LOOPS OF INFINITE ORDER AND TORIC FOLIATIONS

Konstantinos Efstathiou
Zu Chongzhi Center for Mathematics and Computational Science, Duke Kunshan University
Bohuan Lin*, Holger Waalkens
Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen
*e-mail: B.Lin@rug.nl

Abstract

In 2005 Dullin et al. proved in 8] that the non-zero vector of Maslov indices is an eigenvector with eigenvalue 1 of the monodromy matrices of an integrable Hamiltonian system. We take a close look at the geometry behind this result and extend it to a more general context. We construct a bundle morphism defined on the lattice bundle of an (general) integrable system, which can be seen as a generalization of the vector of Maslov indices introduced in [8]. The non-triviality of this bundle morphism implies the existence of common eigenvectors with eigenvalue 1 of the monodromy matrices, and gives rise to a corank 1 toric foliation refining the original one induced by the integrable system. Furthermore, we show that in the case where the system has 2 degrees of freedom, this implies the global existence of a free S^{1} action.

1. BACKGROUND AND MOTIVATION

An integrable Hamiltonian system contains the following ingredients: a $2 n$ dimensional symplectic manifold (M, ω) as the phase space, an integral map $F=$ $\left(f_{1}, \ldots, f_{n}\right): M \rightarrow \mathbb{R}^{n}$ which is regular almost everywhere, Hamiltonian vector fields \mathcal{X}_{i} for $i=1, \ldots, n$ with f_{i} as the Hamitonians and the commutativity condition: $\left[\mathcal{X}_{i}, \mathcal{X}_{j}\right]=0$. The commutativity of the vector fields \mathcal{X}_{i} induces a Hamiltonian \mathbb{R}^{n} action Φ on the phase space M given by $\Phi^{\left(t_{1}, \ldots, t_{n}\right)}(p)=\varphi_{1}^{t_{1}} \circ \ldots \circ \varphi_{n}^{t_{n}}(p)$ with φ_{i} being the flow of \mathcal{X}_{i} for each i. The nondegeneracy of the symplectic form ω implies that $\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}$ are linearly independent wherever $D F=\left(d f_{1}, \ldots, d f_{n}\right)$ has full rank.

When a regular orbit of Φ, i.e. an orbit consisting of regular points of F, is compact, it is an n dimensional Lagrangian torus. The region M_{0} consisting of compact regular orbits of Φ thereby admits a Lagrangian toric foliation \mathfrak{F} with these n-tori
as the leaves. The Arnold-Liouville theorem shows that near each of the leaves the foliation is nice in the sense that local action-angle coordinates exist. However, topological and geometric obstructions prevent in general the global existence of action-angle coordinates. This has been investigated by Duistermaat in [7]. The non-triviality of the torus bundle $F^{-1}(\mathcal{C})$ over some loop \mathcal{C} lying in the set of regular values of F serves as one of these obstructions, and it is characterized by the monodromy matrix $\mathcal{M}_{\mathcal{C}}$ of the bundle. One should note that here for simplicity, we have assumed each level set $F^{-1}(c)$ with $c \in \mathcal{C}$ to consist of a single orbit. However, in general, $F^{-1}(c)$ can contain more than one orbits and hence $F^{-1}(\mathcal{C}) \rightarrow \mathcal{C}$ is not necessarily a torus bundle. We will deal with this problem later in a more rigorous way.

Via the Bohr-Sommerfeld quantization of actions, their global non-existence manifests itself in quantum mechanics as the non-existence of global quantum numbers to assign the joint spectrum of commuting operators that are the quantum analogues of the functions f_{i}. Here Maslov indices determine whether the actions are required to be integer or half-integer multiples of Planck's constant. From a geometric point of view, the Maslov index of a closed curve of Lagrangian planes counts the number of intersections of such a curve with a chosen Maslov cycle Σ. Usually Σ is induced by some Lagrangian vector subbundle \mathcal{V} of the tangent bundle $T M$, and the curve of Lagrangian planes is the one induced by a curve on some Lagrangian submanifold in the natural way. One can think of \mathcal{V} as a reference and then the Maslov index describes how the Lagrangian planes rotate with respect to the reference along the curve. In particular, when M is the cotangent bundle of another manifold N, \mathcal{V} is usually taken as the vertical distribution of $T^{*} N=M$.

For a regular value c_{0} of F, a set of closed curves $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ on the Lagragian torus $F^{-1}\left(c_{0}\right)$ can be taken such that $\left[\lambda_{1}\right], \ldots,\left[\lambda_{n}\right]$ constitute a basis of $H_{1}\left(F^{-1}\left(c_{0}\right)\right) \cong \mathbb{Z}^{n}$. Let a_{i} be the Maslov index of λ_{i}. The main result in [8] shows that when it is nonzero, the vector of Maslov indices $\left(a_{1}, \ldots, a_{n}\right)$ is an eigenvector with eigenvalue 1 of the monodromy matrices $\mathcal{M}_{\mathcal{C}}$ for all loops \mathcal{C} of regular values of F based at c_{0}. As is pointed out in [8], one implication of the result is that a Hamiltonian S^{1} action exists on the space $F^{-1}(\mathcal{C})$. Moreover, it also imposes some restrictions on the forms of the monodromy matrices.

A close look at the result in [8] suggests that there should be a more general underlying structure. Namely, on the one hand, the monodromy matrices are determined solely by the foliation \mathfrak{F}. On the other hand however, the Maslov indices depend on the choice of the Maslov cycle, or say, the Lagrangian subbundle \mathcal{V}. A change of the reference may result in a change of the triviality/non-triviality of the vector
of Maslov indices, but it affects neither on the foliation nor on the monodromy matrices. It is then natural to ask whether we could restate the result in [8] in terms of the topology of M_{0} or \mathfrak{F}. This could then not only give a new interpretation in different terms, but also a generalization of the result in [8] to a broader context.

It turns out that we are able to work this out with a more general class of integrable systems which is to be defined in the next section. These systems are called integrable non-Hamiltonian systems in the literature (e.g. see [2, 13]). Note that the phrase 'non-Hamiltonian' here means 'not necessarily Hamiltonian', and the notion also includes all integrable Hamiltonian systems. No symplectic structure will be required for the definition of such a system, and the M is not necessarily of even dimension.

2. BASIC SETTINGS AND LAYOUT OF THE PAPER

Since we are concerned with the toric foliation on the domain of compact regular orbits of Φ, we for simplicity, make some assumptions that lead to the following definition of a regular integrable non-Hamiltonian system with compact orbits.

Definition 1. A regular (non-Hamiltonian) integrable system of type (k, n) with compact orbits is a triple (M, F, Φ) where M is an $k+n$ dimensional smooth manifold, the integral map $F=\left(f_{1}, \ldots, f_{k}\right): M \rightarrow \mathbb{R}^{k}$ is a submersion and Φ is an effective \mathbb{R}^{n} action with compact orbits such that $F \circ \Phi^{\left(t_{1}, \ldots, t_{n}\right)}(p)=F(p)$.

Remark 2. Unless otherwise stated, M is assumed to be connected in this article.

Since the orbits of Φ are compact, they are n-tori and thereby constitute a toric foliation \mathfrak{F} on M. As mentioned earlier, the map $F: M \rightarrow \mathbb{R}^{n}$ is in general not a torus bundle since a level set of F may contain more than one orbits. In order to get a torus bundle, we introduce the orbit space \mathcal{O}_{M}, whose elements are the orbits of Φ. The bundle \mathcal{L} of period lattices will play a central role in our discussion. This is a bundle over the orbit space \mathcal{O}_{M} where the fibers are the isotropy subgroups of the action Φ. Under Definition 1 both these spaces have nice structures and properties, and they will be discussed in detail in Section 3 and Section 4.

The definitions of monodromy maps and monodromy matrices will be formally introduced in Section 5 along with their basic properties.

The main construction and results are given in Section 6. This comprises a bundle epimorphism $\rho=\left(\rho_{1}, \ldots, \rho_{l}\right)$ from \mathcal{L} to \mathbb{Z}^{l} for some integer $l \leq n$. This is a purely topological object associated with the system (M, F, Φ), and as we will see in Section $7, \rho$ can be seen as a generalization of the vector of Maslov indices. When $l>0$, each component of ρ is a common eigenvector with eigenvalue 1 of the (transposed)
monodromy matrices. This will have implications on the toric foliation \mathfrak{F}, and in the case of $n=2$, it implies the existence a free S^{1} action on M which commutes with Φ. The precise statements of these results form the main results of this paper: Theorem 18 and Theorem 19 in Section 6.

In Section 7, we revisit the case of integrable Hamiltonian systems. We show that the vector of Maslov indices being non-zero implies the non-triviality of ρ, and then show how the result in 8] follows from our construction and results. Moreover, with Audin's conjecture (which has been proved), our results lead to the existence of a free S^{1} action for integrable Hamiltonian systems on \mathbb{R}^{4}, which is stated as Theorem 22,

The appendix is devoted to a technical proof of the local triviality of the lattice bundle \mathcal{L} and an illustration on how the monodromy matrix $\mathcal{M}_{\mathcal{C}}$ determines the torus bundle $F^{-1}(\mathcal{C}) \rightarrow \mathcal{C}$.

3. the orbit space \mathcal{O}_{M} and the lattice bundle \mathcal{L}

In this section we study the orbit space \mathcal{O}_{M} and the lattice bundle \mathcal{L} associated to a regular integrable system (M, F, Φ) of type (k, n) with compact orbits.

By \sim_{Φ} we denote the equivalence relation on M such that $p \sim_{\Phi} p^{\prime}$ if and only if p and p^{\prime} are on the same orbit of Φ. The orbit space \mathcal{O}_{M} is the quotient space M / \sim_{Φ}, that is, each element of \mathcal{O}_{M} represents an orbit of Φ. Then F factors as $F=\bar{F} \circ q_{\Phi}$ with $q_{\Phi}: M \rightarrow \mathcal{O}_{M}=M / \sim_{\Phi}$ being the quotient map and $\bar{F}: \mathcal{O}_{M} \rightarrow \mathbb{R}^{k}$.
Note that for any open set W in $M, q_{\Phi}^{-1}\left(q_{\Phi}(W)\right)=\Phi^{\mathbb{R}^{n}}(W)$ is open. This implies that $q_{\Phi}(W)$ is open, and therefore q_{Φ} is an open map. Since each orbit is compact, \mathcal{O}_{M} is Hausdorff. Since F is a submersion, for any $o \in \mathcal{O}_{M}$ and $p \in o$, there exists a local section σ of F over some open neighbourhood U of $b=F(p)$ such that $\sigma(b)=p$. Then $V=q_{\Phi} \circ \sigma(U)=q_{\Phi}\left(\Phi^{\mathbb{R}^{n}} \circ \sigma(U)\right)$ is an open neighbourhood of o and $q_{\Phi} \circ \sigma: U \rightarrow V$ is the inverse of $\left.\bar{F}\right|_{V}: V \rightarrow U$. Therefore \bar{F} is a local homeomorphism. Choose an open covering $\left\{V_{\alpha}\right\}$ of \mathcal{O}_{M} such that $\bar{F}_{\alpha}=\left.\bar{F}\right|_{V_{\alpha}}$: $V_{\alpha} \rightarrow U_{\alpha}$ is a homeomorphism for each α. Then $\left\{\left(V_{\alpha}, \bar{F}_{\alpha}\right)\right\}$ is a smooth structure on \mathcal{O}_{M} and naturally it makes \bar{F} a local diffeomorphism. Since $F=\bar{F} \circ q_{\Phi}$ and F is submersive, such a smooth structure makes q_{Φ} a submersion. The discussion here yields the following proposition.

Proposition 3. There exists a unique smooth structure on \mathcal{O}_{M} such that q_{Φ} is a submersion and \bar{F} is a local diffeomorphism.

As in the case of Hamitonian integrable systems, for any $p \in M$ the isotropy group $\mathcal{T}_{p} \subset \mathbb{R}^{n}$ of Φ at p is a free Abelian group of rank n [5], and $\mathcal{T}_{p}=\mathcal{T}_{p^{\prime}}$ if p and
p^{\prime} are on the same orbit. Hence for any orbit $o \in \mathcal{O}_{M}$, define its period lattice to be $\mathcal{L}_{o}=\mathcal{T}_{p}$ with any $p \in o$. The lattice bundle is then defined as $\mathcal{L}=\bigsqcup_{o \in \mathcal{O}_{M}} \mathcal{L}_{o}$ and it then naturally holds $\mathcal{L} \subset \mathcal{O}_{M} \times \mathbb{R}^{n}$. Denote by $\pi_{\mathcal{L}}$ the natural projection $\mathcal{L} \rightarrow \mathcal{O}_{M}: \quad(o, T) \rightarrow o$ and endow \mathcal{L} with the subspace topology inherited from $\mathcal{O}_{M} \times \mathbb{R}^{n}$. The following basic fact holds and its proof is inherent in the proof of the (Hamiltonian) Liouville theorem in [5]:

Theorem 4. For any $o \in \mathcal{O}_{M}$, there exists a neighbourhood U and smooth sections $\tau_{i}: U \rightarrow U \times \mathbb{R}^{n}$ with $i=1, \ldots, n$, such that for each $o^{\prime} \in U, \tau_{1}\left(o^{\prime}\right), \ldots, \tau_{n}\left(o^{\prime}\right)$ constitute a basis of $\mathcal{L}_{o^{\prime}}$. As a consequence there exists an isomorphism $\rho: \pi_{\mathcal{L}}^{-1}(U) \rightarrow$ $U \times \mathbb{Z}^{n}$.

Proof. See Step 3 of Proof (2.1) in Chapter IX of [5]. Note that the definition of the period lattice bundle in [5] is different from that in this paper. In the appendix we give an argument following the same idea but different in some technical details.

We call a neighbourhood U such as in the theorem above a \mathcal{O}_{M}-neighbourhood, and the sections $\tau_{1}, \ldots, \tau_{n}$ a smooth local basis of \mathcal{L} over U. Theorem 4 above actually shows that \mathcal{L} is a smooth submanifold of $\mathcal{O}_{M} \times \mathbb{R}^{n}$. As a corollary of Theorem 4 we have:

Corollary 5. The map $\pi_{\mathcal{L}}: \mathcal{L} \rightarrow \mathcal{O}_{M}$ is a covering map of \mathcal{O}_{M}.
Since for each $o \in \mathcal{O}_{M}$, the group \mathcal{L}_{o} is a subgroup of the fiber $\{o\} \times \mathbb{R}^{n}$, we can define an equivalence relation $\sim_{\mathcal{L}}$ on $\mathcal{O}_{M} \times \mathbb{R}^{n}$ given by $(o, T) \sim_{\mathcal{L}}\left(o^{\prime}, T^{\prime}\right)$ if and only if $o=o^{\prime}$ and $\left(o, T-T^{\prime}\right) \in \mathcal{L}_{o}$. We denote the quotient map of $\sim_{\mathcal{L}}$ by $q_{\mathcal{L}}$.

The following non-Hamiltonian version of the Liouville theorem is a consequence of Theorem 4

Theorem 6. [13] For any $o \in \mathcal{O}_{M}$, there exists some neighbourhood U of o in \mathcal{O}_{M} with a diffeomorphism $\phi:\left(U \times \mathbb{R}^{n}\right) / \sim_{\mathcal{L}} \rightarrow q_{\Phi}^{-1}(U)$. Moreover, the \mathbb{T}^{n} action on $q_{\Phi}^{-1}(U)$ induced by the natural \mathbb{T}^{n} action on $\left(U \times \mathbb{R}^{n}\right) / \sim_{\mathcal{L}} \cong U \times \mathbb{T}^{n}$ via this diffeomorphism commutes with the \mathbb{R}^{n} action Φ.

Proof. Choose a local section σ of $q_{\Phi}: M \rightarrow \mathcal{O}_{M}$ over some \mathcal{O}_{M}-neighbourhood U of o. Define $\tilde{\phi}: U \times \mathbb{R}^{n} \rightarrow q_{\Phi}^{-1}(U)$ as $\tilde{\phi}(c, T)=\Phi^{T} \circ \sigma(c)$. Then $\tilde{\phi}$ factors as $\phi \circ q_{\mathcal{L}}$. It is can be checked that ϕ is a homeomorphism from $\left(U \times \mathbb{R}^{n}\right) / \sim_{\mathcal{L}}$ to $q_{\Phi}^{-1}(U)$.

To show that $\left(U \times \mathbb{R}^{n}\right) / \sim_{\mathcal{L}}$ is homeomorphic to $U \times \mathbb{T}^{n}$ one can resort to a smooth local basis $\tau_{1}, \ldots, \tau_{n}$ of \mathcal{L} over U and a rectifying map rec : $U \times \mathbb{R}^{n} \rightarrow U \times \mathbb{R}^{n}$: $\left(c ; t_{1}, \ldots, t_{n}\right) \rightarrow\left(c ; t_{1} \tau_{1}(c), \ldots, t_{n} \tau_{n}(c)\right)$. This descends to an isomorphism $\overline{r e c}$ from $U \times \mathbb{T}^{n}$ to $\left(U \times \mathbb{R}^{n}\right) / \sim_{\mathcal{L}}$. It can be checked that $\overline{r e c}$ is a bijective submersion, and thereby is a diffeomorphism.

Corollary 7. If the bundle $q_{\Phi}: M \rightarrow \mathcal{O}_{M}$ admits a global section, then it is isomorphic to $\bar{\pi}_{\mathcal{O}}:\left(\mathcal{O}_{M} \times \mathbb{R}^{n}\right) / \sim_{\mathcal{L}} \rightarrow \mathcal{O}_{M}$.

Proof. The proof of Theorem 6 actually guarantees that $\bar{\pi}_{\mathcal{O}}:\left(\mathcal{O}_{M} \times \mathbb{R}^{n}\right) / \sim_{\mathcal{L}} \rightarrow$ \mathcal{O}_{M} with $\bar{\pi}_{\mathcal{O}}([o, T])=o$ is a locally trivial torus fibration. If $q_{\Phi}: M \rightarrow \mathcal{O}_{M}$ admits a global section $\sigma: \mathcal{O}_{M} \rightarrow M$ then $\tilde{\phi}_{M}: \mathcal{O}_{M} \times \mathbb{R}^{n} \rightarrow M$ with $\tilde{\phi}_{M}(c, T)=\Phi^{T} \circ \sigma(c)$ for any $c \in \mathcal{O}_{M}$ factors as $\tilde{\phi}_{M}=\phi_{M} \circ q_{\mathcal{L}}$ with ϕ_{M} being a bundle isomorphism.

4. The lattice bundle \mathcal{L} and the sheaf \mathcal{R} of compatible S^{1} actions

The sheaf \mathcal{R} of compatible S^{1} actions over \mathcal{O}_{M} was first introduced in [14] in the context of Hamiltonian integrable systems and then in [15] for the non-Hamiltonian case. We explain the relation between the sheaf \mathcal{R} and the lattice bundle \mathcal{L} in this section.

Definition 8. For any open set U of \mathcal{O}_{M}, an S^{1} action $\Theta: S^{1} \times q_{\Phi}^{-1}(U) \rightarrow q_{\Phi}^{-1}(U)$ acting on $q_{\Phi}^{-1}(U)$ is called a compatible S^{1} action over U if it commutes with the \mathbb{R}^{n} action Φ and preserves q_{Φ} in the sense that $q_{\Phi} \circ \Theta(z, p)=q_{\Phi}(p)$ for all $z \in S^{1}$ and $p \in q_{\Phi}^{-1}(U)$.
Definition 9. 15] For any open set U of \mathcal{O}_{M}, denote by \mathcal{R}_{U} the set of all compatible S^{1} actions over U. For any pair of open sets U, V with $U \subset V$, denote by ρ_{U}^{V} the restriction map from \mathcal{R}_{V} to \mathcal{R}_{U}. Then $\mathcal{R}=\left(\left\{\mathcal{R}_{U}\right\},\left\{\rho_{U}^{V} \mid U \subset V\right\}\right)$ is a sheaf of Abelian groups and it called the sheaf of compatible S^{1} actions.

The following proposition characterizes the compatible S^{1} actions.
Proposition 10. Suppose $\Theta: S^{1} \times q_{\Phi}^{-1}(U) \rightarrow q_{\Phi}^{-1}(U)$ is a compatible S^{1} action. Then there exists a unique continuous section $\sigma: U \rightarrow \mathcal{L}$ such that $\Theta\left(e^{i \cdot 2 \pi t}, p\right)=$ $\Phi^{t \cdot \sigma \circ q_{\Phi}(p)}(p)$. Conversely, if σ is a continuous section of \mathcal{L} over U, then $\Theta\left(e^{i \cdot 2 \pi t}, p\right)=$ $\Phi^{t \cdot \sigma \circ q_{\Phi}(p)}(p)$ defines a compatible S^{1} action.

Proof. Let X_{Θ} be the infinitesimal generator of the flow $\psi^{t}(p)=\Theta\left(e^{i \cdot 2 \pi t}, p\right)$ on $q_{\Phi}^{-1}(U)$, i.e. $\quad X_{\Theta}(p)=\left.\frac{d}{d t}\right|_{t=0} \Theta\left(e^{i \cdot 2 \pi t}, p\right)$. Let $\left.\frac{\partial}{\partial t_{i}}\right|_{p}=\frac{d}{d t_{i}} \Phi^{\left(0, . . t_{i . .}, 0\right)}(p)$. Since Θ preserves $q_{\Phi}, X_{\Theta}(p) \in \operatorname{ker} q_{\Phi *}=\operatorname{span}\left\{\left.\frac{\partial}{\partial t_{i}}\right|_{p}, i=1, \ldots, n\right\}$. Hence there exist smooth functions a_{1}, \ldots, a_{n} on $q_{\Phi}^{-1}(U)$ such that $X_{\Theta}=\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial t_{i}}$. Moreover, since Θ commutes with Φ, the functions a_{i} are invariant on each orbit, and hence they can be seen as functions on U. Note that the flow φ on $q_{\Phi}^{-1}(U)$ with $\varphi^{t}(p)=\Phi^{t \cdot a_{1} \circ q_{\Phi}(p), \ldots, t \cdot a_{n} \circ q_{\Phi}(p)}(p)$ has the same infinitesimal generator as ψ, and hence $\varphi=\psi$. Since $\Phi^{a_{1} \circ q_{\Phi}(p), \ldots, a_{n} \circ q_{\Phi}(p)}(p)=\Theta\left(e^{i \cdot 2 \pi}, p\right)=p$ for all $p \in q_{\Phi}^{-1}(U)$, $\left(q_{\Phi}(p) ; a_{1} \circ q_{\Phi}(p), \ldots, a_{n} \circ q_{\Phi}(p)\right) \in \mathcal{L}_{q_{\Phi}(p)}$. Hence $\sigma: o \rightarrow\left(o ; a_{1}(o), \ldots, a_{n}(o)\right)$ is the smooth section we are looking for. If there is another section σ^{\prime} on U satisfying the
relation $\Theta\left(e^{i \cdot 2 \pi t}, p\right)=\Phi^{t \cdot \sigma^{\prime} \circ q_{\Phi}(p)}(p)$ with $\sigma^{\prime}: o \rightarrow\left(o, a_{1}^{\prime}(o), \ldots, a_{n}^{\prime}(o)\right)$, then it holds that $X_{\Theta}=\sum_{i=1}^{n} a_{i}^{\prime} \frac{\partial}{\partial t_{i}}$. As a consequence, we have $a_{i}(o)=a_{i}^{\prime}(o)$ for all $i=1, \ldots, n$ and $o \in U$, and thereby $\sigma=\sigma^{\prime}$.
The argument for the converse direction is straightforward.
From Proposition 10 it follows that for any $\Theta, \Theta^{\prime} \in \mathcal{R}_{U}$, the identity $\Theta^{z} \circ \Theta^{\prime z^{\prime}}(p)=$ $\Theta^{\prime z^{\prime}} \circ \Theta^{z}(p)$ holds, and thus there is a natural Abelian structure on \mathcal{R}_{U} with the addition $\Theta+\Theta^{\prime}$ given by $\left(\Theta+\Theta^{\prime}\right)^{z}(p)=\Theta^{z} \circ \Theta^{\prime z}(p)$. Accordingly, compatible S^{1} actions over U are in one-one correspondence with the continuous sections of \mathcal{L} over U, and this implies that \mathcal{L} is the associated sheaf/Etale space of \mathcal{R}. The discussion here amounts to the following corollary.

Corollary 11. The Etale space of the sheaf \mathcal{R} of compatible S^{1} actions is isomorphic to the lattice bundle \mathcal{L}.

If $\sigma: \mathcal{O}_{M} \rightarrow \mathcal{L}$ is a global continuous section of \mathcal{L}, then σ corresponds to a compatible S^{1} action Θ on M by $\Theta\left(e^{i \cdot 2 \pi t}, p\right)=\Phi^{t \cdot \sigma \circ q_{\Phi}(p)}(p)$. When it is nonzero, this is a non-trivial S^{1} action. Actually in this case the section σ is non-zero everywhere and the corresponding S^{1} action Θ is thereby effective. To see this, first note that $\mathcal{O}_{M} \times\{0\}$ is closed in $\mathcal{O}_{M} \times \mathbb{R}^{n}$ and hence is closed in \mathcal{L}. Moreover, the fact that \mathcal{L} is locally isomorphic to $U \times \mathbb{Z}^{n}$ implies that $\mathcal{O}_{M} \times\{0\}$ is also open in \mathcal{L}. Since we assume M to be connected, $\mathcal{O}_{M} \times\{0\}$ is exactly one connected component of \mathcal{L}. Hence for any continuous section $\sigma: \mathcal{O}_{M} \rightarrow \mathcal{L}$, as long as $\sigma\left(c_{0}\right) \in \mathcal{O}_{M} \times\{0\}$, we have $\sigma\left(\mathcal{O}_{M}\right)=\mathcal{O}_{M} \times\{0\}$. As a consequence, if σ is non-zero somewhere, it is non-zero everywherem, and the induced S^{1} action Θ is effective.

Note that σ being non-zero does not imply that Θ is free. However, the existence of a non-zero section does imply the existence of a free S^{1} action compatible with Φ.

Proposition 12. The existence of a global non-zero continuous section of \mathcal{L} implies the existence of a free S^{1} action on M.

Proof. First we show that for any non-zero integer n, the map $* n: w \mapsto n \cdot w$ defined on $\mathcal{O}_{M} \times \mathbb{R}^{n}$ induces an open and closed map on \mathcal{L}. Note that $* n$ is a diffeomorphism on $\mathcal{O}_{M} \times \mathbb{R}^{n}$, and \mathcal{L} is closed in $\mathcal{O}_{M} \times \mathbb{R}^{n}$ with $* n(\mathcal{L}) \subset \mathcal{L}$. As a consequence, $* n$ induces a closed map on \mathcal{L}, which is also denoted by $* n$. For the openess, first note that for any continuous section σ of \mathcal{L} over some open set U in $\mathcal{O}_{M}, \sigma(U)$ is open in \mathcal{L}. Then for any $w \in \mathcal{L}$ and its neighbourhood W, there exists some continuous section σ over $U \ni c$ with $c=q_{\Phi}(w)$ such that $\sigma(U) \subset W$ and $\sigma(c)=w$. Then $* n \circ \sigma$ is also a contiuous section of \mathcal{L} over the open set U,
and $* n \circ \sigma(U) \subset * n(W)$. Therefore $* n(W)$ is a neighbourhood of $* n(w)$ and this implies $* n$ is an open map on \mathcal{L}.

Now suppose that σ is a non-zero section. Then $\sigma\left(\mathcal{O}_{M}\right)$ is a connected component of \mathcal{L}. Fix a point c_{0} in \mathcal{O}_{M}. Choose $w_{0} \in \mathcal{L}_{c_{0}}$ such that $* n\left(w_{0}\right)=\sigma\left(c_{0}\right)$ for some $n \in \mathbb{Z}$, and $\mathbb{R} \cdot w_{0} \cap \mathcal{L}=\mathbb{Z} \cdot w_{0}$. Suppose that $S_{w_{0}} \subset \mathcal{L}$ is the connected component of \mathcal{L} containing w_{0}. Then $* n\left(S_{w_{0}}\right)$ is another component of \mathcal{L} since $* n$ is both an open and a closed map on \mathcal{L}. Since $\sigma\left(c_{0}\right)=* n\left(w_{0}\right) \in * n\left(S_{w_{0}}\right)$, it yields $\sigma\left(\mathcal{O}_{M}\right)=* n\left(S_{w_{0}}\right)$, and therefore $\sigma_{1}=\frac{1}{n} \sigma$ is also a continuous section of \mathcal{L} with $\sigma_{1}\left(\mathcal{O}_{M}\right)=S_{w_{0}}$. It remains to show that for any $c \in \mathcal{O}_{M}$, the identity $\mathbb{R} \cdot \sigma_{1}(c) \cap \mathcal{L}=\mathbb{Z} \cdot \sigma_{1}(c)$ holds. That is, $\sigma_{1}(c)$ is a generator of the subgroup $\mathbb{R} \cdot \sigma_{1}(c) \cap \mathcal{L}$ for each $c \in \mathcal{O}_{M}$.

Suppose that $w_{1} \in \mathcal{L}_{c}$ is a generator of $\mathbb{R} \cdot \sigma_{1}(c) \cap \mathcal{L}$. Then there exists some integer n_{1} such that $n_{1} w_{1}=\sigma_{1}(c)$. Repeating the argument above yields another section $\sigma_{2}=\frac{1}{n_{1}} \sigma_{1}$. Since $\sigma_{1}\left(c_{0}\right)=w_{0}$ and $\mathbb{R} \cdot w_{0} \cap \mathcal{L}=\mathbb{Z} \cdot w_{0}, \sigma_{2}\left(c_{0}\right)=\frac{1}{n_{1}} \sigma_{1}\left(c_{0}\right)=\frac{1}{n_{1}} w_{0} \in$ $\mathbb{R} \cdot w_{0} \cap \mathcal{L}=\mathbb{Z} \cdot w_{0}$. This implies $n_{1}= \pm 1$. Hence for any $c \in \mathcal{O}_{M}, \mathbb{R} \cdot \sigma_{1}(c) \cap \mathcal{L}=$ $\mathbb{Z} \cdot \sigma_{1}(c)$, and therefore the S^{1} action Θ on M defined by $\Theta\left(e^{i \cdot 2 \pi t}, p\right)=\Phi^{t \cdot \sigma_{1} \circ q_{\Phi}(p)}(p)$ is free.

5. MONODROMY MAPS

Consider a loop \mathcal{C} in the orbit space \mathcal{O}_{M} with a fixed point $c_{0} \in \mathcal{C}$. For convenience, we view \mathcal{C} both as a subset $\mathcal{C} \subset \mathcal{O}_{M}$ and a fixed parametrization $\mathcal{C}:[0,1] \rightarrow \mathcal{O}_{M}$ with $\mathcal{C}(0)=\mathcal{C}(1)=c_{0}$. Let $M_{\mathcal{C}}=q_{\Phi}^{-1}(\mathcal{C})$ and let $\mathcal{L}_{\mathcal{C}}=\pi_{\mathcal{L}}^{-1}(\mathcal{C})$. Then $q_{\mathcal{C}}=\left.q_{\Phi}\right|_{\mathcal{C}}$: $M_{\mathcal{C}} \rightarrow \mathcal{C}$ is a locally trivial torus fibration over \mathcal{C}. Since $q_{\mathcal{C}}$ is a locally trivial fibration over a loop with connected fibers, it always admits a section over \mathcal{C}.

According to Corollary 7, $q_{\mathcal{C}}: M_{\mathcal{C}} \rightarrow \mathcal{C}$ is isomorphic to $\bar{\pi}_{\mathcal{C}}:\left(\mathcal{C} \times \mathbb{R}^{n}\right) / \sim_{\mathcal{L}} \rightarrow \mathcal{C}$. Recall that $\mathcal{L} \rightarrow \mathcal{O}_{M}$ is a covering, and denote by $\mathcal{M}_{\mathcal{C}}$ the monodromy action of \mathcal{C} on $\mathcal{L}_{c_{0}} . \mathcal{M}_{\mathcal{C}}$ is actually an isomorphism on the lattice $\mathcal{L}_{c_{0}}$. To see this, suppose γ_{1} and γ_{2} are the lifts of \mathcal{C} with base points v_{1} and v_{2}, with, $v_{1}, v_{2} \in \mathcal{L}_{c_{0}} \cdot \gamma_{1}+\gamma_{2}$ is the lift of \mathcal{C} at $v_{1}+v_{2}$, which implies that $\mathcal{M}_{\mathcal{C}}$ is a group homomorphism. It can be checked that $\mathcal{M}_{\mathcal{C}}$ is bijective. By fixing a basis $\bar{w}=\left(u_{1}, \ldots, u_{n}\right)$ of $\mathcal{L}_{c_{0}}, \mathcal{M}_{\mathcal{C}}$ is represented by some element $\mathcal{M}_{\mathcal{C}, \bar{w}} \in S L(n, \mathbb{Z})$. Note that $\mathcal{M}_{\mathcal{C}, \bar{w}} \in G L(n, \mathbb{Z})$. To see that $\operatorname{det} \mathcal{M}_{\mathcal{C}, \bar{w}}=1$, we only need to show that $\operatorname{det} \mathcal{M}_{\mathcal{C}, \bar{w}}>0$. For each $i \in\{1, \ldots, n\}$, let $\tau_{i}:[0,1] \rightarrow \mathcal{L} \subset \mathcal{O}_{M} \times \mathbb{R}^{n}$ be the lift of \mathcal{C} with $\tau_{i}(0)=u_{i}$. It holds that $\tau_{i}(s)=\left(\mathcal{C}_{t}, \tau_{i}^{\prime}(s)\right)$ with $\tau_{i}^{\prime}:[0,1] \rightarrow \mathbb{R}^{n}$ being continuous for each $i \in$ $\{1, \ldots, n\}$. Consequently $\operatorname{det}\left[\tau_{1}^{\prime}(s), \ldots, \tau_{n}^{\prime}(s)\right]$ is continuous and non-zero everywhere with respect to s and hence its sign does not change. By the definition of $\mathcal{M}_{\mathcal{C}, \bar{w}}$, it holds that $\left[\tau_{1}^{\prime}(1), \ldots, \tau_{n}^{\prime}(1)\right]=\left[\tau_{1}^{\prime}(0), \ldots, \tau_{n}^{\prime}(0)\right] \cdot \mathcal{M}_{\mathcal{C}, \bar{w}}$ and thereby $\operatorname{det} \mathcal{M}_{\mathcal{C}, \bar{w}}>0$.

We call $\mathcal{M}_{\mathcal{C}}$ the monodromy map associated to \mathcal{C} (or, of the fibration $q_{\mathcal{C}}: M_{\mathcal{C}} \rightarrow \mathcal{C}$), and $\mathcal{M}_{\mathcal{C}, \bar{w}}$ the monodromy matrix with respect to w. The monodromy map $\mathcal{M}_{\mathcal{C}}$ determines the structure of $q_{\mathcal{C}}: M_{\mathcal{C}} \rightarrow \mathcal{C}$ (see Appendix 8.2).

6. THE MAIN CONSTRUCTION

In this section we construct a bundle morphism $\rho: \mathcal{L} \rightarrow \mathbb{Z}^{l}$ with l being an integer and show the main results of this article.

Let o be an element in \mathcal{O}_{M}. For $T \in \mathcal{L}_{o}$ and $x \in q_{\Phi}^{-1}(o)$, let $\lambda_{T, x}:[0,1] \rightarrow q_{\Phi}^{-1}(o)$ be the closed path on the torus $q_{\Phi}^{-1}(o)$ with $\lambda_{T, x}(s)=\Phi^{s \cdot T}(x)$. Denote by $\operatorname{Tor}_{H_{1}(M)}$ the torsion subgroup of $H_{1}(M)$. Define $\rho_{o}: \mathcal{L}_{o} \rightarrow H_{1}(M) /$ Tor $_{H_{1}(M)}$ by assigning to each $T \in \mathcal{L}_{o}$ the element $\left[\lambda_{T, x}\right]$ in $H_{1}(M) / \operatorname{Tor}_{H_{1}(M)}$. Note that such an assignment is independent of x since for any x, x^{\prime} on $q_{\Phi}^{-1}(o), \lambda_{T, x}$ and $\lambda_{T, x^{\prime}}$ are homotopic on $q_{\Phi}^{-1}(o)$. The map ρ_{o} is a homomorphism between Abelian groups.

Definition 13. The bundle morphism $\rho: \mathcal{L} \rightarrow H_{1}(M) / \operatorname{Tor}_{H_{1}(M)}$ is the one satisfying the identity $\left.\rho\right|_{\mathcal{L}_{o}}=\rho_{o}$ for each $o \in \mathcal{O}_{M}$.

We show that the value of ρ is invariant under parallel translation on \mathcal{L}, and as a consequence, ρ can be seen as a continuous bundle epimorphism from \mathcal{L} to \mathbb{Z}^{l} with $l \leq n$.

Theorem 14. For any path $\tilde{\gamma}:[0,1] \rightarrow \mathcal{L}, \rho \circ \tilde{\gamma}(t)=\rho \circ \tilde{\gamma}(0)$ for all $t \in[0,1]$. As a consequence, ρ is locally constant, and $\operatorname{Im} \rho=\operatorname{Im} \rho_{o}$ is a free Abelian group with rank $l \leq n$.

Proof. Let γ be the path in \mathcal{O}_{M} defined as $\gamma=\pi_{\mathcal{L}} \circ \tilde{\gamma}$. Take a section σ of $q_{\Phi}: M \rightarrow \mathcal{O}_{M}$ over γ. Then $(t, \cdot) \mapsto \lambda_{\tilde{\gamma}(t), \sigma \circ \gamma(t)}(\cdot)$ gives a homotopy in M and hence $\rho \circ \tilde{\gamma}(t)=\left[\lambda_{\tilde{\gamma}(t), \sigma \circ \gamma(t)}\right]$ remains invariant in $H_{1}(M) / \operatorname{Tor}_{H_{1}(M)}$. Since \mathcal{O}_{M} is path-connected, for any $o, o^{\prime} \in \mathcal{O}_{M}, \mathcal{L}_{o^{\prime}}$ can be obtained via the parallel translation of \mathcal{L}_{o} along some path connecting o and o^{\prime}. Therefore $\operatorname{Im} \rho_{o}=\operatorname{Im} \rho_{o^{\prime}}$ and it is a finitely generated subgroup in $H_{1}(M) / \operatorname{Tor}_{H_{1}(M)}$ and thereby a free Abelian group with rank no larger than that of \mathcal{L}_{o}. Finally, ρ is locally constant since \mathcal{L} is locally path-connected.

Corollary 15. The map ρ is a bundle epimorphism from \mathcal{L} to \mathbb{Z}^{l} with $l \leq n$. For any path γ in \mathcal{O}_{M} with \mathcal{M}_{γ} being the associated monodromy map, $\rho \circ \mathcal{M}_{\gamma}=\rho$ on $\mathcal{L}_{\gamma(0)}$.

Suppose $l>0$, i.e. ρ is non-trivial. Then $\rho=\left(\rho_{1}, \ldots, \rho_{l}\right)$ with $\rho_{i}: \mathcal{L} \rightarrow \mathbb{Z}$ being locally constant and $\rho_{i} \circ \mathcal{M}_{\gamma}=\rho_{i}$. This means the linear functionals $\left.\rho_{i}\right|_{\mathcal{L}_{\gamma(0)}}$ are
eigenvectors with eigenvalue 1 of the transpose of \mathcal{M}_{γ}. This gives a descending chain of lattice subbundles $\mathcal{L} \supset \operatorname{ker} \rho_{1} \supset \operatorname{ker}\left(\rho_{1}, \rho_{2}\right) \supset \ldots \supset \operatorname{ker}\left(\rho_{1}, \ldots, \rho_{l}\right)$. Since \mathbb{Z} is free, on each fiber \mathcal{L}_{o} the following short exact sequence splits:

$$
\left.0 \rightarrow \operatorname{ker} \rho_{1}\right|_{\mathcal{L}_{o}} \rightarrow \mathcal{L}_{o} \xrightarrow{\rho_{1}} \mathbb{Z} \rightarrow 0
$$

and then ker $\left.\rho_{1}\right|_{\mathcal{L}_{o}}$ is isomorphic to \mathbb{Z}^{n-1}.
Theorem 16. The sublattice bundle ker ρ_{1} is a smooth lattice subbundle of \mathcal{L}. Moreover, $\operatorname{ker} \rho_{1}$ locally splits \mathcal{L}. To be precise, for any point $o \in \mathcal{O}_{M}$, there exists some neighbourhood U such that $\left.\mathcal{L}\right|_{U}=\left.\operatorname{ker} \rho_{1}\right|_{U} \oplus \mathcal{L}_{U}^{\prime \prime}$ with $\mathcal{L}_{U}^{\prime \prime}$ being some sublattice bundle of $\left.\mathcal{L}\right|_{U}$ over U.

Proof. Since ρ_{1} is locally constant on \mathcal{L}, it is contant on each of the connected components. Hence ker ρ_{1} consists of several connected components of \mathcal{L} and is a submanifold of \mathcal{L}.

For any $c \in \mathcal{O}_{M}$, we construct a local trivialization of $\operatorname{ker} \rho_{1}$ in the vicinity of c. Let $U \ni c$ be a connected neighbourhood over which \mathcal{L} admits a local trivialization. Then for each connected component \mathcal{S} of $\left.\mathcal{L}\right|_{U}$, there exists a section $\sigma: U \rightarrow \mathcal{L}$ such that $\mathcal{S}=\sigma(U)$. Due to the connectedness of U, we have $\sigma(U) \subset$ ker ρ_{1} if and only if $\sigma(U) \cap \operatorname{ker} \rho_{1}$ is nonempty. Fix a basis w_{1}, \ldots, w_{n-1} of $\left.\operatorname{ker} \rho_{1}\right|_{\mathcal{L}_{c}}$ with local sections $\sigma_{1}, \ldots, \sigma_{n-1}$ over U such that $\sigma_{i}(c)=w_{i}$. For each $c^{\prime} \in U$, the linear independence of $\sigma_{1}\left(c^{\prime}\right), \ldots, \sigma_{n-1}\left(c^{\prime}\right)$ follows from the fact that the zero section $U \times\{\mathbf{0}\}$ is a component of $\left.\operatorname{ker} \mathcal{L}\right|_{U}$.

Now we show that for any $\left.w^{\prime} \in \operatorname{ker} \rho_{1}\right|_{\mathcal{L}_{c^{\prime}}}$, there exist integers k_{1}, \ldots, k_{n-1} such that $\Sigma_{i} k_{i} \sigma_{i}\left(c^{\prime}\right)=w^{\prime}$. Let $\sigma^{\prime}: U \rightarrow \mathcal{L}$ be the section with $w^{\prime}=\sigma^{\prime}\left(c^{\prime}\right)$. Then it holds that $\sigma^{\prime}(U) \subset \operatorname{ker} \rho_{1}$ due to the connectness of U, and in particular, $\left.\sigma^{\prime}(c) \in \operatorname{ker} \rho_{1}\right|_{\mathcal{L}_{c}}$. Then there exist integers k_{1}, \ldots, k_{n-1} such that $\sum_{i=1}^{n} k_{i} \sigma_{i}(c)=\sigma^{\prime}(c) \in \mathcal{L}_{c}^{\prime}$. Since $\tau=\sum_{i} k_{i} \sigma_{i}$ is also a continuous section of \mathcal{L} over U, it yields $\tau(U) \subset \operatorname{ker} \rho_{1}$ and thereby $\tau=\sigma^{\prime}$. Then $w^{\prime}=\sigma^{\prime}\left(c^{\prime}\right)=\sum_{i} k_{i} \sigma_{i}\left(c^{\prime}\right)$ with k_{i} integers. Hence $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$ gives rise to a local trivialization of $\operatorname{ker} \rho_{1}$ over U.

To see that ker ρ_{1} locally splits \mathcal{L}, first note that for every $c \in \mathcal{O}_{M}$, $\left.\operatorname{ker} \rho_{1}\right|_{\mathcal{L}_{c}}$ splits \mathcal{L}_{c}. Then it holds that $\mathcal{L}_{c}=\mathcal{L}_{c}^{\prime} \oplus \mathbb{Z} \cdot v_{c}$ for some $v_{c} \in \mathcal{L}_{c}$. Let σ be a section over U such that $\sigma(c)=v_{c}$. For any $c^{\prime} \in U$ and $w^{\prime} \in \mathcal{L}_{c^{\prime}}$, there is a section σ^{\prime} of \mathcal{L} over U such that $\sigma^{\prime}\left(c^{\prime}\right)=w^{\prime}$. Since $\sigma^{\prime}(c) \in \mathcal{L}_{c}$ and $\sigma_{1}(c), \ldots, \sigma_{n-1}(c), \sigma(c)$ constitute a basis of \mathcal{L}_{c}, there exist integers $b_{1}, \ldots, b_{n-1}, b$ such that $\sigma^{\prime}(c)=\sum_{i=1}^{n-1} b_{i} \sigma_{i}(c)+b \sigma(c)$. It then holds $\left(\sum_{i=1}^{n} b_{i} \sigma_{i}\right)(U)=\sigma^{\prime}(U)$ since both of them are connected components of $\left.\mathcal{L}\right|_{U}$. Hence $\sum_{i=1}^{n-1} b_{i} \sigma_{i}\left(c^{\prime}\right)+b \sigma\left(c^{\prime}\right)=\sigma^{\prime}\left(c^{\prime}\right)=w^{\prime}$. As a result, $\left.\mathcal{L}\right|_{U}=\left.\operatorname{ker} \rho_{1}\right|_{U} \oplus \mathcal{L}_{U}^{\prime \prime}$ with $\mathcal{L}^{\prime \prime}{ }_{U}=\mathbb{Z} \cdot \sigma(U)$.

Corollary 17. ker ρ_{1} gives rise to an $(n-1)-$ toric foliation $\mathfrak{F}^{(1)}$ refining \mathfrak{F}. More precisely, for any $b \in \mathcal{O}_{M}$, there exists a neighbourhood U of b with a local trivialization $\bar{\psi}: U \times S^{1} \times \mathbb{T}^{n-1} \rightarrow q_{\Phi}^{-1}(U)$ such that for any $(u, z) \in U \times S^{1}$, $\bar{\psi}\left((u, z) \times \mathbb{T}^{n-1}\right)$ is a leaf of $\mathfrak{F}^{(1)}$.

Proof. Denote by V_{o} the $n-1$ dimensional subspace of $\{o\} \times \mathbb{R}^{n}$ spanned by $\left.\operatorname{ker} \rho_{1}\right|_{\mathcal{L}_{o}}$. Then for each $p \in q_{\Phi}^{-1}(o), \mathfrak{T}_{p}=\Phi^{V_{o}}(p)$ is an $(n-1)-$ torus. To see $\mathfrak{F}^{(1)}=\left\{\mathfrak{T}_{p} \mid p \in M\right\}$ is a foliation, it only needs to be checked that there are local flat charts everywhere on M 10].

For any $p \in M$ with $o=q_{\Phi}(p)$, choose a neighourhood U over which it admits a section $\tilde{\sigma}$ of q_{Φ} with $\tilde{\sigma}(o)=p$ and trivializations of \mathcal{L}_{U}. Note that each component of \mathcal{L}_{U} takes the form $\sigma(U)$ with σ being a continuous section of \mathcal{L} over U. Choose $w_{1}, \ldots,\left.w_{n-1} \in \operatorname{ker} \rho_{1}\right|_{\mathcal{L}_{o}}$ and $v \in \mathcal{L}_{o}$ such that $\left\{w_{1}, \ldots, w_{n-1}, v\right\}$ forms a basis of \mathcal{L}_{o} and $\left\{w_{1}, \ldots, w_{n-1}\right\}$ forms a basis of ker $\left.\rho_{1}\right|_{\mathcal{L}_{o}}$. Let $\sigma_{1}, \ldots, \sigma_{n-1}, \tau$ be sections of \mathcal{L} over U such that $\sigma_{i}(o)=w_{i}$ and $\tau(o)=v$. Then for each $c \in U,\left\{\sigma_{1}(c), \ldots, \sigma_{n-1}(c), \tau(c)\right\}$ is a basis for \mathcal{L}_{c} with $\left\{\sigma_{1}(c), \ldots, \sigma_{n-1}(c)\right\}$ being a basis for $\left.\operatorname{ker} \rho_{1}\right|_{\mathcal{L}_{c}}$.

Define a map $\psi: U \times \mathbb{R}^{n} \rightarrow M$ by

$$
\left(u ; s, t_{1}, . ., t_{n-1}\right) \rightarrow \Phi^{s \cdot \tau(c)+t_{1} \cdot \sigma_{1}(c)+\ldots+t_{n-1} \cdot \sigma_{n-1}(c)} \circ \tilde{\sigma}(c)
$$

It factors as $\psi=\bar{\psi} \circ q_{\mathbb{Z}^{n}}$ with $q_{\mathbb{Z}^{n}}: U \times \mathbb{R}^{n} \rightarrow U \times \mathbb{T}^{n} \cong U \times\left(\mathbb{R}^{n} / \mathbb{Z}^{n}\right)$ the quotient map and $\bar{\psi}=U \times \mathbb{T}^{n} \rightarrow W=\psi\left(U \times \mathbb{R}^{n}\right)$ a diffeomorphism. For any $p^{\prime} \in \psi\left(u^{\prime}, s^{\prime}, t_{1}^{\prime}, \ldots, t_{n-1}^{\prime}\right)$,

$$
\bar{\psi}^{-1}\left(\mathfrak{T}_{p^{\prime}} \cap W\right)=\bar{\psi}^{-1}\left(\mathfrak{T}_{p^{\prime}}\right)=\left\{\left(u, \bar{s}, \bar{t}_{1}, \ldots, \bar{t}_{n-1}\right) \in U \times \mathbb{T}^{n} \mid u=u^{\prime}, \bar{s}=e^{i 2 \pi \cdot s^{\prime}}\right\}
$$

Note that ρ is an epimorphism and therefore $\operatorname{ker}\left(\rho_{1}, \rho_{2}\right)$ is a lattice subbundle of $\operatorname{ker} \rho_{1}$ and has corank 1 in $\operatorname{ker} \rho_{1}$. Consequently it induces an $(n-2)$ - toric foliation $\mathfrak{F}^{(2)}$ on M that refines $\mathfrak{F}^{(1)}$. This process can be iterated for all $i=1, \ldots, l$ and then the following theorem holds.

Theorem 18. Let (M, F, Φ) be a regular integrable system of type (k, n) with compact orbits. Suppose that M (or equivalently, its orbit space \mathcal{O}_{M}) is connected. If for some point $c_{0} \in \mathcal{O}_{M}$, there exists a loop λ on $q_{\Phi}^{-1}\left(c_{0}\right)$ such that $[\lambda]$ has infinite order in $H_{1}(M)$, then the lattice bundle \mathcal{L} of the system has a series of sublattice bundles $\mathcal{L}^{(1)} \supset \ldots \supset \mathcal{L}^{(l)}$ for some positive integer l no more than n such that, $\mathcal{L}^{(i)}=\operatorname{ker}\left(\rho_{1}, \ldots, \rho_{l}\right)$ has rank $n-i$ for each $i \in\{1, \ldots, l\}, \mathcal{L}^{(i+1)}$ locally splits $\mathcal{L}^{(i)}$ for each $i \in\{1, \ldots, l-1\}$ and $\mathcal{L}^{(1)}$ locally splits \mathcal{L}. As a consequence, such a sequence of sublattice bundles gives rise to a sequence of toric foliations $\mathfrak{F}^{(1)}, \ldots, \mathfrak{F}^{(l)}$
such that $\mathfrak{F}^{(i+1)}$ refines $\mathfrak{F}^{(i)}$ for $i=1, \ldots, l-1$ and $\mathfrak{F}^{(1)}$ refines the fibration \mathfrak{F}. For each $i \in\{1, \ldots, l\}$, the leaves of $\mathfrak{F}^{(i)}$ are $(n-i)-$ tori.

In the case $n=2$, when $\rho: \mathcal{L} \rightarrow H_{1}(M) / \operatorname{Tor}_{H_{1}(M)}$ is non-trivial, $\operatorname{Im} \rho$ is isomorphic to either \mathbb{Z} or \mathbb{Z}^{2}, and then we at least get one non-zero linear functional $\rho_{1}: \mathcal{L} \rightarrow \mathbb{Z}$. Then ker ρ_{1} is a lattice subbundle with rank 1. Actually $\operatorname{ker} \rho_{1} \cong \mathcal{O}_{M} \times \mathbb{Z}$ and thus by Proposition 12 there is a free S^{1} action on M.

Theorem 19. In the case $n=2$, if $\rho: \mathcal{L} \rightarrow H_{1}(M) /$ Tor $_{H_{1}(M)}$ is non-trivial, there exists a compatible free S^{1} action on M.

Proof. We only need to show that $\operatorname{ker} \rho_{1} \cong \mathcal{O}_{M} \times \mathbb{Z}$. Fix a point c_{0} in \mathcal{O}_{M}. For any other point $o \in \mathcal{O}_{M}$, $\left.\operatorname{ker} \rho_{1}\right|_{\mathcal{L}_{o}}$ can be obtained via the parallel transport of $\left.\operatorname{ker} \rho_{1}\right|_{\mathcal{L}_{c_{0}}}$ along any path joining c_{0} and o. Choose a(n) (ordered) basis $w=(u, v)$ of $\mathcal{L}_{c_{0}}$ and let $z \in \mathbb{Z}^{2}$ with $z=\left(\rho_{1}(u), \rho_{1}(v)\right)$. For any closed path γ in \mathcal{O}_{M} with $\gamma(0)=\gamma(1)=c_{0}, z \cdot \mathcal{M}_{\gamma, w}=z$ with $\mathcal{M}_{\gamma, w}$ being the monodromy matrices. Hence both of the eigenvalues of $\mathcal{M}_{\gamma, w}$ equal to 1 . Since $\left.\operatorname{ker} \rho_{1}\right|_{\mathcal{L}_{c_{0}}}$ is a one dimensional invariant space of the monodromy map \mathcal{M}_{γ}, it holds that $\mathcal{M}_{\gamma} \cdot T=T$ for all $\left.T \in \operatorname{ker} \rho_{1}\right|_{\mathcal{L}_{c_{0}}}$. Due to the arbitrariness of γ, this implies the triviality of the bundle ker $\rho_{1} \rightarrow \mathcal{O}_{M}$.
7. MASLOV INDICES, MONODROMY MATRICES AND TORIC FOLIATIONS WITH

CORANK 1

Now we restrict to the Hamiltonian context and show how the results obtained in the previous section are related to the work in [8].

Consider an integrable Hamiltonian system (M, ω, F) with $F=\left(f_{1}, \ldots, f_{n}\right)$ being the integral map. Let \mathcal{X}_{i} be the Hamiltonian vector fields with $d f_{i}(\cdot)=\omega\left(\mathcal{X}_{i}, \cdot\right)$. We assume that the orbits of the Hamiltonian \mathbb{R}^{n} action Φ are all compact. Denote by Λ_{M} the bundle of Lagrangian Grassmanians of M.

Fix a complex structure \mathcal{J} compatible with the symplectic form ω, and let $g_{\mathcal{J}}(\cdot, *)=$ $\omega(\mathcal{J} \cdot, *)$ be the compatible Riemannian structure. Recall that the Hamiltonian vector fields $\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}$ are independent everywhere by the assumption we made and $\operatorname{span}_{\mathbb{R}}\left\{\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right\}$ is a Lagrangian distribution. Apply the Gram-Schmidt process to obtain $\mathcal{X}_{1}^{\prime}, \ldots, \mathcal{X}_{n}^{\prime}$ that are orthonormal with repect to $g_{\mathcal{J}}$. Note that $\operatorname{span}_{\mathbb{R}}\left\{\mathcal{X}_{1}^{\prime}, \ldots, \mathcal{X}_{n}^{\prime}\right\}=\operatorname{span}_{\mathbb{R}}\left\{\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right\}$ and it is Lagrangian. Then,

$$
\left\{\mathcal{X}_{1}^{\prime}, \ldots, \mathcal{X}_{n}^{\prime}, \mathcal{J}\left(\mathcal{X}_{1}^{\prime}\right), \ldots, \mathcal{J}\left(\mathcal{X}_{n}^{\prime}\right)\right\}
$$

is a globally defined symplectic frame for the tangent bundle $T M$.

Recall that for a symplectic manifold (M, ω), the symplectic form ω is a symplectic bilinear form on its tangent bundle, and $(T M, \omega, M)$, as a vector bundle endowed with a symplectic bilinear form, is a symplectic vector bundle (see page 79 in [11]). Then the argument above shows that the symplectic vector bundle $(T M, \omega, M)$ is isomorphic to the trivial symplectic vector bundle $\left(M \times \mathbb{R}^{2 n}, \omega_{0}, M\right)$ with $\left.\omega_{0}\right|_{\{p\} \times \mathbb{R}^{2 n}}=d x_{i} \wedge d y_{i}$ being the standard symplectic bilinear form on $\{p\} \times$ $\mathbb{R}^{2 n}$. Therefore, there exists an isomorphism $\Lambda_{M} \cong M \times \mathbb{U}(n) / \mathbb{O}(n)$ associated to such a trivialization. Let $\Lambda_{M_{\mathcal{C}}} \rightarrow M_{\mathcal{C}}$ denote the restriction of Λ_{M} to $M_{\mathcal{C}}$ and then $\Lambda_{M_{\mathcal{C}}} \cong M_{\mathcal{C}} \times \mathbb{U}(n) / \mathbb{O}(n)$. Let $E: M \rightarrow \Lambda_{M}$ be a section, i.e. a Lagrangian vector bundle over M. Then for any $p \in M, E(p)=\left[E_{p}\right] \in \mathbb{U}(n) / \mathbb{O}(n)$ with $E_{p} \in \mathbb{U}(n)$ being a representative.

For any section E, define $m_{E}: \Lambda_{M} \cong M \times \mathbb{U}(n) / \mathbb{O}(n) \rightarrow S^{1}$ with $m_{E}(p,[A])=$ $\left(\operatorname{det}_{\mathbb{C}}\left(A \cdot E_{p}^{-1}\right)\right)^{2}$. Note that for any $p \in M,\left.\operatorname{span}_{\mathbb{R}}\left(\mathcal{X}_{1}(p), \ldots, \mathcal{X}_{n}(p)\right) \subset \Lambda_{M}\right|_{p}$ and hence there is a natural embedding \tilde{l} of M into Λ_{M} by $p \rightarrow \operatorname{span}_{\mathbb{R}}\left(\mathcal{X}_{1}(p), \ldots, \mathcal{X}_{n}(p)\right)$.

Definition 20. The Maslov map for the integrable system (M, F, Φ) is the map $\tilde{m}_{E}=m_{E} \circ \tilde{l}$.

Definition 21. The Maslov index μ_{λ} of a loop $\lambda: S^{1} \rightarrow M$ in the integrable system (M, F, Φ) with respect to E is the degree of the map $\tilde{m}_{E} \circ \lambda$.

Definition 21 is slightly different from the usual definition of the Maslov indices in that we do not require the loop λ to be on some Lagrangian submanifold, since the integrable system already prescribes to each point in M a Lagrangian subspace. Yet this definition is consistent with the usual one when λ lies on a Lagrangian submanifold.

Note that for any fixed point $x_{0} \in M$, the homomorphism $\pi_{1}\left(M, x_{0}\right) \ni[\lambda] \mapsto \mu_{\lambda} \in \mathbb{Z}$ factors through $H_{1}(M) / \operatorname{Tor}_{H_{1}(M)}$ since \mathbb{Z} is Abelian and torsionless. That is, there is a homomorphism $\mu: H_{1}(M) / \operatorname{Tor}_{H_{1}(M)} \rightarrow \mathbb{Z}$ such that for any loop λ in M, $\mu([\lambda])=\mu_{\lambda}$. The composition $\mu \circ \rho: \mathcal{L} \rightarrow \mathbb{Z}$ is then a bundle morphism. Note that for $c \in \mathcal{O}_{M}, \mu \circ \rho\left(\mathcal{L}_{c}\right)=n_{c} \cdot \mathbb{Z}$ for some non-negative integer n_{c}. n_{c} is called the minimal Maslov number of the Lagrangian torus $q^{-1}(c)$. If the minimal Maslov number on some Lagrangian torus $q_{\Phi}^{-1}\left(c_{0}\right)$ is non-zero, then $\mu \circ \rho$ is nonzero, implying ρ to be non-trivial. Then $\left.\mu \circ \rho\right|_{\mathcal{L}_{c_{0}}}$ is a common eigenvector with eigenvalue 1 for the transpose of the monodromy maps \mathcal{M}_{γ} of all the loops γ in \mathcal{O}_{M} with $c_{0} \in \gamma$. For a basis $\left(u_{1}, \ldots, u_{n}\right)$ of $\mathcal{L}_{c_{0}},\left(\mu \circ \rho\left(u_{1}\right), \ldots, \mu \circ \rho\left(u_{n}\right)\right)$ gives the corresponding vector of Maslov indices. In this way, it yields Theorem 1 of [8].

We conclude this article with a result for integrable Hamiltonian systems in \mathbb{R}^{4}.

Audin's conjecture [1] asserts that for any Lagrangian torus in $\left(\mathbb{R}^{2 n}, d x_{1} \wedge d y_{1}+\right.$ $\cdots+d x_{n} \wedge d y_{n}$, the minimal Maslov number is 2 and this has been confirmed in [4] following a series of partial results [12, 3, 9, 6] (see page 118 in 11] for a brief introduction to the results obtained in these papers). Combining this result with Theorem 19 yields:

Theorem 22. Suppose that $\left(\mathbb{R}^{4}, \omega, F\right)$ is a Hamiltonian integrable system (not necessarily regular) with integral map $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$. Denote by $\mathbb{R}_{\text {reg }}^{4}$ the set of regular points of F. If M_{0} is a connected domain of $\mathbb{R}_{\text {reg }}^{4}$ within which the orbits of the Hamiltonian \mathbb{R}^{2} action are compact, then there exists a free Hamiltonian S^{1} action on M_{0}.

8. Appendix

8.1. Local trivialization of the lattice bundle. Let (M, F, Φ) be a regular integrable system of type (k, n) with compact Φ - orbits. We give a detailed argument for Theorem 4 in Section 3. For convenience, we state Theorem 4 again.

Theorem 4. For any $o \in \mathcal{O}_{M}$, there exists some neighbourhood U_{o} over which there are smooth sections $\tau_{i}: U \rightarrow U \times \mathbb{R}^{n}$ with $i=1, \ldots, n$, such that for each $c \in U, \tau_{1}(c), \ldots, \tau_{n}(c)$ constitute a basis of \mathcal{L}_{c}. As a consequence, there exists an isomorphism (algebraically and topologically) $\beta: \pi_{\mathcal{L}}^{-1}(U) \rightarrow U \times \mathbb{Z}^{n}$.

Proof. As is shown in Proposition [3, $q_{\Phi}: M \rightarrow \mathcal{O}_{M}$ is a submersion. Hence there exists some smooth section $\sigma: U \rightarrow M$ over some open neighbourhood U of o. Define $\Psi: U \times \mathbb{R}^{n} \rightarrow M$ as $\Psi(b, T) \rightarrow \Phi^{T} \circ \sigma(b)$. According to Definition (1) Ψ is transversal to the submanifold $\sigma(U)$ and is a local diffeomorphism. Hence $\mathcal{S}=\Psi^{-1}(\sigma(U))$ is an embedded submanifold of $U \times \mathbb{R}^{n}$ with the corank equal to that of $\sigma(U)$, which is n. Note that \mathcal{S} is also a subspace of \mathcal{L} (and therefore \mathcal{L} is a submanifold of $\mathcal{O}_{M} \times \mathbb{R}^{n}$ due to the arbitrariness of $\left.U\right)$. Moreover, \mathcal{S} is closed in $U \times \mathbb{R}^{n}$. To see this, suppose that $\left(u_{i}, T_{i}\right) \rightarrow(u, T)$ with $\left(u_{i}, T_{i}\right) \in \mathcal{S}$ and $(u, T) \in U \times \mathbb{R}^{n}$. Then $\Psi(u, T)=\lim \Psi\left(u_{i}, T\right)=\lim \sigma\left(u_{i}\right)=\sigma(u) \in \mathcal{S}$.

For any $x \in \mathcal{S}$, the tangent map Ψ_{*} maps $T_{x} \mathcal{S}$ to $T_{\Psi(x)} \sigma(U)$ and therefore $T_{x} \mathcal{S} \cap$ $T_{x} \mathbb{R}^{n}=\{0\}$, implying $T_{x} \mathcal{S} \oplus T_{x} \mathbb{R}^{n}=T_{x}\left(U \times \mathbb{R}^{n}\right)$. As a result, $\pi_{\mathcal{S}}=\left.p r_{U}\right|_{\mathcal{S}}: \mathcal{S} \rightarrow U$ is a local diffeomorphism with $p r_{U}: U \times \mathbb{R}^{n} \rightarrow U$ being the canonical projection. Note that $U \times\{0\}$ is closed in $U \times \mathbb{R}^{n}$ and therefore is closed in \mathcal{S}, while it is also open in \mathcal{S}. Hence $U \times\{0\}$ is a connected component of \mathcal{S}.

Let z_{1}, \ldots, z_{n} be a basis of the the lattice \mathcal{L}_{o}. Shrink U if necessary. Then there exist local sections $\tau_{i}: U \rightarrow \mathcal{S}$ for $i=1, \ldots, n$ such that $\tau_{i}(o)=z_{i}$. Note that $\left\{z_{1}, \ldots, z_{n}\right\}$ is also a basis of the linear space $\{o\} \times \mathbb{R}^{n}$, and that for any $w \in\{o\} \times \mathbb{R}^{n}, w \in \mathcal{L}_{o}$
if and only if $w=a_{1} z_{1}+\cdots+a_{n} z_{n}$ with a_{i} integers. Shrinking U again if necessary, one can make the determinant of the matrix $\left[\tau_{1}(c), \ldots, \tau_{n}(c)\right]$ non-zero for each $c \in U$, and then $\left\{\tau_{1}(c), \ldots, \tau_{n}(c)\right\}$ is a basis for $\{c\} \times \mathbb{R}^{n}$.

Now we show that for each $c \in U,\left\{\tau_{1}(c), \ldots, \tau_{n}(c)\right\}$ is also a basis of the \mathbb{Z}^{n} lattice \mathcal{L}_{c}. Let $\left\{z_{1}^{c}, \ldots, z_{n}^{c}\right\}$ be a basis of \mathcal{L}_{c}. Then there exist intergers $k_{1}^{j}, \ldots, k_{n}^{j}$ such that $\tau_{j}(c)=k_{1}^{j} z_{1}^{c}+\cdots+k_{n}^{j} z_{n}^{c}$. Taking the inverse of the matrix $\left[k_{i}^{j}\right]$ shows that for each $w \in \mathcal{L}_{c}$, there exist $p_{1}, \ldots, p_{n} \in \mathbb{Q}$ such that $w=p_{1} \tau_{1}(c)+\cdots+p_{n} \tau_{n}(c)$. Hence it remains to show that for each w, the corresponding coeffients $p_{i}=\frac{k_{i}}{m_{i}}$ are integers.
Denote by \mathcal{S}_{w} the component of \mathcal{S} that contains w. Note that there exits some nonzero integer m such that $m \cdot p_{i}$ are integers for all i. By $* m$ denote the map $(c, T) \mapsto(c, m \cdot T)$. Then $* m$ is a diffeomorphism on $\mathcal{O}_{M} \times \mathbb{R}^{n}$ and maps \mathcal{S} to \mathcal{S}. Hence it is a local diffeomorphism on \mathcal{S}. Moreover, as shown above, \mathcal{S} is closed in $U \times \mathbb{R}^{n}$ and therefore $* m$ is a closed map on \mathcal{S}. Hence $* m\left(\mathcal{S}_{w}\right)$ is another connected component of \mathcal{S} which contains $m \cdot w$. Meanwhile, $\tau: U \rightarrow U \times \mathbb{R}^{n}$: $u \rightarrow m \cdot\left(p_{1} \tau_{1}(u)+\cdots+p_{n} \tau_{n}(u)\right)$ is also a section of $\mathcal{S} \rightarrow U$ and hence $\tau(U)$ is a component of \mathcal{S} which also contains $m \cdot w$. As a result, $\tau(U)=* m\left(\mathcal{S}_{w}\right)$. In particular, $m \cdot p_{1} \tau_{1}(o)+\cdots+m \cdot p_{n} \tau_{n}(o)=\tau(o)=m \cdot w_{0} \in \mathcal{L}_{o}$ for some $w_{0} \in \mathcal{S}_{w} \cap \mathcal{L}_{o}$ and hence $w_{0}=p_{1} \tau_{1}(o)+\cdots+p_{n} \tau_{n}(o)=p_{1} z_{1}+\cdots+p_{n} z_{n}$, implying the p_{i} to be integers.

Define $\beta: U \times \mathbb{Z}^{n} \rightarrow \pi_{\mathcal{L}}^{-1}(U)$ with $\rho^{-1}\left(u ; a_{1}, \ldots, a_{n}\right)=a_{1} \tau_{1}(u)+\cdots+a_{n} \tau_{n}(u)$. Then β is a local trivialization of \mathcal{L} over U.

Corollary 23. The lattice bundle $\pi_{\mathcal{L}}: \mathcal{L} \rightarrow \mathcal{O}_{M}$ is a locally trivial smooth \mathbb{Z}^{n} bundle with the transition group $S L(n, \mathbb{Z})$.

Proof. Choose a covering $\left\{U_{\alpha}\right\}$ of \mathcal{O}_{M} with sections $\tau_{i}^{\alpha}: U_{\alpha} \rightarrow \mathcal{L}$ forming a basis of $\left.\mathcal{L}\right|_{U_{\alpha}}$. Reorder $\left\{\tau_{i}^{\alpha} \mid i=1, \ldots, n\right\}$ if necessary to fit the orientation of the vector bundle $\mathcal{O}_{M} \times \mathbb{R}^{n} \rightarrow \mathcal{O}_{M}$, and then for any pair α, α^{\prime} with $U_{\alpha} \cap U_{\alpha^{\prime}}$ being non-empty, $\rho_{\alpha^{\prime}} \circ \rho_{\alpha}^{-1}$ should be a linear map on $U_{\alpha} \cap U_{\alpha^{\prime}} \times \mathbb{Z}^{n}$ preserving the orientation and hence $\rho_{\alpha^{\prime}} \circ \rho_{\alpha}^{-1} \in S L(n, \mathbb{Z})$.
8.2. The fibration structure of $M_{\mathcal{C}}$ determined by the monodromy map. In the following we give an illustration of how the monodromy map \mathcal{M} determines the torus fibration $M_{\mathcal{C}}=q_{\Phi}^{-1}(\mathcal{C}) \rightarrow \mathcal{C}$.

Recall that $\mathcal{C} \subset \mathcal{O}_{M}$ is a loop with $M_{\mathcal{C}}=q_{\Phi}^{-1}(\mathcal{C}) \rightarrow \mathcal{C}$ being a torus fibration. Let c_{0} be a point in \mathcal{C}. The lift of \mathcal{C} to \mathcal{L} gives rise to a group isomorphism $\mathcal{M}_{\mathcal{C}}$ of $\mathcal{L}_{c_{0}}$, which is called the monodromy map. Note that it extends canonically and uniquely to an isomorphism of $\left\{c_{0}\right\} \times \mathbb{R}^{n}$, which we also denote by \mathcal{M}. Fix a parametrization $\gamma:[0,1] \rightarrow \mathcal{C}$ with $\gamma(0)=\gamma(1)=c_{0}$.

According to Corollary $7, M_{\mathcal{C}}=q_{\Phi}^{-1}(\mathcal{C}) \rightarrow \mathcal{C}$ is isomorphic to $\bar{\pi}_{\mathcal{C}}:\left(\mathcal{C} \times \mathbb{R}^{n}\right) / \sim_{\mathcal{L}} \rightarrow \mathcal{C}$ with $\bar{\pi}_{\mathcal{C}}([c, T])=c$. Choose an ordered basis $\bar{w}=\left(u_{1}, \ldots, u_{n}\right)$ of $\mathcal{L}_{c_{0}}$, and let $\tau_{i}:[0,1] \rightarrow \mathcal{L}$ be the lift of γ at u_{i} for each $i=1, \ldots, n$ and $\tau_{i}^{\prime}:[0,1] \rightarrow$ \mathbb{R}^{n} be the map such that $\tau_{i}(s)=\left(\gamma(s), \tau_{i}^{\prime}(s)\right)$. Then $\mathcal{M}_{\mathcal{C}}$ is the map mapping $u_{i}=\tau_{i}(0)$ to $\tau_{i}(1)$. Denote by $\mathcal{M}_{\mathcal{C}, \bar{w}}$ the matrix representation of $\mathcal{M}_{\mathcal{C}}$ with respect to \bar{w}, i.e. $\mathcal{M}_{\mathcal{C}}\left(t_{i} u_{i}\right)=\left(u_{1}, \ldots, u_{n}\right) \cdot \mathcal{M}_{\mathcal{C}, \bar{w}} \cdot\left[\begin{array}{c}t_{1} \\ \vdots \\ t_{n}\end{array}\right]$. In other words, $\mathcal{M}_{\mathcal{C}}\left(u_{j}\right)=\left(u_{1}, \ldots, u_{n}\right) \cdot \mathcal{M}_{\mathcal{C}, \bar{w}}^{j}$ with $\mathcal{M}_{\mathcal{C}, \bar{w}}^{j}$ the j-th column of $\mathcal{M}_{\mathcal{C}, \bar{w}}$, and hence $\left(\tau_{1}^{\prime}(1), \ldots, \tau_{n}^{\prime}(1)\right)=\left(\tau_{1}^{\prime}(0), \ldots, \tau_{n}^{\prime}(0)\right) \cdot \mathcal{M}_{\mathcal{C}, \bar{w}}$.

Denote by \sim_{γ} the equivalence relation on $[0,1] \times \mathbb{R}^{n}$ that identifies $(0, T)$ with $(1, T)$ and by q_{γ} the corresponding quotient map from $[0,1] \times \mathbb{R}^{n}$ to $\mathcal{C} \times \mathbb{R}^{n}$. Define $r_{\bar{w}}:[0,1] \times \mathbb{R}^{n} \rightarrow[0,1] \times \mathbb{R}^{n}$ by

$$
r_{\bar{w}}\left(s ;\left[\begin{array}{c}
t_{1} \tag{8.1}\\
\vdots \\
t_{n}
\end{array}\right]\right)=\left(s, t_{1} \tau_{1}^{\prime}(s)+\cdots+t_{n} \tau_{n}^{\prime}(s)\right)
$$

This is an isomorphism mapping $[0,1] \times \mathbb{Z}^{n} \rightarrow \gamma^{*}(\mathcal{L})$. Hence the map $h_{\bar{w}}=q_{\gamma} \circ$ $r_{\bar{w}}:[0,1] \times \mathbb{R}^{n} \rightarrow \mathcal{C} \times \mathbb{R}^{n}$ is a bundle epimorphism mapping $[0,1] \times \mathbb{Z}^{n}$ to $\left.\mathcal{L}\right|_{\mathcal{C}}$ and it is a fiberwise isomorphism. Moreover, $h_{\bar{w}}$ identifies $\{0\} \times\left[\begin{array}{c}t_{1} \\ \vdots \\ t_{n}\end{array}\right]$ with $\{1\} \times \mathcal{M}_{\mathcal{C}, \bar{w}}^{-1} \cdot\left[\begin{array}{c}t_{1} \\ \vdots \\ t_{n}\end{array}\right]$. To see this, first note that since q_{γ} identifies $(0, T)$ with $(1, T)$ for every $T \in \mathbb{R}^{n}, q_{\gamma} \circ r_{\bar{w}}$ identifies $(0, T)$ with $\left(1, T^{\prime}\right)$ if and only if $r_{\bar{w}}(0, T)=\left(0, T^{\prime \prime}\right)$ and $r_{\bar{w}}(1, T)=\left(1, T^{\prime \prime}\right)$. Then with $T=\left[\begin{array}{c}t_{1} \\ \vdots \\ t_{n}\end{array}\right]$ and $T^{\prime}=\left[\begin{array}{c}t_{1}^{\prime} \\ \vdots \\ t_{n}^{\prime}\end{array}\right]$, according to (8.1), it holds that
$t_{1} \tau_{1}^{\prime}(0)+\cdots+t_{n} \tau_{n}^{\prime}(0)=t_{1}^{\prime} \tau_{1}^{\prime}(1)+\cdots+t_{n}^{\prime} \tau_{n}^{\prime}(1)=\left(\tau_{1}^{\prime}(0), \ldots, \tau_{n}^{\prime}(0)\right) \cdot \mathcal{M}_{\mathcal{C}, \bar{w}} \cdot\left[\begin{array}{c}t_{1}^{\prime} \\ \vdots \\ t_{n}^{\prime}\end{array}\right]$.
Hence $\left[\begin{array}{c}t_{1} \\ \vdots \\ t_{n}\end{array}\right]=\mathcal{M}_{\mathcal{C}, \bar{w}} \cdot\left[\begin{array}{c}t_{1}^{\prime} \\ \vdots \\ t_{n}^{\prime}\end{array}\right]$ and thus $\left[\begin{array}{c}t_{1}^{\prime} \\ \vdots \\ t_{n}^{\prime}\end{array}\right]=\mathcal{M}_{\mathcal{C}, \bar{w}}^{-1} \cdot\left[\begin{array}{c}t_{1} \\ \vdots \\ t_{n}\end{array}\right]$.

Note that $q u o=q_{\mathcal{L}} \circ h_{\bar{w}}$ is a quotient map from $[0,1] \times \mathbb{R}^{n}$ to $M_{\mathcal{C}}$ and it charaterizes the structure of the fibration $M_{\mathcal{C}} \rightarrow \mathcal{C}$. Denote by \sim the equivalence relation induced by quo on $[0,1] \times \mathbb{R}^{n} . M_{\mathcal{C}} \rightarrow \mathcal{C}$ is isomorphic to $\pi_{\sim}:\left([0,1] \times \mathbb{R}^{n}\right) / \sim \rightarrow \mathcal{C}$ with $\pi_{\sim}([s, T])=\gamma(s)$. It can be checked that for each $s \in[0,1],(s, T) \sim\left(s, T^{\prime}\right)$ if and only if $T-T^{\prime} \in \mathbb{Z}^{n}$. Then $q u o$ (re)factors as $q_{\bar{\eta}} \circ q_{\mathbb{Z}^{n}}$ with $q_{\mathbb{Z}^{n}}:[0,1] \times \mathbb{R}^{n} \rightarrow[0,1] \times \mathbb{T}^{n}$ being the quotient map which sends $\left(s ; t_{1}, \ldots, t_{n}\right)$ to $\left(s ; e^{i 2 \pi t_{1}}, \ldots, e^{i 2 \pi t_{n}}\right)$, and $q_{\bar{\eta}}$: $[0,1] \times \mathbb{T}^{n} \rightarrow M_{\mathcal{C}}$ being a bundle morphism which is a fiberwise isomorphism. Denote by η the isomorphism $(1, T) \rightarrow\left(\left.h_{\bar{w}}\right|_{\{0\} \times \mathbb{R}^{n}}\right)^{-1} \circ\left(\left.h_{\bar{w}}\right|_{\{1\} \times \mathbb{R}^{n}}\right)(1, T)=\left(0, \mathcal{M}_{\mathcal{C}, \bar{w}} \cdot T\right)$ and by $\bar{\eta}$ the isomorphism $(1, z) \rightarrow\left(\left.q_{\bar{\eta}}\right|_{\{0\} \times \mathbb{T}^{n}}\right)^{-1} \circ\left(\left.q_{\bar{\eta}}\right|_{\{1\} \times \mathbb{T}^{n}}\right)(1, z)$.
Then $M_{\mathcal{C}} \cong\left([0,1] \times \mathbb{T}^{n}\right) / \sim_{\bar{\eta}}$. Moreover, the following identity holds

$$
\bar{\eta} \circ q_{\mathbb{Z}^{n}}=q_{\mathbb{Z}^{n}} \circ \eta .
$$

References

[1] Michèle Audin. "Fibrés normaux d'immersions en dimension double, points doubles d'immersions Lagrangiennes et plongements totalement réels". In: Commentarii Mathematici Helvetici 63.1 (1988), pp. 593-623.
[2] Oleg I Bogoyavlenskij. "Extended integrability and bi-Hamiltonian systems". In: Communications in mathematical physics 196.1 (1998), pp. 19-51.
[3] Lev Buhovsky. "The Maslov class of Lagrangian tori and quantum products in Floer cohomology". In: Journal of Topology and Analysis 2.01 (2010), pp. 5775.
[4] Kai Cieliebak and Klaus Mohnke. "Punctured holomorphic curves and Lagrangian embeddings". In: Inventiones mathematicae 212.1 (2018), pp. 213295.
[5] Richard H Cushman and Larry M Bates. Global aspects of classical integrable systems. Vol. 94. Springer, 1997.
[6] Mihai Damian. "Floer homology on the universal cover, a proof of Audin's conjecture and other constraints on Lagrangian submanifolds, a parattre dans Comment". In: Commentarii Mathematici Helvetici 87 (2012), pp. 433-463.
[7] Johannes J Duistermaat. "On global action-angle coordinates". In: Communications on pure and applied mathematics 33.6 (1980), pp. 687-706.
[8] Holger R Dullin et al. "Maslov indices and monodromy". In: Journal of Physics A: Mathematical and General 38.24 (2005), p. L443.
[9] Kenji Fukaya. "Application of Floer homology of Langrangian submanifolds to symplectic topology". In: Morse theoretic methods in nonlinear analysis and in symplectic topology. Springer, 2006, pp. 231-276.
[10] John M Lee. "Distributions and Foliations". In: Introduction to Smooth Manifolds. Springer, 2013, pp. 490-514.
[11] Dusa McDuff and Dietmar Salamon. Introduction to symplectic topology. Oxford University Press, 2017.
[12] Claude Viterbo. "A new obstruction to embedding Lagrangian tori". In: Inventiones mathematicae 100.1 (1990), pp. 301-320.
[13] Nguyen Tien Zung. "Geometry of integrable non-Hamiltonian systems". In: Geometry and dynamics of integrable systems. Springer, 2016, pp. 85-140.
[14] Nguyen Tien Zung. "Symplectic topology of integrable Hamiltonian systems, ii: topological classification: dedicated to Professor Charles-Michel Marle". In: Compositio Mathematica 138.2 (2003), pp. 125-156.
[15] Nguyen Tien Zung. "Torus actions and integrable systems". In: arXiv preprint math/0407455 (2004).

