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NO HYPERBOLIC SETS IN J, FOR INFINITELY
RENORMALIZABLE QUADRATIC POLYNOMIALS

GENADI LEVIN AND FELIKS PRZYTYCKI

ABSTRACT. Let f be an infinitely renormalizable quadratic
polynomial and J. be the intersection of forward orbits of
"small" Julia sets of its simple renormalizations. We prove
that J. contains no hyperbolic sets.

1. INTRODUCTION

Let f be a rational function of degree at least 2 considered as a
dynamical systems f : C — C on the Riemann sphere C. An f-
invariant compact set X C C is said to be hyperbolicif f : X — X is
uniformly expanding , i.e., for some C' > 0 and A > 1, |[D(f™)(z)| >
CA™ for all x € X and all m > 0 (here D stands for the spherical
derivative and f™ is m-iterate of f). In particular, any repelling
periodic orbit of f is a hyperbolic set. The closure of all repelling
periodic orbits of f is the Julia set J(f) of f. Hyperbolic sets
of f are contained in J(f). Apart of repelling periodic orbits, f
admits plenty of infinite (Cantor) hyperbolic sets [30]. Attracting
periodic orbits (if any) along with their basins are contained in the
complement C \ J(f) (which is called the Fatou set of f). See e.g.
[3] for an introduction to complex dynamics and [31] for a recent
survey.

If J(f) is a hyperbolic set by itself, i.e., f : J(f) — J(f) is
uniformly expanding, then f is called a hyperbolic rational map.
Equivalently, all critical points of f are in basins of attracting cy-
cles. Hyperbolic rational maps are analogous to Axiom A diffeo-
morphisms and their dynamics has been intensively studied and
very well understood. The famous 'Density of Hyperbolicity Con-
jecture (DHC)’ in holomorphic dynamics - sometimes also called
the Fatou conjecture - asserts that any rational map (polynomial)
can be approximated by hyperbolic rational maps (polynomials) of
the same degree.
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In what follows f (unless mentioned explicitly) is a quadratic
polynomial f.(z) = 2?2 + ¢. The DHC (as well as a more general
MLC: Mandelbrot set Locally Connected) is widely open for the
quadratic family f., too (DHC for f. as strongly believed accumu-
lates in itself the essence of the general DHC). After a breakthrough
work of Yoccoz [10] on the MLC, the only obstacle for proving
DHC for quadratic polynomials are so-called infinitely renormaliz-
able ones, see [28].

Somewhat informally, a quadratic polynomial f. with connected
Julia set is called renormalizable if, for some topological disks U, V
around the critical point 0 of f, and for some p > 2 (called period
of the renormalization), the restriction f?: U — V is conjugate to
another quadratic polynomial f. with connected Julia set (see [6]
for exact definitions and the theory of polynomial-like mappings).
The map F' := f? : U — V is then a renormalization of f. and
the set K(F) ={z € U : F"(2) € U foralln > 1} is a "small"
(filled in ) Julia set of f.. If f. is renormalizable by itself, then
fe is called twice renormalizable, etc. If f. admits infinitely many
renormalizations, it is called infinitely renormalizable. Recall that
the renormalization F is simple if any two sets f/(K(f)), f/(K(F)),
0 <7< j <p-—1, are either disjoint or intersect each other at a
unique point which does not separate either of them.

To state our main result - which is Theorems[TT]- let f(2) = 2%+c
be infinitely renormalizable. Let 1 = pyg < p; < ... < p, < ... be
the sequence of consecutive periods of simple renormalizations of
f and J, denotes the "small" Julia set of the n-renormalization
(where Jy = J(f)). Then ppi1/pn is an integer, fP~(J,) = J,, for
any n, and {J,}°°, is a strictly decreasing sequence of continua
without interior, all containing 0. Let

Joo = ngO U?ial f](Jn>

be the intersection of orbits of the "small" Julia sets. J, is a com-
pact f-invariant set which contains the omega-limit set w(0) of 0.
Each component of J, is wandering, in particular, J,, contains no
periodic orbits of f. Note that a hyperbolic set in J, (if existed)
could not be repelling, that is any forward orbit of a point suffi-
ciently close to this set must be in the set itself, since otherwise
shadowing periodic orbits must be in J.

It is shown in 23] that the low Lyapunov exponent of the critical
value ¢ € J(f.) is always non-negative. In the considered case,
c € J. We prove:



Theorem 1.1. J, contains no hyperbolic sets.

Combined with the Fatou-Mane theorem [25] Theorem [I1] im-
mediately implies

Corollary 1.1. w(z) Nw(0) # O, for the omega-limit set w(zx) of
every T € Joo.

The conclusion of Theorem [LLI] would obviously hold provided
(1.1) Joo s totally disconnected.

(LT) is true indeed for many classes of maps (including real ones)
where it follows from ’complex bounds’ [33] (meaning roughly that
the sequence of renormalizations is compact) [17], [9], [24], [13], [14],
[15]. See also [11], [12]. However, (ILI) breaks down in general:
see [26], [32] for the existence of such maps and [1§]|, [19], [20]
(see also [9]) for explicit combinatorial conditions on f. for (L) to
fail. Yoccoz [35] posed a problem to find a necessary and sufficient
condition on the combinatorics of f. for (ILT]) to hold. At present,
the gap between known sufficient and necessary conditions is still
very big.

Another well-known open problem is to give necessary and suffi-
cient conditions so that the Julia set J(f) is locally-connected. For
example, if (ILT]) does not hold then J(f) is not locally-connected.
Theorem(I.I] implies

Theorem 1.2. Let f(z) = 2%+c and f has no irrational indifferent
periodic orbits. Then J(f) is locally-connected at every point of any
hyperbolic set X of f. In particular, there are at least one and at
most finitely many external rays landing at each x € X.

Remark 1.2. The case that f does have an irrational cycle seems to
be open and requires a separate consideration, see [4] though. Note
also that Theorem removes the only restriction in Proposition
2.11 of [1] for degree 2 polynomials without irrational cycles.

Theorem has been known for the following quadratic maps
f. If f has an attracting cycle, then f is hyperbolic and the whole
J(f) is locally-connected. The same conclusion holds if f has a
parabolic cycle [6]. The first part of Yoccoz’s result (see e.g., [10])
says that J(f) is locally-connected if f has no indifferent irrational
cycles and at most finitely many times renormalizable. This allows
us to reduce the proof of Theorem [[.2]to the case of f as in Theorem
[T, hence, by the latter, to the case when X is disjoint from J,, in
which case it is well-known that Yoccoz puzzle pieces shrink to each
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point of X [26], [21]. This shows that J(f) is locally connected at
points of X. The last claim follows then from [16], see also [34] and
[21].

Acknowledgment. We thank Weixiao Shen for helpful com-
ments. We thank the referee for many useful remarks that helped
to improve the paper.

2. PRELIMINARIES

Here we collect, for further references, necessary notations and
general facts which are either well-known [2§], [27] or follow readily
from the known ones. Let f(z) = 2%+c be infinitely renormalizable.
We keep the notations of the Introduction.

(A). Let G be the Green function of the basin of infinity A(co) =
{z|f™(z) = oo,n — oo} of f with the standard normalization at
infinity G(2) = In|z| + O(1/|z|). The external ray R; of argument
t € S' = R/Z is a gradient line to the level sets of G that has the
(asymptotic) argument t at co. G(z) is called the (Green) level of
z € A(oo) and the unique ¢ such that z € R, is called the (external)
argument (or angle) of z. A point z € J(f) is accessible if there is
an external ray R; which lands at (i.e., converges to) z. Then ¢ is
called an (external) argument (angle) of z.

Let o : St — S be the doubling map o(t) = 2t(modl). Then
f(R) = Ry ,

(B). Given a small Julia set J, containing 0, sets f7(.J,) (0 <
J < pn) are called small Julia sets of level n. Each f7(J,) contains
Prg1/Pn > 2 small Julia sets fit5n(J, 1), 0 < k < ppy1/pn, of
level n + 1. We have J,, = —J,. Since all renormalizations are
simple, for j # 0, the symmetric companion — f7(.J,,) of f7(J,) can
intersect the orbit orb(J,) = Ugialfj(Jn) of J, only at a single
point which is preperiodic. On the other hand, since only finitely
many external rays converge to each periodic point of f, the set J
contains no periodic points. In particular, each component K of
Joo is wandering, i.e., f{(K)Nf/(K)=0forall0 <i < j < oo. All
this implies that {z, —z} C J if and only if x € Ky := N2, J,.

Given x € J, for every n, let j,(x) be the unique j € {0,1,--- |, p,—
1} such that x € f7@(J,). Let J,, = f@(J,) be a small Julia
set of level n containing z and K, = N,>0Jyn, @ component of Jo,
containing x.

In particular, Ky = N,,>0J,, is the component of J., containing 0
and K. =N, f(J,), the component containing c.
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The map f : K, — Ky is one-to-one if z ¢ K, while f :
Ko\ {0} — K.\ {c} is two-to-one. Moreover, for every y € J,
71 (y) N J consists of two points if y € K.\ {c} and consists of a
single point otherwise.

(C). Given n > 0, the map f : f(J,) — f(J,) has two fixed
points: the separating fixed point «,, (that is, f(J,,) \ {a,} has at
least two components) and the non-separating £, (so that f(J,) \
{,} has a single component).

For every n > 0, there are two rays R, and R; (0 <t, < t, < 1)
to the non-separating fixed point 3, € f(J,) of fP* such that the
component €, of C\ (R, UR; U f,) which does not contain 0 has
two characteristic properties:

(i) ©,, contains ¢ and contains no the forward orbit of 3,

(i) for every 1 < j < p,, consider arguments (angles) of the
the external rays which land at f7=!(3,). The angles split S* into
finitely many arcs. Then the arc

Sn,l = [tn,th] == {t : Rt C Qn}

has the smallest length among all these arcs.
Denote

o=ty g,

n " opn " on
The rays Ry, Rp land at a common point £, € f7"(5,) N Q.
Introduce an (unbounded) domain U,, with the boundary to be two
curves Ry, U Ry U, and Ry U Ry U Bl In other words, U, is a
component of f~P»(€,,) which is contained in ,,. Then ¢ € U,, and
P U, — €, is a two-to-one branched covering so that

(2.1)  f(J) = {2l (2) € Un, G(f*(2)) <10,k =0,1,..}.
Moreover, for any n, the closure of U,,; is contained in U,. We
denote
St = [tn, to) U [t o).
Then s, ; C 5,1 and
of" sy = Sha

so that oP" is a homeomorphism of each component of s, ; onto
Sp,1- End points t,,, t, of Sy,1 are fixed points of oP». It’s important
to note that S,111 C Sni1, Sn1 C Spt11 for all n and the length
(#, — t,,) /2P of each of the two components of s, ; tends to zero as
n — oo (while the length [t,, —#,| of S,,; can stay away from zero).

From now on, given a compact set Y C J(f) denote by Y the set
of arguments of the external rays which have their limit sets in'Y .
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For each k > 0 the boundary of the set {z : f*~(2) € U, }
consists of rays and (pre)periodic points. It follows that if a ray
has at least one limit point in f(.J,) then all its limit points are in

f(Jn), and (2.1)) implies that

(2.2) f(Jn) = {t|o?""(t) € 51,5 = 0,1, ...}
So f/(},S is a Cantor set, in particular, closed. Let us show that
(2.3) K. =0 5,1

e~

Indeed, ¢t € K, implies t € f (Jn) C sn1, for each n. Vice versa, let
t € N> 8,1. It is enough to show that ¢ € f(.J,,) for each n (which

would indeed imply that the limit set of the ray R; belongs to f(.J,)
for all n, ie., t € K.). Fix n and find a sequence t,, € Osy,, 1, such such

that t,, — t as m — oo. On the other hand, 9s,,1 C f(/, )Cf( )

because f(J,,) C f(Jn) for m > n. As f(J,) is closed, t € f( In)-
This proves (2Z3)).

It implies that K. is either a single-point set or a two-point set.
In particular, K. contains at most two different accessible points.
As f: Ko\ {0} — K.\ {c} is two-to-one, Ky = 0~ (K,) consists of
either 2 or 4 points.

Let us give, for completeness of the picture, a similar description
of K for each component K of J,, (Lemma 1], see below). It will
be needed for the proof of Lemma [£.2] part (ii). Note, however,
that part (ii) of Lemma is not used in the proof of the main
result.

Let
Sn,j = Uj_l(sn,l) = [tn,jat/n,j] U [F t ] 1 < ] < Pn;s

where t,; = 097(t,), tn; = o/ (), t, = o/7(t;,), and Elng =
071 (t). Then

7.7’

En —tn

So o7 ¢ 5,1 — s, is a homeomorphism and s, ; has two compo-
nents ('windows’) [t,;, ¢, ;] and [£], ., 1, ;] of equal length. However,
o’ (Sp,1) can cover the whole circle St for some j < p,,. For this rea-
son, an analogue of (2.1]) breaks down if j is big. For j = 1,2, ..., p,,
let U,; = f77Y(U,) and B,; = f77'(8,). The domain U,  is
bounded by two rays Ry, ;U R; = converging to Bn,; and completed
by B,.; along with two rays Rt/ URt/ completed by their common
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limit point f771(f,). Let U}, be a component of f~®»=i+1(lJ,)
which is contained in U, ;. Then

(2.5) frr Uy = Unj
is a two-to-one branched covering, and

(2.6) YT = {z|f*(2) € U, ., G(f**(2)) < 10,k = 0,1, ..}

n,)’
Note that this is consistent with (2] for j = 1. Similar to j = 1,
if a ray has at least one limit point in f/=%(J,) then all its limit
points are there.

Let si,j be the set of arguments of rays entering U,lw-. Then
Si,j C sp,; consists of two pairs of components (1-'windows’) where
each pair is adjacent to two end points of one of the 'windows’
of s, ;. Moreover, oP" : sim- — Sp,; 1 a two-to-one covering which
maps each of four 1-’'windows’ of s,llvj homeomorphically onto one of
the two 'windows’ of s, ;. Correspondingly, for each j = 1,2, ..., p,,

—_——

(2.7) fi(J,) = {tle™(t) € s- ., k=0,1,..}.

n,j’
As (2.0) is consistent with (2.1]) for j = 1, (2.7)) is consistence with
22) for j = 1.
Given n, j, denote by A,, ; the length of each "'window’ of s,, ; and
by A}, ; the length of each 'window’ of s}, ;. By [24)), A, ; = 5=

opn—j+1

A _ : o
and A} ; = 522 So A}, <27 — 0 uniformly in j as n — oo.

Let K be a componeﬁt of J:
K= mzozlfjn(‘]n)v
where 1 < j,, < p, and f7+1(J,41) C fi(J,).

Lemma 2.1.

(2.8) K=, s, .
where {s,,; }o2, is a decreasing sequence of compacts each con-
sisting of four 1-"windows’ with equal lengths tending to zero as
n — oo. In particular, K consists of at most 4 points. There is an
alternative (1)-(2):
(1) either p, — jn — 00 as n — oo so that the length of each
‘window’ of s, j, tends to zero, moreover,

(2.9) K =02 50,
so that #K € {1,2} in this case.
(2) there is N > 0 such that p, — j, = N for all n, so that
fYE) = Ko.
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Proof. (2.8)) is very similar to the proof of (23] and is left to the
reader. As for the alternative (1)-(2), assume that there is N > 0
such that, for an infinite subsequence (n’) C N, p,y —j,» = N. Then
fN(K> = mn’fn,(Jn’) = mnfn(Jn) = K07 hence, Pn _.jn = N for
all n. This explains why either p, — j, — oo or p, — 7, = N for
some N > 0 and all n. Consider the case p, — 7, — oo. Then
by (2.4) the length A, ; of each 'window’ of s, ;, tends to zero
uniformly in j,. Repeating again the proof of (2.3)) we get that
Mo 18njn = Moy 5y, ;.- This settles the alternative. U

(D1). Consider in more detail the case when K. = {7, 7},
71 # T2. Let S, be the shortest arc in S with the end points 71, 7».
It follows from (C):

loo: 0F(7;) € S., for i = 1,2 and all k > 0,

2.o: for each k > 0, the length of arcs with the end points o* (1),
o%(7,) is bigger than or equal to the length of S,,

300: (unlinking) for each positive j # k, one of the two arcs S\
{o*(71),0%(m2)} contains both points ¢7(r;),07(3). Furthermore,
as Ky = o' ({m, 7 }), the set K splits the unit circle S* into 4 arcs
in such a way that, for each j > 0, both points ¢7(7), 07 (72) have
to lie in one and only one of these arcs. In particular, o7 (1), 07 (1)
lie in one and only one of semicircles S\ o7!(7;), for each i = 1, 2.

Remark 2.2. Let us put the 'unlinking’ property in the context of
Thurston’s laminations’ [34]. Consider a topological model of J(f)
by shrinking all components of J, as well as all their preimages to
points. More formally, let’s build a lamination (a special equivalent
relation on S') as follows [34], [16]: as all periodic points of f are
repelling, each (pre)periodic point is a landing point of at least one
and at most finitely many rays. Let us identify arguments of such
rays for each such point and take a closure of this partial relation to
the whole S'. The resulting relation is invariant under the map o :
S! — St For visualization, this relation is usually extended to the
closed unit disk by taking the closed convex hull in the Euclidean
plane of each equivalence class. Then obviously different convex
hulls (classes) are disjoint. For example, o~ ({7y,72}) is a single
class, and 07(1;),07(7,) is the other one, for each j > 0, so their
convex hulls are disjoint. The property HEK <2 (which is proved in
Lemma[2T]) for any component K of J,, other than preimages of K
is, in fact, a very particular case of the fundamental 'no wandering
triangle’ property of unicritical laminations [34], [21].
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(D2). Given v € [0,1) there exists a unique minimal rotation
set A, C S* of ¢ : S — S* with the rotation number v [2]. Recall
that a closed subset A of S! is a rotation set of o with the rotation
number v if 0(A) C A and o : A — A extends to a map of S* which
lifts to an orientation preserving non-decreasing continuous map
F: R — R with F' — Id to be 1-periodic and the fractional part of
the rotation number of F' to be equal to v. Then [2] v is irrational
if and only if A, is infinite, in this case there is a unique closed
semi-circle containing A, so that the end points of this semi-circle
belong to A,. Finally, any closed o-invariant set A C S! which is
contained in a semi-circle is a rotation set of o.

3. ACCESSIBILITY

We define a telescope following essentially [29]. Given x € J(f),
r>0,0>0,keNandke€ (0,1), an (r, K, 0, k)-telescope at x € J
is collections of times 0 = ng < n; < ... < ni = n and disks B; =
B(f™(x),r), l =0,1,...,k such that, for every [ > 0: (i) I/n; > &,
(ii) there is a univalent branch g,, : B(f™(z),2r) — C of f~™ so
that g,,(f"(x)) =z and, for [ = 1,....k, d(f™ ' 0 g, (B)),0B;_1) >
§ (clearly, here f™-10g, isa branch of f~(m=™-1) that maps f™(z)
to f™-1(z)). The trace of the telescope is a collection of sets B,y =
gnl<Bl)7 [ = 0,1,...,]{7. We have: Bk70 C Bk—l,O C ... C BLO C
Boo = By = B(xz,r). By the first point of intersection of a ray Ry,
or an arc of R, with a set ' we mean a point of R, N E with the
minimal level (if it exists).

Theorem 3.1. [29] Givenr >0, k € (0,1), 6 > 0 and C > 0 there
exist M > 0, [,k € N and K > 1 such that for every (r,x,0,k)-
telescope the following hold. Let k > k. Let ug = u be any point
at the boundary of By, such that G(u) > C. Then there are indexes
1<lhi<lb<..< lj =k such that l; < Z, li-l—l < Kl“ 1=1,...,9—1
as follows. Let uy = gy, (u) € 0By and let vy be an infinite arc of
an external ray through uy, between the pint uy, and co. Let uy j = uy
and, for l =1,...,k =1, let uy; be the first point of intersection of
Y& with 0B, o. Then, fori=1,...,7,

G(um) > M2,
Applying Theorem Bl as in [29] (where the existence of a ray

to x is proved assuming (r, k, d, 00)-telescope to x) we obtain the
following statement. See also [I] for a direct proof of part (1).

Corollary 3.1. Let X be a hyperbolic set for f. (1) To every point
x € X one can assign a non-empty set A, C St such that for every
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t € A, the external ray Ry lands at x. (2) The set A = {(z,t) :
r € X,t € A,} is closed in C x S'. (8) Moreover, for each ji > 0
there is C(u) > 0 such that for all x € X and all t € A, the first
intersection of Ry with OB(x, 1) has the level at least C(u).

Proof. As f: X — X is expanding, there exist A > 1, p > 0 and j
such that, for every z € X and every k > 0, there exists a (univa-
lent) branch gy, : B(f*°(z),p) — C of f~%0 with gy .(f*°(z)) =
z and |g; . (y)/gr.(2)] < 2 for y,z € B(f*(x),p). Moreover,
|91 2(2)] < A" for all k > 0 and € X. Therefore, there are r > 0,
d > 0 and Kk = 1/jp such that for any & > 1, every point x € X
admits an (r, k, J, k)-telescope with ny = kjo. In fact, n; = ijy for
1= 0, 1, s ,]{7. Let Bho(l’) C Bk_Lo(l’) c.--C Bl’o(iﬁ) - BQQ(JI)
be the corresponding trace. Define Cy = infyc j(y) max.cp,r G(2).
It is easy to see that Cy > 0. For each z € X we choose a point
u(z) € 0B(z,r) such that G(u(z)) > Cy. By Theorem B, there
are [ and k such that for each k > k and each 2 € X the following
hold. There are 1 <1y x(z) < lpx(z) < -+ < ljz x(x) = k such that
hi(@) <1 lipap(z) < Klg(z), i = 1,--+ji =1 . Let y(z) be
an arc of an external ray between the point ug(z) = gy, . (u(f*°(x))
and oo. Let ug () be the first intersection of v (z) with 9B, o(z).
Then, for¢e=1,---,j7 — 1,

(31) G(uszk('r)) > M2 lik(@o
Foralli=1,---,jF — 1,
(3.2) i < lig(z) < KL

Denote by ti(z) the argument of an external ray that contains the
arc Yg(x). It is enough to prove in the situation above

Lemma 3.2. (i) If (v)m>0 C X, & — y and ty,, () — 7 for
some k,, — 00, then R, lands at y. (ii) Moreover, for each p > 0
there is C(u) > 0 such that for all pairs (y,T) like this the first
intersection of R, with OB(y, 1) has the level at least C(u).

Indeed, assuming this lemma, we can define A, as the set of all
angles t so that there exist z,, € X and k,, — oo with z,, — =
and ty, (z,,) — t. The set A, is not empty because one can take
T, = z for all m and k,, — oo such that {t;, (z)} converges. By
Lemma B.2)(i), the ray R; indeed lands at the point x. It is then
an elementary exercise to check that the set A is closed. Claim (ii)
implies obviously the part (3).
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So, let’s prove Lemma 3.2l Let (y,7) be as in the lemma. Pick
any p € (0,7). Fix [y so that A~or < /2 and let
M
(3.3) Cp) = STk
There is mg such that for all m > mg and all [ > Iy, By, o(2m) C
B(y, pt). Then, by [B.1)-B2), for every m > my,

(3.4) G (ki dig gy, (Tm)) > C ).

Hence, for every m > my the first intersection of 74, (x,,) with
B(y,p) has level at least C(u). This implies that, given C €
(0,C(p)), for any m > my, an arc of the ray Ry, () between
the levels C' and C'(u) does not exit B(y, ). As this sequence of
arcs tend uniformly, as m — oo, to an arc of R, between the levels
C' and C(u), this latter arc is contained in B(y, ). As C' > 0 can
be chosen arbitrary small, the ray R, must land at y and its first
intersection with B(y, pt) has the level at least C'(u). Lemma [3.2is
proved. O

4. A COMBINATORIAL PROPERTY

Let f be an infinitely-renormalizable quadratic polynomial. First,
we prove the following combinatorial fact (a maximality property)
about f.

In the course of the further proofs the following well-known easy
statement about expanding maps is used (for a more general theo-
rem about expansive maps, see e.g. [§]):

Proposition 4.1. Let h be a homeomorphism of a compact metric
space (S, d) onto itself which is expanding in the following sense:
there are § > 0 and A > 1 such that d(h(x),h(z")) > Ad(x,z’)
whenever d(z,z") < 6. Then S is a finite set.

Let w(t) be the omega-limit set of ¢t € S' under o : t — 2t(mod1)
and w(E) = Uepw(t).
Lemma 4.2. (i) 07'(K.) C w(K,)

(i) Joo = w(K,).
Remark 4.3. Only part (i) is used in the proof of Theorem [L1l

Part (ii) seems to be of an independent interest and is included for
completeness.

Proof of (i). (a) Consider o : Jso — Joo. Each t € J,, belongs to
K, for one and only one component K of J. By (B), one and only
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one component K~—! of f71(K) is a component of .J,, moreover,
f: K™ — K is a homeomorphism if K # K, and f: K, \ {0} —
K.\ {c} is two-to-one. Hence, 0~1(t) N Jy is a single point for
t ¢ K, and two different points for ¢t € K.. On the other hand, for
each t € S', ¢ maps w(t) onto itself. Since o : Jo, — Jo has no
periodic points, by Proposition 4], for each t € Joo, the expanding
map o : w(t) = w(t) is not injective. Therefore, w(t) N K, # @ for
all t € Jy.

(b) If K, consists of a single angle 7., then (a) implies that there
is a single point ¢ € w(7,) such that c7'(¢) C w(7.) and, moreover,
t = 7.. Therefore, 07!(7.) C w(7.) and we are done in this case.

(¢) It remains to deal with a two-point set K, = {r,7}. Let
us assume the contrary, i.e., 07!(7) U 07! (72) is not a subset of
w(K,) = w(r) Uw(m). Hence, by (a) and by the assumption,
either 071(71) or 071(7) is a subset of each w(7;), i = 1,2. Let,
say, 0 '(1;) C w(m) Nw(m). By the assumption, there is 7 €
o0~ (7y) such that 7 ¢ w({r,7}). Let L be a (open) semi-circles
S\ o~!(7;) that contains 7. We claim that it is enough to show that
for each p,, and some j, > 0 the arc L contains ¢/*P»~1(7;). Indeed,
assume this is the case. Then, by (D1)3.,, Sect. 2l L must contain
one of the arcs S* \ {o/"?»~1(7y), 0"P»~1(13)} and, by (D1)2., the
lengths of all such arcs are uniformly away from 0. Hence, there
is a subsequence n; — oo such that the sequences g’riPni=1(7)
and g’n:P~1(1y) converge to points a; and ay respectively, where
a1 # as and a1, as € L. On the other hand, a1, as € K’o. But, from
the assumption, Ko N L = {7}. Therefore {a;,as} C {r,07 (1)}
Since ay,as € w({m,}) while 7 ¢ w({m,2}), we conclude that
{a1,as} = o7 (11). But then o/ (1) and o’ (15) converge to
the same point 77 which is a contradiction with (D1)2.

(d) To show that, for each n, the arc L contains a point ¢/»P»~1(7y),
for some j, > 0, let us assume the contrary. So, we fix n > 0 and
assume that A := {77! (1) : j > 0} C L/ := S*\ L. The idea is to
show that the set A corresponds to a rotation set Ay of o : S — S?t
and use a certain structure of later sets 2], see (D2) of Sect. 2 to
arrive at a contradiction.

Following the notations of (C), let Q0 = f~1(Q,) and U? =
f~YU,). To connect it to other notations introduced in (C), Q% =
Unp, = fr"'(Up) and UY = U, . Then J, = {z]f"(2) €
U9, G(fP(z)) < 10,5 = 0,1,---}. The domain €0 is bounded
by two bi-infinite curves T',,, I/, (components of f~1(9,)) and two
angular (closed) "arcs at infinity" which are components Sy, S,
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of 071(S,,1) where S, ; = [tn,tn], 0 < t, < t, < 1. In fact, Sn,0, S0
are two components of s, , = ap”_l(sml). Arguments of rays en-
tering UD form the set Snpn C Snp, consisting of four 1-’widows’
such that P~ is a homeomorphism of each of them onto either 5, o

or Sy, o- By @D), Jn = fr(Jn) = {tlo*P(t) € np k=0,1,..}.
Let us specify I',, to be such component of f~(9€2,) that contains
fPr=Y(B,) (in other words, fP(I',) = T,), and S, to be the first
"arc" as one goes from T, to I/, inside of 2 in the counterclockwise
direction along the "circle at infinity". In other words, S, ¢ denotes
the component of 071(.9,, 1) that contains o?»~(¢,,) in its boundary.

Now, let €(t) = 0ift € S0 and e(t) = 1ift € S, ;. Toevery t € J,
we assign a point 6(¢) € S as follows:

L e(aIPn(t
Z 23+1
7=0

Then 6(J,) = S*, fo o = g o6, and 6 : J, — S extends to
a continuous monotone degree one map S' — S see [7], [27],
[22, Theorem 3|. Moreover, 6 is injective on a subset T ={te
Ju|o™n (t) & O(Sno U Sh), k> 0}. Note that Joo C T where J is
closed. Besides, f(o = o '{m,}) and A = {o7P (1) : j > 0}
are subsets of Jo C T. If 6 := 6(71/2) then 6, = 0(r1/2 + 1/2) =
0o + 1/2. Therefore, from the assumption, the set Ay := 0(A) is a
subset of a semi-circle Cy, with end points 6y and 6,. As o (A) C
A, then o(Ag) C Ay. It follows [2] (see (D2) of Sect. 2lin the present
paper) that the set Ay is a rotation set of o : S* — S*. Let E C A,
be a closed subset such that o : £ — E'is minimal. As AC Joo cT
where J, contains no periodic points of P, E contains no periodic
points of 0. Hence, F is infinite. By [2], see (D2), for every closed
infinite minimal rotation set of o there is a unique closed semi-circle
containing it and in this case the end points of the semi-circle belong
to the set. Thus 6y, 0p+1/2 € E C Ay C Cy,. Coming back to the f-
plane, we find two sequences j;, ji — oo so that giPr=1(7) — 71/2
and ¢7P"~1 (1) — 71/2 4 1/2 inside of the same semi-circle L’ with
the end points 71/2, 71/2 + 1/2. But then ¢/#" (1) and o7 (1)
both tend to 7 from different sides, in a contradiction with (D1)1
This completes the proof of part (i) of the statement.

Let us prove part (ii). Obviously, w(K.) C Jo. To show the
opposite, given t € J let K be a unique component of J,, such
that t € K. Let K = Np>1f"(J,). By Lemma 2] there is an
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alternative: either (1) p, — j, — 00 as n — oo and K = N2 s,
or (2) there is N > 0 such that f¥(K) = Ky, i.e., p, — jn = N for
all n. In case (2), f¥ : K — Kj is a homeomorphism, which implies
that oV : K — Kj is also a homeomorphism. Hence, if s € K is a

point of w(kK,), then 0N|[_~{1(3) is also a point of w(K,). On the other

hand, by part (i), Ko = 0~ '(K.) C w(K,). Therefore, t € w(K,)

in case (2). In case (1), {t} = mni)lss)jn where sg)]n
t

()
n,1 n,Jn

is one of the

two 'windows’ of s, ;,, and o’ : 5.’} — s, is a homeomorphism

t) . . .
where of course 31(1)1 is one of the two 'windows’ of s,, ;. Hence, it’s

enough to show that each 'window’ of s, contains points of the
orbit of K.. As f(O = MNySp,1, in the case #KC = 2, for all n big
enough, each 'window’ of s,, ; contains one and only one of the two
points of R'C, and we are done in this case. In the remaining case,
f(c is a single point which lies in one of the two 'widows’ of s, 1,
for each n. But, as 0P maps each 'window’ of s, ; onto S, 1 D 55,1
homeomorphically it is obvious that each 'window’ of s,, ; contains

e~

infinitely many points of the oPr-orbit of any ¢y € f(.J,,) provided
no point of this orbit hits 95, ;. In particular, this applies to points
of K This completes the proof. O

Remark 4.4. In case (1) we proved more: if t € Jno is such that
oV(t) ¢ K, for all N > 0, then t € w(7) for each 7 € K...

5. PROOF OF THEOREM [I.1]

1. Assume the contrary and let X C J,, be a compact f-invariant
hyperbolic set. In particular, Corollary B.1] applies.

2. Replacing X by its subset if necessary we can assume that
f: X — X is a minimal map.

3. 0 ¢ X, hence, ¢ ¢ X, too.

4. As J, contains no cycles, X is an infinite set. If we assume
that f : X — X is one-to-one, then f : X — X is an expanding
homeomorphism of a compact set, therefore, X is finite, a contra-
diction with Proposition E.11

5. Thus f : X — X is not one-to-one. Then, by (B), X, :=
X N K, # (. On the other hand, by step 3, ¢ ¢ X..

6. By (C), K, consists of either one or two arguments. As any
point of X is accessible, X, consists of either one or two different
points. Let z; € X, and xo € J(f) be any other point. Given
r > 0 and n, let W,,(x1,7) be a component of B(zy,7) N Q, (see
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(C), Sect. B where €, is defined) that contains the point z;. We
use repeatedly the following

Claim 1. Given# > 0 and C > 0, there isn € N as follows. For
k = 1,2, suppose that, for some angles ty,, the ray R;, lands at xy
and let z;, be the first intersection of R; with OB(wy,7/2). Assume:
(a) G(z) > C for k =1,2, (b) xy € Q and |z, — 25| < 7/3, (c)
one of the following holds: (i) t, —t, — 0 as n — oo, or (i)
t1,ty belong to a single component of s,1 = [tn, th] U [, t.]. Then
xo € Wy (21,7) for each n > n.

Indeed, the length of each component of s, ; goes to zero as
n — oo. Hence, as 7 and C are constants and n is big enough,
condition (c) implies that a curve which consists of an arc of Ry,
from z; to 21, then the shortest arc of the equipotential containing
21 from 2; to the first intersection uy with Rz, and then back along
R;, from uy to x belongs to €2, and B(z;,7) simultaneously.

7. Fix r > 0 small enough. Let a € X, and a_; € X be such
that f(a_1) = a. As a_y € Ky N X, there is its uniquely defined
backward orbit {a_,}*°_; C X, f(a—m-1) = G_m, m > 1. Let o
be a limit point of the sequences a_,,, i.e, ' = lim; ;o a_p, . As
a—p, € f(Jn), @ belongs to K. and X at the same time, that is,
a e X,.

Claim 2. For all i large enough, a_,, € W, (a',r).

Indeed, by Corollary B.1] there is a subsequence (n}) of (n;) and

a converging sequence t; € A,L(p ) such that ¢ := lim; , t; and

t € 