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NO HYPERBOLIC SETS IN J∞ FOR INFINITELY
RENORMALIZABLE QUADRATIC POLYNOMIALS

GENADI LEVIN AND FELIKS PRZYTYCKI

Abstract. Let f be an infinitely renormalizable quadratic
polynomial and J∞ be the intersection of forward orbits of
"small" Julia sets of its simple renormalizations. We prove
that J∞ contains no hyperbolic sets.

1. Introduction

Let f be a rational function of degree at least 2 considered as a
dynamical systems f : Ĉ → Ĉ on the Riemann sphere Ĉ. An f -
invariant compact set X ⊂ Ĉ is said to be hyperbolic if f : X → X is
uniformly expanding , i.e., for some C > 0 and λ > 1, |D(fm)(x)| ≥
Cλm for all x ∈ X and all m ≥ 0 (here D stands for the spherical
derivative and fm is m-iterate of f). In particular, any repelling
periodic orbit of f is a hyperbolic set. The closure of all repelling
periodic orbits of f is the Julia set J(f) of f . Hyperbolic sets
of f are contained in J(f). Apart of repelling periodic orbits, f
admits plenty of infinite (Cantor) hyperbolic sets [30]. Attracting
periodic orbits (if any) along with their basins are contained in the

complement Ĉ \ J(f) (which is called the Fatou set of f). See e.g.
[3] for an introduction to complex dynamics and [31] for a recent
survey.

If J(f) is a hyperbolic set by itself, i.e., f : J(f) → J(f) is
uniformly expanding, then f is called a hyperbolic rational map.
Equivalently, all critical points of f are in basins of attracting cy-
cles. Hyperbolic rational maps are analogous to Axiom A diffeo-
morphisms and their dynamics has been intensively studied and
very well understood. The famous ’Density of Hyperbolicity Con-
jecture (DHC)’ in holomorphic dynamics - sometimes also called
the Fatou conjecture - asserts that any rational map (polynomial)
can be approximated by hyperbolic rational maps (polynomials) of
the same degree.
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In what follows f (unless mentioned explicitly) is a quadratic
polynomial fc(z) = z2 + c. The DHC (as well as a more general
MLC: Mandelbrot set Locally Connected) is widely open for the
quadratic family fc, too (DHC for fc as strongly believed accumu-
lates in itself the essence of the general DHC). After a breakthrough
work of Yoccoz [10] on the MLC, the only obstacle for proving
DHC for quadratic polynomials are so-called infinitely renormaliz-
able ones, see [28].

Somewhat informally, a quadratic polynomial fc with connected
Julia set is called renormalizable if, for some topological disks U, V
around the critical point 0 of fc and for some p ≥ 2 (called period
of the renormalization), the restriction f p

c : U → V is conjugate to
another quadratic polynomial fc′ with connected Julia set (see [6]
for exact definitions and the theory of polynomial-like mappings).
The map F := f p

c : U → V is then a renormalization of fc and
the set K(F ) = {z ∈ U : F n(z) ∈ U for all n ≥ 1} is a "small"
(filled in ) Julia set of fc. If fc′ is renormalizable by itself, then
fc is called twice renormalizable, etc. If fc admits infinitely many
renormalizations, it is called infinitely renormalizable. Recall that
the renormalization F is simple if any two sets f i(K(f)), f j(K(F )),
0 ≤ i < j ≤ p − 1, are either disjoint or intersect each other at a
unique point which does not separate either of them.

To state our main result - which is Theorems 1.1 - let f(z) = z2+c
be infinitely renormalizable. Let 1 = p0 < p1 < ... < pn < ... be
the sequence of consecutive periods of simple renormalizations of
f and Jn denotes the "small" Julia set of the n-renormalization
(where J0 = J(f)). Then pn+1/pn is an integer, f pn(Jn) = Jn, for
any n, and {Jn}

∞
n=1 is a strictly decreasing sequence of continua

without interior, all containing 0. Let

J∞ = ∩n≥0 ∪
pn−1
j=0 f j(Jn)

be the intersection of orbits of the "small" Julia sets. J∞ is a com-
pact f -invariant set which contains the omega-limit set ω(0) of 0.
Each component of J∞ is wandering, in particular, J∞ contains no
periodic orbits of f . Note that a hyperbolic set in J∞ (if existed)
could not be repelling, that is any forward orbit of a point suffi-
ciently close to this set must be in the set itself, since otherwise
shadowing periodic orbits must be in J∞.

It is shown in [23] that the low Lyapunov exponent of the critical
value c ∈ J(fc) is always non-negative. In the considered case,
c ∈ J∞. We prove:
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Theorem 1.1. J∞ contains no hyperbolic sets.

Combined with the Fatou-Mane theorem [25] Theorem 1.1 im-
mediately implies

Corollary 1.1. ω(x) ∩ ω(0) 6= ∅, for the omega-limit set ω(x) of
every x ∈ J∞.

The conclusion of Theorem 1.1 would obviously hold provided

(1.1) J∞ is totally disconnected.

(1.1) is true indeed for many classes of maps (including real ones)
where it follows from ’complex bounds’ [33] (meaning roughly that
the sequence of renormalizations is compact) [17], [9], [24], [13], [14],
[15]. See also [11], [12]. However, (1.1) breaks down in general:
see [26], [32] for the existence of such maps and [18], [19], [20]
(see also [5]) for explicit combinatorial conditions on fc for (1.1) to
fail. Yoccoz [35] posed a problem to find a necessary and sufficient
condition on the combinatorics of fc for (1.1) to hold. At present,
the gap between known sufficient and necessary conditions is still
very big.

Another well-known open problem is to give necessary and suffi-
cient conditions so that the Julia set J(f) is locally-connected. For
example, if (1.1) does not hold then J(f) is not locally-connected.
Theorem1.1 implies

Theorem 1.2. Let f(z) = z2+c and f has no irrational indifferent
periodic orbits. Then J(f) is locally-connected at every point of any
hyperbolic set X of f . In particular, there are at least one and at
most finitely many external rays landing at each x ∈ X.

Remark 1.2. The case that f does have an irrational cycle seems to
be open and requires a separate consideration, see [4] though. Note
also that Theorem 1.2 removes the only restriction in Proposition
2.11 of [1] for degree 2 polynomials without irrational cycles.

Theorem 1.2 has been known for the following quadratic maps
f . If f has an attracting cycle, then f is hyperbolic and the whole
J(f) is locally-connected. The same conclusion holds if f has a
parabolic cycle [6]. The first part of Yoccoz’s result (see e.g., [10])
says that J(f) is locally-connected if f has no indifferent irrational
cycles and at most finitely many times renormalizable. This allows
us to reduce the proof of Theorem 1.2 to the case of f as in Theorem
1.1, hence, by the latter, to the case when X is disjoint from J∞ in
which case it is well-known that Yoccoz puzzle pieces shrink to each
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point of X [26], [21]. This shows that J(f) is locally connected at
points of X. The last claim follows then from [16], see also [34] and
[21].

Acknowledgment. We thank Weixiao Shen for helpful com-
ments. We thank the referee for many useful remarks that helped
to improve the paper.

2. Preliminaries

Here we collect, for further references, necessary notations and
general facts which are either well-known [28], [27] or follow readily
from the known ones. Let f(z) = z2+c be infinitely renormalizable.
We keep the notations of the Introduction.

(A). Let G be the Green function of the basin of infinity A(∞) =
{z|fn(z) → ∞, n → ∞} of f with the standard normalization at
infinity G(z) = ln|z| + O(1/|z|). The external ray Rt of argument
t ∈ S

1 = R/Z is a gradient line to the level sets of G that has the
(asymptotic) argument t at ∞. G(z) is called the (Green) level of
z ∈ A(∞) and the unique t such that z ∈ Rt is called the (external)
argument (or angle) of z. A point z ∈ J(f) is accessible if there is
an external ray Rt which lands at (i.e., converges to) z. Then t is
called an (external) argument (angle) of z.

Let σ : S1 → S
1 be the doubling map σ(t) = 2t(mod1). Then

f(Rt) = Rσ(t).
(B). Given a small Julia set Jn containing 0, sets f j(Jn) (0 ≤

j < pn) are called small Julia sets of level n. Each f j(Jn) contains
pn+1/pn ≥ 2 small Julia sets f j+kpn(Jn+1), 0 ≤ k < pn+1/pn, of
level n + 1. We have Jn = −Jn. Since all renormalizations are
simple, for j 6= 0, the symmetric companion −f j(Jn) of f j(Jn) can
intersect the orbit orb(Jn) = ∪pn−1

j=0 f j(Jn) of Jn only at a single
point which is preperiodic. On the other hand, since only finitely
many external rays converge to each periodic point of f , the set J∞

contains no periodic points. In particular, each component K of
J∞ is wandering, i.e., f i(K)∩f j(K) = ∅ for all 0 ≤ i < j < ∞. All
this implies that {x,−x} ⊂ J∞ if and only if x ∈ K0 := ∩∞

n=1Jn.
Given x ∈ J∞, for every n, let jn(x) be the unique j ∈ {0, 1, · · · , pn−

1} such that x ∈ f j(x)(Jn). Let Jx,n = f jn(x)(Jn) be a small Julia
set of level n containing x and Kx = ∩n≥0Jx,n, a component of J∞

containing x.
In particular, K0 = ∩n≥0Jn is the component of J∞ containing 0

and Kc = ∩∞
n=1f(Jn), the component containing c.
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The map f : Kx → Kf(x) is one-to-one if x /∈ K0 while f :
K0 \ {0} → Kc \ {c} is two-to-one. Moreover, for every y ∈ J∞,
f−1(y)∩ J∞ consists of two points if y ∈ Kc \ {c} and consists of a
single point otherwise.

(C). Given n ≥ 0, the map f pn : f(Jn) → f(Jn) has two fixed
points: the separating fixed point αn (that is, f(Jn) \ {αn} has at
least two components) and the non-separating βn (so that f(Jn) \
{βn} has a single component).

For every n > 0, there are two rays Rtn and Rt̃n (0 < tn < t̃n < 1)
to the non-separating fixed point βn ∈ f(Jn) of f pn such that the
component Ωn of C \ (Rtn ∪Rt̃n ∪βn) which does not contain 0 has
two characteristic properties:

(i) Ωn contains c and contains no the forward orbit of βn,
(ii) for every 1 ≤ j ≤ pn, consider arguments (angles) of the

the external rays which land at f j−1(βn). The angles split S
1 into

finitely many arcs. Then the arc

Sn,1 = [tn, t̃n] = {t : Rt ⊂ Ωn}

has the smallest length among all these arcs.
Denote

t′n = tn +
t̃n − tn
2pn

, t̃′n = t̃n −
t̃n − tn
2pn

.

The rays Rt′n
, Rt̃′n

land at a common point β ′
n ∈ f−pn(βn) ∩ Ωn.

Introduce an (unbounded) domain Un with the boundary to be two
curves Rtn ∪ Rt̃n ∪ βn and Rt′n

∪ Rt̃′n
∪ β ′

n. In other words, Un is a
component of f−pn(Ωn) which is contained in Ωn. Then c ∈ Un and
f pn : Un → Ωn is a two-to-one branched covering so that

(2.1) f(Jn) = {z|fkpn(z) ∈ Un, G(fkpn(z)) ≤ 10, k = 0, 1, ...}.

Moreover, for any n, the closure of Un+1 is contained in Un. We
denote

sn,1 = [tn, t
′
n] ∪ [t̃′n, t̃n].

Then sn,1 ⊂ Sn,1 and

σpn : sn,1 → Sn,1

so that σpn is a homeomorphism of each component of sn,1 onto
Sn,1. End points tn, t̃n of Sn,1 are fixed points of σpn. It’s important
to note that Sn+1,1 ⊂ Sn,1, sn,1 ⊂ sn+1,1 for all n and the length
(t̃n − tn)/2

pn of each of the two components of sn,1 tends to zero as
n → ∞ (while the length |tn− t̃n| of Sn,1 can stay away from zero).

From now on, given a compact set Y ⊂ J(f) denote by Ỹ the set
of arguments of the external rays which have their limit sets in Y .
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For each k ≥ 0 the boundary of the set {z : fkpn(z) ∈ Un,}
consists of rays and (pre)periodic points. It follows that if a ray
has at least one limit point in f(Jn) then all its limit points are in
f(Jn), and (2.1) implies that

(2.2) f̃(Jn) = {t|σjpn(t) ∈ sn,1, j = 0, 1, ...}.

So f̃(Jn) is a Cantor set, in particular, closed. Let us show that

(2.3) K̃c = ∩∞
n=1sn,1.

Indeed, t ∈ K̃c implies t ∈ f̃(Jn) ⊂ sn,1, for each n. Vice versa, let

t ∈ ∩∞
n=1sn,1. It is enough to show that t ∈ f̃(Jn) for each n (which

would indeed imply that the limit set of the ray Rt belongs to f(Jn)

for all n, i.e., t ∈ K̃c). Fix n and find a sequence tm ∈ ∂sm,1, such

that tm → t as m → ∞. On the other hand, ∂sm,1 ⊂ f̃(Jm) ⊂ f̃(Jn)

because f(Jm) ⊂ f(Jn) for m > n. As f̃(Jn) is closed, t ∈ f̃(Jn).
This proves (2.3).

It implies that K̃c is either a single-point set or a two-point set.
In particular, Kc contains at most two different accessible points.
As f : K0 \ {0} → Kc \ {c} is two-to-one, K̃0 = σ−1(K̃c) consists of
either 2 or 4 points.

Let us give, for completeness of the picture, a similar description
of K̃ for each component K of J∞ (Lemma 2.1, see below). It will
be needed for the proof of Lemma 4.2, part (ii). Note, however,
that part (ii) of Lemma 4.2 is not used in the proof of the main
result.

Let

sn,j = σj−1(sn,1) = [tn,j, t
′
n,j] ∪ [t̃′n,j, t̃n,j], 1 ≤ j ≤ pn,

where tn,j = σj−1(tn), t̃n,j = σj−1(t̃n), t
′
n,j = σj−1(t′n), and t̃′n,j =

σj−1(t̃′n). Then

(2.4) t′n,j − tn,j = t̃n,j − t̃′n,j =
t̃n − tn
2pn−j+1

< t̃n − tn < 1/2.

So σj−1 : sn,1 → sn,j is a homeomorphism and sn,j has two compo-
nents (’windows’) [tn,j, t

′
n,j] and [t̃′n,j , t̃n,j] of equal length. However,

σj(Sn,1) can cover the whole circle S
1 for some j < pn. For this rea-

son, an analogue of (2.1) breaks down if j is big. For j = 1, 2, ..., pn,
let Un,j = f j−1(Un) and βn,j = f j−1(βn). The domain Un,j is
bounded by two rays Rtn,j

∪Rt̃n,j
converging to βn,j and completed

by βn,j along with two rays Rt′n,j
∪Rt̃′n,j

completed by their common
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limit point f j−1(β ′
n). Let U1

n,j be a component of f−(pn−j+1)(Un)
which is contained in Un,j. Then

(2.5) f pn : U1
n,j → Un,j

is a two-to-one branched covering, and

(2.6) f j−1(Jn) = {z|fkpn(z) ∈ U
1

n,j, G(fkpn(z)) ≤ 10, k = 0, 1, ...}.

Note that this is consistent with (2.1) for j = 1. Similar to j = 1,
if a ray has at least one limit point in f j−1(Jn) then all its limit
points are there.

Let s1n,j be the set of arguments of rays entering U
1

n,j. Then

s1n,j ⊂ sn,j consists of two pairs of components (1-’windows’) where
each pair is adjacent to two end points of one of the ’windows’
of sn,j. Moreover, σpn : s1n,j → sn,j is a two-to-one covering which

maps each of four 1-’windows’ of s1n,j homeomorphically onto one of
the two ’windows’ of sn,j. Correspondingly, for each j = 1, 2, ..., pn,

(2.7) f̃ j(Jn) = {t|σkpn(t) ∈ s1n,j, k = 0, 1, ...}.

As (2.6) is consistent with (2.1) for j = 1, (2.7) is consistence with
(2.2) for j = 1.

Given n, j, denote by ∆n,j the length of each ’window’ of sn,j and

by ∆1
n,j the length of each ’window’ of s1n,j. By (2.4), ∆n,j =

t̃n−tn
2pn−j+1

and ∆1
n,j =

∆n,j

2pn
. So ∆1

n,j < 2−pn → 0 uniformly in j as n → ∞.
Let K be a component of J∞:

K = ∩∞
n=1f

jn(Jn),

where 1 ≤ jn ≤ pn and f jn+1(Jn+1) ⊂ f jn(Jn).

Lemma 2.1.

(2.8) K̃ = ∩∞
n=1s

1
n,jn

where {s1n,jn}
∞
n=1 is a decreasing sequence of compacts each con-

sisting of four 1-’windows’ with equal lengths tending to zero as
n → ∞. In particular, K̃ consists of at most 4 points. There is an
alternative (1)-(2):

(1) either pn − jn → ∞ as n → ∞ so that the length of each
’window’ of sn,jn tends to zero, moreover,

(2.9) K̃ = ∩∞
n=1sn,jn

so that #K̃ ∈ {1, 2} in this case.
(2) there is N ≥ 0 such that pn − jn = N for all n, so that

fN(K) = K0.
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Proof. (2.8) is very similar to the proof of (2.3) and is left to the
reader. As for the alternative (1)-(2), assume that there is N ≥ 0
such that, for an infinite subsequence (n′) ⊂ N, pn′−jn′ = N . Then
fN(K) = ∩n′fn′

(Jn′) = ∩nf
n(Jn) = K0, hence, pn − jn = N for

all n. This explains why either pn − jn → ∞ or pn − jn = N for
some N ≥ 0 and all n. Consider the case pn − jn → ∞. Then
by (2.4) the length ∆n,jn of each ’window’ of sn,jn tends to zero
uniformly in jn. Repeating again the proof of (2.3) we get that
∩∞
n=1sn,jn = ∩∞

n=1s
′
n,jn

. This settles the alternative. �

(D1). Consider in more detail the case when K̃c = {τ1, τ2},
τ1 6= τ2. Let Sc be the shortest arc in S

1 with the end points τ1, τ2.
It follows from (C):
1∞: σk(τi) /∈ Sc, for i = 1, 2 and all k > 0,
2∞: for each k > 0, the length of arcs with the end points σk(τ1),

σk(τ2) is bigger than or equal to the length of Sc,
3∞: (unlinking) for each positive j 6= k, one of the two arcs S1 \

{σk(τ1), σ
k(τ2)} contains both points σj(τ1), σ

j(τ2). Furthermore,

as K̃0 = σ−1({τ1, τ2}), the set K̃0 splits the unit circle S1 into 4 arcs
in such a way that, for each j ≥ 0, both points σj(τ1), σ

j(τ2) have
to lie in one and only one of these arcs. In particular, σj(τ1), σ

j(τ2)
lie in one and only one of semicircles S

1 \ σ−1(τi), for each i = 1, 2.

Remark 2.2. Let us put the ’unlinking’ property in the context of
Thurston’s ’laminations’ [34]. Consider a topological model of J(f)
by shrinking all components of J∞ as well as all their preimages to
points. More formally, let’s build a lamination (a special equivalent
relation on S

1) as follows [34], [16]: as all periodic points of f are
repelling, each (pre)periodic point is a landing point of at least one
and at most finitely many rays. Let us identify arguments of such
rays for each such point and take a closure of this partial relation to
the whole S

1. The resulting relation is invariant under the map σ :
S
1 → S

1. For visualization, this relation is usually extended to the
closed unit disk by taking the closed convex hull in the Euclidean
plane of each equivalence class. Then obviously different convex
hulls (classes) are disjoint. For example, σ−1({τ1, τ2}) is a single
class, and σj(τ1), σ

j(τ2) is the other one, for each j ≥ 0, so their

convex hulls are disjoint. The property #K̃ ≤ 2 (which is proved in
Lemma 2.1) for any component K of J∞ other than preimages of K0

is, in fact, a very particular case of the fundamental ’no wandering
triangle’ property of unicritical laminations [34], [21].
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(D2). Given ν ∈ [0, 1) there exists a unique minimal rotation
set Λν ⊂ S

1 of σ : S1 → S
1 with the rotation number ν [2]. Recall

that a closed subset Λ of S1 is a rotation set of σ with the rotation
number ν if σ(Λ) ⊂ Λ and σ : Λ → Λ extends to a map of S1 which
lifts to an orientation preserving non-decreasing continuous map
F : R → R with F − Id to be 1-periodic and the fractional part of
the rotation number of F to be equal to ν. Then [2] ν is irrational
if and only if Λν is infinite, in this case there is a unique closed
semi-circle containing Λν so that the end points of this semi-circle
belong to Λν . Finally, any closed σ-invariant set Λ ⊂ S

1 which is
contained in a semi-circle is a rotation set of σ.

3. Accessibility

We define a telescope following essentially [29]. Given x ∈ J(f),
r > 0, δ > 0, k ∈ N and κ ∈ (0, 1), an (r, κ, δ, k)-telescope at x ∈ J
is collections of times 0 = n0 < n1 < ... < nk = n and disks Bl =
B(fnl(x), r), l = 0, 1, ..., k such that, for every l > 0: (i) l/nl > κ,
(ii) there is a univalent branch gnl

: B(fnl(x), 2r) → C of f−nl so
that gnl

(fnl(x)) = x and, for l = 1, ..., k, d(fnl−1 ◦ gnl
(Bl), ∂Bl−1) >

δ (clearly, here fnl−1 ◦gnl
is a branch of f−(nl−nl−1) that maps fnl(x)

to fnl−1(x)). The trace of the telescope is a collection of sets Bl,0 =
gnl

(Bl), l = 0, 1, ..., k. We have: Bk,0 ⊂ Bk−1,0 ⊂ ... ⊂ B1,0 ⊂
B0,0 = B0 = B(x, r). By the first point of intersection of a ray Rt,
or an arc of Rt, with a set E we mean a point of Rt ∩ E with the
minimal level (if it exists).

Theorem 3.1. [29] Given r > 0, κ ∈ (0, 1), δ > 0 and C > 0 there

exist M > 0, l̃, k̃ ∈ N and K > 1 such that for every (r, κ, δ, k)-

telescope the following hold. Let k > k̃. Let u0 = u be any point
at the boundary of Bk such that G(u) ≥ C. Then there are indexes

1 ≤ l1 < l2 < ... < lj = k such that l1 < l̃, li+1 < Kli, i = 1, ..., j−1
as follows. Let uk = gnk

(u) ∈ ∂Bk,0 and let γk be an infinite arc of
an external ray through uk between the pint uk and ∞. Let uk,k = uk

and, for l = 1, ..., k − 1, let uk,l be the first point of intersection of
γk with ∂Bl,0. Then, for i = 1, ..., j,

G(uk,li) > M2−nli .

Applying Theorem 3.1 as in [29] (where the existence of a ray
to x is proved assuming (r, κ, δ,∞)-telescope to x) we obtain the
following statement. See also [1] for a direct proof of part (1).

Corollary 3.1. Let X be a hyperbolic set for f . (1) To every point
x ∈ X one can assign a non-empty set Ax ⊂ S

1 such that for every
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t ∈ Ax the external ray Rt lands at x. (2) The set A = {(x, t) :
x ∈ X, t ∈ Ax} is closed in C × S

1. (3) Moreover, for each µ > 0
there is C(µ) > 0 such that for all x ∈ X and all t ∈ Ax, the first
intersection of Rt with ∂B(x, µ) has the level at least C(µ).

Proof. As f : X → X is expanding, there exist λ > 1, ρ > 0 and j0
such that, for every x ∈ X and every k > 0, there exists a (univa-
lent) branch gk,x : B(fkj0(x), ρ) → C of f−kj0 with gk,x(f

kj0(x)) =
x and |g′k,x(y)/g

′
k,x(z)| < 2 for y, z ∈ B(fkj0(x), ρ). Moreover,

|g′k,x(z)| < λ−k for all k > 0 and x ∈ X. Therefore, there are r > 0,
δ > 0 and κ = 1/j0 such that for any k > 1, every point x ∈ X
admits an (r, κ, δ, k)-telescope with nk = kj0. In fact, ni = ij0 for
i = 0, 1, · · · , k. Let Bk,0(x) ⊂ Bk−1,0(x) ⊂ · · · ⊂ B1,0(x) ⊂ B0,0(x)
be the corresponding trace. Define C0 = infy∈J(f) maxz∈B(y,r) G(z).
It is easy to see that C0 > 0. For each x ∈ X we choose a point
u(x) ∈ ∂B(x, r) such that G(u(x)) ≥ C0. By Theorem 3.1, there

are l̃ and k̃ such that for each k > k̃ and each x ∈ X the following
hold. There are 1 ≤ l1,k(x) < l2,k(x) < · · · < ljx

k
,k(x) = k such that

l1,k(x) < l̃, li+1,k(x) < Kli,k(x), i = 1, · · · , jxk − 1 . Let γk(x) be
an arc of an external ray between the point uk(x) = gk,x(u(f

kj0(x))
and ∞. Let uk,l(x) be the first intersection of γk(x) with ∂Bl,0(x).
Then, for i = 1, · · · , jxk − 1,

(3.1) G(uk,li,k(x)) > M2−li,k(x)j0 .

For all i = 1, · · · , jxk − 1,

(3.2) i ≤ li,k(x) < Kil̃.

Denote by tk(x) the argument of an external ray that contains the
arc γk(x). It is enough to prove in the situation above

Lemma 3.2. (i) If (xm)m>0 ⊂ X, xm → y and tkm(xm) → τ for
some km → ∞, then Rτ lands at y. (ii) Moreover, for each µ > 0
there is C(µ) > 0 such that for all pairs (y, τ) like this the first
intersection of Rτ with ∂B(y, µ) has the level at least C(µ).

Indeed, assuming this lemma, we can define Ax as the set of all
angles t so that there exist xm ∈ X and km → ∞ with xm → x
and tkm(xm) → t. The set Ax is not empty because one can take
xm = x for all m and km → ∞ such that {tkm(x)} converges. By
Lemma 3.2(i), the ray Rt indeed lands at the point x. It is then
an elementary exercise to check that the set A is closed. Claim (ii)
implies obviously the part (3).
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So, let’s prove Lemma 3.2. Let (y, τ) be as in the lemma. Pick
any µ ∈ (0, r). Fix l0 so that λ−l0r < µ/2 and let

(3.3) C(µ) =
M

2l̃j0K
l0
.

There is m0 such that for all m > m0 and all l > l0, Bl0,0(xm) ⊂
B(y, µ). Then, by (3.1)-(3.2), for every m > m0,

(3.4) G(ukm,ll0,km
(xm)) > C(µ).

Hence, for every m > m0 the first intersection of γkm(xm) with
B(y, µ) has level at least C(µ). This implies that, given C ∈
(0, C(µ)), for any m > m0, an arc of the ray Rtkm (xm) between
the levels C and C(µ) does not exit B(y, µ). As this sequence of
arcs tend uniformly, as m → ∞, to an arc of Rτ between the levels
C and C(µ), this latter arc is contained in B(y, µ). As C > 0 can
be chosen arbitrary small, the ray Rτ must land at y and its first
intersection with B(y, µ) has the level at least C(µ). Lemma 3.2 is
proved. �

4. A combinatorial property

Let f be an infinitely-renormalizable quadratic polynomial. First,
we prove the following combinatorial fact (a maximality property)
about f .

In the course of the further proofs the following well-known easy
statement about expanding maps is used (for a more general theo-
rem about expansive maps, see e.g. [8]):

Proposition 4.1. Let h be a homeomorphism of a compact metric
space (S, d) onto itself which is expanding in the following sense:
there are δ > 0 and λ > 1 such that d(h(x), h(x′)) ≥ λd(x, x′)
whenever d(x, x′) < δ. Then S is a finite set.

Let ω(t) be the omega-limit set of t ∈ S
1 under σ : t 7→ 2t(mod1)

and ω(E) = ∪t∈Eω(t).

Lemma 4.2. (i) σ−1(K̃c) ⊂ ω(K̃c)
(ii) J̃∞ = ω(K̃c).

Remark 4.3. Only part (i) is used in the proof of Theorem 1.1.
Part (ii) seems to be of an independent interest and is included for
completeness.

Proof of (i). (a) Consider σ : J̃∞ → J̃∞. Each t ∈ J∞ belongs to

K̃, for one and only one component K of J∞. By (B), one and only
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one component K−1 of f−1(K) is a component of J∞, moreover,
f : K−1 → K is a homeomorphism if K 6= Kc and f : K0 \ {0} →
Kc \ {c} is two-to-one. Hence, σ−1(t) ∩ J̃∞ is a single point for
t /∈ K̃c and two different points for t ∈ K̃c. On the other hand, for
each t ∈ S

1, σ maps ω(t) onto itself. Since σ : J̃∞ → J̃∞ has no

periodic points, by Proposition 4.1, for each t ∈ J̃∞, the expanding
map σ : ω(t) → ω(t) is not injective. Therefore, ω(t) ∩ K̃c 6= ∅ for
all t ∈ J̃∞.

(b) If K̃c consists of a single angle τc, then (a) implies that there
is a single point t ∈ ω(τc) such that σ−1(t) ⊂ ω(τc) and, moreover,
t = τc. Therefore, σ−1(τc) ⊂ ω(τc) and we are done in this case.

(c) It remains to deal with a two-point set K̃c = {τ1, τ2}. Let
us assume the contrary, i.e., σ−1(τ1) ∪ σ−1(τ2) is not a subset of
ω(K̃c) = ω(τ1) ∪ ω(τ2). Hence, by (a) and by the assumption,
either σ−1(τ1) or σ−1(τ2) is a subset of each ω(τi), i = 1, 2. Let,
say, σ−1(τ1) ⊂ ω(τ1) ∩ ω(τ2). By the assumption, there is τ ∈
σ−1(τ2) such that τ /∈ ω({τ1, τ2}). Let L be a (open) semi-circles
S
1\σ−1(τ1) that contains τ . We claim that it is enough to show that

for each pn and some jn > 0 the arc L contains σjnpn−1(τ1). Indeed,
assume this is the case. Then, by (D1)3∞, Sect. 2, L must contain
one of the arcs S

1 \ {σjnpn−1(τ1), σ
jnpn−1(τ2)} and, by (D1)2∞, the

lengths of all such arcs are uniformly away from 0. Hence, there
is a subsequence ni → ∞ such that the sequences σjni

pni
−1(τ1)

and σjni
pni

−1(τ2) converge to points a1 and a2 respectively, where
a1 6= a2 and a1, a2 ∈ L. On the other hand, a1, a2 ∈ K̃0. But, from
the assumption, K̃0 ∩ L = {τ}. Therefore {a1, a2} ⊂ {τ, σ−1(τ1)}.
Since a1, a2 ∈ ω({τ1, τ2}) while τ /∈ ω({τ1, τ2}), we conclude that
{a1, a2} = σ−1(τ1). But then σjni

pni (τ1) and σjni
pni (τ2) converge to

the same point τ1 which is a contradiction with (D1)2∞.
(d) To show that, for each n, the arc L contains a point σjnpn−1(τ1),

for some jn > 0, let us assume the contrary. So, we fix n > 0 and
assume that Λ := {σjpn−1(τ1) : j > 0} ⊂ L′ := S

1\L. The idea is to
show that the set Λ corresponds to a rotation set Λ0 of σ : S1 → S

1

and use a certain structure of later sets [2], see (D2) of Sect. 2, to
arrive at a contradiction.

Following the notations of (C), let Ω0
n = f−1(Ωn) and U0

n =
f−1(Un). To connect it to other notations introduced in (C), Ω0

n =
Un,pn = f pn−1(Un) and U0

n = U1
n,pn

. Then Jn = {z|f jpn(z) ∈

U0
n, G(f jpn(z)) ≤ 10, j = 0, 1, · · · }. The domain Ω0

n is bounded
by two bi-infinite curves Γn, Γ

′
n (components of f−1(∂Ωn)) and two

angular (closed) "arcs at infinity" which are components Sn,0, S
′
n,0
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of σ−1(Sn,1) where Sn,1 = [tn, t̃n], 0 < tn < t̃n < 1. In fact, Sn,0, S
′
n,0

are two components of sn,pn = σpn−1(sn,1). Arguments of rays en-

tering U0
n form the set s1n,pn ⊂ sn,pn consisting of four 1-’widows’

such that σpn is a homeomorphism of each of them onto either Sn,0

or S ′
m,0. By (2.7), J̃n = ˜f pn(Jn) = {t|σkpn(t) ∈ s1n,pn, k = 0, 1, ...}.

Let us specify Γn to be such component of f−1(∂Ωn) that contains
f pn−1(βn) (in other words, f pn(Γn) = Γn), and Sn,0 to be the first
"arc" as one goes from Γn to Γ′

n inside of Ω0
n in the counterclockwise

direction along the "circle at infinity". In other words, Sn,0 denotes
the component of σ−1(Sn,1) that contains σpn−1(tn) in its boundary.

Now, let ǫ(t) = 0 if t ∈ Sn,0 and ǫ(t) = 1 if t ∈ S ′
n,0. To every t ∈ J̃n

we assign a point θ(t) ∈ S
1 as follows:

θ(t) =
∞∑

j=0

ǫ(σjpn(t))

2j+1
.

Then θ(J̃n) = S
1, θ ◦ σpn = σ ◦ θ, and θ : J̃n → S

1 extends to
a continuous monotone degree one map S

1 → S
1, see [7], [27],

[22, Theorem 3]. Moreover, θ is injective on a subset T = {t ∈

J̃n|σ
kpn(t) /∈ ∂(Sn,0 ∪ S ′

n,0), k ≥ 0}. Note that J̃∞ ⊂ T where J̃∞ is

closed. Besides, K̃0 = σ−1({τ1, τ2}) and Λ = {σjpn−1(τ1) : j > 0}

are subsets of J̃∞ ⊂ T . If θ0 := θ(τ1/2) then θ1 := θ(τ1/2 + 1/2) =
θ0 + 1/2. Therefore, from the assumption, the set Λ0 := θ(Λ) is a
subset of a semi-circle Cθ0 with end points θ0 and θ1. As σpn(Λ) ⊂
Λ, then σ(Λ0) ⊂ Λ0. It follows [2] (see (D2) of Sect. 2 in the present
paper), that the set Λ0 is a rotation set of σ : S1 → S

1. Let E ⊂ Λ0

be a closed subset such that σ : E → E is minimal. As Λ ⊂ J̃∞ ⊂ T
where J̃∞ contains no periodic points of σpn, E contains no periodic
points of σ. Hence, E is infinite. By [2], see (D2), for every closed
infinite minimal rotation set of σ there is a unique closed semi-circle
containing it and in this case the end points of the semi-circle belong
to the set. Thus θ0, θ0+1/2 ∈ E ⊂ Λ0 ⊂ Cθ0. Coming back to the f -
plane, we find two sequences ji, j

′
i → ∞ so that σjipn−1(τ1) → τ1/2

and σj′ipn−1(τ1) → τ1/2+ 1/2 inside of the same semi-circle L′ with
the end points τ1/2, τ1/2 + 1/2. But then σjipn(τ1) and σj′ipn(τ1)
both tend to τ1 from different sides, in a contradiction with (D1)1∞.
This completes the proof of part (i) of the statement.

Let us prove part (ii). Obviously, ω(K̃c) ⊂ J̃∞. To show the

opposite, given t ∈ J̃∞ let K be a unique component of J∞ such
that t ∈ K̃. Let K = ∩n≥1f

jn(Jn). By Lemma 2.1, there is an
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alternative: either (1) pn − jn → ∞ as n → ∞ and K̃ = ∩∞
n=1sn,jn

or (2) there is N ≥ 0 such that fN(K) = K0, i.e., pn − jn = N for
all n. In case (2), fN : K → K0 is a homeomorphism, which implies

that σN : K̃ → K̃0 is also a homeomorphism. Hence, if s ∈ K̃0 is a
point of ω(K̃c), then σN |−1

K̃
(s) is also a point of ω(K̃c). On the other

hand, by part (i), K̃0 = σ−1(K̃c) ⊂ ω(K̃c). Therefore, t ∈ ω(K̃c)

in case (2). In case (1), {t} = ∩n≥1s
(t)
n,jn

where s
(t)
n,jn

is one of the

two ’windows’ of sn,jn, and σjn : s
(t)
n,1 → s

(t)
n,jn

is a homeomorphism

where of course s
(t)
n,1 is one of the two ’windows’ of sn,1. Hence, it’s

enough to show that each ’window’ of sn,1 contains points of the

orbit of K̃c. As K̃0 = ∩nsn,1, in the case #K̃c = 2, for all n big
enough, each ’window’ of sn,1 contains one and only one of the two

points of K̃c, and we are done in this case. In the remaining case,
K̃c is a single point which lies in one of the two ’widows’ of sn,1,
for each n. But, as σpn maps each ’window’ of sn,1 onto Sn,1 ⊃ sn,1
homeomorphically it is obvious that each ’window’ of sn,1 contains

infinitely many points of the σpn-orbit of any t0 ∈ f̃(Jn) provided
no point of this orbit hits ∂Sn,1. In particular, this applies to points

of K̃ This completes the proof. �

Remark 4.4. In case (1) we proved more: if t ∈ J̃∞ is such that

σN(t) /∈ K̃0 for all N ≥ 0, then t ∈ ω(τ) for each τ ∈ K̃c.

5. Proof of Theorem 1.1

1. Assume the contrary and let X ⊂ J∞ be a compact f -invariant
hyperbolic set. In particular, Corollary 3.1 applies.

2. Replacing X by its subset if necessary we can assume that
f : X → X is a minimal map.

3. 0 /∈ X, hence, c /∈ X, too.
4. As J∞ contains no cycles, X is an infinite set. If we assume

that f : X → X is one-to-one, then f : X → X is an expanding
homeomorphism of a compact set, therefore, X is finite, a contra-
diction with Proposition 4.1.

5. Thus f : X → X is not one-to-one. Then, by (B), Xc :=
X ∩Kc 6= ∅. On the other hand, by step 3, c /∈ Xc.

6. By (C), K̃c consists of either one or two arguments. As any
point of X is accessible, Xc consists of either one or two different
points. Let x1 ∈ Xc and x2 ∈ J(f) be any other point. Given
r > 0 and n, let Wn(x1, r) be a component of B(x1, r) ∩ Ωn (see
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(C), Sect. 2, where Ωn is defined) that contains the point x1. We
use repeatedly the following

Claim 1. Given r̂ > 0 and Ĉ > 0, there is n̂ ∈ N as follows. For
k = 1, 2, suppose that, for some angles t̂k, the ray Rt̂k

lands at xk

and let zk be the first intersection of Rt̂k
with ∂B(xk, r̂/2). Assume:

(a) G(zk) > Ĉ for k = 1, 2, (b) x2 ∈ Ωn and |x1 − x2| < r̂/3, (c)
one of the following holds: (i) tn − t̃n → 0 as n → ∞, or (ii)
t̂1, t̂2 belong to a single component of sn,1 = [tn, t

′
n] ∪ [t̃′n, t̃n]. Then

x2 ∈ Wn(x1, r̂) for each n > n̂.
Indeed, the length of each component of sn,1 goes to zero as

n → ∞. Hence, as r̂ and Ĉ are constants and n is big enough,
condition (c) implies that a curve which consists of an arc of Rt̂1

from x1 to z1, then the shortest arc of the equipotential containing
z1 from z1 to the first intersection u2 with Rt̂2

and then back along
Rt̂2

from u2 to x2 belongs to Ωn and B(x1, r̂) simultaneously.
7. Fix r > 0 small enough. Let a ∈ Xc and a−1 ∈ X be such

that f(a−1) = a. As a−1 ∈ K0 ∩ X, there is its uniquely defined
backward orbit {a−m}

∞
m=1 ⊂ X, f(a−m−1) = a−m, m ≥ 1. Let a′

be a limit point of the sequences a−pn , i.e, a′ = limi→∞ a−pni
. As

a−pn ∈ f(Jn), a
′ belongs to Kc and X at the same time, that is,

a′ ∈ Xc.
Claim 2. For all i large enough, a−pni

∈ Wni
(a′, r).

Indeed, by Corollary 3.1 there is a subsequence (n′
i) of (ni) and

a converging sequence ti ∈ Aa−(p
n′

i
)

such that t := limi→∞ ti and

t ∈ Aa′ . We have: ti ∈ sn′

i
for all i. Then Claim 1 of Step 6

applies for each i big enough, with r̂ = r, Ĉ = C(r/2), x1 = a′,
x2 = a−pn′

i

, t̂1 = t, t̂2 = ti and z1, z2 defined by this data as in Claim

1. Indeed, (a) holds by Corollary 3.1(3) and (b) is obvious (note
that a−pn ∈ f(Jn) \ {βn} ⊂ Ωn). Moreover, if (ci) breaks down,
since ti → t, then ti and t must lie at the same component of sn′

i
.

By the conclusion of Claim 1, a−pn′

i

∈ Wn′

i
(a′, r) for each i big

enough. Finally, as Aa′ consists of at most four points (therefore,
the sequence (a−ni

) has at most four limit points), Claim 2 follows.
8. Consider the case Xc = {a}. Let f−1(a) = {a−1, a

∗
−1}. By

steps 2, 3 and 5, a−1 6= a∗−1 and a−1, a
∗
−1 ∈ X. As Xc = {a},

there is a subsequence (ni) such that backward images a−pni
, a∗−pni

of a−1, a∗−1 respectively tend to the same point a. By Claim 2
Step 7, for each i large, a−pni

, a∗−pni
∈ Wni

(a, r). Therefore, the

following two sets (which are preimages of Wni
(a, r) by f pni ): Vni

:=
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gpni
,a−(pni

)
(Wni

(a, r)) and V ∗
ni

:= gpni
,a∗

−(pni
)
(Wni

(a, r)), are disjoint

with their closures (because preimages of B(a, r) along points of
X shrink exponentially) and both are contained in Wni

(a, r). Fix
such n = ni. Denote for brevity Jc,n = f(Jn). Then we get that, for
every j > 0, 2j preimages of a ∈ Jc,n by the map f jpn : Jc,n → Jc,n

are contained in the (disjoint) closures of Vn and V ∗
n . As the set of

all those preimages are dense in Jc,n, we get a contradiction with
the fact that Jc,n is a continuum.

9. Consider the remaining case Xc = {a, b}, a 6= b. As #K̃c ≤ 2,
each point a and b is accessible by a single ray Rt(a) and Rt(b)

respectively. Hence, any point u from the grand orbits of a and
b is a landing point of precisely one ray Rtu . Let us prove that
f−1(Xc) ⊂ X. Let f(w) = x ∈ Xc. By Lemma 4.2(i), one can find
y ∈ Xc and mi → ∞ such that σmi(ty) → tw and fmi(y) tends to
some point w̃ ∈ X. By Corollary 3.1, tw ∈ Aw̃. But σ(tw) = tx,
hence, f(w̃) = x and Aw̃ = {tw}. Thus w = w̃ ∈ X.

10. We have just proved that {a−1, a
∗
−1} = f−1(a) ⊂ X and

{b−1, b
∗
−1} = f−1(b) ⊂ X. Now, we repeat the consideration as

in Step 8. The sequences a−(pn), a∗
−(pn)

, b−(pn), b∗
−(pn)

must have

all their limit points in Xc. As r > 0 is small enough, B(a, r) ∩
B(b, r) = ∅. By Claim 2 of Step 7, for each n large, all 4 points
a−(pn), a

∗
−(pn)

, b−(pn), b
∗
−(pn)

are in Wn(a, r)∪Wn(b, r). Fixing n large,

for each disk B(x, r), x ∈ {a, b}, there are two univalent branches
of f−pn which are defined in B(x, r) such that they map Wn(x, r)
inside Wn(a, r) ∪ Wn(b, r). Hence, for every j > 0, 4j preimages
of Xc ∈ Jc,n by the map f j2pn : Jc,n → Jc,n are contained in the
(disjoint) closures of Wn(a, r) and Wn(b, r). As the set of all those
preimages are dense in Jc,n, we again get a contradiction with the
fact that Jc,n is a continuum.

Remark 5.1. The combinatorial property for quadratic polynomials
of Lemma 4.2 implies that if X ⊂ J∞ is a minimal hyperbolic set
then f−1(X) ∩ J∞ = X provided f is quadratic, and this leads
to a contradiction. Therefore, a small modification of the proof
gives us the following claim for infinitely-renormalizable unicritical
polynomial f(z) = zd+c with any d ≥ 2: J∞ contains no hyperbolic
sets X such that f : X → X is minimal and f−1(X) ∩ J∞ = X.

6. Final remarks

A hyperbolic set of a rational map always carries an invariant
measure with a positive Lyapunov exponent. Conjecturally, J∞ as
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in Theorem 1.1 never carries such a measure. We cannot prove this
conjecture in the full generality so far, but we can easily prove at
least that F := f |J∞ is not "chaotic". Namely,

1. Every F -invariant probability measure µ has zero entropy,
hµ(F ) = 0.

2. Topological entropy of F is zero, htop(F ) = 0.
Proving it we can assume µ is ergodic due to Ergodic Decompo-

sition Theorem, see e.g. [30, Theorem 2.8.11a)]. Start by observing
that, for every n and 0 ≤ j < pn, µ(f

j(Jn)) = 1/pn, hence, µ has
no atoms and µ(K) = 0 for every component K of J∞. There-
fore, if J ′

∞ = J∞ \ ∪n∈Zf
n(K0) where K0 is the component of J∞

containing 0 (see (B) of Sect. 2), then F : J ′
∞ → J ′

∞ is an au-
tomorphism. Suppose to the contrary that hµ(F ) > 0. Then 1.
follows from Rokhlin entropy formula, [30, Theorem 2.9.7], saying
that hµ(F ) =

∫
log Jacµ(F )dµ. Here Jacµ is Jacobian with respect

to µ, equal to 1 µ-a.e,. since µ must be supported on J ′
∞ ⊂ J∞

where F is an automorphism. A condition to be verified to apply
Rokhlin formula is the existence of a one-sided countable generator
of bounded entropy, proved to exist by Mañé, see e.g. [30, Lemma
11.3.2] and inclusion [30, (11.4.8)], due to positive Lyapunov ex-
ponent χµ(F ) :=

∫
log |F ′|dµ ≥ 1

2
hµ(F ) > 0 (Ruelle’s inequality).

Thus hµ(F ) > 0 has led to a contradiction.
2. follows from 1. by variational principle htop(F ) = supµ hµ(F ).
Compare item 4 in Section 5. Here finiteness of X is replaced by

zero entropy.
The same proof with obvious modifications holds for f(z) = zd+

c, d ≥ 2.
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