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ANALYTIC AND ALGEBRAIC CONDITIONS FOR

BIFURCATIONS OF HOMOCLINIC ORBITS II: REVERSIBLE

SYSTEMS

KAZUYUKI YAGASAKI

Abstract. Following Part I, we consider a class of reversible systems and
study bifurcations of homoclinic orbits to hyperbolic saddle equilibria. Here
we concentrate on the case in which homoclinic orbits are symmetric, so that
only one control parameter is enough to treat their bifurcations, as in Hamil-
tonian systems. First, we modify and extend arguments of Part I to show in
a form applicable to general systems discussed there that if such bifurcations
occur in four-dimensional systems, then variational equations around the ho-
moclinic orbits are integrable in the meaning of differential Galois theory. We
next extend the Melnikov method of Part I to reversible systems and obtain
theorems on saddle-node, transcritical and pitchfork bifurcations of symmetric
homoclinic orbits. We illustrate our theory for a four-dimensional system, and
demonstrate the theoretical results by numerical ones.

1. Introduction

In the companion paper [1], which we refer to as Part I here, we studied bifur-
cations of homoclinic orbits to hyperbolic saddle equilibria in a class of systems
including Hamiltonian systems. They also arise as bifurcations of solitons or pulses
in partial differential equations (PDEs), and have attracted much attention even
in the fields of PDEs and nonlinear waves (see, e.g., Section 2 of [9]). Only one
control parameter is enough to treat these bifurcations in Hamiltonian systems but
two control parameters are needed in general. We applied a version of Melnikov’s
method due to Gruendler [4] to obtain some theorems on saddle-node and pitch-
fork types of bifurcations for homoclinic orbits in systems of dimension four or
more. Furthermore, we proved that if these bifurcations occur in four-dimensional
systems, then variational equations (VEs) around the homoclinic orbits are inte-
grable in the meaning of differential Galois theory [2, 8] when there exist analytic
invariant manifolds on which the homoclinic orbits lie. In [14], spectral stability
of solitary waves, which correspond to such homocinic orbits in a two-degree-of-
freedom Hamiltonian system, in coupled nonlinear Schrödinger equations were also
studied.

In this part, we consider reversible systems of the form

ẋ = f(x;µ), (x, µ) ∈ R
2n × R, (1.1)
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where f : R2n × R → R2n is analytic, µ is a parameter and n ≥ 2 is an integer,
and continue to discuss bifurcations of homoclinic orbits to hyperbolic saddles. A
rough sketch of the results were briefly stated in [11]. Our precise assumptions are
as follows:

(R1) The system (1.1) is reversible, i.e., there exists a linear involution R such
that f(Rx;µ)+Rf(x;µ) = 0 for any (x, µ) ∈ R

2n×R. Moreover, dimFix(R)
= n, where Fix(R) = {x ∈ R2n |Rx = x}.

(R2) The origin x = 0, denoted by O, is an equilibrium in (1.1) for all µ ∈ R, i.e.,
f(0;µ) = 0.

Note that O ∈ Fix(R) since RO = O. A fundamental characteristic of reversible
systems is that if x(t) is a solution, then so is Rx(−t). We call a solution (and
the corresponding orbit) symmetric if x(t) = Rx(−t). It is a well-known fact that
an orbit is symmetric if and only if it intersects the space Fix(R) [10]. Moreover,

if λ ∈ C is an eigenvalue of Dxf(0;µ), then so are −λ and λ, where the overline
represents the complex conjugate. See also [7] for general properties of reversible
systems. We also assume the following.

(R3) The Jacobian matrix Dxf(0; 0) has 2n eigenvalues ±λ1, . . . ,±λn such that
0 < Reλ1 ≤ · · · ≤ Reλn (i.e., the origin is a hyperbolic saddle).

(R4) The equilibrium x = 0 has a symmetric homoclinic orbit xh(t) with xh(0) ∈
Fix(R) at µ = 0. Let Γ0 = {xh(t)|t ∈ R} ∪ {0}.

Assumptions similar to (R3) and (R4) were made in (M1) and (M2) for general
multi-dimensional systems and in (A1) and (A2) for four-dimensional systems in
Part I:

(A1) The origin x = 0 is a hyperbolic saddle equilibrium (in (1.1) with n = 2) at

µ = 0, such that Dxf(0; 0) has four real eigenvalues, λ̃1 ≤ λ̃2 < 0 < λ̃3 ≤ λ̃4.
(A2) At µ = 0 the hyperbolic saddle x = 0 has a homoclinic orbit xh(t). Moreover,

there exists a two-dimensional analytic invariant manifold M containing
x = 0 and xh(t).

In particular, in (R1)-(R4), we do not assume that there exists such an invariant
manifold as M in (A2). It follows from (R3) that the origin x = 0 is still a
hyperbolic saddle near µ = 0 under some change of coordinates if necessary, as in
(R2).

Reversible systems are frequently encountered in applications such as mechanics,
fluids and optics, and have attracted much attention in the literature [7]. One of the
characteristic properties of reversible systems is that homoclinic orbits to hyper-
bolic saddles are typically symmetric and continue to exist when their parameters
are varied if so, in contrast to the fact that such orbits do not persist in general
systems. In [5] saddle-node bifurcations of homoclinic orbits to hyperbolic saddles
in reversible systems were previously discussed and shown to be codimension-one
or -two depending on whether the homoclinic orbits are symmetric or not. Here
we concentrate on the case in which homoclinic orbits are symmetric, so that only
one control parameter is enough to treat their bifurcations, as in Hamiltonian sys-
tems (see Part I). For asymmetric homoclinic orbits, the arguments of Part I for
non-Hamiltonian systems can apply.

The object of this paper is twofold. First, we consider the case of n = 2, and
modify and extend arguments given in Part I to show that if a bifurcation of the
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homoclinic orbit xh(t) occurs at µ = 0, then the VE of (1.1) around xh(t) at µ = 0,

ξ̇ = Dxf(x
h(t); 0)ξ, ξ ∈ C

4, (1.2)

is integrable in the meaning of differential Galois theory under some conditions even
if there does not exist such an invariant manifold as M in (A2). Here the domain
on which Eq. (1.2) is defined has been extended to a neighborhood of R in C. Such
an extension is possible since f(x;µ) and Dxf(x;µ) are analytic. We assume the
following three conditions:

(B1) The origin x = 0 is a hyperbolic saddle equilibrium and has a homoclinic
orbit xh(t) in (1.1) with n = 2 at µ = 0, such that Dxf(0; 0) has four real

eigenvalues, λ̃1 ≤ λ̃2 < 0 < λ̃3 ≤ λ̃4.
(B2) The homoclinic orbit xh(t) is expressed as

xh(t) =

{

h+(e
λ−t) for Re t > 0;

h−(eλ+t) for Re t < 0,
(1.3)

in a neighborhood U of t = 0 in C, where h± : U → C4 are certain analytic

functions with their derivatives satisfying h′±(0) 6= 0, λ+ = λ̃3 or λ̃4 and

λ− = λ̃1 or λ̃2. When the system (1.1) is reversible and xh(t) is symmetric

as in (R1)-(R4), we have λ± = ∓λ̃j for j = 1 or 2.
(B3) The VE (1.2) has a solution ξ = ϕ(t) such that

ϕ(λ−1
− log z) = a+(z)z

λ′

+/λ− + b1+(z)z
λ̃1/λ− + b2+(z)z

λ̃2/λ− ,

or ϕ(λ−1
− log z) = a+(z)z

λ′

+/λ− + b1+(z)z + b2+(z)z log z
(1.4)

and

ϕ(λ−1
+ log z) = a−(z)z

λ′

−
/λ+ + b1−(z)z

λ̃3/λ+ + b2−(z)z
λ̃4/λ+ ,

or ϕ(λ−1
+ log z) = a−(z)z

λ′

−
/λ+ + b1−(z)z + b2−(z)z log z

(1.5)

in |z| ≪ 1, where a±(z) and bj±(z), j = 1, 2, are certain analytic functions

in U with a±(0) 6= 0 and λ′+ = λ̃3 or λ̃4 and λ′− = λ̃1 or λ̃2.

Note that if assumptions (A1) and (A2) hold, then so does (B1). In (B3), we have

ϕ(t)e−λ′

+t = O(1) as t → +∞ and ϕ(t)eλ
′

−
t = O(1) as t → −∞. Moreover, the

second equations in (1.4) and (1.5) hold only if λ̃1 = λ̃2 and λ̃3 = λ̃4, respectively.
Note that the existence of such an invariant manifold as M in (A2) is not assumed.
We prove the following theorem.

Theorem 1.1. Let n = 2 and suppose that the following condition holds along with
(B1)-(B3):

(C) The VE (1.2) has another linearly independent bounded solution.

Then the VE (1.2) has a triangularizable differential Galois group, when regarded
as a complex differential equation with meromorphic coefficients in a desingularized
neighborhood Γloc of the homoclinic orbit xh(t) in C4.

Note that ξ = ẋh(t) is a bounded solution to (1.2). A proof of Theorem 1.1 is
given in Section 2. Here Γloc is a local Riemann surface that is given by Σ−∪Σt∪Σ+

and taken sufficiently narrowly, where Σ+ and Σ− are, respectively, neighborhoods
of 0+ and 0−, which are represented in the temporal parameterization of xh(t) by
t = +∞ and −∞, and Σt be a neighborhood of Γ0 \ (Σ+ ∪ Σ−) (see Fig. 1). See
Section 2 for more details. This theorem means that under conditions (B1)-(B3) the
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0− 0 +Γ

Σ− Σ+
Σ t

Γ loc

0

Figure 1. Local Riemann surface Γloc and its covering {Σ±,Σt}.

VE (1.2) is integrable in the meaning of differential Galois theory if condition (C)
holds. The statement of Theorem 1.1 holds for general systems, especially even
if the homoclinic orbit is asymmetric in (1.1). It was proved in Part I, where
instead of such conditions as (B2) and (B3) the existence of a two-dimensional
invariant manifold containing xh(t) was assumed. Conditions (B2) and (B3) with
appropriate modifications also hold under the restricted assumption. We give simple
conditions guaranteeing (B2) and (B3) under condition (B1) in the general setting.
See Proposition 2.4. As stated below (see also Part I), condition (C) is a necessary
and sufficient condition for the occurrence of some bifurcations of the homoclinic
orbit under certain nondegenerate conditions.

Secondly, we extend the Melnikov method of Part I to reversible systems and
obtain some theorems on saddle-node, transcritical and pitchfork bifurcations of
symmetric homoclinic orbits. In particular, it is shown without the restriction of
n = 2 that if and only if condition (C) holds and no further linearly independent
bounded solution to the VE (1.2) exists, then saddle-node, transcritical or pitch-
fork bifurcations of symmetric homoclinic orbits occur under some nondegenerate
conditions. We emphasize that our result is not an immediate extension of Part I:
The reversibility of the systems as well as their symmetry is well used to detect
codimension-one bifurcations of symmetric homoclinic orbits. So bifurcations of
symmetric homoclinic orbits in reversible systems are proven to be of codimension-
one, again. We also illustrate our theory for a four-dimensional system. We perform
numerical computations using the computer tool AUTO [3], and demonstrate the use-
fulness and validity of the theoretical results comparing them with the numerical
ones.

The outline of the paper is as follows: In Section 2 we give a proof of The-
orem 1.1 in a form applicable to general four-dimensional systems discussed in
Part I. In Section 3 we extend the Melnikov method and obtain analytic conditions
for bifurcations of symmetric homoclinic orbits. Finally, our theory is illustrated
for the example along with numerical results in Section 4.

2. Algebraic Condition

In this section we restrict ourselves to the case of n = 2 and give a proof of
Theorem 1.1 in a form applicable to general systems stated above, i.e., without
assumptions (R1)-(R4). We first recall Lemma 2.1 of Part I in our setting.

Lemma 2.1. Under condition (B1), there exist a fundamental matrix Φ(t) =
(ϕ1(t), . . . , ϕ4(t)) of (1.2) and a permutation σ on four symbols {1, 2, 3, 4} such
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that

ϕj(t)t
−kj e−λ̃jt = O(1) as t→ +∞,

ϕj(t)t
−kσ(j)e−λ̃σ(j)t = O(1) as t→ −∞,

where kj = 0 or 1, j = 1-4.

We now assume that the hypotheses of Theorem 1.1 hold along with condi-
tion (C) and that λ− = λ̃1(< 0) and λ+ = λ̃4(> 0) for simplicity since the other
cases can be treated similarly. We regard the VE (1.2) as a differential equation
defined on a neighborhood of R in C, as stated in Section 1. From (1.3) in (B3) we
easily obtain the following.

Lemma 2.2. We have

ϕ1(t) =

{

λ−eλ−t h′+(e
λ−t) for Re t > 0;

λ+e
λ+t h′−(e

λ+t) for Re t < 0,

in U , where h′±(z) represent the derivatives of h±(z).

Let UR denote a neighborhood of R∪{∞} in the Riemann sphere P1 = C∪{∞}
and let Γ = {xh(t) | t ∈ UR}. Introducing two points 0+ and 0− for the double
point x = 0, we desingularize the curve Γ0 = {x = xh(t) | t ∈ R} ∪ {0} on Γ.
Here the points 0+ and 0− are represented in the temporal parameterization by
t = +∞ and −∞, respectively. Let Σ± be neighborhoods of 0± on Γ, and take a
sufficiently narrow, simply connected neighborhood Σt of Γ0 \ (Σ+ ∪ Σ−). We set
Γloc = Σ− ∪ Σt ∪ Σ+. See Fig. 1. Using the expression (1.3), we introduce three
charts on the Riemann surface Γloc: a chart Σ+ (resp. Σ−) near 0+ (resp. near
0−) with coordinates z = eλ−t (resp. z = eλ+t), and a chart Σt bridging them with
a coordinate t. The transformed VE becomes

dξ

dz
=

1

λ∓z
Dxf(h±(z); 0) ξ

in the charts Σ± while it has the same form in the chart Σt as the original one. We
take a sufficiently small surface as Γloc such that it contains no other singularity
except z = 0 in Σ±. We easily see that Dxf(h±(z); 0) are analytic in Σ± to obtain
the following lemma.

Lemma 2.3. The singularities of the transformed VE for (1.2) at z = 0 in Σ± are
regular. Thus, the transformed VE is Fuchsian on Γloc.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We first see that Φ(λ−1
∓ log z) in Σ± is a fundamental matrix

of the transformed VE. So the 4 × 4 monodromy matrices M± along small circles
of radius ε > 0 centered at z = 0 in Σ± are computed as

M± = Φ(λ−1
∓ log ε)−1Φ(λ−1

∓ (log ε+ 2πi)).

Let ej denote the vector of which the j-th component is one and the others are zero
for j = 1-4. Since ϕ1(t) = Φ(t)e1, it follows from Lemma 2.2 that

M±e1 = e1.

To prove the theorem, we only have to show that M± are simultaneously triangu-
larizable, since by Corollary 3.5 of Part I the differential Galois group is triangu-
larizable if so.
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Suppose that λ̃1 6= λ̃2 and λ̃3 6= λ̃4. Then the Jacobian matrix Dxf(0; 0) is
diagonalizable, so that by Lemma 2.1 and condition (C)

ϕ2(λ
−1
− log z) = a1+(z)z + a2+(z)z

λ̃2/λ− ,

ϕ2(λ
−1
+ log z) = a1−(z)z + a2−(z)z

λ̃3/λ̃+

(2.1)

for |z| ≪ 1, where aj±, j = 1, 2, are certain analytic functions. Hence,

M±e2 ∈ span{e1, e2}. (2.2)

Moreover, since the first equations of (1.4) and (1.5) in (B3) hold, there exists
v ∈ R4 such that

M±v ∈ span{v, e1, e2}. (2.3)

Thus, M± are simultaneously triangularizable.

Next assume that λ̃1 = λ̃2 but λ̃3 6= λ̃4. If the eigenvalue λ̃1 = λ̃2 is of geometric
multiplicity two, then we can prove that M± are simultaneously triangularizable
as in the above case. So we assume that it is of geometric multiplicity one and
algebraic multiplicity two. Instead of the first equation of (2.1) we have

ϕ2(λ
−1
− log z) = a1+(z)z + a2+(z)z log z

in |z| ≪ 1, so that Eq. (2.2) holds. Moreover, even if not the first but second
equation in (1.4) holds, there exists v ∈ R4 satisfying (2.3) as above. Hence,M± are
simultaneously triangularizable. Similarly, we can show thatM± are simultaneously

triangularizable when λ̃3 = λ̃4 but λ̃1 6= λ̃2.
Finally, assume that λ̃1 = λ̃2 and λ̃3 = λ̃4. If the eigenvalue λ̃1 = λ̃2 and/or λ̃3 =

λ̃4 is of geometric multiplicity two, then we can prove that M± are simultaneously
triangularizable as in the above two cases. So we assume that they are of geometric
multiplicity one and algebraic multiplicity two. Instead of (2.1) we have

ϕ2(λ
−1
− log z) = a1+(z)z + a2+(z)z log z,

ϕ2(λ
−1
+ log z) = a1−(z)z + a2−(z)z log z

in |z| ≪ 1, so that Eq. (2.2) holds. even if not the first but second equation in (1.4)
holds, there exists v ∈ R4 satisfying (2.3) as above. Hence, M± are simultaneously
triangularizable. �

At the end of this section we give simple conditions guaranteeing (B2) and (B3)
under condition (B1).

Proposition 2.4. Under condition (B1), conditions (B2) and (B3) hold if one of
the following conditions holds:

(i) There exists a two-dimensional analytic invariant manifold M containing x =
0 and xh(t);

(ii) As well as σ(3) = 2 and k2, k3 = 0, we can take ϕ1(t) = ẋh(t) with σ(1) = 4
and k1, k4 = 0 or condition (B2) holds.

Proof. First, assume condition (i). We recall from Part I that the VE (1.2) can be
rewritten in certain coordinates (χ, η) ∈ R2 × R2 as

(

χ̇

η̇

)

=

(

Aχ(x
h(t)) Ac(x

h(t))
0 Aη(x

h(t))

)(

χ

η

)

,
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where Aχ(x), Ac(x), Aη(x) are analytic 2× 2 matrix functions of x ∈ R4, and that
the tangent space of M is given by η = 0. See Section 4.1 (especially, Eq. (32))
of Part I. Especially, Aχ(0) and Aη(0) have positive and negative eigenvalues, say

λ̃1 < 0 < λ̃3 and λ̃2 < 0 < λ̃4. Hence, ẋ
h(t) corresponds to a solution to

χ̇ = Aχ(x
h(t))χ, (2.4)

so that condition (B2) holds. Equation (2.4) also has a solution satisfying

χ(t)e−λ̃3t = O(1) as t→ +∞,

χ(t)e−λ̃1t = O(1) as t→ −∞,

which mean that

χ(λ̃−1
1 log z) = a+(z)z

λ̃3/λ̃1 + b+(z)z,

χ(λ̃−1
3 log z) = a−(z)z

λ̃1/λ̃3 + b−(z)z

for |z| ≪ 1, where a±(z) and b±(z) are certain analytic functions with a±(0) 6= 0.
This means condition (B3). Similar arguments can apply even if the eigenvalues of

Aχ(0) and Aη(0) are not λ̃1, λ̃3 and λ̃2, λ̃4, respectively.
Next, assume condition (ii). If condition (B2) holds, then there exists a solution

to the VE (1.2) such that

ϕ3(t)e
−λ̃3t = O(1) as t→ +∞,

ϕ3(t)e
−λ̃2t = O(1) as t→ −∞,

which mean condition (B3). On the other hand, if ϕ1(t) = ẋh(t) with σ(1) = 4 and
k1, k4 = 0, then

ẋh(t)e−λ̃1t = O(1) as t→ +∞,

ẋh(t)e−λ̃4t = O(1) as t→ −∞,

which mean condition (B2) with λ− = λ̃1 and λ+ = λ̃4. Thus, we complete the
proof. �

3. Analytic Conditions

In this section we consider the general case of n ≥ 2 and extend the Melnikov
method of Part I to reversible systems under assumptions (R1)-(R4). Here we
restrict to R the domain on which the VE (1.2) is defined.

3.1. Extension of Melnikov’s method. Consider the general case of n ≥ 2 and
assume (R1)-(R4). By assumption (R1) there exists a splitting R2n = Fix(R) ⊕
Fix(−R). So we choose a scalar product 〈·, ·〉 in R2n such that

Fix(−R) = Fix(R)⊥.

Since f(Rx; 0) +Rf(x; 0) = 0, we have

Dxf(x
h(t); 0)R+RDxf(x

h(t); 0) = 0. (3.1)

It follows from (3.1) that if ξ(t) is a solution to (1.2), then so are ±Rξ(−t) as well
as −ξ(t). For (1.2), we also say that a solution ξ(t) is symmetric and antisymmetric
if ξ(t) = Rξ(−t) and ξ(t) = −Rξ(−t), respectively, and show that it is symmetric
and antisymmetric if and only if it intersects the spaces Fix(R) and Fix(−R) =
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Fix(R)⊥, respectively, at t = 0. We easily see that ξ = ẋh(t) is antisymmetric since
xh(t) = Rxh(−t) so that

ẋh(t) = −Rẋh(−t).
Here we also assume the following.

(R5) Let n0 < 2n be a positive integer. The VE (1.2) has just n0 linearly inde-
pendent bounded solutions, ξ = ϕ1(t) (= ẋh(t)), ϕ2(t), . . . , ϕn0(t), such that
ϕj(0) ∈ Fix(R) for j = 2, . . . , n0. If n0 = 1, then there is no bounded
solution that is linearly independent of ξ = ẋh(t).

Here by abuse of notation ϕj(t), j = 1, . . . , 2n, are different from those of
Lemma 2.1 (such abuse of notation was used in Part I without mentioning). Note
that ϕ1(0) = ẋh(0) ∈ Fix(−R) = Fix(R)⊥. Thus, ϕ2(t), . . . , ϕn0(t) are symmetric
but ϕ1(t) is antisymmetric. Using Lemma 2.1 of Part I, under assumptions (R1)-
(R5), we can take other linearly independent solutions ϕj(t), j = n0 + 1, . . . , n, to
the VE (1.2) than those given in (R5) as follows.

Lemma 3.1. There exist linearly independent solutions ϕj(t), j = 1, . . . , 2n, to
(1.2) such that they satisfy the following conditions:

lim
t→+∞

|ϕj(t)| = 0, lim
t→−∞

|ϕj(t)| = ∞ for j = n0 + 1, . . . , n;

lim
t→±∞

|ϕj(t)| = ∞, ϕj(0) ∈ Fix(R) for j = n+ 1;

lim
t→±∞

|ϕj(t)| = ∞, ϕj(0) ∈ Fix(−R) for j = n+ 2, . . . , n+ n0;

lim
t→+∞

|ϕj(t)| = ∞, lim
t→−∞

|ϕj(t)| = 0 for j = n+ n0 + 1, . . . , 2n.

(3.2)

Here ϕj(t), j = 1, . . . , n0, are given in (R5).

Proof. It follows from Lemma 2.1 of Part I that there are linearly independent solu-
tions ϕj(t), j = n0 +1, . . . , n+n0, to (1.2) such that they are linearly independent
of ϕj(t), j = 1, . . . , n0, and satisfy the first, second and third conditions in (3.2)
except that ϕj(0) ∈ Fix(R) or Fix(−R) for j = n0 +1, . . . , n+ n0. Note that other
linearly independent solutions with ξ(0) ∈ Fix(R) than ϕj(t), j = 2, . . . , n0, do not
converge to 0 as t→ +∞ or −∞. Let

ϕn+j(t) = Rϕj(−t), j = n0 + 1, . . . , n. (3.3)

We easily see that they satisfy the fourth condition in (3.2) and ϕj(t), j = 1, . . . , 2n
are linearly independent.

Let ξ = ϕ(t) be a solution to (1.2). If ϕ(0) 6∈ Fix(−R) and ϕ(0) 6∈ Fix(R), then
ξ(t) = ϕ(t) + Rϕ(−t) and ξ(t) = ϕ(t) − Rϕ(−t) satisfy ξ(0) ∈ Fix(R) and ξ(0) ∈
Fix(−R), respectively. Hence, we choose ϕj(t), j = n + 1, . . . , n + n0, such that
ϕj(0) ∈ Fix(R)∪Fix(−R). Moreover, the subspace spanned by ϕj(0) and ϕn+j(0),
j = n0 + 1, . . . , n, intersects each of Fix(R) and Fix(−R) in (n − n0)-dimensional
subspaces. Thus, one of ϕj(t), j = n + 1, . . . , n + n0, is contained in Fix(R),
and the others are contained in Fix(−R) since ϕ1(0) ∈ Fix(−R), ϕj(0) ∈ Fix(R),
j = 2, . . . , n0, and dimFix(R) = dimFix(−R) = n. This completes the proof. �

Let Φ(t) = (ϕ1(t), . . . , ϕ2n(t)). Then Φ(t) is a fundamental matrix to (1.2).
Define ψj(t), j = 1, . . . , 2n, by

〈ψj(t), ϕk(t)〉 = δjk, j, k = 1, . . . , 2n, (3.4)
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where δjk is Kronecker’s delta. The functions ψj(t), j = 1, . . . , n, can be obtained
by the formula Ψ(t) = (Φ∗(t))−1, where Ψ(t) = (ψ1(t), . . . , ψn(t)) and Φ∗(t) is the
transpose matrix of Φ(t). It immediately follows from (R5) and (3.2)-(3.4) that

lim
t→±∞

|ψj(t)| = ∞, ψj(0) ∈ Fix(−R∗) for j = 1;

lim
t→±∞

|ψj(t)| = ∞, ψj(0) ∈ Fix(R∗) for j = 2, . . . , n0;

lim
t→+∞

|ψj(t)| = ∞, lim
t→−∞

|ψj(t)| = 0 for j = n0 + 1, . . . , n;

lim
t→±∞

|ψj(t)| = 0, ψj(0) ∈ Fix(R∗) for j = n+ 1;

lim
t→±∞

|ψj(t)| = 0, ψj(0) ∈ Fix(−R∗) for j = n+ 2, . . . , n+ n0;

lim
t→∞

|ψj(t)| = 0, lim
t→−∞

|ψj(t)| = ∞ for j = n+ n0 + 1, . . . , 2n

and

ψn+j(t) = R∗ψj(−t), j = n0 + 1, . . . , n. (3.5)

Moreover, Ψ(t) is a fundamental matrix to the adjoint equation

ξ̇ = −Dxf(x
h(t); 0)∗ξ. (3.6)

See Section 2.1 of Part I. Note that if ξ(t) is a solution to (3.6), then so are±R∗ξ(−t)
as well as −ξ(t).

As in Part I, we look for a symmetric homoclinic orbit of the form

x = xh(t) +

n0−1
∑

j=1

αjϕj+1(t) + O(
√

|α|4 + |µ|2) (3.7)

satisfying x(0) ∈ Fix(R) in (1.1) when µ 6= 0, where α = (α1, . . . , αn0−1). Here the
O(α)-terms are eliminated in (3.7) if n0 = 1. Let κ be a positive real number such
that κ < 1

4λ1, and define two Banach spaces as

Ẑ
0 = {z ∈ C0(R,Rn) | sup

t≥0
|z(t)|eκ|t| <∞, z(t) = −Rz(−t)},

Ẑ
1 = {z ∈ C1(R,Rn) | sup

t≥0
|z(t)|eκ|t|, sup

t≥0
|ż(t)|eκ|t| <∞, z(t) = Rz(−t)},

where the maximum of the suprema is taken as a norm of each space. We have the
following result as in Lemma 2.3 of Part I.

Lemma 3.2. The nonhomogeneous VE,

ξ̇ = Dxf(x
h(t); 0)ξ + η(t) (3.8)

with η ∈ Ẑ 0, has a solution in Ẑ 1 if and only if
∫ ∞

−∞
〈ψn+j(t), η(t)〉 dt = 0, j = 2, . . . , n0. (3.9)

Moreover, if condition (3.9) holds, then there exists a unique solution to (3.8) sat-

isfying 〈ψj(0), ξ(0)〉 = 0, j = 1, . . . , n0, in Ẑ 1.

Proof. As in Lemma 2.2 of Part I, we see that if z ∈ Ẑ 1, then
∫ ∞

−∞
〈ψn+j(t), ż(t)−Dxf(x

h(t); 0)z(t)〉dt = 0, j = 2, . . . , n0. (3.10)
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Hence, if Eq. (3.8) has a solution ξ ∈ Ẑ 1, then
∫ ∞

−∞
〈ψn+j(t), η(t)〉dt =

∫ ∞

−∞
〈ψn+j(t), ξ̇(t)−Dxf(x

h(t); 0)ξ(t)〉dt = 0

for j = 2, . . . , n0. Thus, the necessity of the first part is proven.

Assume that condition (3.9) holds. We easily see that for η ∈ Ẑ 0

∫ 0

−∞
〈ψn+j(t), η(t)〉dt =

∫ 0

−∞
〈−R∗ψn+j(−t),−Rη(−t)〉dt

=

∫ ∞

0

〈ψn+j(t), η(t)〉dt = 0, j = 2, . . . , n0,

while
∫ 0

−∞
〈ψn+1(t), η(t)〉dt =

∫ 0

−∞
〈R∗ψn+1(−t),−Rη(−t)〉dt

=−
∫ ∞

0

〈ψn+1(t), η(t)〉dt.

Hence,

ξ̂(t) =





n0
∑

j=1

+

n+n0
∑

j=n+2



ϕj(t)

∫ t

0

〈ψj(s), η(s)〉ds

+

n+1
∑

j=n0+1

ϕj(t)

∫ t

−∞
〈ψj(s), η(s)〉ds −

2n
∑

j=n+n0+1

ϕj(t)

∫ ∞

t

〈ψj(s), η(s)〉ds

is a solution to (3.8) and contained in Ẑ 1 since by (3.3) and (3.5)

ξ̂(0) =

n+1
∑

j=n0+1

ϕj(0)

∫ 0

−∞
〈ψj(s), η(s)〉ds

−
2n
∑

j=n+n0+1

ϕj(0)

∫ ∞

0

〈ψj(s), η(s)〉ds

=

n+1
∑

j=n0+1

ϕj(0)

∫ 0

−∞
〈ψj(s), η(s)〉ds

+

n
∑

j=n0+1

Rϕj(0)

∫ ∞

0

〈R∗ψj(−s), Rη(−s)〉ds

=
n
∑

j=n0+1

(ϕj(0) +Rϕj(0))

∫ 0

−∞
〈ψj(s), η(s)〉ds

+ ϕn+1(0)

∫ 0

−∞
〈ψn+1(s), η(s)〉ds ∈ Fix(R).

The sufficiency of the first part is thus proven.

We turn to the second part. Obviously, 〈ψj(0), ξ̂(0)〉 = 0, j = 1, . . . , n0. In

addition, if ξ = ξ(t) is a solution to (3.8), then so is ξ = Rξ(−t), and if ξ(t) ∈ Ẑ 1,
then ξ(0) ∈ Fix(R) so that 〈ψ1(0), ξ(0)〉 = 0 by Fix(−R)⊥ = Fix(R). Moreover,

any solution to (3.8) is represented as ξ(t) = ξ̂(t) +
∑2n

j=1 djϕj(t), where dj ∈ R,
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j = 1, . . . , n, are constants, but one has dj = 0, j = 1, . . . , 2n, if it is contained in

Ẑ 1and satisfies 〈ψj(0), ξ(0))〉 = 0, j = 2, . . . , n0. This completes the proof. �

Let

Ẑ
1
0 = {z ∈ Ẑ

1 | 〈ψj(0), z(0)〉 = 0, j = 1, . . . , n0} ⊂ Ẑ
1,

which is also a Banach space. Define a differentiable function F : Ẑ 1
0 ×Rn0−1×R →

Ẑ 0 as

F (z;α, µ)(t) =
d

dt



xh(t) + z(t) +

n0−1
∑

j=1

αjϕj+1(t)





− f



xh(t) + z(t) +

n0−1
∑

j=1

αjϕj+1(t);µ



 . (3.11)

Note that for z ∈ Ẑ 1
0

RF (z;α, µ)(−t) =



Rẋh(−t) +Rż(−t) +
n0−1
∑

j=1

αjRϕ̇j+1(−t)





−Rf



xh(−t) + z(−t) +
n0−1
∑

j=1

αjϕj+1(−t);µ





=−



ẋh(t) + ż(t) +

n0−1
∑

j=1

αjϕ̇j+1(t)





+ f



xh(t) + z(t) +

n0−1
∑

j=1

αjϕj+1(t);µ



 = −F (z;α, µ)(t).

A solution z ∈ Ẑ 1
0 to

F (z;α, µ) = 0

for (α, µ) fixed gives a symmetric homoclinic orbit to x = 0.
We now proceed as in Section 2.1 of Part I with taking the reversibility of (1.1)

into account. Define a projection Π : Ẑ 0 → Ẑ 1 by

Πz(t) = q(t)

n0
∑

j=2

(
∫ ∞

−∞
〈ψn+j(τ), z(τ)〉dτ

)

ϕn+j(t),

where q : R → R is a continuous function satisfying

sup
t

|q(t)|eκ|t| <∞, q(t) = q(−t) and

∫ ∞

−∞
q(t)dt = 1. (3.12)

Note that for z ∈ Ẑ 0
∫ ∞

−∞
〈ψn+1(τ), z(τ)〉dτ = 0.

Using Lemma 3.2 and the implicit function theorem, we can show that there are a

neighborhood U of (α, µ) = (0, 0) and a differentiable function z̄ : U → Ẑ 1
0 such

that z̄(0, 0) = 0 and

(id−Π)F (z̄(α, µ);α, µ) = 0 (3.13)
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α

µ

0

Figure 2. Saddle-node bifurcation: Supercritical case is plotted.

for (α, µ) ∈ U , where “id” represents the identity.
Let

F̄j(α, µ) =

∫ ∞

−∞
〈ψn+j+1(t), F (z̄(α, µ);α, µ)(t)〉dt, j = 1, . . . , n0 − 1. (3.14)

We can prove the following theorem as in Theorem 2.4 of Part I (see also Theorem 5
of [4]).

Theorem 3.3. Under assumptions (R1)-(R5) with n0 ≥ 1, suppose that F̄ (0; 0) =
0. Then for each (α, µ) sufficiently close to (0, 0) Eq. (1.1) admits a unique sym-
metric homoclinic orbit to the origin of the form (3.7)

Henceforth we set m = 1 and apply Theorem 3.3 to obtain persistence and
bifurcation theorems for symmetric homoclinic orbits in (1.1) with n ≥ 2, as in
Sections 2.2 and 2.3 of Part I.

3.2. Persistence and bifurcations of symmetric homoclinic orbits. We first
assume that n0 = 1, which means that condition (C) does not hold. Since Πz =

0 ∈ Ẑ 0 for z ∈ Ẑ 0 and Eq. (3.13) has a solution z̄(µ) on a neighborhood U of
µ = 0, we immediately obtain the following result from the above argument, as in
Theorem 2.5 of Part I.

Theorem 3.4. Under assumptions (R1)-(R5) with n0 = 1, there exists a symmetric
homoclinic orbit on some open interval I ⊂ R including µ = 0.

Remark 3.5. Theorem 3.4 implies that if condition (C) does not hold, then the
homoclinic orbit xh(t) persists, i.e., no bifurcation occurs, as stated in Section 1.

We now assume that n0 = 2, which means that condition (C) holds and no
further linearly independent solution to the VE (1.2) exists. Define two constants
a2, b2 as

a2 =

∫ ∞

−∞
〈ψn+2(t),Dµf(x

h(t); 0)〉dt,

b2 =
1

2

∫ ∞

−∞
〈ψn+2(t),D

2
xf(x

h(t); 0)(ϕ2(t), ϕ2(t))〉dt
(3.15)

(cf. Eq. (19) of Part I). We obtain the following result as in Theorem 2.7 of Part I.
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α

µ

0

Figure 3. Transcritical bifurcation.

Theorem 3.6. Under assumptions (R1)-(R5) with n0 = 2, suppose that a2, b2 6= 0.
Then for some open interval I including µ = 0 there exists a differentiable function
φ : I → R with φ(0) = 0, φ′(0) = 0 and φ′′(0) 6= 0, such that a symmetric
homoclinic orbit of the form (3.7) exists for µ = φ(α), i.e., a saddle-node bifurcation
of symmetric homoclinic orbits occurs at µ = 0. Moreover, it is supercritical and
subcritical if a2b2 < 0 and > 0, respectively. See Fig. 2.

We next assume the following instead of (R4).

(R4’) The equilibrium x = 0 has a symmetric homoclinic orbit xh(t;µ) in an open
interval I ∋ µ = 0. Moreover, 〈ψn+2(t), ẋ

h(t;µ)〉 = 0 for any t ∈ R and
µ ∈ I.

Under assumption (R4’) we have

Dµ〈ψn+2(t), ẋ
h(t;µ)〉

∣

∣

∣

∣

µ=0

=〈ψn+2(t),Dµẋ
h(t; 0)〉 = 〈ψn+2(t),Dµf(x

h(t; 0); 0)〉,

so that

a2 =

∫ ∞

−∞
〈ψn+2(t),Dµf(x

h(t; 0); 0)〉dt = 0. (3.16)

In this situation we cannot apply Theorem 3.6. Let ξ = ξµ(t) be the unique solution
to

ξ̇ = Dxf(x
h(t); 0)ξ + (id−Π)Dµf(x

h(t); 0) (3.17)

in Ẑ 1
0 , and define

ā2 =

∫ ∞

−∞
〈ψn+2(t),DµDxf(x

h(t); 0)ϕ2(t) + D2
xf(x

h(t); 0)(ξµ(t), ϕ2(t))〉dt, (3.18)

where xh(t) = xh(t; 0) (cf. Eq. (20) of Part I).

Theorem 3.7. Under assumptions (R1)-(R3), (R4’) and (R5) with n0 = 2, suppose
that ā2, b2 6= 0. Then for some open interval I including µ = 0 there exists a
differentiable function φ : I → R with φ(0) = 0 and φ′(0) 6= 0, such that a different
symmetric homoclinic orbit of the form (3.7) than xh(t;µ) exists for α = φ(µ) with
µ 6= 0, i.e., a transcritical bifurcation of symmetric homoclinic orbits occurs at
µ = 0. See Fig. 3.
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Proof. Differentiating (3.13) with respect to α and using (3.11), we have

Dα(id−Π)F (z̄; 0, 0) =
d

dt
Dαz̄ −Dxf(x

h(t); 0)Dαz̄ = 0

at (α, µ) = (0, 0), i.e., Dαz̄(0; 0)(t) is a solution of (1.2), so that Dαz̄(0; 0)(t) = 0
by Lemma 3.2. Using this fact, (3.10) and (3.16), we compute (3.14) as

F̄1(α, µ) =

∫ ∞

−∞
〈ψn+2(t),−DµDxf(x

h(t); 0)ϕ2(t)µ

− 1
2α

2D2
xf(x

h(t); 0)(ϕ2(t), ϕ2(t))〉dt + O(
√

α6 + |µ|4)
=− ā2αµ− bjα

2 + O(
√

α6 + |µ|4),
as in the proof of Theorem 2.7 of Part I. Since F̄1(0, 0) = 0 and DµF̄1(0, 0) 6= 0,
we apply the implicit function theorem to show that there exist an open interval
I (∋ 0) and a differentiable function φ̄ : I → R such that F̄ (φ̄(α), α) = 0 for α ∈ I

with φ̄(0) = 0 and φ̄′(0) 6= 0. This implies the result along with Theorem 3.3. �

Remark 3.8. For the class of systems discussed in Part I, including Hamiltonian
systems, we can prove a result similar to Theorem 3.7.

Finally we consider the Z2-equivalent or equivariant case for n0 = 2, and assume
the following.

(R6) Eq. (1.1) is Z2-equivalent or equivariant, i.e., there exists an n× n matrix
S such that S2 = idn and Sf(x;µ) = f(Sx;µ).

See Section 2.3 of Part I or Section 7.4 of [6] for more details on Z2-equivalent
or equivariant systems. Especially, if x = x̄(t) is a solution to (1.1), then so is
x = Sx̄(t). We say that the pair x̄(t) and Sx̄(t) are S-conjugate if x̄(t) 6= Sx̄(t).
The space R2n can be decomposed into a direct sum as

R
2n = X+ ⊕X−,

where Sx = x for x ∈ X+ and Sx = −x for x ∈ X−. We also need the following
assumption.

(R7) We have X− = (X+)⊥. For every t ∈ R, xh(t), ψn+1(t) ∈ X+ and
ϕ2(t), ψn+2(t) ∈ X−.

In Part I, we implicitly assumed that X− = (X+)⊥. Recall that the scalar product
in R2n was already chosen such that Fix(−R) = Fix(R)⊥.

Assumption (R7) also means that ϕ1(t) ∈ X+. Moreover, a symmetric homo-
clinic orbit of the form (3.7) has an S-conjugate counterpart for α 6= 0 since it is
not included in X+. In this situation, we have a2, b2 = 0 in Theorems 3.6 and 3.7,
as in Lemma 2.8 of Part I, and cannot apply these theorems.

Let ξ = ξα(t) be a unique solution to

ξ̇ = Dxf(x
h(t); 0)ξ +

1

2
(id−Π)D2

xf(x
h(t); 0)(ϕ2(t), ϕ2(t)) (3.19)

in Ẑ 1
0 , and define

b̄2 =

∫ ∞

−∞

〈

ψn+2(t),
1

6
D3

xf(x
h(t); 0)(ϕ2(t), ϕ2(t), ϕ2(t))

+ D2
xf(x

h(t); 0)(ξα(t), ϕ2(t))
〉

dt (3.20)

(cf. Eq. (20) of Part I). We obtain the following result as in Theorem 2.9 of Part I.
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α

µ

0

Figure 4. Pitchfork bifurcation: Supercritical case is plotted.

Theorem 3.9. Under assumptions (R1)-(R7) with n0 = 2, suppose that ā2, b̄2 6= 0.
Then for j = 1, 2 there exist an open interval Ij ∋ 0 and a differentiable function
φj : Ij → R with φj(0) = 0, φ′2(0) = 0, φ′′2 (0) 6= 0 and φ2(α) = φ2(−α) for
α ∈ I2, such that a symmetric homoclinic orbit exists on X+ for µ = φ1(µ2) and
an S-conjugate pair of symmetric homoclinic orbits exist for µ = φ2(α): a pitchfork
bifurcation of homoclinic orbits occurs. Moreover, it is supercritical and subcritical
if ā2b̄2 < 0 and > 0, respectively. See Fig. 4.

From Theorems 3.6, 3.7 and 3.9 we see that if condition (C) holds, then a saddle-
node, transcritical or pitchfork bifurcation occurs under some nondegenerate con-
dition, as stated in Section 1.

4. Example

We now illustrate our theory for the four-dimensional system

ẋ1 = x3, ẋ2 = x4,

ẋ3 = x1 − (x21 + 8x22)x1 − β2x2,

ẋ4 = sx2 − β1(x
2
1 + 2x22)x2 − β2x1 − β3x

2
2,

(4.1)

where s > 0 and βj , j = 1-4, are constants. Similar systems were treated in Part I
and [12–14] (although s < 0 in [13]). Eq. (4.1) is reversible with the involution

R : (x1, x2, x3, x4) 7→ (x1, x2,−x3,−x4),
for which Fix(R) = {(x1, x2, x3, x4) ∈ R4 | x3, x4 = 0}, and has an equilibrium at
the origin x = 0. Thus, assumptions (R1) and (R2) hold. The Jacobian matrix
of the right hand side of (4.1) at x = 0 has two pairs of positive and negative
eigenvalues with the same absolute values so that the origin x = 0 is a hyperbolic
saddle. Thus, assumption (R3) holds.

Suppose that β2 = 0. The (x1, x3)-plane is invariant under the flow of (4.1) and
there exist a pair of symmetric homoclinic orbits

xh±(t) = (±
√
2 secht, 0,∓

√
2 sech t tanh t, 0)

to x = 0. Thus, assumption (R4) holds as well as conditions (B2) and (B3) by
Proposition 2.4. Henceforth we only treat the homoclinic orbit xh+(t) for simplifi-

cation and denote it by xh(t). Note that a pair of symmetric homoclinic orbits also



16 KAZUYUKI YAGASAKI

exist on the (x2, x4)-plane. The VE (1.2) around x = xh(t) for (4.1) is given by

ξ̇1 = ξ3, ξ̇3 = (1− 6 sech2t)ξ1, (4.2a)

ξ̇2 = ξ4, ξ̇4 = (s− 2β1 sech
2t)ξ2. (4.2b)

As discussed in Section 5 of Part I (see also [12]), Eq. (4.2b) has a bounded
symmetric solution, so that assumption (R5) holds with n0 = 2, if and only if

β1 =
(2
√
s+ 4ℓ+ 1)2 − 1

8
, ℓ ∈ N ∪ {0}, (4.3)

while Eq. (4.2a) always has a bounded solution corresponding to ξ = ẋh(t). The
bounded symmetric solution (ξ̄2(t), ξ̄4(t)) to (4.2b) is given by

ξ̄2(t) = sech
√
st

for ℓ = 0,

ξ̄2(t) = sech
√
st

(

1−
(√

s+
3

2

)

sech2t

)

for ℓ = 1,

ξ̄2(t) = sech
√
st

(

1− 2(
√
s+ 5)sech2t+

(√
s+

5

2

)(√
s+

7

2

)

sech4t

)

for ℓ = 2 and ξ̄4(t) = ˙̄ξ2(t) (see Appendix A of Part I). Note that Eq. (4.2b) has
an asymmetric bounded solution if the first equation (4.3) holds for ℓ ∈ 1

2N \ N.
Moreover, if condition (4.3) holds, then the differential Galois group of the VE given
by (4.2a) and (4.2b) is triangularizable. See Fig. 7 of Part I for the dependence of
β1 satisfying (4.3) on s (the definition of ℓ there is different from here: ℓ is replaced
with 2ℓ). When condition (4.3) holds, we have

ϕ2(t) = (0, ξ̄2(t), 0, ξ̄4(t))

and

ψ4(t) = (0,−ξ̄4(t), 0, ξ̄2(t)).
Fix the values of β1 and β3 6= 0 such that Eq. (4.3) holds. Take µ = β2 as a

control parameter. Eq. (3.15) become

a2 = −
∫ ∞

−∞
ξ̄2(t)x

h
1(t)dt, b2 = −β3

∫ ∞

−∞
ξ̄2(t)

3dt.

See Appendix A of Part I for analytic expressions of these integrals for ℓ = 0, 1, 2,
which correspond to ℓ = 0, 2, 4 there. Applying Theorem 3.6, we see that a saddle-
node bifurcation of symmetric homoclinic orbits occurs at β2 = 0 if a2b2 6= 0, which
holds for almost all values of s when β3 6= 0 and 0 ≤ ℓ ≤ 2.

We next assume that β2 = 0. Then assumption (R4’) holds. Take µ = β1
as a control parameter. Since Dµf(x

h(t); 0) = 0, the solution to (3.17) in Z̃ 1
0 is

ξβ1(t) = 0. Eq. (3.18) becomes

ā2 = −
∫ ∞

−∞
ξ̄2(t)

2xh1(t)
2dt < 0.

Applying Theorem 3.7, we see that a transcritical bifurcation of symmetric homo-
clinic orbits occurs at the values of β1 given by (4.3) if b2 6= 0.
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We next assume that β2, β3 = 0. Then Eq. (4.1) is Z2-equivariant with the
involution

S : (x1, x2, x3, x4) 7→ (x1,−x2, x3,−x4)

and assumptions (R6) and (R7) hold. In particular, X+ = {x2, x4 = 0} and
X− = {x1, x3 = 0}. Since

D2
xf(x

h(t); 0)(ϕ2(t), ϕ2(t)) = (0, 0, xh1(t)ξ̄2(t)
2, β2ξ̄2(t)

2)∗,

we write (3.20) as

b̄2 = −2β1

∫ ∞

−∞
xh1(t)ξ

α
1 (t)ξ̄2(t)

2dt− 2β1

∫ ∞

−∞
ξ̄2(t)

4dt, (4.4)

where ξα1 (t) is the first component of the solution to (3.19) in Z̃ 1
0 and given by

ξα1 (t) = ϕ11(t)

∫ t

0

ψ13(τ)x
h
1 (τ)ξ̄2(τ)

2dτ − ϕ31(t)

∫ ∞

t

ψ33(τ)x
h
1(τ)ξ̄2(τ)

2dτ,

and ϕjk(t) and ψjk(t) are the kth components of ϕj(t) and ψj(t), respectively (the
corresponding formula in Part I had a small error). We compute (4.4) as

b̄2 =

√
π Γ(2

√
s)

Γ(2
√
s+ 1

2 )

Pℓ(
√
s)

Qℓ(
√
s)
,

where

P0(x) =x(x
2 − x− 1),

P1(x) =145x6 + 530x5 + 115x4 − 1971x3 − 3502x2 − 2427x− 630,

P2(x) =27(16627x9 + 242984x8 + 1310501x7 + 2451387x6 − 4949646x5

− 15422381x4 − 76574432x3 − 429952220x2 − 49776200x− 12012000),

...

and

Q0(x) = 1, Qℓ(x) =

ℓ
∏

j=1

(x+ j)3
4ℓ
∏

j=1

(4x+ 2j − 1) for ℓ ≥ 1.

See Section 7 and Appendix B of [14] for derivation of these expressions. In par-
ticular, we see that b̄2 6= 0 except for a finite number of values of s > 0, for each
ℓ ≥ 0. Applying Theorem 3.9, we see that a pitchfork bifurcation of symmetric
homoclinic orbits occurs at the values of β1 given by (4.3) if b̄2 6= 0.

Finally we give numerical computations for (4.1). We take s = 2 so that
Eq. (4.3) gives β1 = 1.70710678 . . . for ℓ = 0, β1 = 7.5355339 . . . for ℓ = 1 and
β1 = 17.36396103 . . . for ℓ = 2 as the value of β1 for which assumption (R5) holds
with n0 = 2. To numerically compute symmetric homoclinic orbits, we used the
computer tool AUTO [3] to solve the bondary value problem of (4.1) with the bound-
ary conditions

Lsx(−T ) = 0, x(0) ∈ Fix(R),
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Figure 5. Bifurcation diagrams for s = 2 and β3 = 4: (a) ℓ = 0;
(b) ℓ = 1; (c) ℓ = 2. Here β2 is taken as a control parameter.
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Figure 6. Profiles of symmetric homoclinic orbits on the branches
for s = 2 and β3 = 4: (a1) and (a2) β2 = −0.1 and ℓ = 0; (b1) and
(b2) β2 = −0.05 and ℓ = 1; (c1) and (c2) β2 = −0.006 and ℓ = 2.
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Figure 7. Bifurcation diagrams for s = 2, β2 = 0 and β3 = 4: (a)
ℓ = 0; (b) ℓ = 1; (c) ℓ = 2. Here β1 is taken as a control parameter.

where T = 20 and Ls is the 2 × 4 matrix consisting of two row eigenvectors with
negative eigenvalues for the Jacobian matrix of (4.1) at the origin,









0 0 1 0
0 0 0 1
1 −β2 0 0

−β2 s 0 0









.

Figure 5 shows bifurcation diagrams for β3 = 4 when β1 is fixed and satisfies (4.3)
for ℓ = 0, 1, 2 and β2 is taken as a control parameter. In Fig. 5(c) the maximum and
minimum of the x2-component are plotted as the ordinate when x2(0) is positive
and negative, respectively. We observe that a saddle-node bifurcation occurs at
β2 = 0 while another saddle-node bifurcation occurs at a different value of β2.
The x2-components of symmetric homoclinic orbits born at the bifurcation point
β2 = 0 in Fig. 5 are plotted in Fig. 6. We also see that they have ℓ + 1 extreme
points like the corresponding bounded solutions to (4.2b) when β1 satisfies (4.3)
with ℓ = 0, 1, 2.

Figure 7 shows bifurcation diagrams for β2 = 0 and β3 = 4 when β1 is taken as a
control parameter. Note that there exists a branch of x2(= x4) = 0 for all values of
β1. We observe that a transcritical bifurcation occurs at β1 = 0 satisfying (4.3) for
ℓ = 0, 1, 2 while another bifurcation occurs at a value of β1 in Fig. 7(a): Eq. (4.1)
is Z2-equivariant with the involution

S′ : (x1, x2, x3, x4) 7→ (−x1, x2,−x3, x4)
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Figure 8. Profiles of symmetric homoclinic orbits on the branches
for s = 2, β2 = 0 and β3 = 4: (a1) β1 = 1.5 and ℓ = 0; (a2) β1 = 2
and ℓ = 0; (b1) β1 = 7.7 and ℓ = 1; (b2) β1 = 7.3 and ℓ = 1; (c1)
β1 = 17.3 and ℓ = 2; (c2) β1 = 17.4 and ℓ = 2.

and has a symmetric homoclinic orbit with (x1, x3) = (0, 0) for β2 = 0, and a
pitchfork bifurcation at which a pair of symmetric homoclinic orbits with (x1, x3) 6=
(0, 0) are born occurs there. The x2-components of symmetric homoclinic orbits
born at the bifurcation points in Fig. 7 are plotted in Fig. 8.

Figure 9 shows bifurcation diagrams for β2, β3 = 0 when β1 is taken as a control
parameter. Note that there exist a branch of x2(= x4) = 0 for all values of β1, and
a pair of branches of solutions which are symmetric about x2 = 0. We observe that
a pitchfork bifurcation occurs at values of β1 satisfying (4.3) for ℓ = 0, 1, 2. The
x2-components of symmetric homoclinic orbits born at the bifurcation in Fig. 9 are
also plotted in Fig. 10.
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