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Abstract. In 2005 Dullin et al. proved in [8] that the non-zero vector of

Maslov indices is an eigenvector with eigenvalue 1 of the monodromy matrices

of an integrable Hamiltonian system. We take a close look at the geometry

behind this result and extend it to a more general context. We construct a

bundle morphism defined on the lattice bundle of an (general) integrable sys-

tem, which can be seen as a generalization of the vector of Maslov indices

introduced in [8]. The non-triviality of this bundle morphism implies the exis-

tence of common eigenvectors with eigenvalue 1 of the monodromy matrices,

and gives rise to a corank 1 toric foliation refining the original one induced

by the integrable system. Furthermore, we show that in the case where the

system has 2 degrees of freedom, this implies the global existence of a free S1

action.

1. background and motivation

An integrable Hamiltonian system contains the following ingredients: a 2n di-

mensional symplectic manifold (M,ω) as the phase space, an integral map F =

(f1, ..., fn) : M → Rn which is regular almost everywhere, Hamiltonian vector

fields Xi for i = 1, ..., n with fi as the Hamitonians and the commutativity condi-

tion: [Xi,Xj ] = 0. The commutativity of the vector fields Xi induces a Hamiltonian

Rn action Φ on the phase space M given by Φ(t1,...,tn)(p) = ϕt1
1 ◦ ... ◦ ϕtn

n (p) with

ϕi being the flow of Xi for each i. The nondegeneracy of the symplectic form ω

implies that X1, ...,Xn are linearly independent wherever DF = (df1, ..., dfn) has

full rank.

When a regular orbit of Φ, i.e. an orbit consisting of regular points of F , is compact,

it is an n dimensional Lagrangian torus. The region M0 consisting of compact

regular orbits of Φ thereby admits a Lagrangian toric foliation F with these n−tori
1
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as the leaves. The Arnold-Liouville theorem shows that near each of the leaves the

foliation is nice in the sense that local action-angle coordinates exist. However,

topological and geometric obstructions prevent in general the global existence of

action-angle coordinates. This has been investigated by Duistermaat in [7]. The

non-triviality of the torus bundle F−1(C) over some loop C lying in the set of

regular values of F serves as one of these obstructions, and it is characterized by the

monodromy matrix MC of the bundle. One should note that here for simplicity, we

have assumed each level set F−1(c) with c ∈ C to consist of a single orbit. However,

in general, F−1(c) can contain more than one orbits and hence F−1(C) → C is not

necessarily a torus bundle. We will deal with this problem later in a more rigorous

way.

Via the Bohr-Sommerfeld quantization of actions, their global non-existence mani-

fests itself in quantum mechanics as the non-existence of global quantum numbers to

assign the joint spectrum of commuting operators that are the quantum analogues

of the functions fi. Here Maslov indices determine whether the actions are required

to be integer or half-integer multiples of Planck’s constant. From a geometric point

of view, the Maslov index of a closed curve of Lagrangian planes counts the number

of intersections of such a curve with a chosen Maslov cycle Σ. Usually Σ is induced

by some Lagrangian vector subbundle V of the tangent bundle TM , and the curve

of Lagrangian planes is the one induced by a curve on some Lagrangian submanifold

in the natural way. One can think of V as a reference and then the Maslov index

describes how the Lagrangian planes rotate with respect to the reference along the

curve. In particular, when M is the cotangent bundle of another manifold N , V is

usually taken as the vertical distribution of T ∗N =M .

For a regular value c0 of F , a set of closed curves {λ1, ..., λn} on the Lagragian torus

F−1(c0) can be taken such that [λ1], ..., [λn] constitute a basis ofH1

(

F−1(c0)
)

∼= Zn.

Let ai be the Maslov index of λi. The main result in [8] shows that when it is non-

zero, the vector of Maslov indices (a1, ..., an) is an eigenvector with eigenvalue 1 of

the monodromy matrices MC for all loops C of regular values of F based at c0. As

is pointed out in [8], one implication of the result is that a Hamiltonian S1 action

exists on the space F−1(C). Moreover, it also imposes some restrictions on the

forms of the monodromy matrices.

A close look at the result in [8] suggests that there should be a more general under-

lying structure. Namely, on the one hand, the monodromy matrices are determined

solely by the foliation F. On the other hand however, the Maslov indices depend

on the choice of the Maslov cycle, or say, the Lagrangian subbundle V . A change

of the reference may result in a change of the triviality/non-triviality of the vector
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of Maslov indices, but it affects neither on the foliation nor on the monodromy ma-

trices. It is then natural to ask whether we could restate the result in [8] in terms

of the topology of M0 or F. This could then not only give a new interpretation in

different terms, but also a generalization of the result in [8] to a broader context.

It turns out that we are able to work this out with a more general class of inte-

grable systems which is to be defined in the next section. These systems are called

integrable non-Hamiltonian systems in the literature (e.g. see [2, 13]). Note that

the phrase ‘non-Hamiltonian’ here means ‘not necessarily Hamiltonian’, and the

notion also includes all integrable Hamiltonian systems. No symplectic structure

will be required for the definition of such a system, and the M is not necessarily of

even dimension.

2. basic settings and layout of the paper

Since we are concerned with the toric foliation on the domain of compact regular

orbits of Φ, we for simplicity, make some assumptions that lead to the following

definition of a regular integrable non-Hamiltonian system with compact orbits.

Definition 1. A regular (non-Hamiltonian) integrable system of type (k, n) with

compact orbits is a triple (M,F,Φ) where M is an k + n dimensional smooth

manifold, the integral map F = (f1, ..., fk) : M → Rk is a submersion and Φ is an

effective Rn action with compact orbits such that F ◦ Φ(t1,...,tn)(p) = F (p).

Remark 2. Unless otherwise stated, M is assumed to be connected in this article.

Since the orbits of Φ are compact, they are n−tori and thereby constitute a toric

foliation F on M . As mentioned earlier, the map F : M → Rn is in general not a

torus bundle since a level set of F may contain more than one orbits. In order to

get a torus bundle, we introduce the orbit space OM , whose elements are the orbits

of Φ. The bundle L of period lattices will play a central role in our discussion. This

is a bundle over the orbit space OM where the fibers are the isotropy subgroups

of the action Φ. Under Definition 1 both these spaces have nice structures and

properties, and they will be discussed in detail in Section 3 and Section 4.

The definitions of monodromy maps and monodromy matrices will be formally

introduced in Section 5 along with their basic properties.

The main construction and results are given in Section 6. This comprises a bundle

epimorphism ρ = (ρ1, ..., ρl) from L to Zl for some integer l ≤ n. This is a purely

topological object associated with the system (M,F,Φ), and as we will see in Section

7, ρ can be seen as a generalization of the vector of Maslov indices. When l > 0,

each component of ρ is a common eigenvector with eigenvalue 1 of the (transposed)
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monodromy matrices. This will have implications on the toric foliation F, and in

the case of n = 2, it implies the existence a free S1 action on M which commutes

with Φ. The precise statements of these results form the main results of this paper:

Theorem 18 and Theorem 19 in Section 6.

In Section 7, we revisit the case of integrable Hamiltonian systems. We show that

the vector of Maslov indices being non-zero implies the non-triviality of ρ, and then

show how the result in [8] follows from our construction and results. Moreover,

with Audin’s conjecture (which has been proved), our results lead to the existence

of a free S1 action for integrable Hamiltonian systems on R4, which is stated as

Theorem 22.

The appendix is devoted to a technical proof of the local triviality of the lattice

bundle L and an illustration on how the monodromy matrix MC determines the

torus bundle F−1(C) → C.

3. the orbit space OM and the lattice bundle L

In this section we study the orbit space OM and the lattice bundle L associated to

a regular integrable system (M,F,Φ) of type (k, n) with compact orbits.

By ∼Φ we denote the equivalence relation on M such that p ∼Φ p′ if and only if p

and p′ are on the same orbit of Φ. The orbit space OM is the quotient spaceM
/

∼Φ,

that is, each element of OM represents an orbit of Φ. Then F factors as F = F̄ ◦ qΦ

with qΦ :M → OM =M
/

∼Φ being the quotient map and F̄ : OM → Rk.

Note that for any open set W in M , q−1
Φ

(

qΦ(W )
)

= ΦR
n

(W ) is open. This implies

that qΦ(W ) is open, and therefore qΦ is an open map. Since each orbit is compact,

OM is Hausdorff. Since F is a submersion, for any o ∈ OM and p ∈ o, there exists

a local section σ of F over some open neighbourhood U of b = F (p) such that

σ(b) = p. Then V = qΦ ◦ σ(U) = qΦ
(

ΦR
n

◦ σ(U)
)

is an open neighbourhood of

o and qΦ ◦ σ : U → V is the inverse of F̄
∣

∣

V
: V → U . Therefore F̄ is a local

homeomorphism. Choose an open covering {Vα} of OM such that F̄α = F̄
∣

∣

Vα
:

Vα → Uα is a homeomorphism for each α. Then {(Vα, F̄α)} is a smooth structure

on OM and naturally it makes F̄ a local diffeomorphism. Since F = F̄ ◦ qΦ and

F is submersive, such a smooth structure makes qΦ a submersion. The discussion

here yields the following proposition.

Proposition 3. There exists a unique smooth structure on OM such that qΦ is a

submersion and F̄ is a local diffeomorphism.

As in the case of Hamitonian integrable systems, for any p ∈M the isotropy group

Tp ⊂ Rn of Φ at p is a free Abelian group of rank n [5], and Tp = Tp′ if p and
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p′ are on the same orbit. Hence for any orbit o ∈ OM , define its period lattice to

be Lo = Tp with any p ∈ o. The lattice bundle is then defined as L =
⊔

o∈OM
Lo

and it then naturally holds L ⊂ OM × Rn. Denote by πL the natural projection

L → OM : (o, T ) → o and endow L with the subspace topology inherited from

OM × Rn. The following basic fact holds and its proof is inherent in the proof of

the (Hamiltonian) Liouville theorem in [5]:

Theorem 4. For any o ∈ OM , there exists a neighbourhood U and smooth sections

τi : U → U × Rn with i = 1, ..., n, such that for each o′ ∈ U , τ1(o
′),...,τn(o

′) con-

stitute a basis of Lo′ . As a consequence there exists an isomorphism ρ : π−1
L (U) →

U × Zn.

Proof. See Step 3 of Proof (2.1) in Chapter IX of [5]. Note that the definition of the

period lattice bundle in [5] is different from that in this paper. In the appendix we

give an argument following the same idea but different in some technical details. �

We call a neighbourhood U such as in the theorem above a OM -neighbourhood, and

the sections τ1,...,τn a smooth local basis of L over U . Theorem 4 above actually

shows that L is a smooth submanifold of OM × Rn. As a corollary of Theorem 4,

we have:

Corollary 5. The map πL : L → OM is a covering map of OM .

Since for each o ∈ OM , the group Lo is a subgroup of the fiber {o} × Rn, we can

define an equivalence relation ∼L on OM × Rn given by (o, T ) ∼L (o′, T ′) if and

only if o = o′ and (o, T − T ′) ∈ Lo. We denote the quotient map of ∼L by qL.

The following non-Hamiltonian version of the Liouville theorem is a consequence

of Theorem 4.

Theorem 6. [13] For any o ∈ OM , there exists some neighbourhood U of o in

OM with a diffeomorphism φ :
(

U × Rn
)/

∼L→ q−1
Φ (U). Moreover, the Tn action

on q−1
Φ (U) induced by the natural Tn action on

(

U × Rn
)/

∼L
∼= U × Tn via this

diffeomorphism commutes with the Rn action Φ.

Proof. Choose a local section σ of qΦ :M → OM over some OM -neighbourhood U

of o. Define φ̃ : U ×Rn → q−1
Φ (U) as φ̃(c, T ) = ΦT ◦ σ(c). Then φ̃ factors as φ ◦ qL.

It is can be checked that φ is a homeomorphism from
(

U × Rn
)/

∼L to q−1
Φ (U).

To show that
(

U×Rn
)/

∼L is homeomorphic to U×Tn one can resort to a smooth

local basis τ1,...,τn of L over U and a rectifying map rec : U × Rn → U × Rn :

(c; t1, ..., tn) → (c; t1τ1(c), ..., tnτn(c)). This descends to an isomorphism rec from

U ×Tn to
(

U ×Rn
)/

∼L. It can be checked that rec is a bijective submersion, and

thereby is a diffeomorphism. �
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Corollary 7. If the bundle qΦ : M → OM admits a global section, then it is

isomorphic to π̄O :
(

OM × Rn
)/

∼L→ OM .

Proof. The proof of Theorem 6 actually guarantees that π̄O :
(

OM × Rn
)/

∼L→

OM with π̄O([o, T ]) = o is a locally trivial torus fibration. If qΦ :M → OM admits

a global section σ : OM →M then φ̃M : OM ×Rn →M with φ̃M (c, T ) = ΦT ◦σ(c)

for any c ∈ OM factors as φ̃M = φM ◦ qL with φM being a bundle isomorphism. �

4. the lattice bundle L and the sheaf R of compatible S1 actions

The sheaf R of compatible S1 actions over OM was first introduced in [14] in the

context of Hamiltonian integrable systems and then in [15] for the non-Hamiltonian

case. We explain the relation between the sheaf R and the lattice bundle L in this

section.

Definition 8. For any open set U of OM , an S1 action Θ : S1× q−1
Φ (U) → q−1

Φ (U)

acting on q−1
Φ (U) is called a compatible S1 action over U if it commutes with the

Rn action Φ and preserves qΦ in the sense that qΦ ◦Θ(z, p) = qΦ(p) for all z ∈ S1

and p ∈ q−1
Φ (U).

Definition 9. [15] For any open set U of OM , denote by RU the set of all compat-

ible S1 actions over U . For any pair of open sets U , V with U ⊂ V , denote by ρVU
the restriction map from RV to RU . Then R =

(

{RU}, {ρ
V
U

∣

∣U ⊂ V }
)

is a sheaf of

Abelian groups and it called the sheaf of compatible S1 actions.

The following proposition characterizes the compatible S1 actions.

Proposition 10. Suppose Θ : S1 × q−1
Φ (U) → q−1

Φ (U) is a compatible S1 action.

Then there exists a unique continuous section σ : U → L such that Θ(ei·2πt, p) =

Φt·σ◦qΦ(p)(p). Conversely, if σ is a continuous section of L over U , then Θ(ei·2πt, p) =

Φt·σ◦qΦ(p)(p) defines a compatible S1 action.

Proof. Let XΘ be the infinitesimal generator of the flow ψt(p) = Θ(ei·2πt, p) on

q−1
Φ (U), i.e. XΘ(p) = d

dt

∣

∣

t=0
Θ(ei·2πt, p). Let ∂

∂ti

∣

∣

p
= d

dti
Φ(0,..ti..,0)(p). Since

Θ preserves qΦ, XΘ(p) ∈ ker qΦ∗ = span{ ∂
∂ti

∣

∣

p
, i = 1, ..., n}. Hence there ex-

ist smooth functions a1, ..., an on q−1
Φ (U) such that XΘ = Σn

i=1ai
∂
∂ti

. More-

over, since Θ commutes with Φ, the functions ai are invariant on each orbit, and

hence they can be seen as functions on U . Note that the flow ϕ on q−1
Φ (U) with

ϕt(p) = Φt·a1◦qΦ(p),...,t·an◦qΦ(p)(p) has the same infinitesimal generator as ψ, and

hence ϕ = ψ. Since Φa1◦qΦ(p),...,an◦qΦ(p)(p) = Θ(ei·2π, p) = p for all p ∈ q−1
Φ (U),

(

qΦ(p); a1 ◦ qΦ(p), ..., an ◦ qΦ(p)
)

∈ LqΦ(p). Hence σ : o→
(

o; a1(o), ..., an(o)
)

is the

smooth section we are looking for. If there is another section σ′ on U satisfying the
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relation Θ(ei·2πt, p) = Φt·σ′◦qΦ(p)(p) with σ′ : o→
(

o, a′1(o), ..., a
′
n(o)

)

, then it holds

that XΘ = Σn
i=1a

′
i

∂
∂ti

. As a consequence, we have ai(o) = a′i(o) for all i = 1, ..., n

and o ∈ U , and thereby σ = σ′.

The argument for the converse direction is straightforward. �

From Proposition 10 it follows that for any Θ,Θ′ ∈ RU , the identity Θz ◦Θ′z′

(p) =

Θ′z′

◦ Θz(p) holds, and thus there is a natural Abelian structure on RU with the

addition Θ+Θ′ given by
(

Θ+Θ′
)z
(p) = Θz ◦Θ′z(p). Accordingly, compatible S1

actions over U are in one-one correspondence with the continuous sections of L over

U , and this implies that L is the associated sheaf/Etale space of R. The discussion

here amounts to the following corollary.

Corollary 11. The Etale space of the sheaf R of compatible S1 actions is isomor-

phic to the lattice bundle L.

If σ : OM → L is a global continuous section of L, then σ corresponds to a

compatible S1 action Θ on M by Θ(ei·2πt, p) = Φt·σ◦qΦ(p)(p). When it is non-

zero, this is a non-trivial S1 action. Actually in this case the section σ is non-zero

everywhere and the corresponding S1 action Θ is thereby effective. To see this, first

note that OM × {0} is closed in OM ×Rn and hence is closed in L. Moreover, the

fact that L is locally isomorphic to U ×Zn implies that OM ×{0} is also open in L.

Since we assume M to be connected, OM ×{0} is exactly one connected component

of L. Hence for any continuous section σ : OM → L, as long as σ(c0) ∈ OM × {0},

we have σ(OM ) = OM × {0}. As a consequence, if σ is non-zero somewhere, it is

non-zero everywherem, and the induced S1 action Θ is effective.

Note that σ being non-zero does not imply that Θ is free. However, the existence

of a non-zero section does imply the existence of a free S1 action compatible with

Φ.

Proposition 12. The existence of a global non-zero continuous section of L implies

the existence of a free S1 action on M .

Proof. First we show that for any non-zero integer n, the map ∗n : w 7→ n · w

defined on OM × Rn induces an open and closed map on L. Note that ∗n is a

diffeomorphism on OM × Rn, and L is closed in OM × Rn with ∗n(L) ⊂ L. As

a consequence, ∗n induces a closed map on L, which is also denoted by ∗n. For

the openess, first note that for any continuous section σ of L over some open set U

in OM , σ(U) is open in L. Then for any w ∈ L and its neighbourhood W , there

exists some continuous section σ over U ∋ c with c = qΦ(w) such that σ(U) ⊂ W

and σ(c) = w. Then ∗n ◦ σ is also a contiuous section of L over the open set U ,
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and ∗n ◦ σ(U) ⊂ ∗n(W ). Therefore ∗n(W ) is a neighbourhood of ∗n(w) and this

implies ∗n is an open map on L.

Now suppose that σ is a non-zero section. Then σ(OM ) is a connected component

of L. Fix a point c0 in OM . Choose w0 ∈ Lc0 such that ∗n(w0) = σ(c0) for

some n ∈ Z, and R · w0 ∩ L = Z · w0. Suppose that Sw0 ⊂ L is the connected

component of L containing w0. Then ∗n(Sw0) is another component of L since

∗n is both an open and a closed map on L. Since σ(c0) = ∗n(w0) ∈ ∗n(Sw0), it

yields σ(OM ) = ∗n(Sw0), and therefore σ1 = 1
n
σ is also a continuous section of

L with σ1(OM ) = Sw0 . It remains to show that for any c ∈ OM , the identity

R · σ1(c) ∩ L = Z · σ1(c) holds. That is, σ1(c) is a generator of the subgroup

R · σ1(c) ∩ L for each c ∈OM .

Suppose that w1 ∈ Lc is a generator of R ·σ1(c)∩L . Then there exists some integer

n1 such that n1w1 = σ1(c). Repeating the argument above yields another section

σ2 = 1
n1
σ1. Since σ1(c0) = w0 and R ·w0∩L = Z ·w0, σ2(c0) =

1
n1
σ1(c0) =

1
n1
w0 ∈

R · w0 ∩ L = Z · w0. This implies n1 = ±1. Hence for any c ∈ OM , R · σ1(c) ∩ L =

Z·σ1(c), and therefore the S1 action Θ on M defined by Θ(ei·2πt, p) = Φt·σ1◦qΦ(p)(p)

is free. �

5. monodromy maps

Consider a loop C in the orbit space OM with a fixed point c0 ∈ C. For convenience,

we view C both as a subset C ⊂ OM and a fixed parametrization C : [0, 1] → OM

with C(0) = C(1) = c0. Let MC = q−1
Φ (C) and let LC = π−1

L (C). Then qC = qΦ
∣

∣

C
:

MC → C is a locally trivial torus fibration over C. Since qC is a locally trivial

fibration over a loop with connected fibers, it always admits a section over C.

According to Corollary 7, qC : MC → C is isomorphic to π̄C :
(

C × Rn
)/

∼L→ C.

Recall that L → OM is a covering, and denote by MC the monodromy action of

C on Lc0 . MC is actually an isomorphism on the lattice Lc0 . To see this, suppose

γ1 and γ2 are the lifts of C with base points v1 and v2 , with, v1, v2 ∈ Lc0 . γ1 + γ2

is the lift of C at v1 + v2, which implies that MC is a group homomorphism. It

can be checked that MC is bijective. By fixing a basis w̄ = (u1, ..., un) of Lc0 , MC

is represented by some element MC,w̄ ∈ SL(n,Z). Note that MC,w̄ ∈ GL(n,Z).

To see that detMC,w̄ = 1, we only need to show that detMC,w̄ > 0. For each

i ∈ {1, ..., n}, let τi : [0, 1] → L ⊂ OM × Rn be the lift of C with τi(0) = ui. It

holds that τi(s) =
(

Ct, τ
′
i(s)

)

with τ ′i : [0, 1] → Rn being continuous for each i ∈

{1, ..., n}. Consequently det[τ ′1(s), ..., τ
′
n(s)] is continuous and non-zero everywhere

with respect to s and hence its sign does not change. By the definition of MC,w̄, it

holds that [τ ′1(1), ..., τ
′
n(1)] = [τ ′1(0), ..., τ

′
n(0)] · MC,w̄ and thereby detMC,w̄ > 0.
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We call MC the monodromy map associated to C (or, of the fibration qC :MC → C),

and MC,w̄ the monodromy matrix with respect to w. The monodromy map MC

determines the structure of qC :MC → C (see Appendix 8.2).

6. the main construction

In this section we construct a bundle morphism ρ : L → Zl with l being an integer

and show the main results of this article.

Let o be an element in OM . For T ∈ Lo and x ∈ q−1
Φ (o), let λT,x : [0, 1] → q−1

Φ (o) be

the closed path on the torus q−1
Φ (o) with λT,x(s) = Φs·T (x). Denote by TorH1(M)

the torsion subgroup ofH1(M). Define ρo : Lo → H1(M)
/

TorH1(M) by assigning to

each T ∈ Lo the element [λT,x] in H1(M)
/

TorH1(M). Note that such an assignment

is independent of x since for any x, x′ on q−1
Φ (o), λT,x and λT,x′ are homotopic on

q−1
Φ (o). The map ρo is a homomorphism between Abelian groups.

Definition 13. The bundle morphism ρ : L → H1(M)
/

TorH1(M) is the one satis-

fying the identity ρ
∣

∣

Lo
= ρo for each o ∈ OM .

We show that the value of ρ is invariant under parallel translation on L, and as a

consequence, ρ can be seen as a continuous bundle epimorphism from L to Zl with

l ≤ n.

Theorem 14. For any path γ̃ : [0, 1] → L, ρ ◦ γ̃(t) = ρ ◦ γ̃(0) for all t ∈ [0, 1]. As

a consequence, ρ is locally constant, and Imρ = Imρo is a free Abelian group with

rank l ≤ n.

Proof. Let γ be the path in OM defined as γ = πL ◦ γ̃. Take a section σ of

qΦ : M → OM over γ. Then (t, ·) 7→ λγ̃(t),σ◦γ(t)(·) gives a homotopy in M and

hence ρ ◦ γ̃(t) = [λγ̃(t),σ◦γ(t)] remains invariant in H1(M)
/

TorH1(M). Since OM is

path-connected, for any o, o′ ∈ OM , Lo′ can be obtained via the parallel translation

of Lo along some path connecting o and o′. Therefore Imρo = Imρo′ and it is a

finitely generated subgroup in H1(M)
/

TorH1(M) and thereby a free Abelian group

with rank no larger than that of Lo. Finally, ρ is locally constant since L is locally

path-connected. �

Corollary 15. The map ρ is a bundle epimorphism from L to Zl with l ≤ n. For

any path γ in OM with Mγ being the associated monodromy map, ρ ◦Mγ = ρ on

Lγ(0).

Suppose l > 0, i.e. ρ is non-trivial. Then ρ = (ρ1, ..., ρl) with ρi : L → Z being

locally constant and ρi ◦Mγ = ρi. This means the linear functionals ρi
∣

∣

Lγ(0)
are
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eigenvectors with eigenvalue 1 of the transpose of Mγ . This gives a descending

chain of lattice subbundles L ⊃ ker ρ1 ⊃ ker(ρ1, ρ2) ⊃ ... ⊃ ker(ρ1, ..., ρl). Since Z

is free, on each fiber Lo the following short exact sequence splits:

0 → ker ρ1
∣

∣

Lo
→ Lo

ρ1
−→ Z → 0,

and then ker ρ1
∣

∣

Lo
is isomorphic to Zn−1.

Theorem 16. The sublattice bundle ker ρ1 is a smooth lattice subbundle of L.

Moreover, kerρ1 locally splits L. To be precise, for any point o ∈ OM , there exists

some neighbourhood U such that L
∣

∣

U
= ker ρ1

∣

∣

U
⊕L

′′

U with L
′′

U being some sublattice

bundle of L
∣

∣

U
over U .

Proof. Since ρ1 is locally constant on L, it is contant on each of the connected

components. Hence ker ρ1 consists of several connected components of L and is a

submanifold of L.

For any c ∈ OM , we construct a local trivialization of ker ρ1 in the vicinity of c.

Let U ∋ c be a connected neighbourhood over which L admits a local trivialization.

Then for each connected component S of L
∣

∣

U
, there exists a section σ : U → L such

that S = σ(U). Due to the connectedness of U , we have σ(U) ⊂ ker ρ1 if and only

if σ(U)∩ker ρ1 is nonempty. Fix a basis w1, ..., wn−1 of ker ρ1
∣

∣

Lc
with local sections

σ1, ..., σn−1 over U such that σi(c) = wi. For each c′ ∈ U , the linear independence of

σ1(c
′), ..., σn−1(c

′) follows from the fact that the zero section U×{0} is a component

of kerL
∣

∣

U
.

Now we show that for any w′ ∈ ker ρ1
∣

∣

Lc′
, there exist integers k1, ..., kn−1 such that

Σikiσi(c
′) = w′. Let σ′ : U → L be the section with w′ = σ′(c′). Then it holds that

σ′(U) ⊂ kerρ1 due to the connectness of U , and in particular, σ′(c) ∈ ker ρ1
∣

∣

Lc
.

Then there exist integers k1, ..., kn−1 such that
∑n

i=1 kiσi(c) = σ′(c) ∈ L′
c. Since

τ =
∑

i kiσi is also a continuous section of L over U , it yields τ(U) ⊂ ker ρ1

and thereby τ = σ′. Then w′ = σ′(c′) =
∑

i kiσi(c
′) with ki integers. Hence

{σ1, ..., σn−1} gives rise to a local trivialization of ker ρ1 over U .

To see that kerρ1 locally splits L, first note that for every c ∈ OM , kerρ1
∣

∣

Lc
splits

Lc. Then it holds that Lc = L′
c⊕Z · vc for some vc ∈ Lc. Let σ be a section over U

such that σ(c) = vc. For any c′ ∈ U and w′ ∈ Lc′ , there is a section σ′ of L over U

such that σ′(c′) = w′. Since σ′(c) ∈ Lc and σ1(c), ..., σn−1(c), σ(c) constitute a basis

of Lc, there exist integers b1, ..., bn−1, b such that σ′(c) =
∑n−1

i=1 biσi(c) + bσ(c). It

then holds
(
∑n

i=1 biσi
)

(U) = σ′(U) since both of them are connected components of

L
∣

∣

U
. Hence

∑n−1
i=1 biσi(c

′) + bσ(c′) = σ′(c′) = w′. As a result, L
∣

∣

U
= kerρ1

∣

∣

U
⊕L

′′

U

with L
′′

U = Z · σ(U). �
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Corollary 17. ker ρ1 gives rise to an (n − 1)− toric foliation F(1) refining F.

More precisely, for any b ∈ OM , there exists a neighbourhood U of b with a local

trivialization ψ̄ : U × S1 × Tn−1 → q−1
Φ (U) such that for any (u, z) ∈ U × S1,

ψ̄
(

(u, z)× Tn−1
)

is a leaf of F(1).

Proof. Denote by Vo the n − 1 dimensional subspace of {o} × Rn spanned by

kerρ1
∣

∣

Lo
. Then for each p ∈ q−1

Φ (o), Tp = ΦVo(p) is an (n − 1)− torus. To

see F(1) = {Tp

∣

∣p ∈ M} is a foliation, it only needs to be checked that there are

local flat charts everywhere on M [10].

For any p ∈ M with o = qΦ(p), choose a neighourhood U over which it admits a

section σ̃ of qΦ with σ̃(o) = p and trivializations of LU . Note that each component

of LU takes the form σ(U) with σ being a continuous section of L over U . Choose

w1, ..., wn−1 ∈ ker ρ1
∣

∣

Lo
and v ∈ Lo such that {w1, ..., wn−1, v} forms a basis of Lo

and {w1, ..., wn−1} forms a basis of ker ρ1
∣

∣

Lo
. Let σ1, ..., σn−1, τ be sections of L over

U such that σi(o) = wi and τ(o) = v. Then for each c ∈ U , {σ1(c), ..., σn−1(c), τ(c)}

is a basis for Lc with {σ1(c), ..., σn−1(c)} being a basis for kerρ1
∣

∣

Lc
.

Define a map ψ: U × Rn →M by

(u; s, t1, .., tn−1) → Φs·τ(c)+t1·σ1(c)+...+tn−1·σn−1(c) ◦ σ̃(c).

It factors as ψ = ψ̄ ◦ qZn with qZn : U × Rn → U × Tn ∼= U × (Rn
/

Zn) the

quotient map and ψ̄ = U × Tn → W = ψ(U × Rn) a diffeomorphism. For any

p′ ∈ ψ(u′, s′, t′1, ..., t
′
n−1),

ψ̄−1(Tp′ ∩W ) = ψ̄−1(Tp′) = {(u, s̄, t̄1, ..., t̄n−1) ∈ U × Tn
∣

∣u = u′, s̄ = ei2π·s
′

}.

�

Note that ρ is an epimorphism and therefore ker(ρ1, ρ2) is a lattice subbundle of

kerρ1 and has corank 1 in kerρ1. Consequently it induces an (n−2)− toric foliation

F(2) on M that refines F(1). This process can be iterated for all i = 1, ..., l and then

the following theorem holds.

Theorem 18. Let (M,F,Φ) be a regular integrable system of type (k, n) with com-

pact orbits. Suppose that M (or equivalently, its orbit space OM ) is connected. If

for some point c0 ∈ OM , there exists a loop λ on q−1
Φ (c0) such that [λ] has infinite

order in H1(M), then the lattice bundle L of the system has a series of sublattice

bundles L(1) ⊃ ... ⊃ L(l) for some positive integer l no more than n such that,

L(i) = ker(ρ1, ..., ρl) has rank n − i for each i ∈ {1, ..., l}, L(i+1) locally splits L(i)

for each i ∈ {1, ..., l − 1} and L(1) locally splits L. As a consequence, such a se-

quence of sublattice bundles gives rise to a sequence of toric foliations F(1), ...,F(l)
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such that F(i+1) refines F(i) for i = 1, ..., l − 1 and F(1) refines the fibration F. For

each i ∈ {1, ..., l}, the leaves of F(i) are (n− i)− tori.

In the case n = 2, when ρ : L → H1(M)
/

TorH1(M) is non-trivial, Imρ is isomorphic

to either Z or Z2, and then we at least get one non-zero linear functional ρ1 : L → Z.

Then ker ρ1 is a lattice subbundle with rank 1. Actually ker ρ1 ∼= OM ×Z and thus

by Proposition 12 there is a free S1 action on M .

Theorem 19. In the case n = 2, if ρ : L → H1(M)
/

TorH1(M) is non-trivial, there

exists a compatible free S1 action on M .

Proof. We only need to show that ker ρ1 ∼= OM × Z. Fix a point c0 in OM . For

any other point o ∈ OM , ker ρ1
∣

∣

Lo
can be obtained via the parallel transport of

kerρ1
∣

∣

Lc0

along any path joining c0 and o. Choose a(n) (ordered) basis w = (u, v)

of Lc0 and let z ∈ Z2 with z =
(

ρ1(u), ρ1(v)
)

. For any closed path γ in OM with

γ(0) = γ(1) = c0, z · Mγ,w = z with Mγ,w being the monodromy matrices. Hence

both of the eigenvalues of Mγ,w equal to 1. Since ker ρ1
∣

∣

Lc0

is a one dimensional

invariant space of the monodromy map Mγ , it holds that Mγ · T = T for all

T ∈ ker ρ1
∣

∣

Lc0

. Due to the arbitrariness of γ, this implies the triviality of the

bundle kerρ1 → OM . �

7. maslov indices, monodromy matrices and toric foliations with

corank 1

Now we restrict to the Hamiltonian context and show how the results obtained in

the previous section are related to the work in [8].

Consider an integrable Hamiltonian system (M,ω, F ) with F = (f1, ..., fn) being

the integral map. Let Xi be the Hamiltonian vector fields with dfi(·) = ω(Xi, ·).

We assume that the orbits of the Hamiltonian Rn action Φ are all compact. Denote

by ΛM the bundle of Lagrangian Grassmanians of M .

Fix a complex structure J compatible with the symplectic form ω, and let gJ (·, ∗) =

ω(J ·, ∗) be the compatible Riemannian structure. Recall that the Hamiltonian

vector fields X1, ...,Xn are independent everywhere by the assumption we made

and spanR{X1, ...,Xn} is a Lagrangian distribution. Apply the Gram-Schmidt

process to obtain X ′
1, ...,X

′
n that are orthonormal with repect to gJ . Note that

spanR{X
′
1, ...,X

′
n} = spanR{X1, ...,Xn} and it is Lagrangian. Then,

{X ′
1, ...,X

′
n,J (X ′

1), ...,J (X ′
n)}

is a globally defined symplectic frame for the tangent bundle TM .
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Recall that for a symplectic manifold (M,ω), the symplectic form ω is a sym-

plectic bilinear form on its tangent bundle, and (TM,ω,M), as a vector bundle

endowed with a symplectic bilinear form, is a symplectic vector bundle (see page

79 in [11]). Then the argument above shows that the symplectic vector bundle

(TM,ω,M) is isomorphic to the trivial symplectic vector bundle (M ×R2n, ω0,M)

with ω0

∣

∣

{p}×R2n = dxi ∧ dyi being the standard symplectic bilinear form on {p} ×

R2n. Therefore, there exists an isomorphism ΛM
∼= M × U(n)

/

O(n) associated to

such a trivialization. Let ΛMC
→MC denote the restriction of ΛM to MC and then

ΛMC

∼= MC × U(n)
/

O(n). Let E : M → ΛM be a section, i.e. a Lagrangian vector

bundle over M . Then for any p ∈ M , E(p) = [Ep] ∈ U(n)
/

O(n) with Ep ∈ U(n)

being a representative.

For any section E, define mE : ΛM
∼= M × U(n)

/

O(n) → S1 with mE(p, [A]) =
(

detC(A · E−1
p )

)2
. Note that for any p ∈ M , spanR

(

X1(p), ...,Xn(p)
)

⊂ ΛM

∣

∣

p
and

hence there is a natural embedding l̃ of M into ΛM by p→ spanR

(

X1(p), ...,Xn(p)
)

.

Definition 20. The Maslov map for the integrable system (M,F,Φ) is the map

m̃E = mE ◦ l̃.

Definition 21. The Maslov index µλ of a loop λ: S1 → M in the integrable

system (M,F,Φ) with respect to E is the degree of the map m̃E ◦ λ.

Definition 21 is slightly different from the usual definition of the Maslov indices in

that we do not require the loop λ to be on some Lagrangian submanifold, since the

integrable system already prescribes to each point in M a Lagrangian subspace.

Yet this definition is consistent with the usual one when λ lies on a Lagrangian

submanifold.

Note that for any fixed point x0 ∈M , the homomorphism π1(M,x0) ∋ [λ] 7→ µλ ∈ Z

factors through H1(M)
/

TorH1(M) since Z is Abelian and torsionless. That is, there

is a homomorphism µ : H1(M)
/

TorH1(M) → Z such that for any loop λ in M ,

µ([λ]) = µλ. The composition µ ◦ ρ : L → Z is then a bundle morphism. Note

that for c ∈ OM , µ ◦ ρ(Lc) = nc · Z for some non-negative integer nc. nc is

called the minimal Maslov number of the Lagrangian torus q−1(c). If the minimal

Maslov number on some Lagrangian torus q−1
Φ (c0) is non-zero, then µ ◦ ρ is non-

zero, implying ρ to be non-trivial. Then µ ◦ ρ
∣

∣

Lc0

is a common eigenvector with

eigenvalue 1 for the transpose of the monodromy maps Mγ of all the loops γ in

OM with c0 ∈ γ. For a basis (u1, ..., un) of Lc0 ,
(

µ ◦ ρ(u1), ..., µ ◦ ρ(un)
)

gives the

corresponding vector of Maslov indices. In this way, it yields Theorem 1 of [8].

We conclude this article with a result for integrable Hamiltonian systems in R4.
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Audin’s conjecture [1] asserts that for any Lagrangian torus in (R2n, dx1 ∧ dy1 +

· · ·+ dxn ∧ dyn), the minimal Maslov number is 2 and this has been confirmed in

[4] following a series of partial results [12, 3, 9, 6] (see page 118 in [11] for a brief

introduction to the results obtained in these papers). Combining this result with

Theorem 19 yields:

Theorem 22. Suppose that (R4, ω, F ) is a Hamiltonian integrable system (not

necessarily regular) with integral map F : R4 → R2. Denote by R4
reg the set of

regular points of F . If M0 is a connected domain of R4
reg within which the orbits

of the Hamiltonian R2 action are compact, then there exists a free Hamiltonian S1

action on M0.

8. Appendix

8.1. Local trivialization of the lattice bundle. Let (M,F,Φ) be a regular inte-

grable system of type (k, n) with compact Φ− orbits. We give a detailed argument

for Theorem 4 in Section 3. For convenience, we state Theorem 4 again.

Theorem 4. For any o ∈ OM , there exists some neighbourhood Uo over which

there are smooth sections τi : U → U × Rn with i = 1, ..., n, such that for each

c ∈ U , τ1(c),...,τn(c) constitute a basis of Lc. As a consequence, there exists an

isomorphism (algebraically and topologically) β : π−1
L (U) → U × Zn.

Proof. As is shown in Proposition 3, qΦ : M → OM is a submersion. Hence there

exists some smooth section σ : U → M over some open neighbourhood U of o.

Define Ψ : U × Rn → M as Ψ(b, T ) → ΦT ◦ σ(b). According to Definition 1,

Ψ is transversal to the submanifold σ(U) and is a local diffeomorphism. Hence

S = Ψ−1
(

σ(U)
)

is an embedded submanifold of U × Rn with the corank equal

to that of σ(U), which is n. Note that S is also a subspace of L (and therefore

L is a submanifold of OM × Rn due to the arbitrariness of U). Moreover, S is

closed in U × Rn. To see this, suppose that (ui, Ti) → (u, T ) with (ui, Ti) ∈ S and

(u, T ) ∈ U × Rn. Then Ψ(u, T ) = limΨ(ui, T ) = limσ(ui) = σ(u) ∈ S.

For any x ∈ S, the tangent map Ψ∗ maps TxS to TΨ(x)σ(U) and therefore TxS ∩

TxR
n = {0}, implying TxS⊕TxR

n = Tx(U×Rn). As a result, πS = prU
∣

∣

S
: S → U

is a local diffeomorphism with prU : U × Rn → U being the canonical projection.

Note that U × {0} is closed in U × Rn and therefore is closed in S, while it is also

open in S. Hence U × {0} is a connected component of S.

Let z1,...,zn be a basis of the the lattice Lo. Shrink U if necessary. Then there exist

local sections τi : U → S for i = 1, ..., n such that τi(o) = zi. Note that {z1, ..., zn}

is also a basis of the linear space {o}×Rn, and that for any w ∈ {o}×Rn, w ∈ Lo



LOOPS OF INFINITE ORDER AND TORIC FOLIATIONS 15

if and only if w = a1z1+ · · ·+anzn with ai integers. Shrinking U again if necessary,

one can make the determinant of the matrix [τ1(c), ..., τn(c)] non-zero for each c ∈ U ,

and then {τ1(c), ..., τn(c)} is a basis for {c} × Rn.

Now we show that for each c ∈ U , {τ1(c), ..., τn(c)} is also a basis of the Zn lattice

Lc. Let {zc1, ..., z
c
n} be a basis of Lc. Then there exist intergers kj1, ..., k

j
n such that

τj(c) = k
j
1z

c
1 + · · ·+ kjnz

c
n. Taking the inverse of the matrix [kji ] shows that for each

w ∈ Lc, there exist p1, ..., pn ∈ Q such that w = p1τ1(c) + · · ·+ pnτn(c). Hence it

remains to show that for each w, the corresponding coeffients pi =
ki

mi
are integers.

Denote by Sw the component of S that contains w. Note that there exits some

nonzero integer m such that m · pi are integers for all i. By ∗m denote the map

(c, T ) 7→ (c,m · T ). Then ∗m is a diffeomorphism on OM × Rn and maps S to S.

Hence it is a local diffeomorphism on S. Moreover, as shown above, S is closed

in U × Rn and therefore ∗m is a closed map on S. Hence ∗m(Sw) is another

connected component of S which contains m · w. Meanwhile, τ : U → U × Rn:

u → m ·
(

p1τ1(u) + · · · + pnτn(u)
)

is also a section of S → U and hence τ(U)

is a component of S which also contains m · w. As a result, τ(U) = ∗m(Sw). In

particular, m ·p1τ1(o)+ · · ·+m ·pnτn(o) = τ(o) = m ·w0 ∈ Lo for some w0 ∈ Sw∩Lo

and hence w0 = p1τ1(o) + · · ·+ pnτn(o) = p1z1 + · · ·+ pnzn, implying the pi to be

integers.

Define β : U×Zn → π−1
L (U) with ρ−1(u; a1, ..., an) = a1τ1(u)+ · · ·+anτn(u). Then

β is a local trivialization of L over U . �

Corollary 23. The lattice bundle πL : L → OM is a locally trivial smooth Zn

bundle with the transition group SL(n,Z).

Proof. Choose a covering {Uα} of OM with sections ταi : Uα → L forming a basis

of L
∣

∣

Uα
. Reorder {ταi

∣

∣i = 1, ..., n} if necessary to fit the orientation of the vector

bundle OM×Rn → OM , and then for any pair α, α′ with Uα∩Uα′ being non-empty,

ρα′ ◦ ρ−1
α should be a linear map on Uα ∩ Uα′ × Zn preserving the orientation and

hence ρα′ ◦ ρ−1
α ∈ SL(n,Z). �

8.2. The fibration structure of MC determined by the monodromy map.

In the following we give an illustration of how the monodromy map M determines

the torus fibration MC = q−1
Φ (C) → C.

Recall that C ⊂ OM is a loop with MC = q−1
Φ (C) → C being a torus fibration. Let

c0 be a point in C. The lift of C to L gives rise to a group isomorphism MC of Lc0 ,

which is called the monodromy map. Note that it extends canonically and uniquely

to an isomorphism of {c0}×Rn, which we also denote by M. Fix a parametrization

γ : [0, 1] → C with γ(0) = γ(1) = c0.
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According to Corollary 7, MC = q−1
Φ (C) → C is isomorphic to π̄C :

(

C×Rn
)/

∼L→ C

with π̄C([c, T ]) = c. Choose an ordered basis w̄ = (u1, ..., un) of Lc0 , and let

τi : [0, 1] → L be the lift of γ at ui for each i = 1, ..., n and τ ′i : [0, 1] →

Rn be the map such that τi(s) = (γ(s), τ ′i(s)). Then MC is the map mapping

ui = τi(0) to τi(1). Denote by MC,w̄ the matrix representation of MC with

respect to w̄, i.e. MC(tiui) = (u1, ..., un) · MC,w̄ ·









t1
...

tn









. In other words,

MC(uj) = (u1, ..., un) · M
j
C,w̄ with Mj

C,w̄ the j−th column of MC,w̄, and hence

(τ ′1(1), ..., τ
′
n(1)) = (τ ′1(0), ..., τ

′
n(0)) · MC,w̄.

Denote by ∼γ the equivalence relation on [0, 1] × Rn that identifies (0, T ) with

(1, T ) and by qγ the corresponding quotient map from [0, 1]×Rn to C ×Rn. Define

rw̄ : [0, 1]× Rn → [0, 1]× Rn by

(8.1) rw̄(s;









t1
...

tn









) =
(

s, t1τ
′
1(s) + · · ·+ tnτ

′
n(s)

)

.

This is an isomorphism mapping [0, 1] × Zn → γ∗(L). Hence the map hw̄ = qγ ◦

rw̄ : [0, 1] × Rn → C × Rn is a bundle epimorphism mapping [0, 1] × Zn to L
∣

∣

C

and it is a fiberwise isomorphism. Moreover, hw̄ identifies {0} ×









t1
...

tn









with

{1}×M−1
C,w̄ ·









t1
...

tn









. To see this, first note that since qγ identifies (0, T ) with (1, T )

for every T ∈ Rn, qγ◦rw̄ identifies (0, T ) with (1, T ′) if and only if rw̄(0, T ) = (0, T ′′)

and rw̄(1, T ) = (1, T ′′). Then with T =









t1
...

tn









and T ′ =









t′1
...

t′n









, according to

(8.1), it holds that

t1τ
′
1(0)+ · · ·+ tnτ

′
n(0) = t′1τ

′
1(1)+ · · ·+ t′nτ

′
n(1) =

(

τ ′1(0), ..., τ
′
n(0)

)

·MC,w̄ ·









t′1
...

t′n









.

Hence









t1
...

tn









= MC,w̄ ·









t′1
...

t′n









and thus









t′1
...

t′n









= M−1
C,w̄ ·









t1
...

tn









.
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Note that quo = qL◦hw̄ is a quotient map from [0, 1]×Rn to MC and it charaterizes

the structure of the fibration MC → C. Denote by ∼ the equivalence relation in-

duced by quo on [0, 1]×Rn. MC → C is isomorphic to π∼ :
(

[0, 1]×Rn
)/

∼→ C with

π∼([s, T ]) = γ(s). It can be checked that for each s ∈ [0, 1], (s, T ) ∼ (s, T ′) if and

only if T−T ′ ∈ Zn. Then quo (re)factors as qη̄◦qZn with qZn : [0, 1]×Rn → [0, 1]×Tn

being the quotient map which sends (s; t1, ..., tn) to (s; ei2πt1 , ..., ei2πtn), and qη̄:

[0, 1]×Tn →MC being a bundle morphism which is a fiberwise isomorphism. Denote

by η the isomorphism (1, T ) → (hw̄
∣

∣

{0}×Rn)
−1 ◦ (hw̄

∣

∣

{1}×Rn)(1, T ) = (0,MC,w̄ · T )

and by η̄ the isomorphism (1, z) → (qη̄
∣

∣

{0}×Tn)
−1 ◦ (qη̄

∣

∣

{1}×Tn)(1, z).

Then MC
∼=

(

[0, 1]× Tn
)/

∼η̄. Moreover, the following identity holds

η̄ ◦ qZn = qZn ◦ η.
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