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Abstract

In this article we develop a general technique which takes a known
characterization of a property for weighted backward shifts and lifts
it up to a characterization of that property for a large class of opera-
tors on L

p(X). We call these operators “shift-like”. The properties of
interest include chaotic properties such as Li-Yorke chaos, hypercyclic-
ity, frequent hypercyclicity as well as properties related to hyperbolic
dynamics such as shadowing, expansivity and generalized hyperbol-
icity. Shift-like operators appear naturally as composition operators
on L

p(X) when the underlying space is a dissipative measure system.
In the process of proving the main theorem, we provide some results
concerning when a property is shared by a linear dynamical system
and its factors.

1 Introduction

Weighted shifts is an important class of operators in linear dynamics. It is
a tool for constructing examples and counterexamples as well as inspiring
new conjectures. Many dynamical properties are studied and characterized
for weighted shifts before the general theory of the dynamical property in
question reveals itself.
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A systematic study of composition operators on Lp(X) in the setting
of linear dynamics was initiated in [1, 7]. The motivation for the study of
composition operators is to have a concrete and large class of operators which
can be utilized as examples and counterexamples in linear dynamics. The
class of composition operators includes weighted shifts as a special case. It
also includes other large classes of operators, such as composition operators
induced by measures on odometers [10].

Let us briefly recall the composition operators on Lp(X), for 1 ≤ p < ∞.
We start with a σ-finite measure space (X,B, µ) and a bimeasurable invertible
map f : X → X such that the Radon-Nikodym derivative of µ◦f with respect
to µ is bounded below. Then, Tf : Lp(X) → Lp(X) defined by

Tf (ϕ) = ϕ ◦ f

is a well-defined bounded linear operator on Lp(X) known as the composition
operator.

For a general (X,B, µ, f, Tf) as above, Bayart, Pires and the second au-
thor [1] gave necessary and sufficient conditions on f that guarantee hyper-
cyclicity and mixing of Tf . Bernardes, Pires and the second author [7] gave
necessary and sufficient conditions on f that guarantee that Tf is Li-Yorke
chaotic. These are very general characterizations and, as a specific case,
when X = Z and f is the +1-map, they yield well-known characterizations
of hypercyclicity, mixing and Li-Yorke chaos for weighted backward shifts.

Unfortunately, the behaviors of frequent hypercyclicity and the shadowing
property in the setting of composition operators are complicated. This is
not unexpected as it took some time to complete the characterization of
frequent hypercyclicity even for weighted backward shifts. Using ideas of
Bayart and Ruzsa [3], the second author and Pires [13] gave a characterization
of frequently hypercyclic operators among composition operators on Lp(X)
when the measure system is dissipative and of bounded distortion.

In a parallel development concerning the shadowing property, Bernardes
and Messaoudi [9] gave a characterization of the shadowing property for the
class of weighted backward shifts. The current authors of this article [12]
lifted their result to the setting of composition operators where the measure
system is dissipative and of bounded distortion.

Motivated by these results, we develop a general method which takes a
characterization of a linear dynamical property for weighted backward shifts
and translates it into the setting of composition operators on Lp(X) where the
underlying system (X,B, µ, f) is a dissipative, measurable system of bounded
distortion.

Before stating the main result of the article, let us fix some notation and
terminology. Let (X,B, µ) be a σ-finite measure space and f : X → X be
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a bimeasurable invertible map such that the Radon-Nikodym derivatives of
µ ◦ f and µ ◦ f−1 with respect to µ are bounded below. In particular, this
implies that the composition operators Tf and Tf−1 are well-defined, invert-
ible, bounded linear operators with T−1

f = Tf−1 . We say that (X,B, µ, f)
is a dissipative system generated by W if W ∈ B, 0 < µ(W ) < ∞ and
X = ∪̇

+∞
k=−∞fk(W ), where the symbol ∪̇ denotes pairwise disjoint union (we

are slightly deviating from the usual definition of dissipative system, i.e.,
µ(W ) < ∞ is usually not required). Moreover, if there exists K > 0 such
that

1

K

µ(fk(W ))

µ(W )
≤

µ(fk(B))

µ(B)
≤ K

µ(fk(W ))

µ(W )
(♦)

for all k ∈ Z and all measurable B ⊆ W with µ(B) > 0, then we say
that (X,B, µ, f) is a dissipative system of bounded distortion generated by
W . We will call (X,B, µ, f, Tf) a dissipative composition dynamical system
of bounded distortion, generated by set W [12, Definition 2.6.3]. It is easy
to see a connection between such a system and weighted backward shifts.
Namely, if we let Bw be the bilateral weighted backward shift on ℓp(Z), with
the weight sequence

wk =

(

µ(fk−1(W ))

µ(fk(W ))

)

1

p

, (1)

then Bw is a linear factor of Tf in a natural way. More specifically, Γ :
Lp(X) → ℓp(Z), defined by

Γ(ϕ)(k) =
µ(fk(W ))

1

p

µ(W )

∫

W

ϕ ◦ fkdµ, (2)

shows that Bw is a linear factor of Tf [12, Lemma 4.2.3], i.e., the following
diagram commutes:

Lp(X) Lp(X)

ℓp(Z) ℓp(Z)

Tf

Γ Γ

Bw

We now state the main result of the paper.

Theorem M. The operator Tf has Property P, if and only if Bw has Prop-
erty P where Property P denotes one of: (1) Li-Yorke chaos; (2) hypercyclic-
ity; (3) mixing; (4) chaos; (5) frequent hypercyclicity; (6) expansivity; (7)
uniform expansivity; (8) the shadowing property.
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As the operator Tf of a dissipative composition dynamical system of
bounded distortion (X,B, µ, f, Tf) behaves similarly to shifts, we call these
types of operators shift-like.

We refer the reader to [12, 13] for basic definitions and a fuller discussion
of the relationship between weighted shifts, composition operators and the
role played by dissipativity and bounded distortion.

2 Preliminary Definitions

In this section we briefly recall basic definitions and terminology. Next to
the definitions, we provide references where one may find fuller and detailed
discussions concerning the treated concepts.

Let {wi}i∈Z be a bounded sequence of positive numbers. A weighted
backward shift with weights {wi}i∈Z is a bounded linear operatorBw : ℓp(Z) →
ℓp(Z) defined by Bw(x)(i) = wi+1xi+1. Moreover, if {wi}i∈Z is bounded away
from zero, then Bw is invertible.

Throughout the paper, we frequently use the composition operator rep-
resentation of the weighted backward shift Bw. More specifically, we have
the following proposition.

Proposition 2.1. Every weighted backward shift Bw is conjugate, by an
isometry, to the composition operator (Z,P(Z), ν, g, Tg), where

g(i) = i+ 1,

ν(0) = 1, ν(i) =







1

(w1 · · ·wi)p
, i > 0

(wi+1 · · ·w0)
p , i < 0.

Moreover, for every i ∈ Z,

wi =

(

ν(i− 1)

ν(i)

)
1

p

,

and when Bw is given by (1), we have

ν(i) =
µ(f i(W ))

µ(W )
.

Proof. That Tg is conjugate to Bw is witnessed by the isometry

x ∈ Lp(Z) 7→ {xi(ν(i))
1

p}i∈Z ∈ ℓp(Z)
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Let T : X → X be a bounded linear operator acting on a separable
Banach space X .

Definition 2.2. The operator T : X → X is said to be

• [4, Theorem 5] Li-Yorke chaotic if T admits an irregular vector, that is,
a vector x ∈ X such that limn→∞ ‖T n(x)‖ = 0 and limn→∞ ‖T n(x)‖ =
∞;

• hypercyclic if T admits a hypercyclic vector, i.e., if there exists x in
X such that {T n(x) : n ∈ N} is dense in X. Moreover if the set of
periodic points of T is dense in X, then T is said to be chaotic;

• topologically mixing if for any pair of non-empty open subsets U , V of
X, there is k0 ∈ N such that T k(U) ∩ V 6= ∅, for all k ≥ k0;

• frequently hypercyclic if T admits a frequently hypercyclic vector, i.e.,
a vector x ∈ X such that for each non-empty open subset U of X,

lim
N→∞

1

N
#{1 ≤ n ≤ N : T n(x) ∈ U} > 0.

The definition of Li-Yorke chaos stated above is equivalent to the standard
definition of Li-Yorke chaos ([4, 5]). We refer the reader to [2, 14] for further
information concerning the other definitions stated above.

Expansivity and the shadowing property play a fundamental role in hy-
perbolic dynamics. In the context of linear dynamics, they have alternate
formulations equivalent to the ones we use [6].

Definition 2.3. An invertible operator T : X → X

• is expansive if for each x with ‖x‖ = 1, there exists n ∈ Z such that
‖T nx‖ ≥ 2;

• is uniformly expansive if there exists n ∈ N such that

z : ‖z‖ = 1 =⇒ ‖T nz‖ ≥ 2 or ‖T−nz‖ ≥ 2;

• has the shadowing property if there is a constant K > 0 such that, for
every bounded sequence {zn}n∈Z in X, there is a sequence {yn}n∈Z in
X such that

sup
n∈Z

‖yn‖ ≤ K sup
n∈Z

‖zn‖ and yn+1 = Tyn + zn, for all n ∈ Z.

In the definitions of expansivity and uniform expansivity, the number 2
can be replaced by any number c > 1. For further information on this topic,
we refer the reader to [6, 8, 9, 11].
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3 Properties Preserved By Factors

In this section, we discuss and state some results when a linear dynamical
property is shared by factor maps. Throughout this section, let X and Y be
separable Banach spaces, S and T be bounded, invertible, linear operators
on X and Y , respectively, and Π : X → Y be a factor map, i.e., a linear,
bounded, surjection for which the following diagram commutes:

X X

Y Y

S

Π Π

T

Next, we state a result which shows when a property carries over to the
factor map. It is well-known and easy to show that if S is hypercyclic, mixing,
chaotic or frequently hypercyclic, then so is T [14]. We show that if some
extra conditions hold on Π, then many of the dynamical properties pass from
S to T .

In the sequel, given two sequences of positive reals, {ak}k∈Z and {bk}k∈Z,
and a constant L ≥ 1, by ak ∼L bk, we mean that, for every k ∈ Z,

ak ≤ Lbk & bk ≤ Lak.

Definition 3.1. We say that Π admits a strong bounded selector if

∃L ≥ 1 s.t., ∀y ∈ Y, ∃x ∈ Π−1(y) with ‖Sn(x)‖ ∼L ‖T n(y)‖.

We have the following result.

Lemma 3.2. For an arbitrary factor map Π,

(1) if S has the shadowing property, also T has the shadowing property.

If the factor map Π admits a strong bounded selector, the following statements
hold:

(2) if S is expansive, then T is expansive;

(3) if S is uniformly expansive, then T is uniformly expansive;

Proof. (1). This was proved in [12, Lemma 4.2.2] with the additional hy-
pothesis that Π admits a bounded selector, i.e., there exists L > 0 such that
for all y ∈ Y , there exists x ∈ Π−1(y) with ‖x‖ ≤ L‖y‖. We thank Nilson
Bernardes for pointing out that the Open Mapping Theorem implies that this
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is always the case. Indeed, let δ > 0 be such that BY (0, δ) ⊆ Π(BX(0, 1)).
Then, for any y ∈ Y , we have that there is x ∈ Π−1(y) with ‖x‖ ≤ 1

δ
‖y‖.

(2). By hypothesis, there exists a constant L ≥ 1 such that

∀y ∈ Y, ∃x ∈ Π−1(y) with ‖Sn(x)‖ ∼L ‖T n(y)‖.

Recall that, in general, an operator S is expansive if and only if supn∈Z ‖S
n(x)‖ =

∞, for every x ∈ X \ {0} [6, Proposition 19]. As S is expansive and
‖Sn(x)‖ ∼L ‖T n(y)‖, then supn∈Z ‖T

n(y)‖ = ∞, i.e., T is expansive.

(3). Let K be a constant such that min{
K

L
,
K

L2
} ≥ 2. As S is uniformly

expansive, let m ∈ N be such that, for each x ∈ X with ‖x‖ = 1, we have
‖Sm(x)‖ ≥ K or ‖S−m(x)‖ ≥ K. Now, let y ∈ Y with ‖y‖ = 1. Then, there
exists x ∈ Π−1(y) such that

‖Sn(x)‖ ∼L ‖T n(y)‖.

We distinguish two cases.
Case 1. ‖x‖ = 1. Then, for some j ∈ {m,−m},

‖T j(y)‖ ≥
1

L
‖Sj(x)‖ ≥

K

L
≥ 2.

Case 2. ‖x‖ 6= 1. As

∥

∥

∥

∥

x

‖x‖

∥

∥

∥

∥

= 1, then, for some j ∈ {m,−m}, we have

‖T j(y)‖ ≥
1

L
‖Sj(x)‖ =

1

L

∥

∥

∥

∥

Sj

(

x

‖x‖

)
∥

∥

∥

∥

‖x‖

≥
1

L
K‖x‖.

As Π(x) = y, by the strong bounded selector condition, we have ‖x‖ ≥
1
L
‖y‖ = 1

L
, implying

‖T j(y)‖ ≥
1

L
K

1

L
=

K

L2
≥ 2.

Now, we prove that, in some cases, if a factor enjoys a property, then so
does its extension.

Lemma 3.3. Suppose that Π admits a strong bounded selector. If T is Li-
Yorke chaotic, then S is Li-Yorke chaotic.
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Proof. By hypothesis, T is Li-Yorke chaotic, that is, T admits an irregular
vector y ∈ Y , meaning that there exists y ∈ Y such that

lim
n→∞

‖T ny‖ = 0 & lim
n→∞

‖T ny‖ = +∞.

By hypothesis, there exists a constant L ≥ 1 and there exists x ∈ Π−1(y)
with ‖Sn(x)‖ ∼L ‖T n(y)‖. Clearly, x is an irregular vector for S, that is, S
is Li-Yorke chaotic.

Next, we show that Γ, as defined in the introduction, satisfies the strong
bounded selector condition.

Lemma 3.4. The factor map Γ : Lp(X) → ℓp(Z) admits a strong bounded
selector.

Proof. By a small modification of Lemma 4.2.3 of [12], we show that Γ admits
a strong bounded selector.

Let x = {xk}k∈Z ∈ ℓp(Z). We let ϕ be as in the proof of Lemma 4.2.3 of
[12], i.e.,

ϕ =
∑

k∈Z

xk

µ(fk(W ))
1

p

χfk(W ).

It was shown there that Γ(ϕ) = x. Hence, we only need to show that there
exists L ≥ 1 such that ‖T n

f (ϕ)‖
p
p ∼L ‖Bn

w(x)‖
p
p. In fact, we will show that

‖T n
f (ϕ)‖

p
p = ‖Bn

w(x)‖
p
p.

Recalling that wk =
(

µ(fk−1(W ))
µ(fk(W ))

)
1

p

, we have

‖Bn
w(x)‖

p
p =

∑

k∈Z

|wk+1 · . . . · wk+nxk+n|
p =

∑

k∈Z

µ(fk(W ))

µ(fk+n(W ))
|xk+n|

p.
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Moreover,

‖T n
f (ϕ)‖

p
p =

∫

X

|ϕ|p ◦ fndµ

=

∫

∪h∈Zf
h(W )

∣

∣

∣

∣

∣

∑

k∈Z

xk

µ(fk(W ))
1

p

χfk(W )

∣

∣

∣

∣

∣

p

◦ fndµ

=
∑

h∈Z

∫

fh(W )

∣

∣

∣

∣

∣

∑

k∈Z

xk

µ(fk(W ))
1

p

χfk(W )

∣

∣

∣

∣

∣

p

◦ fndµ

=
∑

h∈Z

∫

fh(W )

∣

∣

∣

∣

∣

xh+n

µ(fh+n(W ))
1

p

χfh+n(W )

∣

∣

∣

∣

∣

p

◦ fndµ

=
∑

h∈Z

|xh+n|
p

µ(fh+n(W ))

∫

fh(W )

χfh+n(W ) ◦ f
ndµ

=
∑

h∈Z

|xh+n|
p

µ(fh+n(W ))
µ(fh(W ))

= ‖Bn
w(x)‖

p
p.

4 Proof for Li-Yorke Chaos

By Lemma 3.3 and Lemma 3.4, we have that if Bw is Li-Yorke chaotic, then
so is Tf . We will now show that the converse is also true. However, we prove
a lemma first.

Lemma 4.1. There exists L ∈ R such that for all n ∈ Z and ϕ ∈ Lp(X), we
have that

∫

fk(W )

|ϕ|p ◦ fndµ ∼L

µ(fk(W ))

µ(fk+n(W ))

(
∫

fk+n(W )

|ϕ|pdµ

)

.

Proof. As the system is of bounded distortion and it is generated by W , there
exists L ∈ R, [12, Proposition 2.6.5], such that

1

L

µ(fm(W ))

µ(f l(W ))
≤

µ(fm(B))

µ(f l(B))
≤ L

µ(fm(W ))

µ(f l(W ))
, (♦♦)

for all l, m ∈ Z, and all measurable B ⊆ W with µ(B) > 0.
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Let ϕ ∈ Lp(X) and n, k ∈ Z. Let us first prove the result for the
case ϕ|fk+n(W ) =

∑t
i=1 aiχAi

with fk+n(W ) = ∪̇
t
i=1Ai, and letting Bi =

f−(k+n)(Ai). Observe that
∫

fk(W )

|ϕ|p ◦ fndµ =

∫

fk+n(W )

|ϕ|pdµ(f−n)

=

t
∑

i=1

|ai|
pµ(f−n(Ai))

=

t
∑

i=1

|ai|
pµ(f−n(fk+n(Bi))

=
t
∑

i=1

|ai|
pµ(fk(Bi)). (⋆)

Moreover,

∫

fk+n(W )

|ϕ|pdµ =
t
∑

i=1

|ai|
pµ(Ai)

=
t
∑

i=1

|ai|
pµ(fk+n(Bi)). (⋆⋆)

Now, applying (♦♦) to Bi with m = k and l = k + n, we have

1

L

t
∑

i=1

|ai|
p µ(fk(W ))

µ(fk+n(W ))
µ(fk+n(Bi)) ≤

t
∑

i=1

|ai|
pµ(fk(Bi))

≤ L

t
∑

i=1

|ai|
p µ(fk(W ))

µ(fk+n(W ))
µ(fk+n(Bi)).

Putting the last inequality together with (⋆) and (⋆⋆), we obtain

1

L

µ(fk(W ))

µ(fk+n(W ))

(
∫

fk+n(W )

|ϕ|pdµ

)

≤

∫

fk(W )

|ϕ|p ◦ fndµ

≤ L
µ(fk(W ))

µ(fk+n(W ))

(
∫

fk+n(W )

|ϕ|pdµ

)

,

i.e.,
∫

fk(W )

|ϕ|p ◦ fndµ ∼L

µ(fk(W ))

µ(fk+n(W ))

(
∫

fk+n(W )

|ϕ|pdµ

)

.

We obtain the proof for an arbitrary ϕ by passing through the limit and
applying the Lebesgue dominated convergence theorem.

10



Proof: Tf Li-Yorke chaotic ⇒ Bw Li-Yorke chaotic. By hypothesis Tf

admits an irregular vector ϕ ∈ Lp(X), meaning that there exists ϕ ∈ Lp(X)
such that

lim
n→∞

‖T n
f ϕ‖p = 0 & lim

n→∞
‖T n

f ϕ‖p = +∞.

We want to apply Corollary 1.5 in [7] to show that Tg, as defined in Propo-
sition 2.1, is Li-Yorke chaotic, or equivalently that Bw is Li-Yorke chaotic.
Note that, using Lemma 4.1, we have, for each n, k ∈ Z,

‖T n
f ϕ‖

p
p =

∫

X

|ϕ|p ◦ fndµ ≥

∫

fk(W )

|ϕ|p ◦ fndµ

≥
1

L

µ(fk(W ))

µ(fk+n(W ))

(
∫

fk+n(W )

|ϕ|pdµ

)

,

and, in particular, for k = −n,

‖T n
f ϕ‖

p
p ≥

1

L

µ(f−n(W ))

µ(W )

(
∫

W

|ϕ|pdµ

)

.

As limn→∞ ‖T n
f ϕ‖p = 0, then limn→∞ µ(f−n(W )) = 0, and, hence,

lim
n→∞

ν(g−n(0)) = lim
n→∞

ν(−n) = lim
n→∞

µ(f−n(W ))

µ(W )
= 0,

that is, Condition (a) of Corollary 1.5 in [7] is satisfied, i.e. limn→−∞ ν(n) =
0.
Now, we show that Condition (b) of Corollary 1.5 in [7] is satisfied, i.e.,

sup

{

ν(h)

ν(h+ n)
, h ∈ Z, n ∈ N

}

= ∞,

or, equivalently, sup

{

µ(fh(W ))

µ(fh+n(W ))
, h ∈ Z, n ∈ N

}

= ∞. To obtain a contra-

diction, assume that
µ(fh(W ))

µ(fh+n(W ))
is bounded above by a constant H . Hence,

from Lemma 4.1, it follows
∫

fh(W )

|ϕ|p ◦ fndµ ≤ LH

∫

fh+n(W )

|ϕ|pdµ for every h ∈ Z, n ∈ N,

implying
∫

X

|ϕ|p ◦ fndµ ≤ LH

∫

X

|ϕ|pdµ, for every n ∈ N,

contradicting the fact that ϕ is an irregular vector.
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5 Proof for Hypercyclicity and Mixing

If Tf is hypercyclic or mixing, then, using Propositions 1.13 and 1.40 of [14],
it follows that Bw is hypercyclic or mixing, respectively. To see the converse,
we need the following two conditions.

Proposition 5.1. The following statements hold.

(1) If, for each ǫ > 0 and N ∈ N, there exists k ≥ 1 such that, for h ∈
{k,−k},

µ(fh(∪|j|≤Nf
j(W ))) < ǫ,

then Tf is hypercyclic.

(2) If, for each ǫ > 0 and N ∈ N, there exists k0 ∈ N, such that, for each
k ≥ k0 and h ∈ {k,−k},

µ(fh(∪|j|≤Nf
j(W ))) < ǫ,

then Tf is mixing.

Proof. We will use characterizations of hypercyclicity and mixing given in [1,
Theorems 1.1 and 1.2].

(1). Let ǫ > 0 and B ∈ B, with 0 < µ(B) < ∞. Let N ∈ N be so large
that

µ

(

B \ (
N
⋃

j=−N

(B ∩ f j(W )))

)

< ǫ.

Define B′ = ∪N
j=−N(B ∩ f j(W )). Then, µ(B \B′) < ǫ. By hypothesis, there

exists k ≥ 1 such that, for h ∈ {k,−k},

µ(fh(∪|j|≤Nf
j(W ))) < ǫ.

Hence,

µ(fh(B′)) ≤ µ(fh(∪N
j=−Nf

j(W ))) < ǫ.

We have just shown that, for all ǫ > 0 and for all B ∈ B with 0 < µ(B) <
∞, there exist B′ ⊂ B and k ≥ 1 such that

µ(B \B′) < ǫ, µ(f−k(B′)) < ǫ and µ(fk(B′)) < ǫ.

Now, it follows from Theorem 1.1 in [1] that Tf is hypercyclic.
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(2). Let ǫ, B, N , and B′ be as in part (1). Let k0 be the integer guaranteed
by the hypothesis. Letting, for every k > k0, Bk = B′, we have, for all
h ∈ {k,−k},

µ(B \Bk) < ǫ and µ(fh(Bk)) < ǫ.

Now, by Theorem 1.2 of [1], we have that Tf is mixing.

Proof: Bw hypercyclic ⇒ Tf is hypercyclic. The operator Tg is hy-
percyclic by Proposition 2.1. We will show that hypothesis (1) of Propo-
sition 5.1 is satisfied by Tf , so that it is hypercyclic. To this end, let
ǫ > 0 and N ∈ N. Applying Theorem 1.1 of [1] to B = ∪N

j=−Ng
j(0) and

ǫ̃ = min−N≤j≤N
1
2
{

ǫ

µ(W )
, ν(gj(0))}, we have that there exist B′ ⊆ B and

k ≥ 1 such that, for h ∈ {k,−k},

ν(B \B′) < ǫ̃, ν(gh(B′)) < ǫ̃.

By our choice of ǫ̃, we have that B′ = B = ∪N
j=−Ng

j(0). In particular, we
have, for h ∈ {k,−k},

ν(gh(∪N
j=−Ng

j(0))) =
N
∑

j=−N

ν(gh+j(0)) < ǫ̃ <
ǫ

µ(W ).
(♥)

Substituting

ν(gn(0)) = ν(n) =
µ(fn(W ))

µ(W )

in (♥), we obtain

N
∑

j=−N

ν(gh+j(0)) =

N
∑

j=−N

µ(fh+j(W ))

µ(W )
=

µ(fh(∪N
j=−Nf

j(W )))

µ(W )
<

ǫ

µ(W )
,

i.e.,

µ(fh(∪N
j=−Nf

j(W ))) < ǫ.

By Proposition 5.1-(1), Tf is hypercyclic.

Proof: Bw mixing ⇒ Tf is mixing. We will show that hypothesis of (2)
of Proposition 5.1 is satisfied, so that Tf is mixing. We proceed as in the
proof of hypercyclicity. Let ǫ > 0 and N ∈ N. Let B and ǫ̃ as in the proof of
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hypercyclicity. As Bw is mixing, applying Theorem 1.2 of [1] to B and ǫ̃, there
exist k0 ≥ 1 and a sequence {Bk} such that, for each k ≥ k0, h ∈ {−k, k},

ν(B \Bk) < ǫ̃, ν(gh(Bk)) < ǫ̃.

Then, by the choice of ǫ̃, it must be Bk = B for each k ≥ k0. Hence, for each
k ≥ k0 and h ∈ {k,−k}, we have

ν(gh(∪N
j=−Ng

j(0))) =
N
∑

j=−N

ν(gh+j(0)) < ǫ̃ <
ǫ

µ(W )
.

Hence, (♥) is satisfied for each k ≥ k0. Now, proceeding as in the proof
of hypercyclicity, we have that the hypothesis of (2) of Proposition 5.1 is
satisfied.

6 Proof for Chaos and Frequent Hypercyclic-

ity

It follows from Theorem 3.7 [13] that Tf is chaotic if and only if Tf is fre-
quently hypercyclic. Hence, it suffices to show the result for frequently hy-
percyclic operators.

If Tf is frequently hypercyclic, then that Bw is frequently hypercyclic
follows from the fact that frequent hypercyclicity is preserved by factor maps
[14, Proposition 9.4]. To see the converse, assume that Bw, equivalently
Tg, is frequently hypercyclic. Note that ν is atomic and g is ergodic on Z.

Applying Corollary 3.9 of [13], we have ν(Z) < ∞. However, ν(Z) =
µ(X)

µ(W )
,

implying µ(X) < ∞. Now, applying Theorem 3.3 of [13], we have that Tf is
frequently hypercyclic, completing the proof.

7 Proof for Expansivity and Uniform Expan-

sivity

By Lemma 3.2 and Lemma 3.4, it follows that if Tf is expansive or uniform
expansive, then so is Bw. Now we will prove the converse.

Proof: Bw expansive ⇒ Tf expansive. Assume that Bw, equivalently Tg,
is expansive, i.e. supn∈Z ‖T

n
g ϕ‖p = ∞, [6, Proposition 19] for each ϕ ∈

14



Lp(Z) \ {0}. Hence, taking ϕ = χ{0}, it follows that

∞ = sup
n∈Z

‖T n
g ϕ‖

p
p = sup

n∈Z

∫

Z

χ{0} ◦ g
ndν = sup

n∈Z
ν(g−n(0))

= sup
n∈Z

ν(−n) = sup
n∈Z

µ(f−n(W ))

µ(W )
,

i.e., supn∈Z µ(f
n(W )) = ∞. This will imply that Tf is expansive. In fact,

using Lemma 4.1 with k = −n, for each ϕ ∈ Lp(X) \ {0}, we have

‖T n
f ϕ‖

p
p =

∫

X

|ϕ|p ◦ fndµ ≥

∫

f−n(W )

|ϕ|p ◦ fndµ

≥
1

L

µ(f−n(W ))

µ(W )

(
∫

W

|ϕ|pdµ

)

.

Now,

sup
n∈Z

‖T n
f ϕ‖

p
p ≥

1

L

∫

W
|ϕ|pdµ

µ(W )
sup
n∈Z

(µ(f−n(W ))) = ∞,

i.e., Tf is expansive.
Proof: Bw uniform expansive ⇒ Tf uniform expansive. We use the def-

inition of uniform expansivity. Let L be as in the statement of Lemma 4.1.
Note that L > 1. By the definition of uniform expansivity, there exits n ∈ N

such that for all ϕ ∈ ℓp(Z) with ‖ϕ‖p = 1, one of the following holds:

‖T n
g ϕ‖

p
p ≥ 4L or ‖T−n

g ϕ‖pp ≥ 4L.

Taking ϕ =
χ{i}

ν(i)
1
p
, we obtain

‖T n
g ϕ‖

p
p =

ν(g−n(i))

ν(i)
& ‖T−n

g ϕ‖pp =
ν(gn(i))

ν(i)
.

Recalling that
ν(gk(i))

ν(i)
=

µ(fk+i(W ))

µ(f i(W ))
, we have that, for each i ∈ Z, either

µ(fn+i(W ))

µ(f i(W ))
≥ 4L or

µ(f−n+i(W ))

µ(f i(W ))
≥ 4L.

Let N+ be the set of i ∈ Z such that the first holds and N− be the set of
i ∈ Z where the second holds. Clearly, Z = N+ ∪N−.

Let ϕ ∈ Lp(X) with ‖ϕ‖p = 1. It will suffice to show that either

‖T n
f ϕ‖

p
p > 2 or ‖T−n

f ϕ‖pp > 2.
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As ‖ϕ‖p = 1, then either

∑

i∈N+

∫

f i(W )

|ϕ|pdµ ≥ 1/2 or
∑

i∈N−

∫

f i(W )

|ϕ|pdµ ≥ 1/2.

Without loss of generality, assume that the first holds. Now, using Lemma
4.1, we have

‖T n
f ϕ‖

p
p =

∫

X

|ϕ|p ◦ fndµ ≥
∑

i∈N+

∫

f−n+i(W )

|ϕ|p ◦ fndµ

≥
1

L

∑

i∈N+

µ(f−n+i(W ))

µ(f i(W ))

(
∫

f i(W )

|ϕ|pdµ

)

≥
1

L
4L
∑

i∈N+

(
∫

f i(W )

|ϕ|pdµ

)

≥ 2.

8 Proof for the Shadowing Property

By Corollary SC of [12], we have that Tf has the shadowing property if and
only if one of Conditions HC, HD or GH in it is satisfied.

By Theorem 18 of [9], we have that Bw has the shadowing property if
and only if one of Conditions (A), (B) or (C) in it is satisfied.

As

wk =

(

µ(fk−1(W ))

µ(fk(W ))

)

1

p

,

we have that Condition HC is equivalent to Condition (A), HD is equivalent
to Condition (B) and GH is equivalent to Condition (C), implying that Tf

has the shadowing property if and only if Bw does.
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