compact space to a Hausdorff space, and therefore a homeomorphism.
It follows that (p, γα 7→ γ) is the desired conjugacy. �

As a consequence of Corollary 4.8, topological properties of the system (A,Γ) are shared by
(Gr(f),Γ×α Λ). For example, the covering dimension of A is equal to the covering dimension of
Gr(f). The relationship at the level of geometric properties is not so clear, because geometric
properties of Gr(f) depend on the choice of metric on Gr(f).

We finish by showing that morphisms of of iterated function systems lift uniquely to mor-
phisms between code spaces.

Proposition 4.9. Let (A,Γ = {γ1, . . . , γN}) and (B,Λ = {λ1, . . . , λM}) be hyperbolic iterated
function systems with chosen labellings of the contractions, and attractors A and B, respectively.
Let (πΓ, βΓ) : (ΩN ,ΣN ) → (A,Γ) and (πΛ, βΛ) : (ΩN ,ΣN ) → (B,Λ) denote the morphisms in-
duced by the corresponding code maps. For any morphism (f, α) : (A,Γ)→ (B,Λ) there exists a
unique morphism (f̃ , α̃) : (ΩN ,ΣN )→ (ΩM ,ΣM ) making the diagram

(ΩN ,ΣN ) (ΩM ,ΣM )

(A,Γ) (B,Λ)

(f̃ ,α̃)

(πΓ,βΓ) (πΛ,βΛ)
(f,α)

(1)

commute.

Proof. Since βΛ is a bijection, we can define α̃ := β−1
Λ ◦ α ◦ βΓ. Then α̃ induces a function

h : {1, . . . , N} → {1, . . . ,M} defined by α̃(σi) = σh(i) and h induces a continuous map f̃ : ΩN →
ΩM defined by f̃(w1w2w3 · · · ) = h(w1)h(w2)h(w3) · · · for all wk ∈ {1, . . . , N}. In particular,
f̃ ◦ σi = α̃(σi) ◦ f̃ for all i ∈ {1, . . . , N}. Uniqueness of f̃ follows from Corollary 4.3. �

Remark 4.10. It is not the case that every morphism (f̃ , α̃) : (ΩN ,ΣN )→ (ΩM ,ΣM ) descends to
a morphism (f, α) : (A,Γ)→ (B,Λ) making (1) commute. Indeed, ifM = N , (B,Λ) = (ΩN ,ΣN ),
and (f̃ , α̃) = (πΛ, βΛ) = (idΩN , idΣ̃N

), then commutativity of (1) would imply that such an f is
an inverse for πΓ—regardless of A—which is absurd.

As a final remark, we note that the notion of morphism introduced in Definition 3.1 generalises
readily to the topological iterated function systems of Kameyama [Kam93] or Kieninger [Kie02].
Although we do not pursue it here, the author thinks that it would be interesting to see how
the collection of invariant sets in the fibred system affects the existence of morphisms for more
general topological iterated function systems.
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