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EXPANSIVE ACTIONS WITH SPECIFICATION OF SOFIC GROUPS,

STRONG TOPOLOGICAL MARKOV PROPERTY, AND

SURJUNCTIVITY

TULLIO CECCHERINI-SILBERSTEIN, MICHEL COORNAERT, AND HANFENG LI

Abstract. A dynamical system is a pair (X,G), where X is a compact metrizable space
and G is a countable group acting by homeomorphisms of X . An endomorphism of
(X,G) is a continuous selfmap of X which commutes with the action of G. One says that
a dynamical system (X,G) is surjunctive provided that every injective endomorphism
of (X,G) is surjective (and therefore is a homeomorphism). We show that when G is
sofic, every expansive dynamical system (X,G) with nonnegative sofic topological entropy
and satisfying the weak specification and the strong topological Markov properties, is
surjunctive.
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1. Introduction

Let A be a finite set, called the alphabet, and let G be a group. We equip AG =
∏

g∈GA
with the prodiscrete topology, i.e., the product topology obtained by taking the discrete
topology on each factor A of AG, and the shift action of G, given by gx(h) := x(g−1h) for
all g, h ∈ G and x ∈ AG. This action is clearly continuous. A closed G-invariant subset
X of AG is called a subshift and a continuous map f : X → X which commutes with the
shift is called a cellular automaton (cf. [10]).

A group G is called surjunctive if, given any finite alphabet A, every injective cellular
automaton f : AG → AG is surjective (and therefore a homeomorphism) (see [10, Chapter
3]). Lawton [27] proved that all residually finite groups are surjunctive and Gottschalk [21]
raised the question of determining those groups which are surjunctive. The statement
asserting that every group is surjunctive is now commonly known as the Gottschalk conjec-
ture. The fact that all amenable groups are surjunctive follows from one of the implications
of the Garden of Eden theorem established in [13] (see also [10, Chapter 5]). Up to now,
the largest class of groups that are known to be surjunctive is the class of sofic groups
introduced by Gromov in [22] and named by Weiss in [35] (see Section 2.11): surjunctivity
of sofic groups was established by Gromov [22] and Weiss [35] (see also [8], [10], [24] for
expositions of this result). The class of sofic groups contains all residually finite groups,
all amenable groups, and, more generally, all residually amenable groups. Actually, no
example of a non-sofic group has yet been found.

A dynamical system is a pair (X,G) consisting of a compact metrizable spaceX equipped
with a continuous action of a countable group G. An endomorphism of a dynamical system
(X,G) is a continuous G-equivariant map f : X → X .

For instance, if A is a finite set, G is a countable group, and X ⊂ AG is a subshift, then
(X,G), where X is equipped with the topology induced by the prodiscrete topology and
the action of G obtained by restriction of the shift action, is a dynamical system whose
endomorphisms are the cellular automata f : X → X .

One says that a dynamical system (X,G) is surjunctive if every injective endomorphism
of (X,G) is surjective (and hence a homeomorphism). Also (X,G) is expansive if, given
a compatible metric ρ on X , there exists a constant c > 0 such that for all distinct
x, y ∈ X there exists g ∈ G such that ρ(gx, gy) > c. By compactness of X , the fact that
the dynamical system (X,G) is expansive or not does not depend on the choice of the
compatible metric ρ. For instance, if X ⊂ AG is a subshift, then (X,G) is expansive. See
Section 2.5.

A sofic approximation of a countable group G is a sequence Σ = (dj, σj)j∈N, where dj
is a positive integer and σj : G → Sym(dj) is a map from G into the symmetric group of
degree dj , satisfying the following conditions:

(i) limj→∞ dj = +∞,
(ii) limj→∞ ηdj (σj(s)σj(t), σj(st)) = 0 for all s, t ∈ G, and
(iii) limj→∞ ηdj (σj(s), σj(t)) = 1 for all distinct s, t ∈ G,
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where ηdj denotes the normalized Hamming distance on Sym(dj). A countable group G is
sofic if it admits a sofic approximation. More generally, a group is sofic if all of its finitely
generated subgroups are sofic.

For sofic groups, David Kerr and the third named author [23, 24, 25] defined and studied
the topological entropy hΣ(X,G) of a dynamical system (X,G) relative to a sofic approxi-
mation Σ of the group G. See Section 2.12.

The notion of specification, a strong orbit tracing property, was introduced by Rufus
Bowen for Z-actions in relation to his studies on Axiom A diffeomorphisms in [5] (see also
[18, Definition 21.1]) and was subsequently extended to Zd-actions by Ruelle in [33]. Several
versions and generalizations of specification have appeared in the literature (see, in particu-
lar, [29, Definition 5.1] and [15, Definition 6.1]). Here is the one we need (cf. [15, Definition
6.1], see also [28]). A dynamical system (X,G) has the weak specification property if for any
ε > 0 there exists a finite symmetric subset F ⊂ G containing 1G satisfying the following
property: if (Ωi)i∈I is any finite family of finite subsets of G such that FΩi ∩ Ωj = ∅ for
all distinct i, j ∈ I, and (xi)i∈I is any family of points in X , then there exists x ∈ X such
that ρ(sx, sxi) ≤ ε for all i ∈ I and s ∈ Ωi, where ρ is any metric compatible with the
topology on X . When X ⊂ AG is a subshift, the dynamical system (X,G) has the weak
specification property if and only if X is strongly irreducible (cf. [9], [28, Proposition A.1]).
See Section 2.7.

In [2], Barbieri, Garćıa-Ramos, and the third named author, inspired by investigations in
the context of symbolic dynamics [3], introduced and studied various notions of topological
Markov properties. Among them, the following will play a crucial role in our work. A
dynamical system (X,G) satisfies the strong topological Markov property (briefly, sTMP)
if for any ε > 0 there exists δ > 0 and a finite subset F ⊂ G containing 1G such that
the following holds: given any finite subset A ⊂ G and x, y ∈ X such that ρ(sx, sy) ≤ δ
for all s ∈ FA \ A, there exists z ∈ X satisfying that ρ(sz, sx) ≤ ε for all s ∈ FA and
ρ(sz, sy) ≤ ε for all s ∈ G \A. When X ⊂ AG is a subshift, the strong topological Markov
property for (X,G) is equivalent to X being splicable in the sense of Gromov [22, Section
8.C] (see also [12, Section 3.8]). For instance, every subshift of finite type is splicable. See
Section 2.6.

We are now in a position to state the main result of the paper.

Theorem 1.1. Let G be a countable sofic group and let (X,G) be an expansive dynamical
system with the weak specification property and the strong topological Markov property. As-
sume that hΣ(X,G) ≥ 0 for some sofic approximation Σ of G. Then (X,G) is surjunctive.

The following result, which is of independent interest, is our key ingredient for proving
Theorem 1.1:

Proposition 1.2. Let G be a countable sofic group and let (X,G) be an expansive dynam-
ical system with the weak specification property and the strong topological Markov property.
Assume that hΣ(X,G) ≥ 0 for some sofic approximation Σ of G. Suppose that Y ⊂ X is
a proper closed G-invariant subset. Then hΣ(Y,G) < hΣ(X,G).

As an immediate consequence of Theorem 1.1 we deduce the following:



4 TULLIO CECCHERINI-SILBERSTEIN, MICHEL COORNAERT, AND HANFENG LI

Corollary 1.3. Let A be a finite set and let G be a countable sofic group. Suppose that
X ⊂ AG is a splicable (e.g., of finite type) strongly irreducible subshift. Assume that
hΣ(X,G) ≥ 0 for some sofic approximation Σ of G. Then (X,G) is surjunctive. �

As the full shift AG is (trivially) splicable (in fact of finite type) and strongly irreducible,
and hΣ(A

G, G) = log |A| ≥ 0 for all sofic approximations Σ of any sofic group G, from
Corollary 1.3 one immediately recovers the Gromov-Weiss surjunctivity theorem for sofic
groups. When G is an amenable group, the surjunctivity result in Corollary 1.3 was proved
under the additional assumption of X being of finite type by Fiorenzi [20, Corollary 4.8];
the first two named authors [9] then showed that the strong irreduciblity of the subshift
is sufficient to imply surjunctivity when G is amenable. Note that, however, the strong
irreducibility condition cannot be dropped: for instance, Weiss [35] gave an example of
a subshift of finite type over G = Z which is not surjunctive (see Example 4.2) as well
as an example of a topologically mixing subshift of finite type over G = Z

2 which is not
surjunctive either.

An algebraic dynamical system is a dynamical system (X,G), where X is a compact
metrizable abelian group and G is a countable group acting by continuous automorphisms

of X . Given an algebraic dynamical system (X,G), the Pontryagin dual X̂ , when equipped
with the dual action of G, is a countable left Z[G]-module (see Section 2.9). In fact, Pon-
tryagin duality establishes a bijective correspondence between algebraic dynamical systems
over G and countable left Z[G]-modules.

An algebraic dynamical system (X,G) is said to be finitely presented provided its Pon-

tryagin dual X̂ is a finitely presented left Z[G]-module. This amounts to saying that there

exists an n × m matrix A with coefficients in Z[G] such that X̂ = Z[G]m/(Z[G]nA); we
then denote X by XA. In the particular case when A is a square matrix, the associated
algebraic dynamical system (XA, G) is called a generalized principal algebraic dynamical
system. Note that if (X,G) is an algebraic dynamical system, then G fixes the iden-
tity element of X . Therefore, if in addition the group G is sofic, then (X,G) satisfies
hΣ(X,G) ≥ 0 for all sofic approximations Σ of G. From Theorem 1.1, in combination with
results of Meyerovitch [30], Ren [32], and Barbieri, Garćıa-Ramos and the third named
author [2], we then deduce the following:

Corollary 1.4. Let G be a countable sofic group. Let A ∈ Matn(Z[G]) and suppose that
A is invertible in Matn(ℓ

1(G)). Then the generalized principal algebraic dynamical system
(XA, G) is surjunctive.

Here ℓ1(G) := {f ∈ R
G :

∑
g∈G |f(g)| < ∞} is the Banach algebra of all real summable

functions on G. Note that when n = 1 and m ≥ 2 is an integer, then taking f = m1G ∈
Z[G] one has Xf = {1, 2, . . . , m}G, the full shift over an m-elements alphabet set. From
Corollary 1.4 one then recovers, once more, the Gromov-Weiss surjunctivity theorem for
sofic groups.

We don’t know if the above corollary can be extended to all expansive finitely presented
algebraic dynamical systems.
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Surjunctivity of algebraic dynamical systems, in relation with the so-called topological
rigidity property, was investigated also in [4].

We conclude with a surjunctivity result for actions of amenable groups on (not necessarily
abelian) compact metrizable groups by continuous automorphisms. First, recall that given
a countable amenable group G, a dynamical system (X,G) has completely positive entropy
(briefly CPE ) if every nontrivial factor has positive topological entropy. We then have the
following:

Theorem 1.5. Let G be a countably infinite amenable group G and let (X,G) be a dy-
namical system, where X is a compact metrizable group and G acts by continuous auto-
morphisms of X. Suppose that (X,G) has CPE and that htop(X,G) < ∞ (e.g., (X,G) is
expansive). Then (X,G) is surjunctive.

Acknowledgments. We express our gratitude to Felipe Garćıa-Ramos for several inter-
esting remarks. H. Li wishes to thank Filippo Tolli (Università Roma Tre) and the Depart-
ment SBAI of the Sapienza University in Rome for hospitality during a visit in December
2019, in which this work started. He was partially supported by NSF grant DMS-1900746.

2. Preliminaries

In this section we fix the notation and review some background material on dynamical
systems, sofic groups, and sofic entropy.

2.1. General notation. Throughout the paper, we use | · | to denote cardinality of finite
sets.

We write N for the set of non-negative integers.
Given sets A and B, we denote by AB the set consisting of all maps x : B → A. We

will sometimes regard an element x ∈ AB as a family of elements of A indexed by B,
namely x = (x(b))b∈B, where xb := x(b) for all b ∈ B. If B′ ⊂ B and x ∈ AB, we
denote by x|B′ ∈ AB

′

the restriction of x to B′, that is, the map x|B′ : B′ → A defined by
x|B′(b′) := x(b′) for all b′ ∈ B′.

Given a set X , we denote by Sym(X) the symmetric group ofX , i.e., the group consisting
of all bijective maps σ : X → X with the composition of maps as the group operation.

Given a positive integer d, we write [d] := {1, 2, . . . , d}. To simplify notation, we write
Sym(d) instead of Sym([d]).

Given a group G, we denote by F(G) the set of all nonempty finite subsets F ⊂ G.
Also, given F ∈ F(G), we say that a (not necessarily finite) subset V ⊂ G is F -separated
if Fs ∩ Ft = ∅ for all distinct s, t ∈ V .

Given a metric space (X, ρ) and a subset Y ⊂ X , we denote by diam(Y, ρ) := sup{ρ(y1, y2) :
y1, y2 ∈ Y } the diameter of Y . For x ∈ X , we write ρ(x, Y ) := infy∈Y ρ(x, y). Moreover,
given ε > 0 one says that Y is (ρ, ε)-separated provided that ρ(y, y′) ≥ ε for all distinct
y, y′ ∈ Y .
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2.2. Actions. An action of a group G on a set X is a group morphism α : G→ Sym(X).
If α is an action of a group G on a set X , given g ∈ G and x ∈ X , we usually write αg(x)
or, if the action is clear from the context, gx, instead of α(g)(x).

An action of a group G on a topological space X is said to be continuous if its image is
contained in the group of homeomorphisms of X .

2.3. Shifts and subshifts. Let A be a finite set and let G be a countable group. We equip
A with the discrete topology and AG =

∏
g∈GA with the product topology (this is also

called the prodiscrete topology on AG). Note that AG is a compact space (by Tychonoff’s
theorem) and is metrizable since G is countable. A metric inducing the prodiscrete topology
can be constructed as follows. Let (Ωn)n∈N be a sequence of finite subsets of G satisfying
that Ω0 = ∅, Ω1 = {1G}, Ω

−1
n := {g−1 : g ∈ Ωn} = Ωn, Ωn ⊂ Ωn+1 for all n ∈ N, and⋃

n∈N Ωn = G. Then the map ρ : AG × AG → [0, 1] defined by setting

(2.1) ρ(x, y) := 2−n(x,y), where n(x, y) := sup{n ∈ N : x|Ωn
= y|Ωn

}

(with the usual convention that 2−∞ = 0) for all x, y ∈ AG, is a metric on AG inducing the
prodiscrete topology.

We make G act on AG by the shift action, given by the map G×AG → AG, (g, x) 7→ gx,
where

(2.2) gx(h) := x(g−1h) for all g, h ∈ G and x ∈ AG.

The action of G on AG is clearly continuous.
A closed G-invariant subset of AG is called a subshift.
A subshift X ⊂ AG is said to be of finite type provided there exists a finite subset Ω ⊂ G

and A ⊂ AΩ such that X = {x ∈ AG : (gx)|Ω ∈ A for all g ∈ G} (such a set A is then
called a defining set of admissible patterns for X and the subset Ω is called a memory set
for X).

2.4. Dynamical systems. A dynamical system is a pair (X,G) consisting of a compact
metrizable space X , called the phase space, equipped with a continuous action of a count-
able group G.

Let (X,G) be a dynamical system and let ρ be a metric on X compatible with the
topology. Given a nonempty subset A ⊂ G, we denote by ρA the metric on X defined by
setting

(2.3) ρA(x, y) = sup
g∈A

ρ(gx, gy)

for all x, y ∈ X . Note that ρ{1G} = ρ.

2.5. Expansivity.

Definition 2.1. The dynamical system (X,G) is expansive if there exists a constant c > 0
such that for all distinct x, y ∈ X there exists g ∈ G such that ρ(gx, gy) > c. Such a value
c is called an expansivity constant for (X,G) (relative to the metric ρ).
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Compactness of the phase space X guarantees that the definition of expansivity does
not depend on the choice of the metric ρ. Note that c > 0 is an expansivity constant for
(X,G) if and only if ρG(x, y) > c for all distinct x, y ∈ X (cf. (2.3)). For example, if A
is a finite set and G is a countable group, then the symbolic dynamical system (AG, G) is
expansive (with expansivity constant c = 1/2 relative to the metric ρ defined by (2.1)).

The following lemma (cf. [2, Lemma 3.13]) was proved by Bryant [7, Theorem 5] (cf. [1,
Proposition 2]) for G = Z.

Lemma 2.2 (Uniform expansivity). Let (X,G) be a dynamical system, let ρ be a compatible
metric on X, and let c > 0. The following conditions are equivalent:

(a) (X,G) is expansive and c is an expansivity constant for (X,G) relative to ρ;
(b) for every ε > 0, there exists a nonempty finite subset K ⊂ G such that the following

holds: if x, y ∈ X satisfy that ρK(x, y) ≤ c, then ρ(x, y) < ε.

Proof. Assume (a) and suppose, by contradiction, that (b) fails to hold, that is, there exists
ε0 > 0 such that for every nonempty finite subset K ⊂ G there exist xK , yK ∈ X such
that ρK(xK , yK) ≤ c but ρ(xK , yK) ≥ ε0. Consider the nets (xK)K∈F(G) and (yK)K∈F(G) of
points in X , where the common index set F(G) is partially ordered by inclusion. Since X
is compact, we can find a cluster point (x, y) in X ×X for (xK , yK)K∈F(G). Note that, by
continuity, ρ(x, y) ≥ ε0, so that, in particular, x 6= y. Let g ∈ G. If K ∈ F(G) contains
g one has ρ(gxK , gyK) ≤ c. By continuity, we have ρ(gx, gy) ≤ c. As g was arbitrary,
we deduce that ρG(x, y) ≤ c. Since x 6= y, this contradicts the assumption that c is an
expansivity constant. This proves the implication (a) ⇒ (b).

Conversely, suppose (b). Let x, y ∈ X such that ρG(x, y) ≤ c and let us show that x = y.
Let ε > 0 and let K ⊂ G be a finite subset as in (b). As ρK(x, y) ≤ ρG(x, y) ≤ c, we have
ρ(x, y) < ε. Since ε was arbitrary, this implies that ρ(x, y) = 0, that is, x = y. This shows
that c is an expansivity constant for (X,G). �

2.6. The strong topological Markov property.

Definition 2.3. The dynamical system (X,G) satisfies the strong topological Markov prop-
erty (briefly, sTMP) if for any ε > 0 there exists δ > 0 and a finite subset F ⊂ G containing
1G such that the following holds. Given any finite subset A ⊂ G and x, y ∈ X such that
ρFA\A(x, y) ≤ δ, there exists z ∈ X satisfying that ρFA(z, x) ≤ ε and ρG\A(z, y) ≤ ε.

Definition 2.4. The dynamical system (X,G) satisfies the uniform strong topological
Markov property if for any ε > 0 there exists δ > 0 and a finite subset F ⊂ G containing
1G such that the following holds. Given a finite subset A ⊂ G, an FA-separated subset
V ⊂ G, a family (xv)v∈V of points in X , and y ∈ X such that ρ(FA\A)s(xs, y) ≤ δ for all
s ∈ V , there exists z ∈ X satisfying that ρFAs(xs, z) ≤ ε for all s ∈ V and ρG\AV (y, z) ≤ ε.

Remark 2.5. Clearly, every dynamical system with uniform sTMP satisfies sTMP (just
take V = {1G}). Conversely, it is shown in [2, Remark 3.14] that every expansive dynamical
system satisfying sTMP satisfies the uniform sTMP.

In the symbolic setting, we have the following characterization of sTMP and usTMP
(see [2, Corollary 3.8] and [12, Proposition 3.16]).
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Proposition 2.6. Let A be a finite set, let G be a countable group, and let X ⊂ AG be a
subshift. Then the following conditions are equivalent:

(a) (X,G) satisfies the strong topological Markov property;
(b) (X,G) satisfies the uniform strong topological Markov property;
(c) there exists a finite subset ∆ ⊂ G containing 1G such that the following holds. Given

any finite subset A ⊂ G and x, y ∈ X such that x|A∆\A = y|A∆\A, the configuration
z ∈ AG such that z|A = x|A and z|G\A = y|G\A belongs to X.

Moreover, a sufficient condition for the above equivalent conditions is X being of finite
type. �

Remark 2.7. A subshift X ⊂ AG satisfying condition (c) (equivalently, conditions (a)
and (b)) in Proposition 2.6 was termed splicable by Gromov in [22, Section 8.C] (see also
[12, Section 3.8]).

2.7. The weak specification property.

Definition 2.8. The dynamical system (X,G) satisfies the weak specification property
(briefly, wSP) if for any ε > 0 there exist a finite symmetric subset F ⊂ G containing 1G
such that the following holds. Given finite subsets A1, A2, . . . , An ⊂ G satisfying FAi ∩
FAj = ∅ for all distinct i, j = 1, 2, . . . , n, and x1, x2, . . . , xn ∈ X , there exists z ∈ X such
that ρAi

(xi, z) ≤ ε for all i = 1, 2, . . . , n.

Remark 2.9. If wSP holds, then one may allow the subsets A1, A2, . . . , An ⊂ G in Defi-
nition 2.8 to be infinite.

In the symbolic setting, the wSP has the following characterization (see [28, Proposition
A.1] and [11, Proposition 6.7]).

Proposition 2.10. Let A be a finite set, let G be a countable group, and let X ⊂ AG be a
subshift. Then the following conditions are equivalent:

(a) the dynamical system (X,G) satisfies the weak specification property;
(b) there exists a finite subset ∆ ⊂ G containing 1G such that the following holds. Given

finite subsets A1, A2 ⊂ G such that A1∆ ∩ A2 = ∅ and x1, x2 ∈ X, there exists z ∈ X
such that z|A1

= x1|A1
and z|A2

= x2|A2
.

�

Remark 2.11. A subshift satisfying condition (b) (equivalently, condition (a)) in Propo-
sition 2.10 is called strongly irreducible (cf. [20], [9]).

We mention that M. Doucha [19] recently showed that any expansive action of a count-
able amenable group G on a compact metrizable space X satisfying both the weak spec-
ification and the strong topological Markov properties also satisfies the so-called Moore
property, i.e. every surjective endomorphism of (X,G) is pre-injective (the latter means
that the restriction to each homoclinicity class of (X,G) is injective). This, together
with an earlier result of the third-named author [28] (where the strong topological Markov
property is not needed), namely, the so-called Myhill property, i.e. every pre-injective endo-
morphism of (X,G) is surjective, establishes the Garden of Eden theorem for all expansive
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actions of countable amenable groups on compact metrizable spaces satisfying the weak
specification and the strong topological Markov properties.

2.8. The pseudo-orbit tracing property. The pseudo-orbit tracing property (briefly,
POTP) was originally introduced and studied by R. Bowen [6] for Z-actions, motivated
by the study of Axiom A diffeomorphisms. Walters [34] studied the relationships between
POTP and topological stability and proved, among other things, that every topologically
stable homeomorphism of a compact manifold of dimension ≥ 2 has the POTP. Chung
and Lee [14] recently considered the pseudo-orbit tracing property for actions of (finitely
generated) countable groups and extended Walters’s results. In particular, they proved
that every expansive dynamical system (X,G) with the POTP is topologically stable.
Here is the definition:

Definition 2.12. Let (X,G) be a dynamical system and let ρ be a compatible metric on
X . Given δ > 0 and a finite subset S ⊂ G an (S, δ) pseudo-orbit is a sequence (xg)g∈G
in X such that ρ(sxg, xsg) < δ for all s ∈ S and g ∈ G. Then one says that (X,G) has
the pseudo-orbit tracing property if for every ε > 0 there exists δ > 0 and a finite subset
S ⊂ G such that for every (S, δ) pseudo-orbit (xg)g∈G in X there exists x ∈ X such that
ρ(gx, xg) < ε for all g ∈ G (one then says that the pseudo-orbit is ε-traced by x).

Barbieri, Garćıa-Ramos, and the third-named author [2, Proposition 3.10] proved that
every dynamical system with the pseudo-orbit tracing property has the strong topological
Markov property.

2.9. Algebraic dynamical systems. Let L be a locally compact Abelian group. The
Pontryagin dual of L is the set L̂ of all continuous group homomorphism χ : L → T =
R/Z, called the characters of L. When equipped with the topology given by uniform

convergence on compact sets, L̂ is a locally compact Abelian group as well. Moreover, if L

is compact (resp. discrete, resp. countable and discrete) then L̂ is discrete (resp. compact,
resp. compact metrizable). The so-called Pontryagin duality establishes that the evaluation

map evL : L →
̂̂
L, defined by setting evL(ℓ)(χ) := χ(ℓ) for all ℓ ∈ L and χ ∈ L̂, yields a

canonical isomorphism (of locally compact topological groups) of L into its bi-dual
̂̂
L. (We

refer to [31] for more on Pontryagin duality.)
Let G be a countable group and let Z[G] denote the integral group ring of G. Suppose

that G acts on L by continuous group automorphisms. Then the action of G induces an

action on the Pontryagin dual L̂ by continuous group automorphisms and, by linearity,

a left Z[G]-module structure on both L and L̂. In particular, the evaluation map is G-
equivariant.

An algebraic dynamical system is a pair (X,G), where X is a compact metrizable Abelian
topological group and G is a countable group acting on X by continuous group automor-
phisms.

Let M be a countable left Z[G]-module. Then, if we equip the Abelian group M with

its discrete topology, its Pontryagin dual M̂ is a compact metrizable Abelian group and
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(M̂,G) is an algebraic dynamical system. In this way, algebraic dynamical systems with
acting group G are in one-to-one correspondence with countable left Z[G]-modules.

An algebraic dynamical system (X,G) is said to be finitely presented provided its Pon-

tryagin dual X̂ is a finitely presented left Z[G]-module. For a ring R we denote by Matn,k(R)
the left R-module of all n × k matrices with coefficients in R. If n = k we simply write
Matn(R) instead of Matn,k(R). Let k, n ∈ N and let A ∈ Matn,k(Z[G]). Then Z[G]nA is a
finitely generated left Z[G]-submodule of Z[G]k. We denote by MA := Z[G]k/(Z[G]nA) the

corresponding finitely presented left Z[G]-module and by XA := M̂A its Pontryagin dual.
The algebraic dynamical system (XA, G) is called the finitely presented algebraic dynamical
system associated with A. An algebraic dynamical system (X,G) is finitely presented if
and only if there exist k, n ∈ N and A ∈ Matn,k(Z[G]) such that (X,G) is isomorphic to
(XA, G) (i.e., there exists a continuous G-equivariant group isomorphism X → XA).

An algebraic dynamical system (X,G) is said to be principal if X̂ is a cyclic left Z[G]-
module whose annihilator is a principal left ideal of Z[G]. This amounts to saying that
(X,G) is isomorphic to (Xf , G) for some f ∈ Z[G], where (Xf , G) is the algebraic dynamical
system whose Pontryagin dual is Z[G]/Z[G]f (here k = n = 1).

2.10. The Hamming distance. Let d be a positive integer. The map ηd : Sym(d) ×
Sym(d) → [0, 1] defined by setting

(2.4) ηd(σ, σ
′) :=

1

d
|{a ∈ [d] : σ(a) 6= σ′(a)}|

for all σ, σ′ ∈ Sym(d), is a bi-invariant metric on Sym(d), called the Hamming distance.

2.11. Sofic groups. Let G be a countable group. A sofic approximation of G is a sequence
Σ = (dj, σj)j∈N, such that the following conditions are satisfied:

• dj is a positive integer and limj→∞ dj = +∞;
• σj : G→ Sym(dj) is a map from G into the symmetric group of [dj ];
• limj→∞ ηdj (σj(st), σj(s)σj(t)) = 0 for all s, t ∈ G;
• limj→∞ ηdj (σj(s), σj(s)) = 1 for all distinct s, t ∈ G,

where ηdj denotes the Hamming distance on Sym(dj) defined by Formula (2.4).
One says that a (possibly uncountable) group is sofic if each of its finitely generated

subgroups admits a sofic approximation.

2.12. Sofic topological entropy. In this section we recall the definition of the sofic
topological entropy introduced by Kerr and the third-named author in [25, Chapter 10].

Let G be a countable sofic group and let (X,G) be a dynamical system. We fix a metric
ρ on X compatible with the topology and a sofic approximation Σ = (dj, σj)j∈N of G.

Let d ≥ 1 be an integer. We regard Xd as the set {ϕ : [d] → X} of all maps from [d]
to X . We equip Xd with the product topology and the diagonal action of G given by
(gϕ)(a) := gϕ(a) for all ϕ ∈ Xd and a ∈ [d]. Define the metrics ρ2 and ρ∞ on Xd by
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setting

ρ2(ϕ, ψ) :=


1

d

∑

a∈[d]

(ρ(ϕ(a), ψ(a)))2




1/2

and

ρ∞(ϕ, ψ) := max
a∈[d]

ρ(ϕ(a), ψ(a))

for all ϕ, ψ ∈ Xd.
Given a nonempty finite subset F ⊂ G, a map σ : G → Sym(d), and a real number

δ > 0, we denote by Map(X, ρ, F, δ, σ) the set consisting of all maps ϕ : [d] → X such that

ρ2(ϕ ◦ σs, sϕ) < δ for all s ∈ F,

equivalently,

(2.5)
∑

a∈[d]

ρ(ϕ(σsa), sϕ(a))
2 < dδ2 for all s ∈ F.

Given ε > 0, we denote by Nε(Map(X, ρ, F, δ, σ), ρ∞) the maximal cardinality of a
(ρ∞, ε)-separated subset Z ⊂ Map(X, ρ, F, δ, σ). Note that Nε(Map(X, ρ, F, δ, σ), ρ∞) =
−∞ if Map(X, ρ, F, δ, σ) = ∅ and otherwise it is finite since Xd is compact.

The sofic topological entropy of (X,G) with respect to Σ is then defined as

hΣ(X,G) := sup
ε>0

inf
F∈F(G)

inf
δ>0

lim sup
j→∞

1

dj
logNε(Map(X, ρ, F, δ, σj), ρ∞).

It can be shown that hΣ(X,G) ∈ {−∞} ∪ [0,∞] does not depend on the choice of the
metric ρ for (X,G) (see [25, Proposition 10.25]). It follows in particular that hΣ(X,G) is a
topological conjugacy invariant, i.e., if (Y,G) is another dynamical system such that there
exists a G-equivariant homeomorphism f : X → Y then hΣ(X,G) = hΣ(Y,G).

The following is a generalization of a result by Keyne and Robertson [26] for expansive
homeomorphisms (see also [18, Chapter 16] and, for a uniform version over amenable
groups, [11, Corollary 4.21]).

Lemma 2.13. Let G be a countable sofic group and let (X,G) be an expansive dynamical
system. Fix a compatible metric ρ on X and let c > 0 be an expansivity constant for (X,G)
relative to ρ. Let Σ = (dj , σj)j∈N be a sofic approximation for G. Then

(2.6) hΣ(X,G) = inf
F∈F(G)

inf
δ>0

lim sup
j→∞

1

dj
logNc/2(Map(X, ρ, F, δ, σj), ρ∞) < +∞.

Proof. Clearly hΣ(X,G) is no less than the right hand side in (2.6). By virtue of [25,
Proposition 10.23], it suffices to show that for any ε > 0 one has

inf
F∈F(G)

inf
δ>0

lim sup
j→∞

1

dj
logNε(Map(X, ρ, F, δ, σj), ρ2)

≤ inf
F∈F(G)

inf
δ>0

lim sup
j→∞

1

dj
logNc/2(Map(X, ρ, F, δ, σj), ρ∞).
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Let ε > 0. By Lemma 2.2 we can find K ∈ F(G) such that for any x, y ∈ X with
ρK(x, y) ≤ c one has ρ(x, y) < ε/4.

Let F ∈ F(G) containing K and let δ > 0 be small enough so that δ < (c/4)2 and
2|K|δdiam(X, ρ)2 < (ε/4)2. It suffices to show that for any d ∈ N and any map σ : G →
Sym(d) one has

Nε(Map(X, ρ, F, δ, σ), ρ2) ≤ Nc/2(Map(X, ρ, F, δ, σ), ρ∞).

For each ϕ ∈ Map(X, ρ, F, δ, σ) set

Wϕ := {a ∈ [d] : ρ(ϕ(σsa), sϕ(a)) < δ1/2 for all s ∈ K}.

We claim that

(2.7)
|Wϕ|

d
≥ 1− |K|δ.

In order to prove the claim, for s ∈ K let us set Wϕ,s := {a ∈ [d] : ρ(ϕ(σsa), sϕ(a)) < δ1/2}.
By applying the Chebyshëv inequality we have

|[d] \Wϕ,s| = |{a ∈ [d] : ρ(ϕ(σsa), sϕ(a)) ≥ δ1/2}|

≤
1

δ

∑

a∈[d]\Wϕ,s

ρ(ϕ(σsa), sϕ(a))
2

≤
1

δ

∑

a∈[d]

ρ(ϕ(σsa), sϕ(a))
2

(by (2.5)) ≤ dδ.

We deduce that
|[d] \Wϕ| = |

⋃

s∈K

([d] \Wϕ,s) | ≤ d|K|δ,

and the claim follows.
Take a (ρ∞, c/2)-separated subset Φ of Map(X, ρ, F, δ, σ) with

|Φ| = Nc/2(Map(X, ρ, F, δ, σ), ρ∞).

Let ψ ∈ Map(X, ρ, F, δ, σ). Then ρ∞(ψ, ϕ) < c/2 for some ϕ ∈ Φ. For every a ∈ Wϕ ∩Wψ,
we have

ρ(sϕ(a), sψ(a)) ≤ ρ(sϕ(a), ϕ(σsa)) + ρ(ϕ(σsa), ψ(σsa)) + ρ(ψ(σsa), sψ(a))

≤ δ1/2 + c/2 + δ1/2 ≤ c

for all s ∈ K, and hence ρ(ϕ(a), ψ(a)) < ε/4 by our choice of K. Therefore

ρ2(ϕ, ψ) ≤

(
|Wϕ ∩Wψ|

d
(
ε

4
)2 + (1−

|Wϕ ∩Wψ|

d
)diam(X, ρ)2

)1/2

(by (2.7)) ≤ ((
ε

4
)2 + 2|K|δdiam(X, ρ)2)1/2 < ε/2.

Then
Nε(Map(X, ρ, F, δ, σ), ρ2) ≤ |Φ| = Nc/2(Map(X, ρ, F, δ, σ), ρ∞),
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as desired. �

3. Proofs

Proof of Proposition 1.2. Take a compatible metric ρ for X and let c > 0 be an expansivity
constant for (X,G) relative to ρ. Take a point x0 ∈ X \Y and set ε := min(ρ(x0, Y ), c)/6 >
0. Take a maximal (ρ, ε)-separated subset Z of X .

Since (X,G) is expansive and has the strong TMP, by Remark 2.5 it has the uniform
strong TMP. Thus we can find τ > 0 and F1 ∈ F(G) containing 1G such that for any
A ∈ F(G), any F1A-separated V ⊂ G, any xs ∈ X for s ∈ V , and any y ∈ X satisfying
ρ(F1A\A)s(xs, y) ≤ τ for all s ∈ V , there is some z ∈ X so that ρF1As(xs, z) ≤ ε for all s ∈ V
and ρG\AV (y, z) ≤ ε.

Moreover, by the weak specification property, we can find some symmetric F2 ∈ F(G)
containing 1G such that for any A1, A2 ⊂ G satisfying F2A1∩F2A2 = ∅ and any x1, x2 ∈ X
there is some z ∈ X such that ρA1

(x1, z) ≤ min(τ/2, ε) and ρA2
(x2, z) ≤ min(τ/2, ε). In

particular (by taking A1 := {1G} and A2 := G \ F 2
2 ), for each y ∈ Y , there is some zy ∈ X

such that ρ(x0, zy) ≤ min(τ/2, ε) and ρG\F 2

2

(y, zy) ≤ min(τ/2, ε).

Let now K ∈ F(G) and δ, κ > 0.
By Stirling’s approximation formula (cf. Lemma A.1), there is some 0 < γ < 1 such

that for any d ∈ N, the number of subsets D ⊂ [d] with |D| ≤ γd is at most eκd. Take
0 < θ < min(1/4, γ) such that

(3.1) |Z|2θ ≤ eκ

and 4θ diam(X, ρ)2 ≤ (δ/2)2.
Since c is an expansivity constant for (X,G), by Lemma 2.2 we can find someK1 ∈ F(G)

containing 1G such that for any x1, x2 ∈ X with ρK1
(x1, x2) ≤ c, one has ρ(x1, x2) < δ/2.

By compactness of X , the continuous action of G is indeed uniformly continuous. As a
consequence, we can find ξ > 0 such that

(3.2) ρ(x, y) ≤ ξ ⇒ ρF1F 2

2

(x, y) ≤ τ/2 and ρK1
(x, y) ≤ ε

for all x, y ∈ X .
Set F := F1F

2
2F

−1
1 K1({1G} ∪K) ∈ F(G), and take ζ > 0 such that

(3.3) ζ ≤ ξ2 and ζ |F | ≤ θ.

Let j0 ∈ N be large enough so that for all j ≥ j0, setting for simplicity d := dj and
σ := σj , we have that (cf. Section 2.11)

(3.4)
|U |

d
≥ 1− θ,

where U denotes the set of a ∈ [d] satisfying that σsa 6= σta for all distinct s, t ∈ F and
σsta = σsσta for all s, t ∈ F . Note that σ1Ga = a for all a ∈ U , since 1G ∈ F .

For any ϕ, ψ : [d] → X and any Θ ⊂ [d], we put

ρ∞,Θ(ϕ, ψ) := max
a∈Θ

ρ(ϕ(a), ψ(a)).
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As, by our assumptions, hΣ(X,G) ≥ 0, the statement would trivially hold if hΣ(Y,G) =
−∞. Thus, we may assume that Map(Y, ρ, F, ζ, σ) 6= ∅. For ϕ ∈ Map(Y, ρ, F, ζ, σ) we
then set

Wϕ := {a ∈ [d] : ρ(ϕ(σsa), sϕ(a)) ≤ ζ1/2 for all s ∈ F}.

As in the proof of Lemma 2.13, we have (cf. (2.7)) |Wϕ|

d
≥ 1− |F |ζ so that as |F |ζ ≤ θ (cf.

(3.3)),

(3.5)
|Wϕ|

d
≥ 1− θ.

Take a (ρ∞, c/2)-separated subset Φ of Map(Y, ρ, F, ζ, σ) such that

(3.6) |Φ| = Nc/2(Map(Y, ρ, F, ζ, σ), ρ∞).

By our choice of θ and γ (cf. (3.1)) there is some Φ1 ⊂ Φ such that

(3.7) |Φ1| ≥ |Φ|e−κd

and the set Wϕ is the same for all ϕ ∈ Φ1. Set W := Wϕ for ϕ ∈ Φ1, and U
′ := U ∩W .

Then, keeping in mind (3.4) and (3.5), we have |U ′|
d

≥ 1− 2θ.
Since Z is a maximal (ρ, ε)-separated subset of X , for every ϕ ∈ Φ1 and a ∈ [d] \ U ′

we can find an element fϕ(a) ∈ Z such that ρ(ϕ(a), fϕ(a)) < ε. This defines a map
fϕ : [d] \ U

′ → Z. Then, there is a set Φ2 ⊂ Φ1 such that

|Φ2| ≥ |Φ1| · |Z|
−|[d]\U ′| ≥ |Φ1| · |Z|

−2θd ≥ |Φ1|e
−κd

and the map fϕ is the same for all ϕ ∈ Φ2. Note that by (3.7) we have

(3.8) |Φ2| ≥ |Φ|e−2κd.

Now, for any distinct ϕ, ψ ∈ Φ2, we have ρ∞,[d]\U ′(ϕ, ψ) < 2ε ≤ c/2 and ρ∞(ϕ, ψ) ≥ c/2,
and hence

(3.9) ρ∞,U ′(ϕ, ψ) ≥ c/2.

Take a maximal subset Λ of U ′ subject to the condition that σ(F1F
2
2 )w1∩σ(F1F

2
2 )w2 = ∅

for all distinct w1, w2 ∈ Λ. Then σ(F1F
2
2 )

−1σ(F1F
2
2 )Λ ⊇ U ′, and hence (recalling that

0 < θ ≤ 1/4)

(3.10)
|Λ|

d
≥

|U ′|

|F1F
2
2 |

2d
≥

1− 2θ

|F1F
2
2 |

2
≥

1

2|F1F
2
2 |

2
.

Let B ⊂ Λ. Again, since Z is a maximal (ρ, ε)-separated subset of X , for every ϕ ∈ Φ2

and a ∈ σ(F1F
2
2 )B we can find an element fB,ϕ(a) ∈ Z such that ρ(ϕ(a), fB,ϕ(a)) < ε.

This defines a map fB,ϕ : σ(F1F
2
2 )B → Z. Then there is a subset ΦB ⊂ Φ2 such that

|ΦB| ≥ |Φ2| · |Z|
−|σ(F1F 2

2
)B| = |Φ2| · |Z|

−|F1F 2

2
|·|B|

and the map fB,ϕ is the same for all ϕ ∈ ΦB. Note that by (3.8) we have

(3.11) |ΦB| ≥ |Φ|e−2κd|Z|−|F1F 2

2
|·|B|.
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For any distinct ϕ, ψ ∈ ΦB, we have ρ∞,σ(F1F 2

2
)B(ϕ, ψ) < 2ε ≤ c/2 and ρ∞,U ′(ϕ, ψ) ≥ c/2,

and hence

(3.12) ρ∞,U ′\σ(F1F 2

2
)B(ϕ, ψ) ≥ c/2.

Let a ∈ U ′. Denote by Va the set of all s ∈ F such that σsa ∈ Λ. For any s ∈ Va, since
F1F

2
2 ⊂ F and a ∈ U , we have σ(F1F

2
2 s)a = σ(F1F

2
2 )σsa. Since a ∈ U , for any distinct s, t

in Va, we have σsa 6= σta, and hence

σ(F1F
2
2 s)a ∩ σ(F1F

2
2 t)a = σ(F1F

2
2 )σsa ∩ σ(F1F

2
2 )σta = ∅.

It follows that Va is F1F
2
2 -separated.

With a subset B ⊂ Λ and ϕ ∈ ΦB we associate a map ϕ̄B : [d] → X defined as follows.
Let a ∈ [d]. Suppose first that a ∈ U ′. Denote by VB,a the set of all s ∈ F such that σsa ∈

B. Then VB,a ⊂ Va and hence VB,a is F1F
2
2 -separated. Let s ∈ VB,a and consider ϕ(σsa) ∈

Y . By our choice of F2, there is a point zϕ(σsa) ∈ X with ρ(x0, zϕ(σsa)) ≤ min(τ/2, ε) and

ρG\F 2

2

(zϕ(σsa), ϕ(σsa)) ≤ min(τ/2, ε). By our choice of ξ, since ρ(ϕ(σsa), sϕ(a)) ≤ ζ1/2 ≤ ξ,

we have ρF1F 2

2
(ϕ(σsa), sϕ(a)) ≤ τ/2. Setting xϕ,a,s := s−1zϕ(σsa) ∈ X , we have

ρ(F1F 2

2
\F 2

2
)s(xϕ,a,s, ϕ(a)) ≤ ρ(F1F 2

2
\F 2

2
)s(s

−1zϕ(σsa), s
−1ϕ(σsa)) + ρ(F1F 2

2
\F 2

2
)s(s

−1ϕ(σsa), ϕ(a))

= ρF1F 2

2
\F 2

2

(zϕ(σsa), ϕ(σsa)) + ρF1F 2

2
\F 2

2

(ϕ(σsa), sϕ(a))

≤ τ/2 + τ/2 = τ.

By our choice of F1 and τ (coming from the uniform sTMP of (X,G)), there is some
ϕ̄B(a) ∈ X such that

(3.13) ρF1F 2

2
s(xϕ,a,s, ϕ̄B(a)) ≤ ε for all s ∈ VB,a

and

(3.14) ρG\F 2

2
VB,a

(ϕ(a), ϕ̄B(a)) ≤ ε.

For a ∈ [d] \ U ′, we set ϕ̄B(a) := x0.

Claim 1. ϕ̄B ∈ Map(X, ρ,K, δ, σ).

Proof of Claim 1. Let t ∈ K, let a ∈ U ′ ∩ σ−1
t U ′, and let g ∈ K1.

Suppose gt ∈ F1F
2
2 VB,a, say gt = hs with h ∈ F1F

2
2 and s ∈ VB,a. Then h−1g ∈

F 2
2F

−1
1 K1 ⊂ F and σh−1gσta = σh−1gta = σsa ∈ B, and hence h−1g ∈ VB,σta. In this case

we have

(3.15) gxϕ,σta,h−1g = g(h−1g)−1zϕ(σ
h−1g

σta) = hzϕ(σ
h−1g

σta) = gts−1zϕ(σsa) = gtxϕ,a,s,

and hence using g = h(h−1g) ∈ F1F
2
2 VB,σta, we have

ρ(gϕ̄B(σta), gtϕ̄B(a)) ≤ ρ(gϕ̄B(σta), gxϕ,σta,h−1g) + ρ(gxϕ,σta,h−1g, gtxϕ,a,s)

+ ρ(gtxϕ,a,s, gtϕ̄B(a))

(by (3.15)) = ρ(gϕ̄B(σta), gxϕ,σta,h−1g) + ρ(gtxϕ,a,s, gtϕ̄B(a))
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(as gt = hs) = ρ(gϕ̄B(σta), gxϕ,σta,h−1g) + ρ(hsxϕ,a,s, hsϕ̄B(a))

(by (3.13)) ≤ ε+ ε ≤ c.

Suppose g ∈ F1F
2
2 VB,σta, say g = h1s1 with h1 ∈ F1F

2
2 and s1 ∈ VB,σta. Then

h−1
1 gt ∈ F 2

2F
−1
1 K1K ⊂ F and σh−1

1
gta = σh−1

1
gσta = σs1σta ∈ B, and hence h−1

1 gt ∈ VB,a.

In this case we have gt = h1(h
−1
1 gt) ∈ F1F

2
2 VB,a, and hence, by the above, we get

ρ(gϕ̄B(σta), gtϕ̄B(a)) ≤ c.
Finally, suppose that gt 6∈ F1F

2
2 VB,a and g 6∈ F1F

2
2 VB,σta. Since ρ(ϕ(σta), tϕ(a)) ≤ ζ1/2 ≤

ξ, and recalling that g ∈ K1, we have ρ(gϕ(σta), gtϕ(a)) ≤ ε by (3.2). As a consequence,

ρ(gϕ̄B(σta), gtϕ̄B(a)) ≤ ρ(gϕ̄B(σta), gϕ(σta)) + ρ(gϕ(σta), gtϕ(a)) + ρ(gtϕ(a), gtϕ̄B(a))

(by (3.14)) ≤ ε+ ε+ ε ≤ c.

We conclude that ρK1
(ϕ̄B(σta), tϕ̄B(a)) ≤ c, and hence ρ(ϕ̄B(σta), tϕ̄B(a)) < δ/2 by our

choice of K1. Now we get

ρ2(ϕ̄B ◦ σt, tϕ̄B) ≤ ((
δ

2
)2 + (1−

|U ′ ∩ σ−1
t U ′|

d
) diam(X, ρ)2)1/2

≤ ((
δ

2
)2 + 4θ diam(X, ρ)2)1/2

≤ δ.

This proves our claim. �

Let B ⊂ Λ and ϕ ∈ ΦB. For any a ∈ B, we have 1G ∈ VB,a, and hence

(3.16) ρ(ϕ̄B(a), x0) ≤ ρ(ϕ̄B(a), xϕ,a,1G) + ρ(xϕ,a,1G , x0) ≤ ε+ ρ(zϕ(a), x0) ≤ ε+ ε = 2ε.

For any a ∈ U ′ \ σ(F1F
2
2 )B, we have 1G 6∈ F1F

2
2 VB,a, and hence

(3.17) ρ(ϕ̄B(a), ϕ(a)) ≤ ε.

In particular, (3.17) holds for all a ∈ Λ \B ⊂ U ′ \ σ(F1F
2
2 )B.

Let us set Φ := {ϕ̄B : B ⊂ Λ and ϕ ∈ ΦB} ⊂ Map(X, ρ,K, δ, σ).

Claim 2. Φ is (ρ∞, ε)-separated.

Proof of Claim 2. For any distinct B1, B2 ⊂ Λ and ϕ ∈ ΦB1
, ψ ∈ ΦB2

, we have for, say,
a ∈ B1 \B2,

ρ∞(ϕ̄B1
, ψ̄B2

) ≥ ρ(ϕ̄B1
(a), ψ̄B2

(a))

≥ ρ(x0, ψ(a))− ρ(ϕ̄B1
(a), x0)− ρ(ψ̄B2

(a), ψ(a))

(by (3.16), (3.17), and ε ≤ ρ(x0, Y )/6) ≥ 4ε− 2ε− ε = ε.

For any B ⊂ Λ and any distinct ϕ, ψ ∈ ΦB, by (3.12) we have ρ(ϕ(a), ψ(a)) ≥ c/2 for
some a ∈ U ′ \ σ(F1F

2
2 )B, and hence

ρ∞(ϕ̄B, ψ̄B) ≥ ρ(ϕ̄B(a), ψ̄B(a))

≥ ρ(ϕ(a), ψ(a))− ρ(ϕ(a), ϕ̄B(a))− ρ(ψ(a), ψ̄B(a))
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(by (3.17)) ≥ c/2− ε− ε ≥ ε.

This proves our claim. �

We need the following elementary fact. Given a finite set Λ and a variable t, we have

(3.18)
∑

B⊂Λ

t|B| =

|Λ|∑

j=0

(
|Λ|

j

)
tj = (1 + t)|Λ|.

We are now in a position to prove the entropic inequality and conclude the proof of the
proposition.

Nε(Map(X, ρ,K, δ, σ), ρ∞) ≥ |Φ| ≥
∑

B⊂Λ

|ΦB|

(by (3.11)) ≥
∑

B⊂Λ

|Φ|e−2κd|Z|−|F1F 2

2
|·|B|

(by (3.6) and (3.18)) = Nc/2(Map(Y, ρ, F, ζ, σ), ρ∞)e−2κd(1 + |Z|−|F1F 2

2
|)|Λ|

(by (3.10)) ≥ Nc/2(Map(Y, ρ, F, ζ, σ), ρ∞)e−2κd(1 + |Z|−|F1F 2

2
|)d/(2|F1F 2

2
|2).

It follows that

lim sup
i→∞

1

di
logNε(Map(X, ρ,K, δ, σi), ρ∞)

≥ lim sup
i→∞

1

di
logNc/2(Map(Y, ρ, F, ζ, σi), ρ∞)− 2κ+

1

2|F1F 2
2 |

2
log(1 + |Z|−|F1F 2

2
|)

≥ hΣ(Y,G)− 2κ+
1

2|F1F
2
2 |

2
log(1 + |Z|−|F1F 2

2
|),

where in the 2nd inequality we apply Lemma 2.13 to (Y,G). Letting κ→ 0, we obtain

lim sup
i→∞

1

di
logNε(Map(X, ρ,K, δ, σi), ρ∞) ≥ hΣ(Y,G) +

1

2|F1F 2
2 |

2
log(1 + |Z|−|F1F 2

2
|).

Taking the infimum over K and δ, we get

hΣ(X,G) ≥ hΣ(Y,G) +
1

2|F1F
2
2 |

2
log(1 + |Z|−|F1F 2

2
|) > hΣ(Y,G).

�

Proof of Theorem 1.1. Let f : X → X be an injective endomorphism of the dynamical
system (X,G). By continuity of f and since X is compact and Hausdorff, f yields a
homeomorphism between X and Y := f(X). Moreover, since f is G-equivariant, Y ⊂ X
is G-invariant. It follows that f in fact establishes a conjugacy between the dynamical
systems (X,G) and (Y,G) so that hΣ(X,G) = hΣ(Y,G). By Proposition 1.2, Y cannot
be a proper subset of X . Thus f(X) = Y = X , that is, f is surjective. This shows that
(X,G) is surjunctive. �
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Proof of Corollary 1.4. First of all, Deninger and Schmidt [17, Theorem 3.2] proved that
a principal algebraic dynamical system (Xf , G) is expansive if and only if f is invert-
ible in ℓ1(G) and Ren [32, Theorem 1.2] proved that every expansive principal algebraic
action has the weak specification property. The proofs of the analogous statements for
A ∈ Matn(Z[G]), n ≥ 1, follow the same lines. Secondly, Meyerovitch [30, Theorem 3.4]
proved that the finitely-presented dynamical system (XA, G) associated with an element
A ∈ Matn(Z[G]) which is invertible in Matn(ℓ

1(G)) has the pseudo-orbit tracing property.
Finally, every dynamical system with the POTP has the sTMP [2, Proposition 3.11]. The
statement then follows from Theorem 1.1. �

Proof of Theorem 1.5. It is a result of Deninger that for any action of a countably infinite
amenable group G on a compact metrizable group X by continuous automorphisms, the
topological entropy is equal to the measure entropy hµX (X,G) of the normalized Haar
measure µX [16, Theorem 2.2] (though Deninger assumed X to be abelian, the proof there
does not use this assumption). It was shown in [15, Corollaries 7.5 and 8.4] that such an
action has CPE if and only if it has CPE with respect to µX , i.e., every nontrivial factor of
the probability-measure-preserving action Gy (X, µX) has positive entropy. Furthermore,
it was shown in [15, Theorem 8.6] that such an action with finite measure entropy of µX
has CPE with respect to µX if and only if, for every G-invariant Borel probability measure
ν of X not equal to µX , one has hν(X,G) < hµX (X,G).

Let now f : X → X by an injective endomorphism of (X,G). We have hf∗µX (X,G) =
hf∗µX (f(X), G) = hµX (X,G) so that f∗µX = µX . Since µX has full support, we deduce
that f(X) = X , that is, f is surjective. This shows that the dynamical system (X,G) is
surjucntive. �

4. Examples

Example 4.1 (The hard-ball model). Take G = Z and A = {0, 1}. Then the subset
X ⊂ AG, consisting of all x : Z → {0, 1} such that (x(n), x(n + 1)) 6= (1, 1) for all n ∈ Z,
is a subshift. This subshift is called the golden mean subshift.

More generally, take G = Z
d and A = {0, 1}. Then the subset X ⊂ AG, consisting of all

x ∈ AG such that (x(g), x(g + ei)) 6= (1, 1) for all g ∈ G, where (ei)1≤i≤d is the canonical
basis of Zd, is a subshift. This subshift is called the hard-ball model.

The hard-ball model is strongly irreducible and of finite type (and therefore splicable).
To see this it suffices to convince ourselves that the set ∆ := {g = (g1, . . . , gd) ∈ G : |gi| ≤
1, i = 1, . . . , d} witnesses both strong irreducibility and the finite type condition.

In [2, Example 6.6] the following generalization is presented. Let G be a group, let
F ⊂ G be a finite nonempty subset not containing 1G. The F -hard-ball model of G is the
subshift Xhard,F ⊂ {0, 1}G defined by setting

Xhard,F := {x ∈ {0, 1}G : x(g)x(gs) = 0 for all g ∈ G and s ∈ F}.

Then Xhard,F is a strongly irreducible subshift of finite type, and therefore has the POTP
and thus the sTMP, equivalently the usTMP (cf. [2, Proposition 3.11] and Proposition
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2.6). When G is sofic, given any sofic approximation Σ for G, one has hΣ(Xhard,F , G) ≥ 0,
since the action has fixed points (in fact, only one, namely the constant 0-configuration).

Example 4.2 (Weiss’ example). Benjy Weiss [35] found the following simple example
of a shift of finite type that is not surjunctive. Let A = {0, 1, 2} and G = Z. Con-
sider the subshift X ⊂ AG of finite type with defining set of admissible patterns A =
{00, 01, 11, 12, 22} ⊂ A2 = AΩ, where Ω = {0, 1} ⊂ G (cf. Section 2.3). Thus any point x
in X has at most one block of 1’s, which, if finite is bordered by an infinite string of 0’s to
the left and 2’s to the right. Set S := {−1, 0} ⊂ G and define µ : AS = A2 → A by setting

µ(s, t) =

{
t if (s, t) 6= (1, 2)

1 if (s, t) = (1, 2).

Then the associated cellular automaton f : AG → AG leaves X invariant (and therefore is
an endomorphism of (X,G)) and works as follows: if the finite block of 1’s occurs in x ∈ X ,
then in f(x) the same block is elongated by one extra 1 on the right. Thus f is injective.
Clearly, f is not surjective since a configuration with a single 1 will be in X \ f(X). As a
consequence (X,G) is not surjunctive.

Appendix A. Stirling’s approximation formula

The following old result was widely used, without proof, in [24]. For the reader’s conve-
nience and the sake of completeness, we include its detailed proof.

Given a real number α we denote by ⌊α⌋ ∈ Z the greatest integer less than or equal to
α.

Lemma A.1. Let 0 < γ < 1/2. Then there exists κ = κ(γ) > 0 and d0 = d0(γ) ∈ N with

(A.1) lim
γ→0

κ(γ) = 0

such that

(A.2)

⌊γd⌋∑

j=0

(
d

j

)
≤ eκd

for all d ∈ N such that d ≥ d0.

Proof. Let d ≥ 2/γ so that, on the one hand

(A.3) ⌊γd+ 1⌋ = ⌊γd⌋ + 1 ≤ 2⌊γd⌋,

and, on the other hand, since γ < 1/2, one has d ≥ 4 and therefore d− γd ≥ 2.
As γ < 1/2, we clearly have

⌊γd⌋∑

j=0

(
d

j

)
≤ (⌊γd⌋ + 1)

(
d

⌊γd⌋

)
,
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so that, by virtue of (A.3), we only need to find κ = κ(γ) satisfying (A.1) and such that

(A.4) 2⌊γd⌋

(
d

⌊γd⌋

)
≤ eκd.

Setting κ := −2(γ ln γ+(1−γ) ln(1−γ)) > 0, we clearly have that (A.1) holds. Consider
the function G(x) = eκx/2 − x3. It is easy to see that there exists an integer d0 ≥ 2/γ such
that G(x) > 0 for all x ≥ d0.

In [25, Lemma 10.1] the following version of Stirling’s classical formula is proved by
purely elementary means:

(A.5) e
(m
e

)m
≤ m! ≤ em

(m
e

)m

for all m ∈ N such that m ≥ 1.
Let d ≥ d0. Then, setting m := ⌊γd⌋, we deduce that

2⌊γd⌋

(
d

⌊γd⌋

)
= 2m

(
d

m

)
= 2m ·

d!

m!(d−m)!

≤ 2m ·
ed

(
d
e

)d

e
(
m
e

)m
· e

(
d−m
e

)d−m

= 2m ·
d

e
· dd ·

1

mm
·

1

(d−m)d−m

(since γd− 1 ≤ m ≤ γd) ≤ 2γd ·
d

e
· dd ·

1

(γd− 1)γd−1
·

1

((1− γ)d)(1−γ)d

= 2γd ·
d

e
· dd · γd ·

(
γd

γd− 1

)γd−1

·
1

dd
·

1

γγd
·

1

(1− γ)(1−γ)d

(since (γd/(γd− 1))γd−1 ≤ e) ≤ 2d3γ2 ·
1

γγd
·

1

(1− γ)(1−γ)d

(since γ < 1/2) < d3 ·

(
1

γγ
·

1

(1− γ)(1−γ)

)d

= d3 · e−(γ lnγ+(1−γ) ln(1−γ))d

(as d ≥ d0) ≤ eκd.

This proves (A.4) and the proof is complete. �
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