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Injectivity of non-singular planar maps with one
convex component

Marco Sabatini *

Abstract

We prove that if a non-singular planar map A € C?(IR?,IR?) has a
convex component, then A is injective. We do not assume strict convexity.

Keywords: Local invertibility, global injectivity, non-strict convex-
ity, Jacobian Conjecture.

1 Introduction

Let ©Q be an open connected subset of IR". We say that A : Q — IR" is locally
injective (invertible) at X € Q if there exists a neighbourhoods Ux C Q of
X and Vj(x) of A(X) such that the restriction A : Ux — Vj(x) is injective
(invertible). If A € C(Q,R"), we denote by J(X) the Jacobian matrix of A
at X. By the inverse function theorem, if J(X) is non-singular then A is lo-
cally injective at X. It is well-known that locally injective maps need not be
globally injective, even if J(X) is non-singular for all X € Q, as in the case
of the exponential map A(z,y) = (e® cosy, e®siny). Injectivity (invertibility)
of locally injective (invertible) maps under suitable additional assumptions has
been studied for a long time. In [I0] it was conjectured that every polynomial
map A : €" — C" with constant non-zero Jacobian determinant be globally
invertible, with polynomial inverse. Such a problem, known as Jacobian Con-
Jjecture, was widely studied and inserted in a list of relevant problems in [I5].
The Jacobian Conjecture was studied in several settings, even replacing C with
other fields, but still remains unsolved for n > 2, [I} 4, B 16]. In [I3] it was
proved that asking for the determinant of J(X) not to vanish is not sufficient
to guarantee A injectivity.

Injectivity appears also in connection to a global stability problem formu-
lated in [IT]. In such a paper it was conjectured that if at any point J(X) has
eigenvalues with negative real parts then a critical point O of the differential
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system
X = A(X) (1)

is globally asymptotically stable. Global asymptotic stability of () implies A
injectivity. In [I2] it was proved that if n = 2, then the vice-versa is true, i. e.
injectivity implies global asymptotical stability. Using such a result the conjec-
ture was proved to be true for n = 2 [6] [7, [§]. On the other hand the conjecture
does not hold in higher dimension, even for polynomial vector fields [2] [3].

Other additional conditions to get injectivity are growth conditions. A clas-
sical result in this field is Hadamard theorem [9], which states that if A is proper,
i. e. if A=1(K) is compact for every compact set K C IR", then A is a bijection.
Properness is ensured if A is norm-coercive, that is if

lim  [A(X)| = +oo. 2)
| X | =400

Coerciveness requires all the component of A to grow enough for ([2)) to hold.
On the other hand coerciveness is not necessary in order to have injectivity,
as the real map & — arctanz shows. In [I4], studying planar maps A(z) =
(P(2),Q(2)), injectivity was proved under a growth condition on just one com-
ponent of A. In fact, if

+oo
/ ‘inf |[VP(2)|dr = +o0, (3)
0 T

then A is injective. As a consequence, if there exists k > 0 such that |[VP(z)| >
k, then A is injective.

Also in this paper, studying planar maps, we prove injectivity imposing a
suitable condition on just one component. In fact, we prove that if one of the
components A(z) = (P(z),Q(z)) is a non-strictly convex function, then A(z) is
injective. One of the steps in the proof is the same as in [I4], since we prove
the parallelizability of the Hamiltonian system

(20 @

That is equivalent to prove the connectedness of the level sets of P(z).

We observe that the non-strict convexity of the function P(z) implies the
non-strict convexity of the orbits of ), but the vice-versa is not true, as the
exponential map shows. Hence injectivity cannot be proved assuming only the
non-strict convexity of the orbits of ().

2 Maps having one convex component

In order to introduce the proof of next theorem, we recall some properties of
convex functions.



Proposition 1. Let f € C*(IR,R), H € C%(IR?, IR?) be (non strictly) convex
funtions. Then:

i) if f is non-constant then it is unbounded from above;

ii) if there exist u1 < ug < uz € R such that f(u1) = f(u2) = f(us), then f
is constant on the interval [u1,us);

111) the restriction of H to every line is a convexr one-variable function;
iv) sub-level sets of f and H are convex;

v) every level set of H at every point has a tangent line and lies entirely on
one side of such a tangent.

vi) the intersection of a level set of H with any of its tangent lines is connected
(a closed interval, in generalized sense).

In the proof of next theorem we consider the family of orbits of the differ-
ential system (). A regular C! curve o is said to be a section of [ if it is
transversal to (@) at every point of o. If v is a non-trivial orbit, then for every
z € 7 there exists a neighbourhood U, of z and two open disjoint connected
subsets UF C U, lying on different sides of v, such that U, = U, U(yNU)UU.
If o is a section of v and o Ny = {z}, then there exist a neighbourhood U, of z
and two sub-curves o, called half-sections, such that o+ = o NU zi

Given a planar differential system without critical points, two orbits vy; and
72 are said to be inseparable if and only if there exist two half-sections o; and o9
such that every orbit meeting o7 meets also o2 and vice-versa. It can be proved
that if 47 and v, are inseparable, then for every couple of points z; € v; and
zo € 7o there exist half-sections such that every orbit meeting o1 meets also o9
and vice-versa. In other words, the definition of inseparability does not depend
on the choice of z; and zs.

We denote by ¢(t, z) the local flow of [{@]). Since we deal with non-singular
maps, such a system has no critical points. Its orbits are positively and nega-
tively unbounded and separate the plane into two connected components. Every
orbit is contained in a level set of P(z), even if in general level sets of P(z) do
not reduce to a single orbit. In what follows we denote by A° the interior of a
set A and by A its closure.

Theorem 1. Let A € C*(IR?,R?) be a non-singular map. If one of its compo-
nents is convez, then A is injective.

Proof. Possibly exchanging the components, we may assume P(z) to be
convex. By lemma 2.2 and theorem 2.1 in [14], it is sufficient to prove that the
level sets of P(z) are connected. By absurd, let us assume that a level set of
P(z) = h is disconnected. As a consequence by lemma 2.2 in [I4] the system
@) has a couple y1 # 2 of inseparable orbits. By continuity, P(z) assumes the
same value on 1 and 7, say P(v1) = P(y2) = k.



Let us consider two cases.

1) One among v, and 7, is not a line. Assume 7, is not a line. Let T'; be
the closed convex set having v; as boundary.

1.1) If v C T'y, then it is not a line, otherwise it would meet 1, contradicting
uniqueness of solutions. Let z; be an arbitrary point of v; and 72 be the line
passing through z; and tangent to -9, existing by the convexity of I's. Since
72 is not a line one can rotate T2 around z; until it meets 2 at two points
23 # 23. Let us call 7* such a line. Then 7* meets the level set P(z) = k
at three distinct points, 21, 23,23. By proposition [l ii), P(z) is constant on
the smallest segment ¥ containing 21, 24, 25. The set 73 U ¥ U 7y, is connected
and contained in P(z) = k, contradicting the fact that 71 and o are distinct
connected components of P(z) = k.

1.2) Let yo C T'S. If 41 C T'2, then one can reply the argument of point 1.2),
exchanging the role of 1 and ~a.

1.3) Assume 71 ¢ T2 and 72 ¢ T'y. Let D7 be the subset of v; consisting

of its linear parts, i.e. half-lines and line segments. Since 7; is not a line,
one has D; # ~;. Let us choose arbitrarily z; € 1 \ D1 and let 7, be the
tangent line of v; at z;. By point v) of Proposition [Tl v; lies on one side of 7.
One has vy N1y = {z1}. Let Tli be the half-lines contained in 7 having z; as
extreme point, 7'1+ tangent to the positive semi-orbit of z;, 7; tangent to the
negative semi-orbit of z;. Let II; the closed half-plane having 7 as boundary
and containing ;. For all € > 0 one has ¢(=e, z1) € II. Every such orbit meets
71 at least at two points lying on distinct half-lines. As a consequence, z1 is an
isolated point of minimum of the restriction of P(z) to the line 73. Hence 7,
does not meet 7.
By the inseparability of «; and - there are half-sections oy of 71 at z; and o9
of 2 at z5 such that every orbit meeting o1 meets also oo and vice-versa. One
can take o1 and oy small enough to have 7 and 73 compact, disjoint and such
that oo NII; = 0.

There exist neighbourhoods UZ of 7;(&e¢) such that UF C II°. By the
continuous dependance on initial data there exists a neighbourhood U; of z;
such that ¢(+e,U;) C UZ. This holds in particular for the points of §; = oyNUy,
so that ¢(de,d1) C UF C TIS. 6y is itself a half-section at 2;. For all z € &
the orbit ¢(¢,z) meets both 7, and 7;, hence both half-lines contain points
2% such that P(27) = P(z%) > P(z1). Moreover, ¢(t, 2) does not meet 71 at
a third point, since in that case, by point ii) of Proposition I, P(z) would be
constant on a segment of 77 containing z;, contradiction. Hence, for all z € ¢y,
both semi-orbits starting at z are definitively (resp. for t — +00) contained in
I19.

The set W = ¢([—¢, €], 1) is compact. It is possible to take d; small enough
in order to have zo ¢ W UII; (otherwise zo = z1). By construction, every orbit
starting at a point of d; is contained in the closed set W UTI;. Let us denote
by &2 the part of oo met by orbits starting at points of §;. Since every point of
02 lies on an orbit starting at d1, the half-section s is contained in W UTI;. As
a consequence, one has

29 € 0o C W UII,



contradiction.

2) Assume both y; and 7 to be lines. They are parallel, since otherwise they
should meet at a point zp which should be a fixed point of (@), contradicting
the nonsingularity of A. Let 312 be the closed strip having boundary 7, U 7.
Let o be a line orthogonal to v; and 79, and let us set 21 = v Nao, 20 =2 N0,
012 = Y12 No. The orbits 71 and 7- are inseparable, hence there exist open
sub-segments o1 and oy of 015 such that z1 € 771, 29 € 73, 01Nz = @) and every
orbit meeting o; meets o9, and vice-versa. Let ®12 be the union of the orbits
meeting o7 and o2. Both 1 and 7, are contained in 0 ®15. The restriction
of P(z) to the compact set o132 is convex and non constant (because if it was
constant 71, 72 and 12 would be in P(z) = k, contradiction). One has

max{P(z) : z € 012} = P(z1) = P(22) = k.
Let z,, a point of 012 such that
P(zm) =min{P(z) : z € 012} < P(21) = P(22) = k.

The orbit starting at z,, is tangent to o12 and lies entirely on one side of o1s.
One has VP(zp,) L 012, with the vector V P(z,,) pointing towards the half-strip
EB not containing ¢(t, z,,,). Let n be the line parallel to 71 and ~, passing
through z,,. The line n meets all the orbits passing through o; and o, hence
the restriction of P(z) to n assumes every value belonging to [P(z,),k). On
the other hand, by proposition[I ¢), P(z) is unbounded from above on 1, hence
there exists a point in z € 7 such that P(z) = k. Let z12 the point such that
P(z12) = k, closest to z,,. Then the orbit ¢(¢,z12) is inseparable from ~; and
72, since every orbit meeting o and o9 also meets 7 in a neighbourhood of z1s.
In other words, a suitable sub-segment 712 of 1 is a half-section of ¢(t, z12) such
that every orbit meeting o; and o2 meets also 712, and vice-versa.

The orbit ¢(t, z12) cannot be a line because in such a case either it would be
parallel to 77 and 79, contradicting their inseparability, or transversal to them,
implying the existence of two critical points, 71 N 7y12 and v Ny12. Since 12 is
not a line point 1) applies.

&

A simple example of non-linear non-singular map with both non-strictly
convex components is

Az,)=(r+y+e',z+y+e’).

The Hamiltonian system of a non-strictly convex two-variables function has non-
strictly convex orbits. The vice-versa is not true, as the function e” cosy shows.
Infact, the connected components of e cosy = 0 are lines, and the connected
components of e* cosy = k # 0 are strictly convex, since they are graphs of the
one-variable functions




whose second derivative does not vanish. On the other hand the hessian matrix

of e® cosy is:
e®cosy —e¥siny
—e®siny —e®cosy )’
whose Jacobian determinant is —e?* < 0. In fact, the map A(x,y) = (e® cosy,

e*siny) is not injective, even if both Hamiltonian systems of its components
have non-strictly convex orbits.
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