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Injectivity of non-singular planar maps with one

convex component

Marco Sabatini ∗

Abstract

We prove that if a non-singular planar map Λ ∈ lC2(IR2
, IR2) has a

convex component, then Λ is injective. We do not assume strict convexity.
Keywords: Local invertibility, global injectivity, non-strict convex-

ity, Jacobian Conjecture.

1 Introduction

Let Ω be an open connected subset of IRn. We say that Λ : Ω → IRn is locally
injective (invertible) at X ∈ Ω if there exists a neighbourhoods UX ⊂ Ω of
X and VΛ(X) of Λ(X) such that the restriction Λ : UX → VΛ(X) is injective
(invertible). If Λ ∈ C1(Ω, IRn), we denote by J(X) the Jacobian matrix of Λ
at X . By the inverse function theorem, if J(X) is non-singular then Λ is lo-
cally injective at X . It is well-known that locally injective maps need not be
globally injective, even if J(X) is non-singular for all X ∈ Ω, as in the case
of the exponential map Λ(x, y) = (ex cos y, ex sin y). Injectivity (invertibility)
of locally injective (invertible) maps under suitable additional assumptions has
been studied for a long time. In [10] it was conjectured that every polynomial
map Λ : lCn → lCn with constant non-zero Jacobian determinant be globally
invertible, with polynomial inverse. Such a problem, known as Jacobian Con-
jecture, was widely studied and inserted in a list of relevant problems in [15].
The Jacobian Conjecture was studied in several settings, even replacing lC with
other fields, but still remains unsolved for n ≥ 2, [1, 4, 5, 16]. In [13] it was
proved that asking for the determinant of J(X) not to vanish is not sufficient
to guarantee Λ injectivity.

Injectivity appears also in connection to a global stability problem formu-
lated in [11]. In such a paper it was conjectured that if at any point J(X) has
eigenvalues with negative real parts then a critical point O of the differential
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system
Ẋ = Λ(X) (1)

is globally asymptotically stable. Global asymptotic stability of (1) implies Λ
injectivity. In [12] it was proved that if n = 2, then the vice-versa is true, i. e.
injectivity implies global asymptotical stability. Using such a result the conjec-
ture was proved to be true for n = 2 [6, 7, 8]. On the other hand the conjecture
does not hold in higher dimension, even for polynomial vector fields [2, 3].

Other additional conditions to get injectivity are growth conditions. A clas-
sical result in this field is Hadamard theorem [9], which states that if Λ is proper,
i. e. if Λ−1(K) is compact for every compact set K ⊂ IRn, then Λ is a bijection.
Properness is ensured if Λ is norm-coercive, that is if

lim
|X|→+∞

|Λ(X)| = +∞. (2)

Coerciveness requires all the component of Λ to grow enough for (2) to hold.
On the other hand coerciveness is not necessary in order to have injectivity,
as the real map x 7→ arctanx shows. In [14], studying planar maps Λ(z) =
(P (z), Q(z)), injectivity was proved under a growth condition on just one com-
ponent of Λ. In fact, if

∫ +∞

0

inf
|z|=r

|∇P (z)|dr = +∞, (3)

then Λ is injective. As a consequence, if there exists k > 0 such that |∇P (z)| ≥
k, then Λ is injective.

Also in this paper, studying planar maps, we prove injectivity imposing a
suitable condition on just one component. In fact, we prove that if one of the
components Λ(z) = (P (z), Q(z)) is a non-strictly convex function, then Λ(z) is
injective. One of the steps in the proof is the same as in [14], since we prove
the parallelizability of the Hamiltonian system

{

ẋ = Py

ẏ = −Px
. (4)

That is equivalent to prove the connectedness of the level sets of P (z).
We observe that the non-strict convexity of the function P (z) implies the

non-strict convexity of the orbits of (4), but the vice-versa is not true, as the
exponential map shows. Hence injectivity cannot be proved assuming only the
non-strict convexity of the orbits of (4).

2 Maps having one convex component

In order to introduce the proof of next theorem, we recall some properties of
convex functions.
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Proposition 1. Let f ∈ C2(IR, IR), H ∈ C2(IR2, IR2) be (non strictly) convex
funtions. Then:

i) if f is non-constant then it is unbounded from above;

ii) if there exist u1 < u2 < u3 ∈ IR such that f(u1) = f(u2) = f(u3), then f

is constant on the interval [u1, u3];

iii) the restriction of H to every line is a convex one-variable function;

iv) sub-level sets of f and H are convex;

v) every level set of H at every point has a tangent line and lies entirely on
one side of such a tangent.

vi) the intersection of a level set of H with any of its tangent lines is connected
(a closed interval, in generalized sense).

In the proof of next theorem we consider the family of orbits of the differ-
ential system (4). A regular C1 curve σ is said to be a section of (4) if it is
transversal to (4) at every point of σ. If γ is a non-trivial orbit, then for every
z ∈ γ there exists a neighbourhood Uz of z and two open disjoint connected
subsets U±

z ⊂ Uz lying on different sides of γ, such that Uz = U−
z ∪(γ∩U)∪U+

z .
If σ is a section of γ and σ ∩ γ = {z}, then there exist a neighbourhood Uz of z
and two sub-curves σ±, called half-sections, such that σ± = σ ∩ U±

z .
Given a planar differential system without critical points, two orbits γ1 and

γ2 are said to be inseparable if and only if there exist two half-sections σ1 and σ2

such that every orbit meeting σ1 meets also σ2 and vice-versa. It can be proved
that if γ1 and γ2 are inseparable, then for every couple of points z1 ∈ γ1 and
z2 ∈ γ2 there exist half-sections such that every orbit meeting σ1 meets also σ2

and vice-versa. In other words, the definition of inseparability does not depend
on the choice of z1 and z2.

We denote by φ(t, z) the local flow of (4). Since we deal with non-singular
maps, such a system has no critical points. Its orbits are positively and nega-
tively unbounded and separate the plane into two connected components. Every
orbit is contained in a level set of P (z), even if in general level sets of P (z) do
not reduce to a single orbit. In what follows we denote by Ao the interior of a
set A and by A its closure.

Theorem 1. Let Λ ∈ C2(IR2, IR2) be a non-singular map. If one of its compo-
nents is convex, then Λ is injective.

Proof. Possibly exchanging the components, we may assume P (z) to be
convex. By lemma 2.2 and theorem 2.1 in [14], it is sufficient to prove that the
level sets of P (z) are connected. By absurd, let us assume that a level set of
P (z) = h is disconnected. As a consequence by lemma 2.2 in [14] the system
(4) has a couple γ1 6= γ2 of inseparable orbits. By continuity, P (z) assumes the
same value on γ1 and γ2, say P (γ1) = P (γ2) = k.
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Let us consider two cases.
1) One among γ1 and γ2 is not a line. Assume γ1 is not a line. Let Γ1 be

the closed convex set having γ1 as boundary.
1.1) If γ2 ⊂ Γ1, then it is not a line, otherwise it would meet γ1, contradicting

uniqueness of solutions. Let z1 be an arbitrary point of γ1 and τ12 be the line
passing through z1 and tangent to γ2, existing by the convexity of Γ2. Since
γ2 is not a line one can rotate τ12 around z1 until it meets γ2 at two points
z12 6= z22 . Let us call τ∗ such a line. Then τ∗ meets the level set P (z) = k

at three distinct points, z1, z
1
2 , z

2
2 . By proposition 1, ii), P (z) is constant on

the smallest segment Σ containing z1, z
1
2 , z

2
2 . The set γ1 ∪ Σ ∪ γ2 is connected

and contained in P (z) = k, contradicting the fact that γ1 and γ2 are distinct
connected components of P (z) = k.

1.2) Let γ2 ⊂ Γc
1. If γ1 ⊂ Γ2, then one can reply the argument of point 1.2),

exchanging the role of γ1 and γ2.
1.3) Assume γ1 6⊂ Γ2 and γ2 6⊂ Γ1. Let D1 be the subset of γ1 consisting

of its linear parts, i.e. half-lines and line segments. Since γ1 is not a line,
one has D1 6= γ1. Let us choose arbitrarily z1 ∈ γ1 \ D1 and let τ1 be the
tangent line of γ1 at z1. By point v) of Proposition 1 γ1 lies on one side of τ1.
One has γ1 ∩ τ1 = {z1}. Let τ±1 be the half-lines contained in τ1 having z1 as
extreme point, τ+1 tangent to the positive semi-orbit of z1, τ

−
1 tangent to the

negative semi-orbit of z1. Let Π1 the closed half-plane having τ1 as boundary
and containing γ1. For all ǫ > 0 one has φ(±ǫ, z1) ∈ Πo

1. Every such orbit meets
τ1 at least at two points lying on distinct half-lines. As a consequence, z1 is an
isolated point of minimum of the restriction of P (z) to the line τ1. Hence γ2
does not meet τ1.
By the inseparability of γ1 and γ2 there are half-sections σ1 of γ1 at z1 and σ2

of γ2 at z2 such that every orbit meeting σ1 meets also σ2 and vice-versa. One
can take σ1 and σ2 small enough to have σ1 and σ2 compact, disjoint and such
that σ2 ∩ Π1 = ∅.

There exist neighbourhoods U±
ǫ of γ1(±ǫ) such that U±

ǫ ⊂ Πo. By the
continuous dependance on initial data there exists a neighbourhood U1 of z1
such that φ(±ǫ, U1) ⊂ U±

ǫ . This holds in particular for the points of δ1 = σ1∩U1,
so that φ(±ǫ, δ1) ⊂ U±

ǫ ⊂ Πo
1. δ1 is itself a half-section at z1. For all z ∈ δ1

the orbit φ(t, z) meets both τ−1 and τ+1 , hence both half-lines contain points
z± such that P (z−) = P (z+) > P (z1). Moreover, φ(t, z) does not meet τ1 at
a third point, since in that case, by point ii) of Proposition 1, P (z) would be
constant on a segment of τ1 containing z1, contradiction. Hence, for all z ∈ δ1,
both semi-orbits starting at z are definitively (resp. for t → ±∞) contained in
Πo

1.
The set W = φ([−ǫ, ǫ], δ1) is compact. It is possible to take δ1 small enough

in order to have z2 6∈ W ∪Π1 (otherwise z2 = z1). By construction, every orbit
starting at a point of δ1 is contained in the closed set W ∪ Π1. Let us denote
by δ2 the part of σ2 met by orbits starting at points of δ1. Since every point of
δ2 lies on an orbit starting at δ1, the half-section δ2 is contained in W ∪Π1. As
a consequence, one has

z2 ∈ δ2 ⊂ W ∪Π,
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contradiction.
2) Assume both γ1 and γ2 to be lines. They are parallel, since otherwise they

should meet at a point z0 which should be a fixed point of (4), contradicting
the nonsingularity of Λ. Let Σ12 be the closed strip having boundary γ1 ∪ γ2.
Let σ be a line orthogonal to γ1 and γ2, and let us set z1 = γ1 ∩ σ, z2 = γ2 ∩ σ,
σ12 = Σ12 ∩ σ. The orbits γ1 and γ2 are inseparable, hence there exist open
sub-segments σ1 and σ2 of σ12 such that z1 ∈ σ1, z2 ∈ σ2, σ1∩σ2 = ∅ and every
orbit meeting σ1 meets σ2, and vice-versa. Let Φ12 be the union of the orbits
meeting σ1 and σ2. Both γ1 and γ2 are contained in ∂ Φ12. The restriction
of P (z) to the compact set σ12 is convex and non constant (because if it was
constant γ1, γ2 and σ12 would be in P (z) = k, contradiction). One has

max{P (z) : z ∈ σ12} = P (z1) = P (z2) = k.

Let zm a point of σ12 such that

P (zm) = min{P (z) : z ∈ σ12} < P (z1) = P (z2) = k.

The orbit starting at zm is tangent to σ12 and lies entirely on one side of σ12.
One has ∇P (zm)⊥ σ12, with the vector ∇P (zm) pointing towards the half-strip
Σ+

12 not containing φ(t, zm). Let η be the line parallel to γ1 and γ2 passing
through zm. The line η meets all the orbits passing through σ1 and σ2, hence
the restriction of P (z) to η assumes every value belonging to [P (zm), k). On
the other hand, by proposition 1, i), P (z) is unbounded from above on η, hence
there exists a point in z ∈ η such that P (z) = k. Let z12 the point such that
P (z12) = k, closest to zm. Then the orbit φ(t, z12) is inseparable from γ1 and
γ2, since every orbit meeting σ1 and σ2 also meets η in a neighbourhood of z12.
In other words, a suitable sub-segment η12 of η is a half-section of φ(t, z12) such
that every orbit meeting σ1 and σ2 meets also η12, and vice-versa.

The orbit φ(t, z12) cannot be a line because in such a case either it would be
parallel to γ1 and γ2, contradicting their inseparability, or transversal to them,
implying the existence of two critical points, γ1 ∩ γ12 and γ2 ∩ γ12. Since γ12 is
not a line point 1) applies.

♣

A simple example of non-linear non-singular map with both non-strictly
convex components is

Λ(x, ) = (x+ y + ex, x+ y + ey).

The Hamiltonian system of a non-strictly convex two-variables function has non-
strictly convex orbits. The vice-versa is not true, as the function ex cos y shows.
Infact, the connected components of ex cos y = 0 are lines, and the connected
components of ex cos y = k 6= 0 are strictly convex, since they are graphs of the
one-variable functions

x = ln

(

k

cos y

)

,
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whose second derivative does not vanish. On the other hand the hessian matrix
of ex cos y is:

(

ex cos y −ex sin y
−ex sin y −ex cos y

)

,

whose Jacobian determinant is −e2x < 0. In fact, the map Λ(x, y) = (ex cos y,
ex sin y) is not injective, even if both Hamiltonian systems of its components
have non-strictly convex orbits.
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