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We analyse the dynamical evolution of a fluid with non-linear drag, for which binary collisions are
elastic, described at the kinetic level by the Enskog-Fokker-Planck equation. This model system,
rooted in the theory of non-linear Brownian motion, displays a really complex behaviour when
quenched to low temperatures. Its glassy response is controlled by a long-lived non-equilibrium
state, independent of the degree of non-linearity and also of the Brownian-Brownian collisions rate.
The latter property entails that this behaviour persists in the collisionless case, where the fluid is
described by the non-linear Fokker-Planck equation. The observed response, which includes non-
exponential, algebraic, relaxation and strong memory effects, presents scaling properties: the time
evolution of the temperature—for both relaxation and memory effects—falls onto a master curve,
regardless of the details of the experiment. To account for the observed behaviour in simulations, it
is necessary to develop an extended Sonine approximation for the kinetic equation—which considers
not only the fourth cumulant but also the sixth one.

I. INTRODUCTION

Glassy behaviour is typically associated with systems
with many strongly interacting units, which give rise
to a complex energy landscape with multiple minima
separated by barriers [1–3]. The typical phenomenol-
ogy of glassy systems includes, among other aspects,
strongly non-exponential relaxation [4–15]. The latter
facilitates the emergence of memory effects like the Ko-
vacs hump [16–31].

In the Kovacs experiment [16, 17], the time evolution of
a relevant physical quantity P (t) is monitored. The sys-
tem is initially equilibrated at the temperature Ti. For
0 < t < tw, the system is aged at a lower temperature
T1. At t = tw, the bath temperature is suddenly changed
to Tw, such that the instantaneous value of P , P (tw),
equals its equilibrium value for Tw. The Kovacs effect
emerges when P , despite having its equilibrium value at
t = tw, displays a non-monotonic behaviour for t > tw,
i.e. a hump, before returning to equilibrium [32]. This
is so because the evolution of the system does not only
depend on the value of the thermodynamic (or hydrody-
namic) variables but also on additional ones, the values
of which are determined by the way the system has been
previously aged [11, 13, 21, 33–40].

Aging is also connected with the Mpemba effect [41],
which has recently been observed in spin glasses [42].
In the Mpemba effect, the initially hotter sample cools
sooner and the relaxation curves thus cross at a certain
time. Only very recently has it been theoretically inves-
tigated, both from a stochastic thermodynamics [43–46]
and a kinetic theory [47–53] approach. The former de-
scribes the crossing in terms of the Kullback-Leibler dis-
tance to equilibrium. The latter describes the crossing
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in terms of the kinetic temperature, which is closer to
the experimental situation. Moreover, it has been suc-
cesful in showing that the Mpemba effect comes about in
very simple systems like granular gases [47–52]. Notwith-
standing, the following crucial question remains unan-
swered: How does the system have to be aged for the
Mpemba effect to emerge? This is one key question that
we solve in this paper.

We analyse a very general model—rooted in the the-
ory of non-linear Brownian motion [54]—for a fluid with
non-linear drag force. From a phenomenological point of
view, it can be regarded as the minimal, simplest, model
for a fluid with non-linear drag [55–57]. From a more
fundamental point of view, it arises when an ensemble
of Brownian particles, with mass m and particle density
n, is immersed in an isotropic and uniform background
fluid at equilibrium with temperature Ts, the particles of
which have masses mbf [58, 59]. In the so-called Rayleigh
limit, where mbf/m → 0, the drag force on the Brown-
ian particles is linear in the velocity, Fdrag = −mζ0v,
i.e. the drag coefficient ζ0 is a constant. Still, in a real
situation mbf/m 6= 0, and it is thus relevant to consider
the corrections to the Rayleigh limit. Specifically, by
introducing the first order corrections thereto, i.e. by re-
taining linear terms in mbf/m but neglecting (mbf/m)2

and higher-order terms, the drag force is found to be of
the form,

Fdrag = −mζ(v)v, ζ(v) = ζ0

(
1 + γ

mv2

kBTs

)
, (1)

sometimes called the quasi-Rayleigh limit. The non-
linear parameter γ is given as a certain integral that in-
cludes the Brownian-particle-background-particle differ-
ential cross section [58–60], and typical values are limited
to γ . 0.1− 0.2 [49].

In this way, the velocity distribution function (VDF)
for the Brownian particles obeys the Fokker-Planck (FP)
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equation

∂tf(v, t) =
∂

∂v
·
[
ζ(v)

(
v +

kBTs
m

∂

∂v

)
f(v, t)

]
. (2)

The interaction between the Brownian and the back-
ground fluid particles gives rise to both the nonlin-
ear drag force Fdrag = −mζ(v)v and the white-noise
stochastic force Fwn. Its correlation 〈Fwn(t)Fwn(t′)〉 =
2mkBTsζ(v)δ(t − t′), where kB is Boltzmann’s con-
stant, follows from the fluctuation-dissipation rela-
tion [54] and ensures that the only stationary solu-
tion of Eq. (3) is the equilibrium Maxwellian, fs(v) =

n (2πkBTs/m)
−d/2

exp(−mv2/2kBTs).
The model described above can be visualised as a mix-

ture of two fluids: a fluid of Brownian particles moving
in a background fluid acting as a thermal bath, with the
masses of the Brownian and the background fluid parti-
cles being comparable. In fact, this is the physical sit-
uation for the mixture of ultracold atoms in Ref. [60],
in which an ensemble of 133Cs atoms moves in a dilute
background cloud of 87Rb atoms. Despite the very low
temperatures involved—in the µK range—the low den-
sity makes it possible to describe the system with the
tools of classical statistical mechanics, namely the FP
equation (2).

However, the FP description does not take into account
Brownian-Brownian collisions. Here we consider that
the Brownian particles are d-dimensional hard spheres
and model their dynamics via the Enskog-Fokker-Planck
(EFP) equation

∂tf(v, t) =
∂

∂v
·
[
ζ(v)

(
v +

kBTs
m

∂

∂v

)
f(v, t)

]
+J [v|f, f ].

(3)
The Enskog collision operator J [v|f, f ] accounts for the
collisions among the mutually interacting Brownian par-
ticles,

J [v1|f, f ] ≡ σd−1g(σ)

∫
dv2

∫
dσ̂Θ(v12 · σ̂)v12 · σ̂

×[f(v′1, t)f(v′2, t)−f(v1, t)f(v2, t)] .
(4)

Above, g(σ) = limr→σ+ g(r) is the contact value of
the pair correlation function g(r), Θ is the Heaviside
function, v12 ≡ v1 − v2 is the relative velocity, and
v′1 = v1 − (v12 · σ̂)σ̂, v′2 = v2 + (v12 · σ̂)σ̂ are the post-
collisional velocities.

The EFP equation (3) has been previously employed
for describing both molecular fluids and heated granular
gases [47, 49, 61–66]. It can be considered as a reasonable
model that interpolates between two limiting cases—the
FP equation and the Enskog (or Boltzmann) equation.
In particular, the EFP equation reduces to the FP equa-
tion (2) in the limit of vanishing (Brownian-Brownian)
collision rate.

The energy landscape of the Brownian particles is very
simple, its energy being only kinetic. Still, there appears

a strong non-exponential relaxation when the system is
quenched to low enough temperatures. Moreover, this
non-exponential relaxation is universal in the sense that,
after a suitable rescaling of the variables, it does not de-
pend on the initial and final temperatures, nor on the
degree of non-linearity, nor on the relevance of the col-
lision term. Interestingly, it is also closely linked to the
existence of a long-lived non-equilibrium state (LLNES).
Therein, the higher cumulants of the VDF are basically
time-independent while the temperature is algebraically
decaying. Besides, the LLNES rules the emergence of
strong memory effects. Specifically, we investigate the
Mpemba and the Kovacs effects, which are also shown to
display scaling features.

The glassy behaviour described above—non-
exponential relaxation and strong memory effects,
linked to the LLNES—will be obtained using the frame-
work of the EFP equation. Though, we will show that
these physically appealing results also hold in absence of
the collision term, i.e. for the FP equation. In this way,
the relevance of the LLNES and its associated glassy
behaviour is reinforced.

The paper is organised as follows. In Sec. II we put
forward the evolution equations for the temperature and
the cumulants in the extended Sonine framework. The
quench to low temperatures is analysed in Sec. III. First,
in Sec. III A, we derive the approximate system of evo-
lution equations in this limit. Second, we show how
the LLNES and the strongly non-exponential relaxation
emerge in Sec. III B. Memory effects are the focus of
Sec. IV, IV A for the Mpemba effect and IV B for the
Kovacs effect. Section V is devoted to the study of the
relevance of collisions and the Fokker-Planck limit. The
main conclusions of our work and a physical discussion
of our results are presented in Sec. VI. Finally, the Ap-
pendices deal with some technical aspects and comple-
mentary material, non-essential for the understanding of
the results in the main text.

II. EVOLUTION EQUATIONS FOR THE
TEMPERATURE AND THE CUMULANTS

In this section, we derive the evolution equations for
the relevant physical variables. The kinetic temperature
T (t) is given by

〈
v2
〉

= dkBT/m. It is useful for our pur-
poses to scale velocities with the thermal velocity vT (t)
by defining

c ≡ v/vT (t), vT (t) ≡
√

2kBT (t)/m, (5)

which implies
〈
c2
〉

= d/2. In addition, we introduce
dimensionless temperature and time,

θ = T/Ts, t∗ = ζ0t, (6)

we drop the asterisk in the following to simplify the no-
tation. For isotropic states, the reduced VDF φ(c, t) ≡
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n−1vdT (t)f(v, t) can be expanded in a complete set of or-
thogonal polynomials as

φ(c, t) = π−d/2e−c
2

[
1 +

∞∑
l=2

al(t)L
d−2
2

l (c2)

]
, (7)

where L
(α)
l are the generalised Laguerre (or Sonine) poly-

nomials [67]. In the simplest—and usual—first Sonine
approximation, only the fourth cumulant or excess kur-
tosis a2,

a2 ≡ −1 +
4

d(d+ 2)

〈
c4
〉
, (8)

is retained and higher-order cumulants are neglected.
Unfortunately, this approximation fails to reproduce the
behaviour observed in the simulations [68], as shown in
Appendix A. Then, we must consider an extended Sonine
approximation, in which not only a2 but also the sixth
cumulant

a3 ≡ 1 + 3a2 −
8

d(d+ 2)(d+ 4)

〈
c6
〉

(9)

are retained.
The parameter ζ0 that we have employed to non-

dimensionalise time marks one of the two characteristic
times in this system: the time ζ−10 over which the Brow-
nian particles feel the drag due to the background fluid,

ζ−10 ∝ T
−1/2
s [58–60]. The other characteristic time is

set by the collision frequency among the Brownian parti-
cles at the steady state νs ≡ g(σ)nσd−1

√
2kBTs/m [69].

The average time between collisions at the steady state is

τs ≡ ν−1s ∝ T
−1/2
s [49]. The dimensionless average time

between Brownian-Brownian collisions is thus given by

ξ ≡ ζ0τs. (10)

Equivalently, ξ−1 is the dimensionless Brownian-
Brownian collision rate. This parameter ξ is independent
of Ts—see also Appendix A.

Within the extended Sonine approximation, the fol-
lowing evolution equations for (θ, a2, a3) hold [70],

θ̇ = 2(1− θ) [1 + γ(d+ 2)θ]− 2γ(d+ 2)θ2a2, (11a)

ȧ2 = 8γ(1− θ)−

[
4

θ
− 8γ + 4γ(d+ 8)θ +

8(d− 1)

d(d+ 2)

√
θ

ξ

]
a2

+ 2

[
2γθ(d+ 4) +

(d− 1)

d(d+ 2)

√
θ

ξ

]
a3, (11b)

ȧ3 = 12

[
−4γ + 6γθ +

(d− 1)

d(d+ 2)(d+ 4)

√
θ

ξ

]
a2

+ 6

[
4γ − 1

θ
− γθ(d+ 14)− (d− 1)(4d+ 19)

2d(d+ 2)(d+ 4)

√
θ

ξ

]
a3,

(11c)

Substituting ξ = ∞ into Eq. (11) gives the evolution
equations for the collisionless EFP equation, i.e. for the

FP equation (2). In other words, collisions among the
Brownian particles are basically negligible when the di-
mensionless average time between them is very long, i.e.
ξ � 1 [71]. The equilibrium solution of this system is
(θs = 1, as2 = as3 = 0), the equilibrium VDF is Gaussian,
for all values of the parameters γ and ξ.

For linear drag, γ = 0, the temperature obeys New-
ton’s law of cooling, θ̇ = 2(1 − θ). Therefore, it relaxes
exponentially to equilibrium, θ(t) = 1 + [θi − 1] e−2t,
for all θi ≡ θ(0). Moreover, the VDF remains Gaus-
sian, a2(t) = a3(t) = 0. For non-linear drag, one typ-
ically has γ . 0.1 [72]. If the initial and final temper-
atures are of the same order, θi = O(1), small values
of the cumulants and mild deviations from the exponen-
tial behaviour are observed, see Appendix A. Therefrom,
one might guess that both the deviations from the ex-
ponential relaxation and the Gaussian VDF should al-
ways be small: we show in the following that this in-
tuition is utterly wrong. There emerges a strong non-
exponential relaxation together with quite large, time-
and (γ, ξ)-independent, cumulant values when the sys-
tem is quenched to a low temperature.

III. QUENCH TO LOW TEMPERATURES

A. Scaled evolution equations

Glassy behaviour, slow non-exponential relaxation
functions, and their associated memory effects such as
the Kovacs or Mpemba effects [16, 17, 41], usually arise
for low enough temperatures. For a review, see for in-
stance [73]. For the case of our concern, this translates
into considering a quench to low temperatures, i.e. we
consider the limit θi = T (0)/Ts � 1 [74].

In order to look into the limit θi � 1, it is convenient
to define the scaled temperature

Y = θ/θi. (12)

Initially Y (0) = 1 and Y remains of the order of unity
for not too long times. In fact, this quantity gives the
overall relaxation of the temperature. If one defined a
normalised relaxation function in the standard way,

ϕ(t) ≡ T (t)− Ts
Ti − Ts

=
θ(t)− 1

θi − 1
, ϕ(0) = 1, ϕ(∞) = 0,

(13)
we have that ϕ(t) ' Y (t) as long as θ(t) � 1. They
only differ for very long times, when θ is close to the
steady state and takes order of unity values, in fact
limt→∞ Y (t) = θ−1i � 1.

Insertion of this scaling into the evolution equations
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leads to

Ẏ =− 2γθi(d+ 2)Y 2(1 + a2) +O(1) +O(γ), (14a)

ȧ2 =− 4γθiY [(d+ 8)(a2 − ar2)− (d+ 4)(a3 − ar3)]

+O(γ) +O(
√
θi/ξ), (14b)

ȧ3 =− 6γθiY [−12(a2 − ar2) + (d+ 14)(a3 − ar3)]

+O(γ) +O(
√
θi/ξ), (14c)

the dominant terms on the rhs are the order of γθi �
1 [75]. The above system of coupled ODEs suggests that
the relevant time scale is no longer t, but a new scaled
time s given by

s = γθit. (15)

Retaining only the dominant terms in Eqs. (14), one gets
the approximate system

dY

ds
= −2(d+ 2)Y 2(1 + a2), (16a)

da2
ds

= −4Y [(d+ 8)(a2 − ar2)− (d+ 4)(a3 − ar3)] ,

(16b)

da3
ds

= −6Y [−12(a2 − ar2) + (d+ 14)(a3 − ar3)] , (16c)

where

ar2 ≡ −
2(d+ 14)

d2 + 10d+ 64
, ar3 ≡ −

24

d2 + 10d+ 64
, (17)

are the pseudostationary values obtained by imposing
da2/ds = da3/ds = 0. Specifically, for d = 2, ar2 ' −0.36
and ar3 ' −0.27.

Note that the right hand side of Eqs. (16) does not
depend on γ; such dependence has been absorbed into
the time scale s. In addition, nor does it depend on ξ,
i.e. these equations are also valid for the collisionless case
ξ =∞, where the FP equation (2) applies.

B. Universal non-exponential relaxation and
long-lived non-equilibrium state

The relaxation of the system is universal in the fol-
lowing sense: all the relaxation curves of the tempera-
ture should be superimposed when Y = θ/θi is plotted
against s = γθit, independently of the values of γ and
ξ. This universality is checked in Fig. 1, in which several
relaxation curves are shown. They have been obtained
by numerically solving the kinetic equation with the Di-
rect Simulation Monte Carlo (DSMC) method [76, 77].
Specifically, we plot 1/Y versus s, for values of γ and θi
such that 50 ≤ γθi ≤ 100, 0.01 ≤ γ ≤ 0.1, and 1 ≤ ξ ≤ 2.
A clear linear behaviour arises, i.e. Y (s) shows a very
slow algebraic decay, basically proportional to s−1 or,
equivalently, t−1. A similar behaviour has been recently
found for the relaxation dynamics of several glass-forming
models to their inherent structures [15].
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FIG. 1. Relaxation after a quench to a low temperature.
Specifically, we plot 1/Y = θi/θ as a function of the scaled
time s = γθit. Data from DSMC correspond to parameters
(θi, γ, ξ), as specified in the legend, and d = 2. Also plot-
ted is the theoretical prediction in Eq. (18) (solid line). The
linear behaviour of 1/Y means that the temperature relaxes
algebraically, basically as t−1.
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FIG. 2. Relaxation of the excess kurtosis (left panel) and
the sixth cumulant (right panel). Both a2 and a3 decay to-
wards their respective reference values, which characterise the
LLNES. Symbols correspond to DSMC data for θi = 1000,
while the dashed lines correspond to the numerical integration
of the scaled evolution equations (16). Additional employed
parameters are d = 2, γ = 0.1 and ξ = 1. The actual LLNES
obtained through DSMC is characterised by larger (in abso-
lute value) values of the cumulants than those predicted by
the extended theory. In particular, the extended Sonine ap-
proximation underestimates ar2 by approximately 15 per cent.

This strongly non-exponential relaxation can be the-
oretically understood as follows: the cumulants rapidly
tend (over the s scale) to their reference values ar2 and
ar3, as shown below. Setting a2 = ar2 in Eq. (16a), we get

Y (s) = Yalg(s) ≡ 1

1 + 2(d+ 2)(1 + ar2)s
. (18)

This theoretical prediction is also plotted in Fig. 1, where
it is neatly observed that the agreement with the numer-
ical results is excellent. Looking at Eq. (11a), one sees

that θ̇ is basically proportional to θ2 for θ � 1: this is
the reason why the algebraic t−1 relaxation emerges.

Substituting a2 with its pseudo-stationary, reference,
value ar2 is justified by looking into the time evolution,
over the s scale, of the cumulants—see also Appendix B.
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This is done in Fig. 2, which shows the same time win-
dow 0 ≤ s ≤ 5 of Fig. 1. Both data from DSMC simu-
lations and the numerical integration of the approximate
system (16) are plotted. It is neatly seen that both cu-
mulants, a2 and a3, rapidly become negative and quite
large, being roughly constant for s ≥ 1. Note that, on
the other hand, the temperature is reduced by a factor
of 25 from its initial value θi in Fig. 2.

In Fig. 2, there appear some discrepancies between the
DSMC data and the prediction from the extended Sonine
approximation for the cumulants. These discrepancies
mainly stem from the truncation done in the latter—i.e.
our neglecting of an for n ≥ 4 [78]. Still, we must keep
in mind that the—rather slight—discrepancy in the ref-
erence value of a2 has very little impact on the predicted
behaviour of the kinetic temperature.

The above analysis means that the system remains in a
LLNES for most of the relaxation in the low-temperature
quench. Over the LLNES, the cumulants a2 and a3 equal
their reference values (17), whereas the temperature de-
cays algebraically following Eq. (18). This state only
breaks for very long times, for which 1/Y does not di-
verge but saturates to its equilibrium value [79].

IV. MEMORY EFFECTS

The just described non-exponential relaxation opens
the door to the emergence of strong memory effects. We
have shown that there exists a regime, θi � 1 or, in other
words, a quench to low enough temperatures, for which
the system moves over the far-from-equilibrium LLNES
state. The strength of possible memory effects roughly
depends on the values of the cumulants, which measure
the deviations from equilibrium. If their value is small
(large), the VDF is close to (far from) the Gaussian shape
and weak (strong) memory effects appear. Therefore, if
we age the system to the LLNES, strong memory effects
are expected. In the following, we analyse the Mpemba
and Kovacs effects separately.

A. Mpemba effect

We start the analysis with the Mpemba effect. In the
Mpemba effect, the initially hotter fluid sample (A, ini-
tial temperature θiA) cools sooner than the one initially
cooler (B, initial temperature θiB). Therefore, the “cool-
ing rate” of the hotter system should be larger: since
the cooling rate increases with the excess kurtosis a2, as
follows from Eq. (11) [80], the Mpemba effect is max-
imised when the hotter (cooler) sample has the largest
(smallest) possible value of a2. In such a way, the hotter
(colder) samples cools as fast (slow) as possible.

Here, not only do we show that for large enough differ-
ence ∆a2i ≡ a2i,A−a2i,B the Mpemba effect emerges, but
(i) how to maximise the effect and (ii) how the system

has to be previously aged to get such an initial prepara-
tion of the samples. As stated above, a2i,A (a2i,B) must
take its largest (smallest) possible value to optimise the
Mpemba effect. A rigorous mathematical derivation of
the extrema (maximum and minimum) values of a2 com-
patible with the fluid dynamics makes it necessary to
employ the tools of optimal control theory [81, 82]. The
quite lengthy calculation is outside the scope of this pa-
per and thus will be published elsewhere [83]. However,
the result is physically appealing and compatible with
the more intuitive analysis performed in Appendix C.

On the one hand, the minimum value amin
2 = ar2 of

the excess kurtosis is obtained for a quench to a very
low temperature, i.e. when θi � 1 and the system is
cooled to the (γ, ξ)-independent LLNES described in the
previous section. On the other hand, the maximum value
of a2 is obtained for the somehow “opposite process”,
i.e. for θi � 1 that corresponds to a heating to a much
higher temperature. In Appendix C, we show that amax

2

is proportional to γ and much smaller than |amin
2 |. For

example, in the case (γ = 0.1, d = 2, ξ = 1) we have
that amax

2 ' 0.04 whereas ar2 = −0.36. An even larger
absolute value of ar2 is found in DSMC simulations, as
illustrated in Fig. 2.

For maximising the Mpemba effect, then one should
age the samples in the following way. The hot sample
A must be aged by heating from a much lower tempera-
ture, so that a2 takes its maximum value and the sample
has the largest possible cooling rate. The cold sample B
must be aged by cooling from a much higher temperature,
so that a2 takes its minimum, reference, value over the
LLNES and the sample has the smallest possible cooling
rate. Still, since amax

2 is quite small, a practical and very
close to optimal procedure is to take the hot sample A at
equilibrium, for which a2 = 0. In this way, the difference
∆a2 ≡ a2i,A − a2i,B is around 90 per cent of the optimal
value amax

2 −amin
2 . This is the initial preparation that we

employ throughout this work.
These samples A and B are put in contact with a com-

mon thermal reservoir at a much lower temperature, so
Eqs. (16) govern the evolution of our system for a long
time and, in particular, are capable of describing the uni-
versal Mpemba effect observed. The initially hotter sam-
ple cools with a2 decreasing from zero towards ar2, i.e.

YA(sA) =
θA(sA)

θi,A
= f(sA), sA = γθi,At, (19)

where f is a certain function, independent of θi,A, the
exact form of which is irrelevant for our discussion. The
initially colder sample cools following Eq. (18), i.e.

YB(sB) =
θB(sB)

θi,B
= Yalg(sB), sB = γθi,Bt. (20)

The Mpemba effect takes place when θA = θB for some
crossing time t×.

Figure 3 shows the large Mpemba effect we observe.
Since both the Y and s variables depend on the initial
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FIG. 3. Mpemba effect for different initial temperature ratios
RAB . Specifically, we consider four values of RAB , RAB =
1.05, 1.1, 1.15 and 1.2. Additional parameters employed are
d = 2 and ξ = 1. We plot θ/θi,B as a function of sB , from the
DSMC simulation and the theoretical prediction stemming
from Eq. (16). The relaxation curve of the cold sample B
(circles DSMC, solid line theory), starting from θi,B = 100
with a2i,B = ar2, is crossed by the curves for the hot samples
A (empty symbols DSMC, dashed lines theory), which start
from θi,A = RABθi,B with a2i,A = 0 (i.e. at equilibrium).
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FIG. 4. Same as in Fig. 3, but for larger temperature ratios.
The curves correspond to RAB = 1.1 (down-triangles), 1.2
(circles), 1.3 (up-triangles), and 1.4 (squares). Within the fig-
ure, an inset has been plot in order to appreciate the Mpemba
effect for RAB = 1.4 (40% initial temperature difference).

conditions, we plot YB = θ/θi,B vs. sB = γθi,Bt. After
defining the initial temperature ratio RAB ≡ θi,A/θi,B >
1, YA = YB/RAB and sA = RABsB . Specifically, we
consider one B sample, with θi,B = 100, and four differ-
ent A samples, with RAB = 1.05, 1.1, 1.15, 1.2. Sym-
bols correspond to DSMC simulations of the system
and lines to the theoretical prediction stemming from
Eqs. (16). The temperature curves cross at a certain
time sB,×, which corresponds to t× in the original time
scale, sB,× = γθi,Bt×. For sB > sB,×, the curve for
the initially hotter sample lies below that of the initially
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FIG. 5. Universal Mpemba effect for different initial prepa-
rations and parameters (γ, ξ). In particular, we plot θ/θi,B ,
i.e. the temperature in units of the initial temperature of
the colder sample, as a function of the scaled time sB for the
colder sample, defined in Eq. (20). For a fixed value of the
initial temperature ratio RAB , all the curves corresponding to
different sets of (θi,B , γ, ξ) superimpose, both for the hotter
(A) (open symbols) and colder (B) samples (filled symbols).
There are eight simulation curves: four corresponding to hot
samples with RAB = 1.1 and the corresponding four curves
for the cold samples. Dashed and full curves are the solutions
of Eq. (16) for (a2i,a3i)= (0, 0) and (ar2,ar3), respectively.

colder. The Mpemba effect is even neatly observed for
RAB = 1.2 (i.e. 20 per cent initial temperature differ-
ence). In fact, it is still present up to 40 per cent initial
temperature difference, i.e. RAB = 1.4, as illustrated by
Fig. 4.

The Mpemba effect is moreover universal in the fol-
lowing sense. Let us consider a fixed value of the ratio
RAB , but different values of the the initial temperatures
θi,A and θi,B , the non-linearity parameter γ, and the av-
erage time between collisions ξ. If we plot θ/θi,B vs. sB ,
all the curves corresponding to the colder temperatures
superimpose, as Fig. 5 shows. Besides, also the curves
corresponding to the hotter temperatures superimpose,
because sA = RAB sB and Eq. (19) entails θA(sB) =
θi,Af(RAB sB), i.e. θA(sB)/θi,B = RAB f(RAB sB).
This is neatly shown in Fig. 5, where we have plotted
relaxation curves for RAB = 1.1 and different values of
(θi,B , γ, ξ), as detailed in the legend. The analytical pre-
diction from Eq. (16) for the colder sample is slightly
under the DSMC data, because of our underestimating
the excess kurtosis over the LLNES.

In order to quantify the strength of the Mpemba ef-
fect, we introduce the parameter Mp defined in Ref. [48],
which corresponds to the maximum difference between
the relaxation curves once they have crossed each other.
We have computed the numerical values of Mp from the
DSMC simulation. Since the strength of the Mpemba ef-
fect is proportional to θi,B , we have specifically computed
Mp/θi,B . For the curves shown in Fig. 4, the values are
Mp/θi,B = 0.059, 0.045, 0.034 and 0.026 for initial tem-
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FIG. 6. Inverse Mpemba effect for different initial tempera-
tures for the hotter sample. Specifically, we consider hotter
samples with temperatures θi,A = 0.86, 0.87, 0.88, 0.89 and
0.90, while the colder sample departs from a temperature of
θi,B = 0.85. Additional employed parameters are ξ = 1 and
d = 2. Empty (filled) symbols correspond to DSMC data for
the hotter (colder) samples, while the dashed (full) lines corre-
spond to the numerical integration of the evolution equations
Eqs.(11) for the hotter (colder) samples.

perature ratios RAB = θi,A/θi,B = 1.1, 1.2, 1.3 and 1.4,
respectively. As expected, Mp decreases with the initial
temperature difference θi,A− θi,B—or, equivalently, with
RAB . Since θi,B � 1, the actual values of Mp for the
this system are typically larger than unity. In the figure,
θi,B = 100, so Mp ranges from 2.6 to 5.9, values that are
indeed higher than those for the large Mpemba-like effect
reported in Ref. [48] for a rough granular gas.

It is also interesting to study the inverse Mpemba ef-
fect, in which the initially colder sample heats sooner
than the initially hotter one, which has also been ob-
served in a wide variety of systems [43–45, 47–53]. Now,
samples A (initially hotter) and B (initially colder) are
put in contact with a thermal reservoir at a larger tem-
perature. If sample A heats more slowly than sample B,
the inverse Mpemba effect emerges. But heating more
slowly is basically equivalent to cooling faster: in both
cases, we want to have θ̇ as large as possible. Therefore,
we would like again to have the initially hotter sample
with the maximum possible value of a2 and the initially
colder one with the minimum possible value, exactly the
same preparation as for the normal case.

Following the reasoning in the previous paragraph, we
study the inverse Mpemba effect when the initially cooler
sample departs from the LLNES while the hotter one
departs from equilibrium [84] In Fig. 6 we may observe
that the initial temperature differences are smaller than
those for the normal Mpemba effect. Here, the maximum
value of the parameter RAB is 1.06, i.e. a 6% maximum
initial temperature difference, whereas in the normal case
it was 40%. Consistently, the strength of the inverse
Mpemba effect is smaller than that of the normal one:
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FIG. 7. Evolution of the temperature in the Kovacs protocol.
Parameter values are γ = 0.1, d = 2, and ξ = 1. Eight
simulation curves are shown for different combinations of the
initial (Ti), aging (T1), and final temperature (Tw). Writing
the aging temperature as Tw = T1+x(Ti−T1), the data shown
correspond to x = 0.2 (filled symbols) and 0.1 (open symbols).
Curves for smaller values of x are basically superimposed with
those for x = 0.1. The dashed (solid) line corresponds to
the numerical integration of Eqs. (11) with the theoretical
(simulation) values for the cumulants over the LLNES.

the values of the Mp parameter range between 0.001 and
0.013 in this case.

B. Kovacs effect

Next, we look into the Kovacs effect. In our system,
the relevant physical quantity is the kinetic temperature.
The Kovacs hump will come about if the cumulants are
non-zero at the waiting time tw. Therefore, to max-
imise the effect the (absolute) value of a2 and a3 have
to be in turn maximised. This entails that the optimal
aging protocol is a quench to a much lower tempera-
ture, i.e. T1 � Ti, over which the system reaches the
LLNES. Equations (11) govern the time evolution of the
system for t > tw, with θ = T/Tw and initial conditions
θ(tw) = 1, a2(tw) = ar2, a3(tw) = ar3.

The resulting Kovacs response also has scaling prop-
erties, although somehow weaker than those of the tem-
perature relaxation and the Mpemba effect. The initial
conditions and, therefore, the subsequent Kovacs hump
do not depend on (Ti, Tw, T1). Yet, it does depend on
γ and ξ. Figure 7 illustrates the scaled Kovacs hump,
we plot θ = T/Tw as a function of t − tw, for t > tw.
Indeed, the triplet (Ti, Tw, T1) does not affect the Ko-
vacs hump measured in DSMC simulations. Here, for
the sake of simplicity, we have taken one of the aging
temperatures as unity [85]. Moreover, our theory quan-
titatively describes the numerical results: the agreement
is very good, especially when the simulation value of ar2
is employed [86].

To further study the Kovacs effect, a perturbative anal-



8

ysis can be carried out—see Appendix D for details. It gives that

K(t) ≡ θ(t)− 1 = −γar2
2(d+ 2)

λ+ − λ−

[
M11 +M12 + |λ−|

|λ+| − α

(
e−α(t−tw) − e−|λ+|(t−tw)

)
− M11 +M12 + |λ+|

|λ−| − α

(
e−α(t−tw) − e−|λ−|(t−tw)

)]
+O((γar2)2). (21)

where α = 2[1 + γ(d+ 2)], Mij are the elements of a 2× 2 matrix M ,

M11 =− 4

[
1 + γ(d+ 6) +

2(d− 1)

d(d+ 2)ξ

]
, M12 =2

ar3
ar2

[
2γ(d+ 4) +

d− 1

d(d+ 2)ξ

]
, (22a)

M21 =12
ar2
ar3

[
2γ +

d− 1

d(d+ 2)(d+ 4)ξ

]
, M22 =− 6

[
γ(d+ 10) + 1 +

(d− 1)(4d+ 19)

2d(d+ 2)(d+ 4)ξ

]
. (22b)

and λ± are the eigenvalues of the matrix M ,

λ± =
TrM ±

√
(TrM)2 − 4 detM

2
< 0. (23)

The Kovacs effect is always normal, as it must be in a
molecular system [24], since ar2 < 0. Note that M12, as
defined by Eq. (22), depends on the cumulants, in par-
ticular on the ratio ar3/a

r
2. Had we aged the system in a

different manner, ar2 and ar3 would have been substituted
with a2(tw) and a3(tw) [87].

The accuracy of our perturbative expansion is checked
by comparing Eq. (21) for the Kovacs hump to DSMC
data. This is done in Fig. 8, where we plot the function
K(t) for three different values of γ, namely γ = 0.1, γ =
0.05, and γ = 0.025. Again, we write Tw = T1+x(Ti−T1)
and the data shown correspond to x = 0.1. We compare
the DSMC data with Eq. (21), both employing the the-
oretical predictions for ar2 and ar3 (dashed line) and their
simulation values (solid line). The mild discrepancies ba-
sically stem from the difference between the theoretical
and DSMC value of the excess kurtosis, as illustrated by
the very good agreement observed for the solid lines.

Let us analyse the position and the height of the max-
imum, which we denote by tM and KM ≡ K(tM ), re-
spectively. The values of tM and KM corresponding to
the curves in Fig. 8 are given in Table I. Specifically,
we give their values stemming from the theoretical ex-
pression (21), again both employing the theoretical pre-
dictions for ar2 and ar3 and their simulation values. The
agreement between the theory and the simulation is very
good, especially when the DSMC values of the cumulants
are inserted into the theoretical expression. The maxi-
mum position tM depends very weakly on γ, whereas its
height KM is roughly proportional to it.
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FIG. 8. Dependence of the Kovacs hump on the non-linearity
parameter γ. Three sets of data are plotted: both correspond
to the triplet (Ti = 1000, T1 = 0.1, x = 0.1) for three different
values of γ, specifically γ = 0.1 (squares), 0.05 (circles) and
0.025 (up triangles). Additional parameter values are d =
2 and ξ = 1. The dashed (solid) lines correspond to the
first order perturbative expression (21) with the theoretical
(DSMC) values of ar2 and ar3.

V. RELEVANCE OF COLLISIONS AND THE
FOKKER-PLANCK LIMIT

The relevance of the Enskog collision term in the EFP
equation is modulated by the dimensionless average time
between Brownian-Brownian collisions ξ. In previous sec-
tions, we have typically considered order of unity values
of ξ, for which the drag force and collisions act over the
same time scale. As already stated below the evolution
equations (11), the limit ξ =∞ corresponds to the colli-
sionless case, in which the EFP equation simplifies to the
FP equation. Now, motivated by recent work in binary
mixtures of ultracold atoms [60], we investigate how the
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Eq. (21) (ar2, a
r
3 from Sonine) Eq. (21) (ar2, a

r
3 from DSMC) DSMC data

γ = 0.025 (0.281,0.007) (0.286,0.009) (0.280,0.009)

γ = 0.05 (0.257,0.014) (0.262,0.016) (0.280,0.016)

γ = 0.1 (0.219,0.023) (0.225,0.029) (0.240,0.031)

TABLE I. Values of the maximum coordinates (tM ,KM ) for the Kovacs hump. Specifically, the reported values correspond to
the curves plotted in Fig. 8.

existence of the LLNES and the associated slow algebraic
relaxation is affected in the limit as ξ � 1.

In Ref. [60], the behaviour of a binary mixture of
Cs and Rb atoms is investigated. Quantum effects are
negligible—despite temperatures being in the µK range,
due to the low densities of both the Brownian (Cs atoms)
and background (Rb atoms) fluids. Therefore, the mo-
tion of the Cs atoms is described by means of a Langevin
equation—or the equivalent non-linear FP equation (2)—
with non-linear drag force, because the masses of the Cs
(mCs) and Rb (mRb) atoms are comparable. For the
mixture of Cs and Rb atoms, the parameters for our
EFP equation framework are γ = mRb/(10mCs) ≈ 0.067
and the dimensionless characteristic time ξ = 674.17—
see Appendix A.

We show below that the high value of the dimensionless
average time between collisions ξ in Ref. [60] entails that
the predictions for the EFP equation and the FP equa-
tion are basically equivalent. In other words, collisions
are so infrequent that the Enskog collision term can be
completely disregarded in that case. Also, we show that
the existence of the LLNES and thus of a wide time win-
dow over which the temperature relaxes algebraically—
for a quench to low temperatures—is independent of the
value of ξ; systems with ξ = 1, ξ = 674 and ξ = ∞
display exactly the same behaviour in the time scale s.

We present the results for the relaxation of the temper-
ature in Fig. 9. Symbols correspond to (i) the numerical
simulations for the EFP equation for two different val-
ues of the characteristic time ξ, ξ = 1 and ξ = 674, and
(ii) the FP equation (ξ = ∞). The line corresponds to
the algebraic relaxation (18), with the theoretical value
ar2 = −0.33 for d = 3. It is neatly observed that all the
curves are basically superimposed. Specifically, there is
no difference between the simulation results for the EFP
equation with ξ = 674 and the FP equation. Also, the
agreement between these two simulation curves and the
theoretical prediction (18) is better than that of the case
ξ = 1, which is already very good. In fact, the terms in-
volving ξ in Eq. (14)—which have been neglected when
writing (16)—vanish for ξ =∞, so Eq. (16) was expected
to give a better description for the collisionless case.

The inset in Fig. 9 shows the relaxation of the temper-
ature for longer times. Therein, we clearly observe that
the LLNES persists for a longer time when collisions are
infrequent (ξ = 674) or inexistent (ξ = ∞). This is rea-
sonable from a physical point of view. The collision term
does not directly affect the time evolution of the temper-
ature, because collisions are elastic and kinetic energy
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FIG. 9. Dependence of the LLNES on the collision rate.
DSMC data for the relaxation of after a quench to a low
temperature, specifically with θi = 1000, are plotted: ξ = 1
(down triangles), ξ = 674 (diamonds), and ξ =∞ (squares)—
the first two correspond to the EFP equation, whereas the
latter correspond to the FP equation. The simulation data
are compared with our theoretical prediction for the LLNES,
Eq. (18) (solid line). The agreement theory-simulation is very
good for all curves but especially for the cases ξ = 674 and
ξ = ∞, which are basically superimposed. The inset shows
the relaxation curves for longer times, 5 ≤ s ≤ 30, whereas
in the main panel 0 ≤ s ≤ 5. Therein, it is observed how
the system starts to depart from the LLNES: the smaller the
collison rate ξ−1, the smaller the separation from the LLNES.

is conserved. However, collisions indeed affect the time
evolution of of the VDF through higher-order cumulants
like a2 and a3: they favour the “mixing” of velocities and
thus make the relaxation to equilibrium faster. Accord-
ingly, the relaxation curve of 1/Y for ξ = 1 is always
above than those for ξ = 674 and ξ =∞.

VI. CONCLUSIONS

The molecular fluid with non-linear drag shows a very
complex relaxation behaviour. The leading role is played
by the LLNES reached by the system when quenched
to a low temperature. Over it, the temperature dis-
plays a very slow, algebraic, decay and the VDF neatly
separates from the Maxwellian shape. The strong non-
Gaussianities are characterised by large (absolute) values
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of the fourth and sixth cumulants, which we have termed
their “reference” values ar2 and ar3.

Both the own existence of the LLNES and the physi-
cal properties over it—algebraic decay of the temperature
and reference values of the cumulants—do not depend on
the degree of non-linearity, as measured by γ, nor on the
Brownian-Brownian collision rate, as measured by ξ. It
must be remarked that, in particular, the LLNES sur-
vives in the limit ξ =∞, when the Enskog collision term
is not present and the velocity VDF for the Brownian
particles obey the FP equation (2) with non-linear drag.

This LLNES also rules the emergence of large mem-
ory effects, both Mpemba-like and Kovacs-like. On the
one hand, not only have we shown that a large Mpemba
effect—present for temperature differences up to 40 per
cent—comes about but also how the hot and cold sam-
ples have to be prepared. The identification of the aging
procedure is important for the experimental reproducibil-
ity of the Mpemba effect: here, the hot sample starts
from equilibrium whereas the cold sample starts from the
LLNES. The strongly non-exponential relaxation associ-
ated with the Mpemba effect is quite unique, since the
relaxation is basically exponential in the majority of sys-
tems in which the Mpemba effect has been studied. On
the other hand, it is the relaxation following the quench
to a low temperature that has to be interrupted to max-
imise the Kovacs effect, once the system has reached the
LLNES. The reported Kovacs hump, of the order of 3 per
cent in Fig. 7, is quite large as compared to typical val-
ues. For example, it is one of order of magnitude larger
the original observation by Kovacs [16, 17], 2 − 3 times
larger than its value in a Lennard-Jones fluid [21], and
of the same order of magnitude of the recently reported
results in a disordered protein construct [28].

Both the non-exponential relaxation and the memory
effects present scaling features. When properly scaled, all
relaxation curves corresponding to the quench to a low
temperature superimpose. Not only does the relaxation
in scaled variables not depend on the initial temperature
θi but also is independent of the degree of non-linearity
γ and the average time ξ between Brownian-Brownian
collisions. This is why we employ the term universal to
refer to the observed relaxation of the temperature.

For the Mpemba effect, a similar scaling entails that
all curves corresponding to a given initial temperature ra-
tio also superimpose, independently of the value of other
parameters: initial temperatures of the hot and cold sam-
ples and also (γ, ξ). In this sense, we also speak about a
universal Mpemba effect. The Kovacs effect also displays
scaling properties, although weaker: the hump depends
on (γ, ξ) but not on the initial, final, and aging temper-
atures.

The LLNES naturally emerges when the system is
quenched from a very high temperature θi � 1, and
thus the temperature θ � 1 over a—quite wide—time
window. Would the LLNES still be relevant for other,
more general, protocols, in which the temperature of the
bath followed a certain program Ts(t)? Looking back

at the evolution equations (11) in the second Sonine
approximation, Eqs. (11b) and (11c) would remain un-
changed whereas (11a) would have an additional term
−θd lnTs(t)/dt on its rhs. This implies that, as long as
θ(t) ≡ T (t)/Ts(t)� 1, Eqs. (11b) and (11c) for the time
evolution of the cumulants are still valid and the cumu-
lants would tend to their reference values, characteristic
of the LLNES, in this more general situation. As for the
temperature, Eq. (11a) would have an additional term
−Y d lnTs/ds making, quite logically, the time evolution
of θ depend on the considered program. The analysis
of the behaviour of the fluid with non-linear drag under
such a time-dependent program for the bath temperature
is an interesting perspective for future work.

Another relevant question is the robustness of the
LLNES for other, more general forms, of the non-linear
drag. The results derived in this paper are specific for
the quadratic non-linearity in Eq. (1) but, what about
higher-order non-linearities? For instance, let us think of
the next correction in the systematic expansion in pow-
ers of the mass ratio mbf/m introduced in Refs. [58, 59],
which incorporates a quartic, proportional to v4, term.
Incorporating it would result in the coupling of the time
evolution of the temperature not only with

〈
v4
〉
, which

gives rise to the term proportional to θ2a2, but also with〈
v6
〉
, which would give rise to a new term proportional

to θ3a3—dominant for a quench to low temperatures,
where θ � 1. This entails that the third-order Sonine
approximation would be necessary to describe the evo-
lution of the temperature, since so is quantitatively pre-
dicting a3. Still, a LLNES would appear in which a2, a3,
and a4 would tend to pseudostationary reference values
ar2, ar3, and ar4. The temperature would also have an alge-
braic decay but with a different exponent, since we would
have θ̇ ∝ −θ3 (instead of −θ2) for θ � 1 and therefore
θ ∝ t−1/2 (instead of t−1).

In this work, we have employed the extended—or
second—Sonine approximation, retaining not only the
excess kurtosis a2 but also the sixth cumulant a3.
This stems from the evolution equation of the tem-
perature θ being directly coupled with a2, whereas a3
only appears in the evolution equation of a2. In our
study, the n-th-order Sonine approximation—i.e. retain-
ing (θ, a2, . . . , an+1)—allows for quantitatively describing
the behaviour up to the second to last kept cumulant an
as the initial temperature is increased. The discrepancies
between the theory and the DSMC simulations slightly
increase with the order of the cumulant—i.e. when one
goes from θ to an. However, it “only” gives a qualitative
account of the behaviour of the last kept cumulant an+1.
This makes it necessary to consider the extended, second-
order, Sonine approximation when considering a quench
to low temperatures, because an accurate prediction for
the time evolution of the excess kurtosis is needed.

The most rigorous approach to analyse the mixture of
Brownian and background fluids would be writing down
the Boltzmann (or Enskog) equation for the two species.
Comparing the results of this framework with those
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from the EFP equation—for order of unity Brownian-
Brownian collision rate ξ—is an interesting perspective
for future work. It is worth recalling that both frame-
works give rise to the FP equation in the limit ξ → ∞,
in which we have shown that the glassy behaviour found
for the EFP equation persists.

Our work opens the door to investigating aging phe-
nomena and glassy behaviour in ultracold atoms. A
key result of this work is the role played by the quench
to a much lower temperature that leads the system
to the LLNES, which controls the emergence of non-
exponential relaxation and the associated memory effects
(both Mpemba- and Kovacs-like). Since the model em-
ployed here describes mixtures of ultracold atoms, like
that in Ref. [60], the central role of the LLNES may be
checked in real experiments.
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Appendix A: Sonine expansion

Here we summarise the main features of the so-called
Sonine expansion of the VDF, which makes it possible
to—by introducing suitable approximations—truncate
the infinite hierarchy of equations for the cumulants.
Also, we compare the theoretical predictions of the first
Sonine approximation and the extended Sonine approxi-
mation with DSMC simulations of the EFP equation (3).

For the scaled VDF introduced in Eq. (7), the EFP
equation becomes [49]

∂tφ(c, t) =
1

ξ

√
θI[c|φ, φ]

+
∂

∂c
·

[
θ̇

2θ
c+

(
1 + 2γθc2

)
·
(
c+

1

2θ

∂

∂c

)]
φ(c, t),

(A1)

where θ and t are the dimensionless temperature and
time defined in Eq. (6)—recall that we have dropped the
asterisk to simplify the notation,

I[c1|φ, φ] =

∫
dc2

∫
dσ̂ Θ(c12 · σ̂) c12 · σ̂

× [φ(c′1)φ(c′2)− φ(c1)φ(c2)] (A2)

is the dimensionless Enskog collision operator, and ξ is
the parameter defined in Eq. (10).

The parameter ξ measures the relative relevance of the
nonlinear drag force—i.e. collisions between the back-
ground fluid particles and the Brownian ones—and the
Brownian-Brownian collisions. The regime ξ � 1 implies
that collisions act over a much longer time scale than the
drag force. When the background fluid is also composed
of hard-spheres—therefore, d = 3—of density nbf and
diameter σbf, it has been shown that [49, 60]

ξ =
2nbf
3n

(
1 +

σbf
σ

)2 √
5γ

1 + 10γ
. (A3)

In the case of self-diffusion, mbf = m, nbf = n, and
σbf = σ, we have that ξ = 0.9428 for γ = 0.1, i.e. very
close to unity. This is the reason why we have often
chosen ξ = 1 in this work.

For isotropic states, the reduced VDF φ(c, t) is ex-
panded in Sonine polynomials, as given by Eq. (7). The
coefficients with l = 2 and l = 3 correspond to the cu-
mulants a2 and a3, respectively. The n-th order Sonine
approximation consists in retaining up to the (n+ 1)-th
cumulant in the above expansion and neglecting higher
order ones, for these are assumed to be small. Moreover,
nonlinear combinations of the cumulants are also usually
dropped, because of their smallness. In this Appendix,
we consider two possibilities: the first and the second—or
extended—Sonine approximations.

Under the first Sonine approximation, a closed set of
differential equations for the variables θ and a2 is ob-
tained, since a3 and higher-order cumulants are neglected
(also nonlinear terms in a2). From Eq. (A1), the follow-
ing evolution equations are derived [49],

θ̇ =2(1− θ)[1 + γ(d+ 2)θ]− 2γ(d+ 2)θ2a2, (A4a)

ȧ2 =8γ(1− θ)

−

[
4

θ
− 8γ + 4γ(d+ 8)θ +

8(d− 1)

d(d+ 2)

√
θ

ξ

]
a2,

(A4b)

which are linear in a2 but nonlinear in θ. Under the sec-
ond (or extended) Sonine approximation, the sixth cu-
mulant a3 is incorporated to the picture. Therein, we
obtain a closed set of differential equations for the vari-
ables θ, a2 and a3, where higher order cumulants—i.e.
from a4 on—and non-linear combinations of a2 and a3
are neglected. The result is the system in Eq. (11) of the
main text.

In what follows, we test the validity of the evolution
equations provided by the first and the extended Sonine
approximations, Eq. (A4) and Eq. (11), respectively. We
compare the numerical integration thereof with DSMC
simulations of the EFP equation, which numerically solve
it. Specifically, we have considered a two-dimensional
system (i.e. hard-discs) with γ = 0.1 and ξ = 1, which is
initially prepared at the equilibrium state corresponding
to different values of θi, ranging from 2 to 100.

Figure 10 presents the time evolution of the kinetic
temperature. As we may observe, discrepancies between
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FIG. 10. Time evolution of the dimensionless temperature
for different values of the initial dimensionless temperature.
Specifically, we present a logarithmic plot of θ − 1, so that
a straight line corresponds to an exponential decay to the
steady state value θs = 1. Additional employed parameters
are d = 2, ξ = 1 and γ = 0.1. Symbols correspond to DSMC
data. Dashed lines represent the numerical integration of
Eqs.(A4), for the first Sonine approximation, whereas the full
lines correspond to the numerical integration of Eqs.(11), for
the extended Sonine approximation.

DSMC data and the first Sonine approximation emerge
for high enough temperatures. Specifically, they become
noticeable over the scale of the figure for θi = 100, for
which the extended Sonine approximation is clearly su-
perior. As we show in the following, this is due to the
cumulants value increasing with θi. Also, it is neatly ob-
served that the relaxation of the temperature changes
from being basically exponential for θi = 2 and 5 to
strongly non-exponential behaviour for θi = 100. We
investigate this point in more depth in Appendix B.

The differences between the first and second Sonine
approximations are even clearer in Fig. 11, in which we
show the time evolution of a2. For the lowest initial tem-
perature, θi = 2, both Sonine approximations give quite
close results, although it is already observed that the
extended Sonine approximation describes the behaviour
of the excess kurtosis in a more accurate, quantitative,
way. As the initial temperature is increased, the differ-
ence between both approaches becomes larger, with the
extended Sonine approximation giving always the better
description of the actual behaviour of the system.

For the highest temperature considered in panel (d),
θi = 100, the minimum value for the excess kurtosis in
the first Sonine approximation is roughly one-half of that
in DSMC, whereas the deviation of the theoretical pre-
diction from the DSMC value decreases to ' 10% in the
extended Sonine approximation. Looking back at panel
(d) of Fig. 10, we note that this slight underestimation
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FIG. 11. Time evolution of the excess kurtosis for different
values of the initial dimensionless temperature. The panels
correspond to the same cases shown in Fig. 10 for the tem-
perature, with the same codes for the lines and symbols. It
is clearly observed that the extended Sonine approximation
(solid line) gives a better description of simulation data (sym-
bols) than the first Sonine approximation (dashed line).

of a2 does not impinge on the theoretical prediction for
the time evolution of the kinetic temperature, which is
the focus of our work.

Finally, we show the prediction for a3 in Fig. 12, which
makes only sense in the extended Sonine approximation.
The discrepancies between the DSMC data and the nu-
merical integration of the evolution equations become
more important than for a2, especially as the temper-
ature is increased and the absolute value of a3 also in-
creases. Notwithstanding, the extended Sonine approxi-
mation, Eq. (11), provides the correct qualitative picture.

Note that, since the temperature is directly coupled to
a2 but not to a3, the discrepancies in the sixth cumulant
observed in Fig. 12 are not relevant for the investiga-
tion of the dynamical evolution of the temperature. To
diminish the discrepancies in a3 observed in the second-
order Sonine approximation, one could consider a third-
order Sonine approximation by introducing the eighth
cumulant a4. Within this third-order Sonine approxima-
tion, one would expect a qualitative description of a4 and
a quantitative account of a2, a3, and the temperature.
More specifically, the discrepancies in a3 observed in the
second Sonine approximation would be “transferred” to
a4 in the third Sonine approximation (and those in a2 to
a3, those in θ to a2).

Appendix B: Fast relaxation to the LLNES

Here, we show that the cumulants decay to their refer-
ence values over a time scale that is shorter than that of
the relaxation of the temperature, after a quench to a low
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FIG. 12. Time evolution of the sixth cumulant for different
values of the initial dimensionless temperature. The panels
correspond to the same cases shown in Fig. 10 for the tem-
perature, with the same codes for the lines and symbols.

temperature. Therefore, the system quickly reaches the
LLNES described in the main text, over which the cumu-
lants are basically constant and equal to their reference
values and the temperature relaxes algebraically.

According to the approximate evolution equations in
the s scale (16), both Y (s) and the cumulants a2(s) and
a3(s) tend to stationary values for long enough times.
On the one hand, Y → 0, which seems counterintuitive
at first glance, but we must not forget that the approxi-
mate system of ODEs only remains valid for high enough
temperatures, i.e. Y = O(1). On the other hand, the cu-
mulants tend to their respective reference values ar2 and
ar3. For longer times, i.e when Y � 1, Eq. (16) ceases to
be valid, and the whole extended Sonine framework, as
described by Eqs. (11) has to be used. It is only over this
very long time scale that the temperature actually relaxes
towards its stationary value θs = 1, and all the cumulants
tend to zero—for the equilibrium VDF is Gaussian.

Here we show that the main part of the relaxation of
the temperature takes place over the s scale. Moreover,
we show that the cumulants quickly relax to their refer-
ence values, as given by Eq. (17), while the temperature
relaxes in a much slowlier way. To do so, it is useful
to start by considering the evolution equations in the s
scale in the first Sonine approximation, i.e. when a3 is
neglected. Therein, we have the system

dY

ds
≈ −2(d+ 2)Y 2(1 + a2), (B1a)

da2
ds
≈ −4Y (d+ 8)(a2 − a′r2 ), (B1b)

in which a′r2 = −2/(d + 8) is the reference value for the
excess kurtosis in the first Sonine approximation. This
system of equations can be solved in parametric form,

since

da2
dY

=
2(d+ 8)

Y (d+ 2)

a2 − a′r2
1 + a2

, (B2)

is a separable first order ODE with solution

Y (a2) =

[
d+ 8

2
(a2 − a′r2 )

]α
exp

[
(d+ 2)a2
2(d+ 8)

]
, (B3)

where α = (d + 2)(d + 6)/[2(d + 8)2]. Equation (B3)
implies that a2 reaches its reference value when the tem-
perature is still relaxing. Let us prove this statement by
considering a small perturbation in a2 around its refer-
ence value, a2 = a′r2 + δ, δ � 1, and inserting it into
(B3),

Y ≈
[
d+ 8

2

]α
exp

[
− d+ 2

(d+ 8)2

]
δα

=⇒ δ =
2

d+ 8
Y 1/α exp

(
2

d+ 6

)
. (B4)

Thus, for Y = 1/2, we get δ ≈ 3.37 × 10−3 (for d =
2), which gives a relative error for the excess kurtosis
δ/|a′r2 | ≈ 0.02.

The general picture outlined above is illustrated in
Fig. 13. Therein, we plot the parametric solution (B3)
(dashed line). It is clearly observed that a2 is very close
to its reference value a′r2 for Y ≤ 1/2. Also plotted is the
corresponding parametric curve for the extended Sonine
approximation (solid line), which has been obtained from
the numerical integration of Eq. (16). The same qualita-
tive picture applies, although the values of Y for which
a2 is very close to its reference value ar2 become smaller,
Y ≤ 0.2.

Appendix C: Extrema for the cumulants

In this Appendix, we look into the extreme values—
minimum and maximum—of the cumulants a2 and a3.
Again, it is instructive to start by considering the first
Sonine approximation. Let us focus on (A4b): at the
time such that a2 reaches one of its extrema, we have
that ȧ2 = 0, i.e. the corresponding value of the excess
kurtosis must verify

aext2 =
8γ(1− θ)

4
θ − 8γ + 4γ(d+ 8)θ + 8(d−1)

d(d+2)

√
θ
ξ

. (C1)

For a given value of ξ, aext2 is a function of θ. In fact,
the asymptotic behaviour of aext2 is independent of the
average inter-collision time ξ both in the limits θ → 0+

and θ → +∞,

aext2 ∼ 2γθ, θ → 0+,

aext2 → amin
2 = − 2

d+ 8
, θ → +∞. (C2)
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FIG. 13. Plot of the parametric curves Y = Y (a2). The
curves for both the first (dashed line) and the extended (solid
line) Sonine approximations are plotted, for d = 2. The for-
mer is given by Eq. (B3), while the latter follows from the
numerical integration of Eqs. (16). Also marked are the ref-
erence values for the excess kurtosis in both frameworks, a′r2
and ar2.

Moreover, aext2 = 0 for θ = 1, ∀ξ. This means that the
general qualitative picture of aext2 is the following, ∀ξ:
it vanishes at θ = 0, has a maximum in the interval
θ ∈ (0, 1), and decreases to its minimum value amin

2 for
θ > 1. The specific case ξ = 1 is presented in panel (a)
of Fig. 14 (dashed line). Note that amin

2 is also indepen-
dent of γ, in fact it equals the reference value a′r2 in the
first Sonine approximation. On the other hand, amax

2 is
roughly proportional to γ and thus quite small: in the
case ξ = ∞ (FP limit), to the lowest order in γ one has
aext2 ≈ 2γθ(1− θ) and amax

2 ≈ γ/2.

In the extended Sonine approximation, we impose ȧ2 =
ȧ3 = 0 in Eqs. (16) to get the extrema of a2 and a3,
aext2 and aext3 . The explicit expressions of aext2 and aext3

as a function of θ and ξ are quite complicated and not
particularly illuminating, so we do not write them here.
Yet, the qualitative behaviour of aext2 and aext3 is similar
to the one found for the excess kurtosis in the first Sonine
approximation. Both aext2 and aext3 vanish at θ = 0 and
θ = 1, and tend to their minimum (negative) values amin

2

and amin
3 for θ → +∞, independently of the value of ξ.

Also, both minima amin
2 and amin

3 do not depend on γ and
coincide with their pseudo-stationary, reference, values
ar2 and ar3, respectively. A particular case, again for ξ =
1, is presented in Fig. 14 (solid lines), a2 (a3) in its left
(right) panel. The maximum values of both cumulants
are again basically proportional to γ and thus much lower
(in absolute value) than their respective minima.
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FIG. 14. Parametric solutions of the extrema for the cumu-
lants as functions of the dimensionless temperature. Specif-
ically, we plot the extremum for the excess kurtosis a2 (top
panel) and the sixth cumulant a3 (bottom panel). In the
extended Sonine approximation, they are obtained by impos-
ing ȧ2 = ȧ3 = 0 in Eqs. (16) (solid lines). In the first So-
nine approximation, only the curve for the excess kurtosis
can be plotted (dashed line on panel (a)), which is given by
Eq. (C1). Additional employed parameters are d = 2, ξ = 1,
and γ = 0.1.

Appendix D: Perturbative approach to the Kovacs
effect

Now we consider the Kovacs effect described in the
main text. In the aging time window 0 ≤ t ≤ tw, the
system relaxes towards the LLNES and therefore the cu-
mulants take their reference values at the end of this
stage, a2(tw) = ar2, a3(tw) = ar3. Here, we derive an ana-
lytical expression for the non-monotonic behaviour of the
temperature, i.e. the Kovacs hump, that arises when the
system is put in contact with a thermal bath at temper-
ature T = T (tw) for t > tw.

The evolution equations (11) cannot be exactly solved,
but we may resort to a perturbative expansion to get
an approximate expression for the time evolution of the
temperature. The initial conditions for the Kovacs ex-
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periment are

T (tw) = Ts, a2(tw) = ar2, a3(tw) = ar3. (D1)

A perturbation theory in the cumulants is not expected
to give good results, since ar2 and ar3 are quite large, as
we have already discussed. However, bringing to bear
that γ ≤ 0.1, we can develop a perturbative theory in
the product γa0, where a0 is of the same order as the
reference values for the cumulants, i.e. ar2/a0 and ar3/a0

are both of the order of unity. Then we write

θ(t) = θ(0)(t) + γa0θ
(1)(t) +O((γa0)2), (D2a)

A2(t) = A
(0)
2 (t) + γa0A

(1)
2 (t) +O((γa0)2), (D2b)

A3(t) = A
(0)
3 (t) + γa0A

(1)
3 (t) +O((γa0)2), (D2c)

in which we have defined

A2(t) ≡ a2(t)

ar2
, A3(t) ≡ a3(t)

ar3
, (D3)

which also are of the order of unity. The above expan-
sions lead to the following hierarchy: to the lowest, O(1),
order we have

θ̇(0) = 2(1− θ(0))
[
1 + γ(d+ 2)θ(0)

]
, (D4a)

Ȧ
(0)
2 =

8γ

ar2
(1− θ(0))−

[
4

θ(0)
− 8γ + 4γ(d+ 8)θ(0) +

8(d− 1)

d(d+ 2)

√
θ(0)

ζ∗0

]
A

(0)
2

+ 2

[
2γθ(0)(d+ 4) +

(d− 1)

d(d+ 2)

√
θ(0)

ξ

]
ar3
ar2
A

(0)
3 ,

(D4b)

Ȧ
(0)
3 =12

[
−4γ + 6γθ(0) +

(d− 1)
√
θ(0)

d(d+ 2)(d+ 4)ξ

]
ar2
ar3
A

(0)
2

+ 6

[
4γ − 1

θ(0)
− γθ(0)(d+ 14)− (d− 1)(4d+ 19)

√
θ(0)

2d(d+ 2)(d+ 4)ξ

]
A

(0)
3 ,

(D4c)

and to the first, O(γa0), order

θ̇(1) =− 2θ(1)
[
1 + γ(d+ 2)θ(0)

]
+ 2γ(d+ 2)θ(1)[1− θ(0)]

− 2(d+ 2)
ar2
a0

(
θ(0)
)2
A

(0)
2 . (D5)

We do not write the equations for A
(1)
2 and A

(1)
3 because

they are not necessary for the calculation of the temper-
ature to the first order, which is our goal here.

In the scaled variables, the initial conditions are
θ(tw) = A2(tw) = A3(tw) = 1. This means that, in the

perturbative series, θ(0)(tw) = A
(0)
2 (tw) = A

(0)
3 (tw) = 1

whereas θ(j)(tw) = A
(j)
2 (tw) = A

(j)
3 (tw) = 0, ∀j ≥ 1.

Let us focus first on the lowest order. We have that
θ(0)(t) = 1, i.e. there is no Kovacs effect if γa0 = 0.
This is logical, since this condition is fulfilled if either
γ = 0, i.e. linear drag, or a0 = 0, i.e. the system is at
equilibrium for t = tw. Neither of these situations allows

for the emergence of the Kovacs effect. Second, A
(0)
2 and

A
(0)
3 are obtained by solving

d

dt
A(0) = M ·A(0), (D6)

where the vector A(0) and the matrix M are defined as

A(0) ≡

(
A

(0)
2

A
(0)
3

)
, M ≡

(
M11 M12

M21 M22

)
, (D7)

where Mij has been given in Eq. (22) of the main text.
The eigenvalues λ± of the matrix M have been defined
in Eq. (23), and their corresponding eigenvectors are

u± =

(
M12

λ± −M11

)
. (D8)

The solution is thus given by

A(0)(t) = c+u+e
λ+(t−tw) + c−u−e

λ−(t−tw), (D9)
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where c+ and c− are determined by imposing the initial
conditions, which results in

c+ =
M11 +M12 − λ−
(λ+ − λ−)M12

, c− =
λ+ −M11 −M12

(λ+ − λ−)M12
.

(D10)
Once the lowest order is completed, we make use of

Eq. (D5) to compute θ(1)(t), which gives the simplest
theoretical prediction for the Kovacs hump. Recall that
θ(0)(t) = 1 to the lowest order, so Eq. (D5) simplifies to

θ̇(1) = −2θ(1) [1 + γ(d+ 2)]− 2(d+ 2)
ar2
a0
A

(0)
2 . (D11)

Taking into account the initial condition θ(1)(tw) = 0,

one gets

θ(1)(t) = −2(d+ 2)
ar2
a0
e−αt

∫ t

tw

eαuA
(0)
2 (u)du, (D12)

in which α ≡ 2[1 + γ(d+ 2)], and

A
(0)
2 (t) =

1

λ+ − λ−

[
(M11 +M12 − λ−)eλ+(t−tw)

+ (λ+ −M11 −M12)eλ−(t−tw)
]
.

(D13)

As a consequence, the Kovacs hump is given by Eq. (21)
of the main text in this perturbative scheme.
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