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Abstract. A contact form is called Besse when the associated Reeb flow is

periodic. We prove that Besse contact forms on closed connected 3-manifolds
are the local maximizers of suitable higher systolic ratios. Our result extends

earlier ones for Zoll contact forms, that is, contact forms whose Reeb flow

defines a free circle action.

1. Introduction

1.1. Background and main result. The aim of this paper is to prove some sharp
inequalities involving the periods of closed orbits of Reeb flows on 3-manifolds and
the contact volume. Let Y be a closed, connected, orientable 3-manifold. We recall
that a one-form λ on Y is called a contact form when λ∧ dλ is nowhere vanishing.
The contact form λ induces a vector field Rλ, which is called Reeb vector field of
λ, by the identities Rλ y dλ = 0 and Rλ yλ = 1. The flow of Rλ is called the Reeb
flow, and we will denote it by φtλ. It preserves the contact form λ, and in particular
the volume form λ ∧ dλ. Reeb flows are also called contact flows in the literature.
Reeb flows on 3-manifolds constitute a special class of volume preserving flows with
the remarkable feature of always having closed orbits: the Weinstein conjectures
postulates that Reeb flows on arbitrary closed contact manifolds admit closed orbits,
and this conjecture has been confirmed in dimension 3 by Taubes, see [Tau07].

We denote by τ1(λ) the minimum of all periods of closed Reeb orbits and define
the systolic ratio of λ as the quotient

ρ1(λ) :=
τ1(λ)2

vol(Y, λ)
, (1.1)

where the contact volume vol(Y, λ) is defined as the integral of the volume form
λ∧dλ over Y . The choice of the power 2 in the numerator of (1.1) makes ρ1 invariant
under rescaling: ρ1(cλ) = ρ1(λ) for every non-zero constant c. As observed in
[CK94, Lemma 2.1], different contact forms on Y inducing the same Reeb vector
field give the same contact volume. Therefore, the systolic ratio ρ1 is a dynamical
invariant of Reeb flows. It is actually invariant by smooth conjugacies and linear
time rescalings.

The term “systolic ratio” is borrowed from metric geometry: the systolic ratio
of a Riemannian metric on a closed surface is the ratio between the square of the
length of the shortest closed geodesic and the Riemannian area. Geodesic flows
are particular Reeb flows, and the metric systolic ratio coincides with 2π-times the
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contact systolic ratio defined above. Indeed, the length of any closed geodesic agrees
with its period as closed Reeb orbit, and the contact volume of the unit tangent
bundle of a Riemannian surface is 2π-times the Riemannian area.

Still borrowing the terminology from Riemannian geometry, a contact form λ on
Y is called Zoll if all its Reeb orbits are closed and have the same minimal period.
In this case, the Reeb flow of λ induces a free S1-action on Y , and the systolic ratio
of λ has the value −1/e, where the negative integer e is the Euler number of the
S1-bundle which is induced by this S1-action.

Zoll contact forms are precisely the local maximizers of the systolic ratio ρ1 in the
C3-topology of contact forms: this was proven for arbitrarily closed 3-manifolds by
Benedetti and Kang in [BK21], generalizing a result of the first author together with
Bramham, Hryniewicz and Salomão in [ABHS18] for the 3-sphere. Recently, this
result has been extended to manifolds of arbitrary dimension by the first author and
Benedetti, see [AB19]. We refer the reader to the latter paper and to [APB14] for
a discussion on some consequences of the local systolic maximality of Zoll contact
forms in metric and systolic geometry.

We denote by σ(λ) the action spectrum (or period spectrum) of the Reeb flow
of λ, i.e. the set

σ(λ) =
{
t > 0

∣∣ fix(φtλ) 6= ∅
}
.

Note that every closed Reeb orbit contributes to σ(λ) with all the multiples of its
minimal period. In general, σ(λ) is a non-empty closed set of Lebesgue measure
zero, and for generic contact forms it is discrete.

The number τ1(λ) is the minimum of σ(λ), and we would like to define τk(λ) as
the k-th element of σ(λ), where the elements of σ(λ) are ordered increasingly and
are counted with multiplicity given by the number of closed orbits having a given
period. Since in general σ(λ) is not discrete, a correct definition of τk(λ) is the
following: τk(λ) is the infimum of all positive real numbers τ such that there exist
at least k closed Reeb orbits with period less than or equal to τ ; here, each iterate
of a closed Reeb orbit contributes to the count. In formulas,

τk(λ) := inf

{
τ > 0

∣∣∣∣∣
∑

0<t≤τ
#
(
fix(φtλ)/ ∼

)
≥ k

}
, (1.2)

where ∼ is the equivalence relation on Y identifying points on the same Reeb orbit,
i.e. z0 ∼ z1 if and only if z1 = φtλ(z0) for some t ∈ R. Note that the sequence of
values τk(λ), k ≥ 1, is (not necessarily strictly) increasing and consists of elements
of σ(λ).

If σ(λ) is discrete and for any τ ∈ σ(λ) there are finitely many Reeb orbits of
period τ , then k 7→ τk(λ) is a surjective map from N to σ(λ). If instead there are
infinitely many periodic orbits of (not necessarily minimal) period τk(λ) for some
k, or a strictly decreasing sequence in σ(λ) converging to τk(λ), then τh(λ) = τk(λ)
for every h ≥ k.

We now define the k-th systolic ratio of the contact form λ as the positive number

ρk(λ) :=
τk(λ)2

vol(Y, λ)
.

The aim of this paper is to give a complete characterization of local maximizers of
the k-th systolic ratio ρk.
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Borrowing once more the terminology from Riemannian geometry, a contact form
λ on Y is called Besse if all its Reeb orbits are closed. Here, different Reeb orbits are
not required to have the same minimal period, and therefore Besse contact forms
constitute a larger class than Zoll forms. Thanks to a theorem of Wadsley [Wad75]
or, in the special case of dimension 3, an earlier theorem of Epstein [Eps72], Besse
Reeb flows are periodic (see also [Sul78]). In our case, since Y has dimension 3,
Epstein’s theorem implies that all Reeb orbits of the Besse contact form λ have
the same minimal period T except for finitely many ones, whose minimal period
divides T . The orbits of the first kind are called regular, whereas the finitely many
exceptional orbits with smaller minimal period are called singular.

In Riemannian geometry, suitable lens spaces have a geodesic flow that is Besse
but not Zoll. Nevertheless, on simply connected manifolds, Besse geodesic flows are
conjectured to be Zoll: this was confirmed for the 2-sphere, thanks to a classical
result of Gromoll and Grove [GG81], and for n-spheres of dimension n ≥ 4, by
a recent result of Radeschi and Wilking [RW17]. In the more general class of
Finsler geodesic flows, and in the even larger class of Reeb flows, there are plenty
of examples of flows that are Besse but not Zoll: the simplest ones are the geodesic
flows of rational Katok’s Finsler metrics on the 2-sphere, see [Kat73, Zil83], and
the Reeb flows on rational ellipsoids in C2; other examples are the geodesic flows
on certain Riemannian orbifolds, see [Bes78, Lan20, LS21].

The theory of Seifert fibrations leads to the construction of many more examples
and to a full classification of Besse Reeb flows in dimension 3, see [KL21] and Section
3.2 below. Indeed, the Reeb flow of a Besse contact form λ on Y induces a locally
free S1-action, whose quotient projection π : Y → B is a Seifert fibration over a
2-dimensional orbifold B. The Euler number e of such a Seifert fibration is rational
and negative, see [LM04], and conversely any Seifert fibration with negative Euler
number can be realized in this way. Moreover

vol(Y, λ) = −T 2e, (1.3)

where T is the minimal common period of the Reeb orbits of λ, see [Gei20, Cor. 6.3]
or Lemma 3.2 below.

If λ is a Besse contact form on the closed 3-manifold Y , the sequence τk(λ) which
we introduced above stabilizes: denoting by T the minimal common period of the
Reeb orbits, by γ1, . . . , γh the singular Reeb orbits, and by α1, . . . , αh the integers
greater than 1 such that γi has minimal period T/αi, we find that τk(λ) = T for
every k ≥ k0(λ), where

k0(λ) := α1 + · · ·+ αh − h+ 1,

and k0(λ) is the minimal integer with this property. Indeed, the Reeb flow of λ has
a continuum of orbits of minimal period T and precisely α1 + · · · + αh − h orbits
of period strictly less than T , given by the iterates γji for 1 ≤ j ≤ αi − 1 of the
singular orbits.

Together with (1.3), the above considerations yield the following formula for the
k0(λ)-th systolic ratio of the Besse contact form λ:

ρk0(λ)(λ) = −1

e
,

where e is the Euler number of the Seifert fibration π : Y → B induced by λ.
We now state the main result of this paper, which characterizes Besse contact

forms as local maximizers of the higher systolic ratios.
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Theorem A. Let Y be a closed, connected, orientable 3-manifold and k a positive
integer.

(i) If a contact form λ0 on Y is a local maximizer of the k-th systolic ratio ρk
in the C∞-topology, then λ0 is Besse with k0(λ0) = k.

(ii) Every Besse contact form λ0 on Y such that k0(λ0) = k has a C3-neigh-
borhood U in the space of contact forms on Y such that

ρk(λ) ≤ ρk(λ0), ∀λ ∈ U ,
with equality if and only if there exists a diffeomorphism θ : Y → Y such
that θ∗λ = cλ0 for some c > 0.

We remark that Besse contact forms are never global maximizers of ρk on the
space of contact forms inducing a given contact structure ξ on the closed 3-manifold
Y : indeed, ρk ≥ ρ1 and ρ1 is unbounded from above on the space of all contact
forms on (Y, ξ). See [ABHS19] for the case of 3-dimensional contact manifolds and
[Sağ21] for the general case.

Example 1.1. It is instructive to consider Theorem A in the case Y = S3. Any
Besse contact form on S3 coincides, up to a diffeomorphism and multiplication by
a positive number, with the restriction of the standard Liouville 1-form

λ0 :=
1

2

2∑

j=1

(
xj dyj − yj dxj

)

of R4 to the boundary of the solid ellipsoid

E(p, q) :=

{
z ∈ C2

∣∣∣∣
|z1|2
p

+
|z2|2
q
≤ 1

π

}
⊂ C2 = R4,

where p ≤ q are coprime positive integers, see for instance [GL18, Prop. 5.2] and
[MR20, Th. 1.1]. The Reeb flow of the contact form

λp,q := λ0|∂E(p,q)

has a closed orbit of minimal period p, a closed orbit of minimal period q and all
other orbits have minimal period pq. Therefore,

k0(λp,q) = p+ q − 1,

and, for k0 := k0(λp,q),

ρk0
(λp,q) = pq.

In particular, k0(λ1,k) = k and, according to Theorem A, for every k ≥ 1 the
contact form λ1,k is a local maximizer of ρk. For k = 1, 2, 3, 5, this is the only
local maximizer of ρk on S3, but for all the other values of the positive integer k
the linear Diophantine equation p+ q − 1 = k is easily seen to have more positive
solutions p ≤ q that are coprime. For instance, ρ4 is locally maximized by both
λ1,4 and λ2,3, with ρ4(λ1,4) = 4 and ρ4(λ2,3) = 6. The number of local mazimizers
of ρk on contact forms on S3 diverges for k →∞. �

Example 1.2. Other natural applications of Theorem A concern geodesic flows
on Riemannian 2-orbifolds. Consider for instance the spindle orbifold S2(m,n)
whose underlying space is S2 and which has two conic singularities of order m
and n, respectively. Here, m and n are positive integers and a conic singularity of
order m corresponds to the local model R2/Zm, where the cyclic group Zm acts
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by rotations. The case m = n = 1 gives us the standard smooth 2-sphere. Let us
assume m+n > 2, so that we have at least one singular point. The geodesic flow of
any Riemannian metric on S2(m,n) can be seen as a smooth Reeb flow on the lens
space L(m+n, 1), i.e. the quotient of S3 ⊂ C2 by the free action of Zm+n which is
generated by the diffeomorphism

(z1, z2) 7→
(
e

2πi
m+n z1, e

2πi
m+n z2

)
,

see [Lan20]. The spindle orbifold S2(m,n) admits a Besse Riemannian metric
turning it into a Tannery surface: the spindle orbifold is realized as a sphere of
revolution having the two cone singularities at the poles, see [Bes78, Chapter 4].
The equator is a closed geodesic of length 2π and all other geodesics are closed
with length 2πa, where a := m + n if m + n is odd and a := m+n

2 if m + n is
even. Here, meridians are seen as geodesic segments belonging to closed geodesics
of length 2πa.

The geodesic flow of this Tannery surface has two periodic orbits of minimal
period 2π, corresponding to the two orientations of the equator, and all other orbits
are closed with minimal period 2πa. Therefore, the integer k0 associated with the
corresponding Besse contact form on L(m+ n, 1) is

k0 := 2a− 1.

The Tannery surface is a local maximizer in the C3-topology of Riemannian metrics
on S2(m,n) of the k0-th systolic ratio given by the square of the length of the k0-th
shortest closed geodesic, where closed geodesics are counted with multiplicity as in
(1.2), and the Riemannian area of the orbifold. In other words, if the Riemannian
metric of the Tannery surface is modified by a C3-small perturbation not affecting
the Riemannian area, then the new geodesic flow is either still Besse, and in this
case is smoothly conjugate to the Tannery geodesic flow, or the following holds: if
the closed geodesic which is obtained by continuation from the equator (which is
non-degenerate in the case m+ n > 2 we are considering here) is not shorter than
2π, then there exists a closed geodesic of minimal length close to 2πa and smaller
than this number.

An analogous result holds for Finsler perturbations of the Tannery surface, where
now the two closed geodesics which are obtained by continuation from the equator
might be geometrically distinct and have different lengths, if the Finsler perturba-
tion is not reversible.

Actually, the second author and Soethe [LS21] proved that, within the class of
Riemannian rotationally symmetric spindle 2-orbifolds, the Besse ones are even the
global maximizers of the suitable higher systolic ratio. �

1.2. Sketch of the proof of Theorem A. We conclude this introduction by
giving an informal sketch of the proof of Theorem A.

The proof of statement (i) is elementary. First we show that all the Reeb orbits
of a contact form λ0 which locally maximize ρk are closed and have minimal period
not exceeding τk(λ0): if there is a point x ∈ Y whose orbit violates this assertion,
we can deform λ0 in a neighborhood of x and make the volume smaller without
introducing closed orbits of period smaller than τk(λ0). This shows that λ0 is Besse
with k0(λ0) ≤ k. It remains to show that a Besse contact form λ does not locally
maximize ρk if k > k0(λ0). This can be done by considering explicit perturbations
of λ0 of the form (1+ε h◦π)λ0, where π : Y → B is the quotient projection induced
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by the locally free S1-action given by the Reeb flow of λ0 and h is a suitable smooth
real function on B.

The proof of statement (ii) is based on global surfaces of section and on a quan-
titative fixed point theorem for Hamiltonian diffeomorphisms of compact surfaces
that are close to the identity. This kind of arguments has already been used in
[ABHS18, BK21] in order to prove that Zoll contact forms are local maximizers of
ρ1 on closed 3-manifolds, but here we need two new ingredients which may be of
independent interest.

We sketch the argument in the case of a Besse contact form λ0 that is not Zoll,
and hence k0 := k0(λ0) > 1, but in the detailed proof we give in Section 4 we shall
recover also the case in which λ0 is Zoll. In this paper, by a global surface of section
for the flow of the Reeb vector field Rλ we mean a smooth map ι : Σ→ Y from an
oriented compact surface Σ whose restriction to each component of the boundary
∂Σ is a positive covering of some periodic orbit of Rλ, whose restriction to the
interior of Σ is an embedding into Y \ ι(∂Σ) transversal to Rλ, and such that every
orbit of Rλ intersects ι(Σ) in positive and negative time. The first new ingredient
is the following result.

Theorem B. If λ0 is a Besse contact form on the closed 3-manifold Y and γ is
any orbit of Rλ0 , then the Reeb flow of λ0 admits a global surface of section (as in
the previous paragraph ) with ι(∂Σ) = γ.

See Theorem 3.1 below for a more detailed statement. We remark that the
boundary of Σ may have several components, but they are all mapped onto γ by ι.
See also [AG21] for related results about global surfaces of section for general flows
on 3-manifolds defining a Seifert fibration.

We normalize λ0 so that all its regular orbits have minimal period 1, that is,
τk0

(λ0) = 1. We apply Theorem B to some singular orbit γ1 of period 1/α1 of the
Reeb flow of λ0, which we fix once and for all. The embedded surface ι(int(Σ))
intersects each regular orbit of Rλ0 exactly α times, for some α ∈ N which can be
derived from the invariants of the Seifert fibration induced by λ0.

Now consider a contact form λ which is suitably close to λ0. Since the singular
orbits of Besse Reeb flows are non-degenerate, the Reeb flow of λ has a closed
orbit which is close to γ1. Up to multiplying λ by a constant and applying a
diffeomorphism to it, we can assume that Rλ coincides with Rλ0

on γ1, which is
therefore a closed orbit of both flows, with the same period 1/α1. In this case, we
can show that ι : Σ → Y is a global surface of section also for the Reeb flow of λ,
provided that λ is close enough to λ0.

We now consider the diffeomorphism

φ : Σ→ Σ

which is given by the α-th iterate of the first return map of the flow of Rλ to Σ. This
map is actually defined only in the interior of Σ, but we will show that it extends
to a diffeomorphism on Σ. The exact smooth 2-form ω := ι∗(dλ) is symplectic in
the interior of Σ and vanishes with order 1 on the boundary. The map φ is an exact
symplectomorphism on (Σ, ω) and actually

φ∗λ− λ = dτ,

where τ : Σ→ (0,+∞) is the α-th return time of the flow of Rλ (or, more precisely,
the smooth extension to Σ of this function, which is defined in the interior of Σ).
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The volume of (Y, λ) can be recovered by τ thanks to the identity

vol(Y, λ) =
1

α

∫

Σ

τ ω.

The exact symplectomorphism φ lifts to a unique element φ̃ of H̃am0(Σ, ω) which

is C1-close to the identity. Here, H̃am0(Σ, ω) denotes the subgroup of the universal
cover of the group of Hamiltonian diffeomorphisms of (Σ, ω) consisting of isotopy
classes [{φt}] starting at the identity which have vanishing flux on any curve con-
necting pairs of points on ∂Σ. The zero flux condition is important here and holds
because we are considering a global surface of section with boundary on just one
closed orbit.

Elements ψ̃ of H̃am0(Σ, ω) have a well-defined action

aψ̃,ν : Σ→ R, ψ∗ν − ν = daψ̃,ν ,

with respect to any primitive ν of ω, where ψ denotes the projection of ψ̃ to the
Hamiltonian group. The action at contractible fixed points is independent of ν,
and so is the integral of the action on (Σ, ω), which defines the normalized Calabi

invariant of ψ̃, i.e. the number

Ĉal(ψ̃) :=
1

area(Σ, ω)

∫

Σ

aψ̃,ν ω.

In the case of the lift φ̃ of the α-th return map φ and of the primitive ν := ι∗λ of
ω, we obtain the identities

aφ̃,ν = τ − 1, Ĉal(φ̃) =
vol(Y, λ)

vol(Y, λ0)
− 1. (1.4)

The second new ingredient of this paper is the following fixed point theorem.

Theorem C. Let ω be a smooth exact 2-form on the compact surface Σ which is
symplectic in the interior and vanishes with order 1 on the boundary. For every

c > 0 there exists a C1-neighborhood U ⊂ H̃am0(Σ, ω) of the identity such that

every ψ̃ ∈ U with Ĉal(ψ̃) ≤ 0 has a contractible interior fixed point z such that

aψ̃(z) + c aψ̃(z)2 ≤ 1

2
Ĉal(ψ̃),

with the equality holding if and only if ψ̃ is the identity.

See Theorem 2.5 below and the discussion preceding it for the precise definition
of all the notions involved in this theorem. The novelty here is the presence of the
term which is quadratic in the action. Indeed, the weaker inequality without that
term is proven in [ABHS18] when Σ is the disk and in [BK21] when Σ has just
one boundary component, but the case of more boundary components can be taken
care of similarly thanks to the zero-flux assumption. The constant 1

2 is sharp in the
above inequality, and the presence of the quadratic term is crucial in the conclusion
of the argument that we sketch below.

Since we are assuming that γ1 is a closed orbit of Rλ with minimal period
1/α1, and since all the other singular orbits of Rλ0 correspond to closed orbits of
Rλ of nearby period, the strict inequality ρk0

(λ) < ρk0
(λ0) holds trivially when

vol(Y, λ) > vol(Y, λ0). Therefore, we can assume that vol(Y, λ) ≤ vol(Y, λ0), which

by (1.4) implies Ĉal(φ̃) ≤ 0. If λ is C3-close to λ0, then φ̃ is C1-close to the identity
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and from Theorem C with c = 1
2 we obtain the existence of an interior contractible

fixed point z of φ̃ with

aφ̃(z) +
1

2
aφ̃(z)2 ≤ 1

2
Ĉal(φ̃). (1.5)

By (1.4), the fixed point z corresponds to a closed orbit γ 6= γα1
1 of Rλ with (not

necessarily minimal) period

τ(z) = 1 + aφ̃(z).

Since τ(z) is close to 1, this orbit is either the β-th iterate of the orbit of Rλ
corresponding to some singular orbit of Rλ0

of minimal period 1/β other than γ1,
or is an orbit of minimal period τ(z) bifurcating from the set of regular orbits of
Rλ0 . In both cases, its presence implies that τk0(λ) ≤ τ(z) and by (1.5) we find

ρk0
(λ) =

τk0
(λ)2

vol(Y, λ)
≤ τ(z)2

vol(Y, λ)
=

(1 + aφ̃(z))2

vol(Y, λ)
=

1 + 2aφ̃(z) + aφ̃(z)2

vol(Y, λ)

≤
1 + vol(Y,λ)

vol(Y,λ0) − 1

vol(Y, λ)
=

1

vol(Y, λ0)
=

τk0(λ0)2

vol(Y, λ0)
= ρk0

(λ0).

This shows that λ0 is a local maximizer of ρk0
in the C3-topology. Finally, if

this inequality is an equality, then the equality holds in (1.5) and hence φ̃ is the
identity. This implies that λ is Besse with regular orbits having minimal period
1, and from the local rigidity of Seifert fibrations and Moser’s trick we obtain a
diffeomorphism θ : Y → Y such that θ∗λ = λ0. This concludes the sketch of the
proof of Theorem A.

1.3. Organization of the paper. In Section 2, we review the notions of flux,
action and Calabi invariant for symplectomorphisms of surfaces and prove Theorem
C. In Section 3, we prove Theorem B and show how the resulting global surface of
section survives to small perturbations of the contact form. In Section 4, we prove
Theorem A.

1.4. Acknowledgments. We thank Hansjörg Geiges and Umberto Hryniewicz for
discussions concerning surfaces of section, and Gabriele Benedetti for discussing
with us the fixed point theorem in [BK21].

A. Abbondandolo and M. Mazzucchelli are partially supported by the IEA-
International Emerging Actions project IEA00549 from CNRS. A. Abbondandolo is
also partially supported by the SFB/TRR 191 ‘Symplectic Structures in Geometry,
Algebra and Dynamics’, funded by the DFG (Projektnummer 281071066 – TRR
191).

2. A fixed point theorem

In this section, we prove a refinement of a fixed point theorem due to Benedetti-
Kang [BK21, Section 4.4]. Our version allows us to deal with compact surfaces
with possibly disconnected boundary and gives a more precise upper bound on the
action of the fixed point, which will play a crucial role in the proof of Theorem A.
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2.1. Preliminaries: action, flux, and Calabi homomorphism. Before stating
the theorem, we review some facts about the action of exact symplectomorphisms,
the flux and the Calabi homomorphism in a setting which is slightly different than
the one considered in classical references such as [Cal70, Ban78, Ban97, MS98].

Throughout this section, we consider a compact connected surface Σ with non-
empty boundary and an exact two-form ω on Σ which is symplectic (i.e. nowhere
vanishing) in the interior of Σ. In the fixed points theorem below, we will assume
that ω vanishes on the boundary of Σ in a certain precise way, but in order to
introduce the objects this theorem is about we do not need this assumption. As
we shall see in Section 3.3, allowing symplectic forms to vanish on the boundary
is important when dealing with global surfaces of section of Reeb flows, see also
[ABHS18, BK21] and, for a more general approach in any dimension, the theory of
ideal Liouville domains in [Gir20].

By a symplectomorphism of (Σ, ω) we mean a diffeomorphism φ : Σ → Σ such
that φ∗ω = ω. In other words, φ is a diffeomorphism of Σ which restricts to a
symplectomorphism of the open symplectic manifold int(Σ).

Let {φt}t∈[0,1] be an isotopy on Σ starting at the identity; we will always tacitly
require that every φt : Σ → Σ is surjective (i.e. a diffeomorphism, and not simply
an embedding). We denote by Xt the generating vector field, which is uniquely
determined by the equation

d

dt
φt = Xt ◦ φt.

The isotopy {φt} consists of symplectomorphisms if and only if the one-form Xtyω
is closed for every t ∈ [0, 1]. When these one-forms are exact, i.e.

Xtyω = dHt, ∀t ∈ [0, 1],

for some H ∈ C∞([0, 1] × Σ), then Xt is called a Hamiltonian vector field, {φt} a
Hamiltonian isotopy, and H a generating Hamiltonian. Generating Hamiltonians
are uniquely defined up to the addition of a function of t. The fact that Xt is tangent
to the boundary of Σ forces each Ht to be constant on each boundary component.
By adding a suitable function of time, we could assume that Ht vanishes on a chosen
component of the boundary of Σ, but in general Ht will not necessarily vanish on
the other components.

Note that a smooth function H : Σ→ R defines a vector field on the interior of
Σ through the identity Xyω = dH, but in general one needs further assumptions
on H in order to guarantee that X extends smoothly to the boundary of Σ. This
will not be a reason of concern for us here, as we will construct Hamiltonians from
vector fields and not the other way around.

A symplectomorphism φ : Σ → Σ is said to be Hamiltonian if φ = φ1 for some
Hamiltonian isotopy {φt}. If {φt} and {ψt} are Hamiltonian isotopies generated
by the vector fields Xt and Yt with Hamiltonians Ht and Kt, then the composition
{ψt ◦ φt} is generated by the vector field Yt + (ψt)∗Xt, which is Hamiltonian with
generating Hamiltonian

Kt +Ht ◦ ψ−1
t . (2.1)

Therefore, Hamiltonian diffeomorphisms form a group, which we denote by
Ham(Σ, ω). Note that we are not requiring the diffeomorphisms in Ham(Σ, ω)
to be supported in the interior of Σ.

Every Hamiltonian diffeomorphism φ is exact, meaning that the one-form φ∗ν−ν
is exact for one (and hence any) primitive ν of ω. Indeed, every isotopy φt : Σ→ Σ
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with φ0 = id is Hamiltonian if and only if it is exact for every t, see [MS98,
Proposition 9.3.1]. A function a : Σ→ R satisfying

φ∗ν − ν = da

is called action of the Hamiltonian diffeomorphism φ with respect to the primitive
ν of ω. Once a primitive of ω has been fixed, the action is uniquely determined
up to an additive constant. If φ = φ1 where {φt} is a Hamiltonian isotopy with
generating Hamiltonian Ht, then the formula

aH,ν(z) :=

∫

{t7→φt(z)}
ν +

∫ 1

0

Ht

(
φt(z)

)
dt, ∀z ∈ Σ, (2.2)

defines an action of φ with respect to ν.
If {φt} is a symplectic isotopy starting at the identity and generated by the

vector field Xt and γ : [0, 1] → Σ a smooth curve, the flux of {φt} through γ is
defined as the symplectic area swept out by the path γ under the isotopy {φt}, i.e.
the quantity

Flux({φt})(γ) :=

∫

[0,1]×[0,1]

h∗ω =

∫ 1

0

∫ 1

0

ω
(
Xt(φt(γ(s))), dφt(γ(s))[γ̇(s)]

)
ds dt

=

∫ 1

0

∫

[0,1]

γ∗
(
(φ∗tXt) yω

)
dt,

where h(t, s) := φt(γ(s)) and in the last identity we have used the fact that the
diffeomorphisms φt are symplectic. The fact that the one-forms (φ∗tXt)yω are
closed implies that Flux({φt})(γ) only depends on the homotopy class of γ relative
to the endpoints, or on the free homotopy class of the closed curve γ.

Moreover, if ν is a primitive of ω we find by Stokes theorem

Flux({φt})(γ) =

∫

γ

(φ∗1ν − ν) +

∫

{t 7→φt(γ(0))}
ν −

∫

{t 7→φt(γ(1))}
ν.

The above identity shows that if γ is a curve joining two points on the boundary of
Σ, then Flux({φt})(γ) does not vary under homotopies of {φt} fixing the endpoints.
If γ is a closed curve, then Flux({φt})(γ) depends only on the homology class of the
closed one-form φ∗1ν−ν. In particular, Flux({φt})(γ) vanishes on closed curves when
φ1 is Hamiltonian. Actually, any symplectic isotopy with vanishing flux through
every closed curve is homotopic to a Hamiltonian isotopy, see [MS98, Theorem
10.2.5].

When the isotopy {φt} is Hamiltonian with generating Hamiltonian Ht, we find
the identity

Flux({φt})(γ) =

∫ 1

0

Ht(φt(γ(1))) dt−
∫ 1

0

Ht(φt(γ(0))) dt.

If γ is a curve connecting two boundary points, we have

Flux({φt})(γ) =

∫ 1

0

Ht(C1) dt−
∫ 1

0

Ht(C0) dt, (2.3)

where C0 and C1 are the connected components of ∂Σ containing the points γ(0)
and γ(1), respectively, and Ht(C) denotes the common value of Ht on the compo-
nent C ⊂ ∂Σ (recall that each Ht is constant on every boundary component).
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We denote by

π : H̃am(Σ, ω)→ Ham(Σ, ω)

the universal cover of Ham(Σ, ω). The group Ham(Σ, ω) is endowed with the C1

topology which is induced by the inclusion in the space of C1 maps from Σ to itself.

The C1 topology on Ham(Σ, ω) induces a C1 topology on H̃am(Σ, ω) so that, with
respect to these topologies, the covering map π is a local homeomorphism. As usual,

we identify the elements of H̃am(Σ, ω) with homotopy classes with fixed endpoints
of Hamiltonian isotopies {φt} starting at the identity, so that π([{φt}]) = φ1. By
the invariance of the flux under homotopies with fixed endpoints of the isotopy and
(2.3), we deduce that the flux induces a map

F̃lux : H̃am(Σ, ω)×H0(∂Σ)2 → R,

F̃lux([{φt}], C0, C1) =

∫ 1

0

Ht(C1) dt−
∫ 1

0

Ht(C0) dt,

which for any pair (C0, C1) restricts to a homomorphism from Ham(Σ, ω) to R,
thanks to the form (2.1) of the Hamiltonian generating the product of two Hamil-
tonian isotopies.

Remark 2.1. The above considerations can be restated slightly more abstractly
by seeing the flux as a homomorphism from the universal cover of the identity
component of the symplectomorphism group of Σ to H1(Σ, ∂Σ). See [MS98, Section
10.2] for the case of a closed symplectic manifold. �

We shall be particularly interested in the subgroup H̃am0(Σ, ω) of H̃am(Σ, ω)
consisting of Hamiltonian isotopies whose flux through any curve with endpoints
on the boundary of Σ vanishes, i.e.

H̃am0(Σ, ω) :=
{
φ̃ ∈ H̃am(Σ, ω)

∣∣∣ F̃lux
(
φ̃, C0, C1

)
= 0 ∀C0, C1 ∈ H0(∂Σ)

}
.

This is a normal subgroup of H̃am(Σ, ω) and a proper subgroup whenever ∂Σ has
more than one connected component.

Remark 2.2. An element φ̃ of H̃am(Σ, ω) belongs to H̃am0(Σ, ω) if and only if we

can normalize the Hamiltonian Ht generating any isotopy {φt} representing φ̃ by
requiring ∫ 1

0

Ht(z) dt = 0, ∀z ∈ ∂Σ. (2.4)

Similarly, φ̃ = [{φt}] belongs to H̃am0(Σ, ω) if and only if we can normalize the
action a of φ1 with respect to any primitive ν of ω by requiring

a(z) =

∫

{t7→φt(z)}
ν, ∀z ∈ ∂Σ. (2.5)

Indeed, (2.5) corresponds to the choice a = aH,ν of (2.2), where H is normalized as
in (2.4). �

When φ̃ belongs to H̃am0(Σ, ω) and ν is a primitive of ω, we shall denote by

aφ̃,ν : Σ→ R

the action of π(φ̃) normalized as in (2.5). As the notation suggests, this action does

not depend on the choice of the Hamiltonian isotopy representing φ̃.
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If φ̃ = [{φt}] and ψ̃ = [{ψt}] are in H̃am0(Σ, ω) and ν is any primitive of ω, we
have the identity

aψ̃◦φ̃,ν = aφ̃,ψ∗1ν
+ aψ̃,ν . (2.6)

Indeed, one readily checks that the function a := aφ̃,ψ∗1ν
+ aψ̃,ν satisfies

da = (ψ1 ◦ φ1)∗ν − ν,

a(z) =

∫

{t 7→ψt(φt(z))}
ν, ∀z ∈ ∂Σ.

A fixed point z of φ̃ = [{φt}] ∈ H̃am(Σ, ω) is by definition a fixed point of the
map φ1. Such a fixed point is said to be contractible if the loop t 7→ φt(z) is
contractible in Σ. The latter condition is clearly independent on the choice of the
Hamiltonian isotopy representing φ̃.

The normalized action aφ̃,ν(z) of any contractible fixed point z of φ̃ ∈ H̃am0(Σ, ω)

is independent on the choice of the primitive ν. Indeed, if φ̃ = [{φt}] and Ht is the
Hamiltonian normalized by (2.4) generating φt, then the identity aφ̃,ν = aH,ν and
Stokes’ theorem imply

aφ̃,ν(z) =

∫

D
u∗ω +

∫ 1

0

Ht(φt(z)) dt, (2.7)

where u : D → Σ is a capping of the contractible closed curve t 7→ φt(z). In (2.7),
the dependence on ν disappears. Therefore, we shall denote the normalized action
of the contractible fixed point z of φ̃ simply as aφ̃(z).

Finally, we define the Calabi homomorphism

Cal : H̃am0(Σ, ω)→ R, Cal(φ̃) :=

∫

Σ

aφ̃,ν ω = 2

∫ 1

0

(∫

Σ

Ht ω

)
dt.

The equality of the above two expressions is proven in the lemma below. Notice
that the above double representation implies that Cal(φ̃) is independent of the
choice of the primitive of ν defining the normalized action aφ̃,ν and of the choice

of the Hamiltonian isotopy representing φ̃ and defining Ht. The fact that Cal is a
homomorphism can be proven by either using the representation in terms of action
together with (2.6), or the Hamiltonian representation together with (2.1).

Lemma 2.3. For each φ̃ = [(φt)] ∈ H̃am0(Σ, ω), if Ht is the Hamiltonian normal-
ized by (2.4) generating the isotopy φt, we have

∫

Σ

aφ̃,ν ω = 2

∫ 1

0

(∫

Σ

Ht ω

)
dt.

Proof. From the identity aφ̃,ν = aH,ν we find

∫

Σ

aφ̃,ν ω =

∫

Σ

(∫ 1

0

(
Xty ν +Ht

)
◦ φt dt

)
ω =

∫ 1

0

(∫

Σ

(
Xty ν +Ht

)
◦ φt ω

)
dt

=

∫ 1

0

(∫

Σ

(
Xty ν +Ht

)
ω

)
dt =

∫ 1

0

(∫

Σ

ν ∧ dHt +Ht ω

)
dt,
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where we have used the fact that φt preserves ω, and the identity (Xty ν)ω = ν∧dHt.
By Stokes theorem, we find

∫ 1

0

(∫

Σ

ν ∧ dHt

)
dt =

∫ 1

0

(∫

Σ

(
Ht dν − d(Htν)

))
dt

=

∫ 1

0

(∫

Σ

Ht ω

)
dt−

∫ 1

0

(∫

∂Σ

Htν

)
dt,

and the latter integral vanishes thanks to the normalization condition (2.4):
∫ 1

0

(∫

∂Σ

Htν

)
dt =

∑

C∈π0(∂Σ)

(∫ 1

0

Ht(C) dt

)(∫

C

ν

)
= 0. �

2.2. The fixed point theorem. We now prescribe the way in which the two-form
ω, which is assumed to be symplectic in the interior of Σ, vanishes on the boundary:

Assumption 2.4. Every connected component C of the boundary ∂Σ has a collar
neighborhood AC ⊂ Σ and an identification AC ≡ [0, ρ)× S1, for some ρ > 0 such
that

ω|AC = −r dr ∧ ds.
Here, we are identifying S1 with R/Z, and (r, s) denotes a point in [0, ρ)×S1. Note
that the orientation of ∂Σ as boundary of the oriented surface (Σ, ω) coincides,
under the above identification of each component C ⊂ ∂Σ with {0} × S1, with the
orientation given by ds. �

The main result of this section is the following fixed point theorem, which is
stated as Theorem C in the Introduction and in which we are denoting by

Ĉal(φ̃) :=
Cal(φ̃)

area(Σ, ω)

the normalized Calabi invariant of φ̃ ∈ H̃am0(Σ, ω).

Theorem 2.5. Assume that the exact two-form ω on the compact surface Σ is
symplectic on int(Σ) and satisfies Assumption 2.4. For every c > 0 there exists

a C1-neighborhood U of the identity in H̃am0(Σ, ω) such that every φ̃ in U with

Cal(φ̃) ≤ 0 has a contractible fixed point z ∈ int(Σ) whose normalized action satis-
fies

aφ̃(z) + c aφ̃(z)2 ≤ 1

2
Ĉal(φ̃), (2.8)

with equality if and only if φ̃ is the identity.

In particular, Theorem 2.5 implies that any φ̃ ∈ H̃am0(Σ, ω) \ {id} which is

sufficiently C1-close to the identity and satisfies Cal(φ̃) ≤ 0 has a contractible
interior fixed point z with negative action satisfying

aφ̃(z) <
1

2
Ĉal(φ̃). (2.9)

For the special case when Σ is the disk, the weaker conclusion (2.9) is deduced
in [ABHS18, Corollary 5] from a non-perturbative statement. For arbitrary com-
pact surfaces Σ having one boundary component, (2.9) is proven in [BK21, Corol-
lary 4.16]. The more precise bound which we prove here involving the square of
the action turns out to be important in order to prove systolic inequalities for Reeb
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flows using quite general global surfaces of section (see Remark 4.1 below for more
about this).

Remark 2.6. The upper bound (2.8) can be restated as

aφ̃(z) ≤ fc
(
Ĉal(φ̃)

)
,

where

fc(s) :=
1

2c

(√
1 + 2cs− 1

)
=

1

2
s− c

4
s2 +O(s3) for s→ 0.

As already observed in [ABHS18, Remark 2.21], the constant 1
2 in front of the linear

term in s is optimal, meaning that it cannot be replaced by a larger constant (recall
that the argument of fc is non-positive): the example that is contained there can

be easily modified to produce, for every η > 1
2 , an element φ̃ of H̃am0(Σ, ω) which

is arbitrarily close to the identity in any Ck norm, has negative Calabi invariant
but no contractible fixed point z satisfying

aφ̃(z) ≤ η · Ĉal(φ̃).

Therefore, (2.9) can be improved only by considering higher order terms in s; the
bound (2.8) is such an improvement. �

Remark 2.7. By applying Theorem 2.5 to φ̃−1, we obtain the following statement:

For every c > 0 there exists a C1-neighborhood U of the identity in H̃am0(Σ, ω) such

that every φ̃ in U with Cal(φ̃) ≥ 0 has a contractible fixed point z ∈ int(Σ) whose
normalized action satisfies

aφ̃(z)− c aφ̃(z)2 ≥ 1

2
Ĉal(φ̃),

with equality if and only if φ̃ is the identity. �

The proof of Theorem 2.5 uses quasi-autonomous Hamiltonians: We recall that
the time-dependent Hamiltonian Ht : Σ → R is called quasi-autonomous if there
exist zmin, zmax ∈ Σ such that

Ht(zmin) = min
Σ
Ht, Ht(zmax) = max

Σ
Ht, ∀t ∈ [0, 1].

Note that, if the Hamiltonian isotopy {φt} is generated by a quasi-autonomous
Hamiltonian Ht as above and zmin and zmax belong to the interior int(Σ), then

these points are contractible fixed points of φ̃ = [{φt}].
Exact symplectomorphisms of Σ that are C1-close to the identity are generated

by a quasi-autonomous Hamiltonian. More precisely, we have the following result.

Theorem 2.8. Assume that the exact two-form ω on the compact surface Σ is
symplectic on int(Σ) and satisfies Assumption 2.4. Let φ : Σ → Σ be an exact
symplectomorphism that is sufficiently C1-close to the identity. Then there ex-
ists a Hamiltonian isotopy {φt} from id to φ whose generating Hamiltonian Ht

is quasi-autonomous. Moreover, for every ε > 0 there exists δ > 0 such that, if
distC1(φ, id) < δ, then:

(i) ‖Ht‖C1 < ε and distC1(φt, id) < ε for every t ∈ [0, 1];
(ii) in the collar neighborhood AC ≡ [0, ρ)× S1 of each boundary component C

of Σ as in Assumption 2.4, the Hamiltonian Ht has the form

Ht(r, s) = bC + r2hC(t, r, s)
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for some real number bC and some smooth function hC : [0, 1] × A → R

such that |bC | < ε and ‖hC‖C0 < ε.

In statements (i) and (ii), the C1 distances and norm are measured with respect
to an arbitrary Riemannian metric on Σ.

Remark 2.9. Theorem 2.8 has other interesting applications. For instance, it im-
plies that the identity in Ham(Σ, ω) has a C1-neighborhood on which the Hofer
metric is flat. See [BP94] for more about this in the setting of compactly sup-
ported Hamiltonian diffeomorphisms of R2n and [LM95] for the case of compactly
supported Hamiltonian diffeomorphisms of more general symplectic manifolds. �

This theorem is proven in the next section. Here we will show how the fixed
point theorem can be deduced from it.

Proof of Theorem 2.5. If φ̃ is the identity, then any point z ∈ int(Σ) is a con-

tractible fixed point of φ̃ and aφ̃(z) = Cal(φ̃) = 0. Therefore, we must prove that

if U is a sufficiently small C1-neighborhood of the identity in H̃am0(Σ, ω) then any

φ̃ ∈ U \ {id} with Cal(φ̃) ≤ 0 has a contractible fixed point z ∈ int(Σ) satisfying
the strict inequality in (2.8).

We fix

ε :=
N

4 area(Σ, ω) c
> 0, (2.10)

where N ≥ 1 is the number of connected components of ∂Σ and c is the arbitrary
positive number which appears in the statement we are proving. By Theorem 2.8,
if U is sufficiently small then any φ̃ ∈ U \ {id} is represented by a Hamiltonian
isotopy {φt} which is generated by a quasi-autonomous Hamiltonian Ht satisfying
the bounds (i) and (ii) for the ε given by (2.10).

Since φ̃ belongs to H̃am0(Σ, ω) and H is constant on [0, 1]×C for every connected
component C of ∂Σ, up to adding a suitable constant we may assume that Ht

vanishes on ∂Σ for every t ∈ [0, 1]. By Theorem 2.8(ii), on the collar neighborhood
AC ≡ [0, ρ) × S1 of every connected component C of ∂Σ the Hamiltonian Ht has
the form

Ht(r, s) = r2hC(t, r, s), where ‖hC‖C0 < ε. (2.11)

Since Ht is quasi-autonomous, there exists zmin ∈ Σ which minimizes Ht for every
t ∈ [0, 1]. Since Ht vanishes on ∂Σ, we have Ht(zmin) ≤ 0 for every t ∈ [0, 1]. Since

∫ 1

0

(∫

Σ

Ht ω

)
dt =

1

2
Cal(φ̃) ≤ 0,

and since H does not vanish identically, because φ̃ 6= id, Ht(zmin) is strictly negative
for some t ∈ [0, 1]. In particular, zmin belongs to the interior of Σ and hence is a

contractible fixed point of φ̃ of action

aφ̃(zmin) =

∫ 1

0

Ht(zmin) dt < 0.

In order to estimate this action, we introduce the function

K : Σ→ R, K(z) :=

∫ 1

0

Ht(z) dt.
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The point zmin minimizes K, and

−m := K(zmin) = aφ̃(zmin) < 0.

Consider the collar neighborhood AC ≡ [0, ρ) × S1 of some connected component
C of ∂Σ. By (2.11), we have

|K(r, s)| ≤ εr2, ∀(r, s) ∈ AC .
Together with the fact that K ≥ −m on Σ, we deduce that

K(r, s) ≥ max{−εr2,−m} ∀(r, s) ∈ AC . (2.12)

Up to reducing if necessary the neighborhood U , we can make the C0-norm of H
as small as we wish and hence we may assume that m < ερ2. Therefore,

max{−εr2,−m} =




−εr2, ∀r ∈

[
0,
√
m/ε

]
,

−m, ∀r ∈
[√

m/ε, ρ
)
.

By integrating (2.12) over AC , we infer
∫

AC

K ω >

∫

[0,ρ)×S1

max{−εr2,−m}r dr ∧ ds =

∫ ρ

0

max{−εr2,−m}r dr

= −ε
∫ √m/ε

0

r3 dr −m
∫ ρ

√
m/ε

r dr = −m
2
ρ2 +

m2

4ε

= −m area(AC , ω) +
m2

4ε
,

Note that we have written a strict inequality here because the inequality in (2.12)
cannot be everywhere an equality, as the right-hand side is not a differentiable
function of r at r =

√
m/ε ∈ (0, ρ). On the other hand, on Σ \U , where U denotes

the union of the collar neighborhoods AC of the N components of ∂Σ we have
∫

Σ\U
K ω ≥ −m area(Σ \ U, ω).

Putting these inequalities together, we find
∫

Σ

K ω > −m area(Σ, ω) +N
m2

4ε
. (2.13)

Since −m = aφ̃(zmin) and the integral of K on Σ is 1
2 Cal(φ̃), the inequality (2.13)

and our choice of ε in (2.10) give us the desired conclusion:

aφ̃(zmin) + c aφ̃(zmin)2 <
Cal(φ̃)

2 area(Σ, ω)
=

1

2
Ĉal(φ̃). �

2.3. Construction of a generating quasi-autonomous Hamiltonian. The
aim of this section is to prove Theorem 2.8. The proof closely follows the argument
of [BK21, Section 4], but for sake of completeness we work out the details.

By Assumption 2.4 and up to reducing the positive number ρ appearing there,
we can find a primitive ν0 of ω which on the collar neighborhood AC ≡ [0, ρ)× S1

of each component C of the boundary of Σ has the form

ν0|AC =
(
aC − 1

2r
2
)
ds, (2.14)
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for some aC ∈ R. Indeed, if ν is any primitive of ω and aC is its integral on the
boundary component C = {0} × S1, then the one-form above differs from ν|AC by
the differential of a function gC . By adding to ν the differential of a function on Σ
that agrees with gC on a slighltly reduced collar neighborhood of every component
C of ∂Σ, we obtain the desired primitive ν0.

For i = 1, 2, we consider the one-forms νi := pr∗i ν0 on Σ× Σ, where

pri : Σ× Σ→ Σ, pri(z1, z2) = zi,

and the standard Liouville form λstd on the cotangent bundle T∗Σ, which is uniquely
defined by the equation α∗λstd = α for all one-forms α on Σ.

If z1 and z2 are points on the same connected component C of ∂Σ, then they
are identified with pairs (0, s1), (0, s2) in AC = [0, ρ) × S1. When s2 and s1 are
not antipodal in S1 = R/Z, meaning that |s2 − s1| < 1

2 for suitable lifts to R, we
denote by [z1, z2] the unique shortest oriented arc in C from z1 to z2, so that

∫

[z1,z2]

ds < 1
2 .

The next result is a version of Weinstein tubular neighborhood theorem in our
setting.

Lemma 2.10 (Weinstein tubular neighborhood). There exists an open neighbor-
hood U ⊂ Σ × Σ of the diagonal ∆Σ = {(z, z) | z ∈ Σ}, an open neighborhood
V ⊂ T∗Σ of the 0-section 0Σ ⊂ T∗Σ, and a smooth map ψ : U → V that restricts
to a diffeomorphism ψ : U ∩ int(Σ× Σ)→ V ∩ T∗int(Σ), and satisfies

ψ(∆Σ) = 0Σ, ψ∗λstd = ν2 − ν1 + df,

where f : Σ× Σ→ R is a smooth function such that f |∆Σ
≡ 0 and

df(z1, z2) = (ν1 − ν2)(z1,z2), f(z1, z2) = −
∫

[z1,z2]

ν0,

for every pair (z1, z2) ∈ U∩(∂Σ×∂Σ). If AC ≡ [0, ρ)×S1 is the collar neighborhood
of a connected component C of ∂Σ on which ν0 has the form (2.14), the restriction
ψ|U∩(AC×AC) has the form

ψ(r, s, R, S) =
(
R, s, R (S − s), 1

2 (r2 −R2)
)
,

∀(r, s, R, S) ∈ U ∩ (AC ×AC).
(2.15)

Proof. We first provide the construction within the collar neighborhood A = AC
of each connected component C of ∂Σ. We consider a small enough neighborhood
W ⊂ A×A of the diagonal ∆A = {(z, z) | z ∈ A} so that, for each (r, s, R, S) ∈W ,
the points s, S ∈ S1 are not antipodal. We define the map

κ0 : W → T∗A︸︷︷︸
A×R2

, κ0(r, s, R, S) =
(
R, s, R (S − s), 1

2 (r2 −R2)
)
.

This map restricts to a diffeomorphism onto its image

κ0 : W ∩ int(A×A)→ int(T∗A),



18 A. ABBONDANDOLO, C. LANGE, AND M. MAZZUCCHELLI

and satisfies κ0(∆A) = 0A and

κ∗0λstd = R (S − s) dR+ 1
2 (r2 −R2) ds

= − 1
2 R

2 dS + 1
2 r

2 ds+ d
(

1
2 (S − s)R2

)

= −ν1 + ν2 + d
(
(aC − 1

2R
2)(s− S)

)

= −ν1 + ν2 + df0,

where

f0 : W → R, f0(r, s, R, S) = (aC − 1
2R

2)(s− S).

Notice that f0|∆A
≡ 0 and

f0(0, s, 0, S) = aC(s− S) = −
∫

[z1,z2]

ν0,

df0(0, s, 0, S) = aC ds− aC dS = ν1 − ν2,

where z1 = (0, s) and z2 = (0, S).
For some sufficiently small neighborhood U ⊂ Σ × Σ of the diagonal ∆Σ, we

choose an arbitrary smooth function f1 : U → R that coincides with f0 on a
neighborhood of U ∩ (∂Σ × ∂Σ) and satisfies f1|∆Σ

≡ 0 and df1 = ν1 − ν2 at all
points of the diagonal ∆Σ. Up to further shrinking the neighborhood U , we also
choose a smooth map κ1 : U → T∗Σ that coincides with κ0 on a neighborhood of
W ∩ (∂Σ× ∂Σ), restricts to a diffeomorphism onto its image κ1 : U ∩ int(Σ×Σ)→
T∗(int(Σ)), and such that κ1(∆Σ) = 0Σ.

We now conclude the proof by means of a typical application of Moser’s trick.
We set

µt := tκ∗1(λstd) + (1− t)(ν2 − ν1),

and we look for an isotopy φt : U → Σ×Σ, defined after possibly further shrinking
the neighborhood U , such that φ0 = id and φ∗tµt − µ0 is exact. We denote by Xt

the time-dependent vector field generating φt and compute

d
dtφ
∗
tµt = φ∗t (LXtµt + d

dtµt) = φ∗t
(
Xt y dµt + d(µt(Xt)) + µ1 − µ0

)

= φ∗t
(
Xt y dµt + κ∗1λstd − ν2 + ν1 − df1 + d(µt(Xt) + f1)

)
.

Notice that the symplectic forms κ∗1dλstd and−dν1+dν2 define the same orientation,
since they coincide on a neighborhood of U∩(∂Σ×∂Σ). Therefore dµt is symplectic
away from ∂(Σ× Σ) for every t ∈ [0, 1]. We choose the vector field Xt so that

Xt y dµt + κ∗1λstd − ν2 + ν1 − df1 = 0.

Notice that Xt vanishes on the diagonal ∆Σ and on a neighborhood of U∩(∂Σ×∂Σ).
Moreover

d
dtφ
∗
tµt = φ∗t d(µt(Xt) + f1).

Up to shrinking the neighborhood U , we obtain a well defined isotopy φt : U → T∗Σ
that coincides with κ0 on a neighborhood of U ∩ (∂Σ× ∂Σ) and satisfies

φ∗1κ
∗
1(λstd) = −ν1 + ν2 + df,

where

f(w) =

∫ 1

0

(
µt(Xt) + f1

)
◦ φt(w) dt.
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The desired map is ψ := κ1 ◦ φ1. �

Proof of Theorem 2.8. We still work with the special primitive ν0 of ω satisfying
(2.14). By assumption, the diffeomorphism φ : Σ→ Σ satisfies

φ∗ν0 − ν0 = da

for some smooth function a on Σ. Note that a is C1-small when φ is C1-close to
the identity. We consider the associated map

Φ : Σ→ Σ× Σ, Φ(z) = (z, φ(z)).

We require φ to be sufficiently C1-close to the identity so that the image of Φ is
contained in the domain of the map ψ : U → T∗Σ provided by Lemma 2.10, and
the image of ψ ◦Φ is a section of the cotangent bundle T∗Σ. Namely, if we denote
by π : T∗Σ→ Σ the projection onto the base of the cotangent bundle, the map

φ̃ : Σ→ Σ, φ̃(z) = π ◦ ψ ◦ Φ(z)

is a diffeomorphism. We consider the smooth function f : Σ× Σ→ R provided by
Lemma 2.10. Since

(ψ ◦ Φ)∗λstd = Φ∗(ν2 − ν1 + df) = φ∗ν − ν + d(f ◦ Φ) = d(a+ f ◦ Φ),

we have that

ψ ◦ Φ(z) = (φ̃(z), dF (φ̃(z))), (2.16)

where F : Σ→ R is the smooth generating function

F (w) = (a+ f ◦ Φ) ◦ φ̃−1(w).

Identity (2.16) implies that F is C2-small when φ is C1-close to the identity.
Consider now the collar neighborhood A = AC ≡ [0, ρ) × S1 of a connected

component C of ∂Σ as in (2.14). For all (r, s) ∈ A ∩ φ−1(A), if we set (R,S) =

φ(r, s), we have φ̃(r, s) = (R, s) and

R (S − s) = ∂RF (R, s), 1
2 (r2 −R2) = ∂sF (R, s). (2.17)

This implies that dF = 0 at all points of ∂Σ. In particular, F is constant on each
component C of ∂Σ and in a neighborhood of this component we can write F as

F (R, s) = b+R2G(R, s), (2.18)

where b = bC is a real number and G = GC is a smooth function. More precisely,

b = lim
R→0

∂RF (R, s)

R
= S(0, s)− s

and the Taylor theorem with integral remainder gives us the formula

F (R, s) = b+R2

∫ 1

0

∂2
RF (tR, s)(1− t) dt.

By differentiating the first identity in (2.17) with respect to R, we find

G(R, s) =

∫ 1

0

∂2
RF (tR, s)(1− t) dt =

∫ 1

0

(
−s+ S(tR, s) + tR ∂RS(tR, s)

)
(1− t) dt.

The above formulas for b and G imply that |b| and ‖G‖C0 are both small if φ is
C1-close to the identity.

We now consider the isotopy

φt : int(Σ)→ int(Σ), t ∈ [0, 1],
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with the associated map Φt : int(Σ) → int(Σ × Σ), Φt(z) = (z, φt(z)), whose
image ψ ◦ Φt(int(Σ)) is the graph of t dF . Notice that φt defines an associated
diffeomorphism

φ̃t := π ◦ ψ ◦ Φt : int(Σ)→ int(Σ),

and

ψ ◦ Φt(z) = (φ̃t(z), t dF (φ̃t(z))). (2.19)

The endpoints of the isotopy are φ0 = id and φ1 = φ. We claim that φt extends as
a smooth isotopy φt : Σ→ Σ that is C1-close to the identity. In order to prove this,
let us focus on the collar neighborhood AC ≡ [0, ρ)×S1 of a connected component
C of ∂Σ. If we write (Rt, St) := φt(r, s), then Equation (2.19) in the annulus
int(AC) becomes

Rt (St − s) = t ∂RF (Rt, s),
1
2 (r2 −R2

t ) = t ∂sF (Rt, s),

that is, using (2.18),

St = s+
(
2G(Rt, s) +Rt ∂RG(Rt, s)

)
t︸ ︷︷ ︸

(∗)

, r = Rt
√

1 + 2t ∂sG(Rt, s)︸ ︷︷ ︸
(∗∗)

.

The term (∗) is C1-small and the term (∗∗) is C1-close to 1 as functions of (Rt, s).
This shows that the isotopy (Rt, s) 7→ (r, St) is C1-close to the identity and extends
smoothly to the boundary C by (0, s) 7→ (0, s+ 2tG(0, s)). Therefore, we obtain a
C1-close to the identity smooth extension φt : Σ→ Σ as well.

Let Xt bt the time dependent vector field generating the isotopy φt. We claim
that Xt is Hamiltonian with Hamiltonian function

Ht : Σ→ R, Ht(z) := F ◦ π ◦ ψ(φ−1
t (z), z). (2.20)

Indeed, consider an arbitrary v ∈ TzΣ and set

w := dφ̃t(z)v, qt := φ̃t(z), yt := d
dt φ̃t(z).

In Darboux coordinates, we locally see T∗Σ as Σ×R2, and compute

dν
(
Xt(φt(z)), dφt(z)v

)
= ψ∗dλstd

(
(0, Xt(φt(z))), (v, dφt(z)v)

)

= dλstd

(
(yt, dF (qt) + t d2F (qt)yt), (w, t d

2F (qt)w)
)

= dF (qt)w + t d2F (qt)[yt, w]− t d2F (qt)[w, yt]

= dF (qt)w = d(F ◦ φ̃t)(z)v
= d(F ◦ φ̃t ◦ φ−1

t )(φt(z))dφt(z)v

= dHt(φt(z))dφt(z)v,

proving our claim.
Note that for every t ∈ [0, 1], the maximum and minimum of Ht on Σ coincide

with those of F . Note also that by (2.18) we have

Ht(z) = F (z) = bC ∀z ∈ C, (2.21)

for every connected component C of ∂Σ. Moreover, the previous considerations on
F , bC and GC imply that if φ is C1-close to the identity, then Ht is C1-small and
on AC has the form

Ht(r, s) = bC + r2hC(t, r, s),
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where both |bC | and ‖hC‖C0 are small. Indeed, the above identity and the C0-
smallness of hC follow from (2.15) and (2.20), which give us the identity

Ht(r, s) = F (r, St(r, s)) = bC + r2GC(r, St(r, s))

where φ−1
t (r, s)) = (Rt(r, s), St(r, s)). Together with the already mentioned C1-

closeness of φt to the identity, this proves statements (i) and (ii) in Theorem 2.8.
Let us check that for every t ∈ [0, 1] the function Ht achieves its minimum at

some point zmin ∈ Σ which is independent of t. If F achieves its minimum on ∂Σ,
this follows from the identity minHt = minF and (2.21). So let us assume that F
achieves its minimum at an interior point qmin. Then dF (qmin) = 0 and, since the
inverse image of the zero-section in T ∗int(Σ) is the diagonal in int(Σ)× int(Σ), we
have

ψ(zmin, zmin) = (qmin, 0)

for some zmin ∈ int(Σ). Since ψ maps the graph of φt to the graph of t dF , we have

φt(zmin) = zmin ∀t ∈ [0, 1],

and hence

Ht(zmin) = F ◦ π ◦ ψ(zmin, zmin) = F ◦ π(qmin, 0) = F (qmin).

This shows that

Ht(zmin) = min
Σ
Ht ∀t ∈ [0, 1].

The argument for the maximum is analogous, and we conclude that Ht is quasi-
autonomous. �

3. Global surfaces of section for nearly Besse contact forms on
3-manifolds

3.1. Global surfaces of section. In this paper, a global surface of section for
a contact form λ on a 3-manifold Y is a smooth map ι : Σ → Y , where Σ is
an oriented connected compact surface with non-empty and possibly disconnected
boundary, with the following properties:

• (Boundary ) The restriction ι|∂Σ is an immersion positively tangent to the
Reeb vector field Rλ. Namely, with the orientation on the boundary ∂Σ
induced by the one of Σ, the restriction of ι to any connected component
of ∂Σ is an orientation preserving covering map of a closed Reeb orbit of
(Y, λ).

• (Transversality ) The restriction ι|int(Σ) is an embedding into Y \ ι(∂Σ)
transverse to the Reeb vector field Rλ. In particular, the 2-form ι∗dλ is
nowhere vanishing on int(Σ), and we assume that it is a positive area form
on the oriented surface int(Σ).

• (Globality ) For each point z ∈ Y , the Reeb orbit t 7→ φtλ(z) intersects Σ in
both positive and negative time.

We stress that, in the literature, the notion of global surface of section may be
slightly different than the one given here: for instance, the map ι : Σ→ Y may be
required to be an embedding, or the restriction of ι to some connected component
of Σ may be allowed to be an orientation reversing covering map of a closed Reeb
orbit.
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3.2. The surgery description of a Besse contact form on a 3-manifold.
The proof of Theorem A will require suitable surfaces of section for the Reeb flows
of contact forms sufficiently C3-close to a Besse one. As a preliminary step, in the
next subsection we shall construct global surfaces of sections for the Reeb flow of
Besse contact 3-manifolds. It will be useful to employ the surgery description of
Besse contact 3-manifolds as Seifert fibered spaces, which we now recall. We refer
the reader to, e.g., [Orl72, JN83] for more details.

A Seifert fibration π : Y → B, in the generality that we need for the study of
Besse contact 3-manifolds, is defined up to a suitable notion of isomorphism by a
genus and k ≥ 1 pairs of coprime integers (α1, β1), ..., (αk, βk) ∈ N × Z. Here, N
denotes the set of positive integers and the coprimeness assumption implies that
αj = 1 if βj = 0. We denote by B0 an oriented compact connected surface of
the given genus with k boundary components. We write its oriented boundary as
∂B0 = ∂1B0 ∪ ... ∪ ∂kB0, where each ∂jB0 is a connected component oriented as
the boundary of B0. Over B0, we consider the trivial S1-bundle

π : Y0 := B0 × S1 → B0, π(z, t) = z,

with its associated free S1-action

t · (z, s) = (z, s+ t), ∀t ∈ S1, (z, s) ∈ Y0.

Here and elsewhere in the paper, S1 = R/Z. Next, we consider k disjoint copies
Bj ⊂ C, j = 1, ..., k of the disk of some radius ρ > 0 centered at the origin, and the
solid tori together with their base projections

π : Yj := Bi × S1 → Bj , π(z, t) = z.

By the Bézout identity, we can find pairs of coprime integers (α′j , β
′
j) ∈ Z×Z such

that

det

(
αj α′j
βj β′j

)
= 1, ∀j = 1, ..., k. (3.1)

The pair (α′j , β
′
j) is not uniquely determined by (αj , βj) (except if (αj , βj) = (1, 0),

in which we necessarily have (α′j , β
′
j) = (0, 1)). We introduce the oriented curves

mj = ∂Bj × {∗} ⊂ ∂Yj , lj = {∗} × S1 ⊂ ∂Yj ,
hj = {∗} × S1 ⊂ ∂jB0 × S1 ⊂ ∂Y0, fj = −∂jB0 × {∗} ⊂ ∂Y0.

Here, we used the symbol ∗ to denote an arbitrary point of a space. We glue
Y0, Y1, ..., Yk along their boundaries by identifying

mj ≡ αjfj + βjhj , lj ≡ α′jfj + β′jhj , ∀j = 1, ..., k

and denote by Y the resulting closed 3-manifold. Here, we mean that mj ⊂ ∂Yj is
identified with an oriented embedded circle in ∂jY0 that is homologous to αj [fj ] +
βj [hj ], and analogously for lj . The free S1-action on Y0 extends to an S1-action on
the whole Y , which on the solid tori Yj has the form

t · (z, s) =
(
ze−2πα′jti, s+ αjt

)
, ∀t ∈ S1, (z, s) ∈ Yj .

If αj > 1, the S1-action is not free on the orbit

γj := {0} × S1 ⊂ Yj ,
and in this case we call such an orbit singular. All those S1-orbits that are not
singular are called regular. The surfaces Bj are glued accordingly to form a closed
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surface B. The maps π are glued as well, and the obtained π : Y → B is the
quotient projection of the S1-action on Y . We can always assume without loss of
generality that the number of Seifert pairs (αj , βj) is k ≥ 2; indeed, adding the
trivial Seifert pair (1, 0) does not affect the Seifert fibration.

The locally free S1-action that is induced by a Besse Reeb flow on Y can be seen
as the S1-action on the total space of a Seifert fibration π : Y → B as above. In
this case, the Euler number

e(Y ) := −β1

α1
− ...− βk

αk

is negative, as shown in [LM04] (see also [KL21, Theorem 1.4]).

3.3. A Global surface of section for a Besse contact form on a 3-manifold.
The existence of global surfaces of section in Seifert spaces was thoroughly inves-
tigated by Albach-Geiges [AG21]. In this subsection, we prove a statement which
may be of independent interest (Theorem 3.1) asserting that on a Besse contact
3-manifold any given closed Reeb orbit is the (multiply covered) boundary of a
surface of section as defined in Subsection 3.1

Let (Y, λ0) be a Besse contact 3-manifold whose Reeb orbits have minimal com-
mon period 1, and γ1 be an arbitrary closed Reeb orbit. The Reeb flow φtλ0

defines

a locally free S1-action on Y . We can see this action as the S1-action of a Seifert
fibered structure which we describe with the same notation of the previous sub-
section: in particular, for each j = 1, ..., k, we denote by γj the closed Reeb orbit
corresponding to the Seifert pair (αj , βj). Notice in particular that we are assuming
without loss of generality that our given γ1 is the closed Reeb orbit corresponding to
the Seifert pair (α1, β1). We recall that γ1 has minimal period 1/α1, and therefore
it is a singular orbit if and only if α1 > 1.

We consider the tubular neighborhood Y1 ⊂ Y of γ1, which was realized as
Y1 ≡ B1×S1, and under this identification we have γ1 = {0}×S1 ⊂ Y1. We equip
Y1 with the contact form

λ′0 = 1
α1
r2dθ + 1

α1

(
1 + 2π

α′1
α1
r2
)
ds,

where (r, θ) are polar coordinates on the disk B1, and s ∈ S1 = R/Z. The associ-
ated Reeb vector field is given by

Rλ′0 = −2πα′1∂θ + α1∂s = Rλ0 |Y1 ,

and therefore the associated Reeb flow agrees with the Seifert S1-action

φtλ′0(z, s) = φtλ0
(z, s) = t · (z, s) =

(
ze−2πα′1ti, s+ α1t

)
,

Up to pulling back λ0 by an S1-equivariant diffeomorphism, we can assume that

λ0|Y1
= λ′0 = 1

α1
r2dθ + 1

α1

(
1 + 2π

α′1
α1
r2
)
ds

This can be obtained by means of a Moser’s trick, see [CGM20, Lemma 4.5]. Notice
that every orbit of the Reeb flow φtλ0

on Y1 has minimal period 1, except possibly

γ1 = {0} × S1 that has minimal period 1/α1 (the case in which γ1 is regular is
allowed, and corresponds to the Seifert invariants (α1, β1) = (1, 0)).

For any pair of coprime integers p0 6= 0 and q0 such that

q0

p0
< −α

′
1

α1
, (3.2)
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and for any s0 ∈ S1, we introduce the map

ι : [0, ρ)× S1 → B1 × S1, ι(r, s) =
(
re2π(s0+q0s)i, p0s

)
,

which satisfies the following properties:

• (Transversality ) The restriction ι|(0,ρ)×S1 is an embedding transverse to the

Reeb vector field Rλ0
, and the image ι((0, ρ)×S1) intersects −α1q0−p0α

′
1 >

0 times every Reeb orbit in Y1 other than γ1. Therefore, the 2-form ι∗dλ0

is nowhere vanishing on the interior (0, ρ)× S1, and we employ it to orient
the annulus [0, ρ)× S1.

• (Boundary ) The restriction ι|{0}×S1 is an orientation preserving p0-th fold

covering map of the closed Reeb orbit γ1. Here, the boundary circle {0}×S1

is oriented by means of the 1-form ι∗λ0.

We call ι : [0, ρ) × S1 → B2 × S1 a (p0, q0)-local surface of section with boundary
on the orbit γ1.

We now provide the construction of a suitable global surface of section for the
Besse contact 3-manifold (Y, λ) with boundary on the orbit γ1. An alternative
construction in the special case of a regular orbit in S3 was provided by Albach-
Geiges [AG21, Example 5.6]. The next result is a more precise version of Theorem
B from the Introduction.

Theorem 3.1. Let (Y, λ0) be a Besse contact 3-manifold with minimal common
Reeb period 1, and γ1 be any of its closed Reeb orbits. We denote by α1 > 0 the
integer whose reciprocal 1/α1 is the minimal period of γ1. Then, there exist integers
b > 0, p0 > 0, and q0 with gcd(p0, q0) = 1, a compact connected oriented surface Σ
with b boundary components and a global surface of section ι : Σ → Y for (Y, λ0)
satisfying the following properties:

(i) Any connected component C of the boundary ∂Σ has a collar neighborhood
AC ∼= [0, ρ)× S1 such that the restriction ι|AC is a (p0, q0)-local surface of
section with boundary on the orbit γ1. In particular, all boundary compo-
nents are positively oriented.

(ii) Any regular closed Reeb orbit in Y \ γ1 intersects the image ι(int(Σ)) in α
points, where

α := − b p0

e(Y )α1
> 0.

Here, e(Y ) is the Euler number of (Y, λ0).

(iii) The restriction ι|∂Σ is a covering map of γ1 of degree b p0.

Proof. Let (α1, β1), ...., (αk, βk) be the Seifert invariants of (Y, λ0). Here, we assume
without loss of generality that γ1 is the Reeb orbit corresponding to the Seifert pair
(α1, β1) (as we already pointed out, γ1 is allowed to be a regular orbit, and in that
case we have (α1, β1) = (1, 0)). For every Seifert pair (αj , βj), we denote by (α′j , β

′
j)
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Figure 1. Construction of a global surface of section.

the dual pair satisfying (3.1). We set

↵ := lcm(↵2, ..., ↵k) > 0,

� :=
�
�2

↵2
+ ... + �k

↵k

�
↵,

p := �1↵+ ↵1� = �e(Y )↵1↵ > 0, (3.3)

q := ��0
1↵� ↵0

1�, (3.4)

b := gcd(p, q),

p0 := p/g,

q0 := q/g.

Figure 1. Construction of a global surface of section.

the dual pair satisfying (3.1). We set

α := lcm(α2, ..., αk) > 0,

β :=
(
β2

α2
+ ...+ βk

αk

)
α,

p := β1α+ α1β = −e(Y )α1α > 0, (3.3)

q := −β′1α− α′1β, (3.4)

b := gcd(p, q),

p0 := p/b,

q0 := q/b.
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By inverting the linear Equations (3.3) and (3.4), we have

−α = α1q + α′1p,

β = β1q + β′1p.

Notice that (3.2) is satisfied, for

q0

p0
+
α′1
α1

=
q

p
+
α′1
α1

=
α1q + α′1p

α1p
= − α

α1p
< 0

Moreover,

α = − b p0

e(Y )α1
.

With the notation of Section 3.2, we consider the small disks Bi ⊂ B containing
π ◦ γi in their interior. We connect B1 with every other Bi by means of a rectangle
Ri as shown in Figure 1(a). We first define the intersection of our desired surface
of section with the solid torus Y1 = π−1(B1) as b-many (p0, q0)-local surfaces of
section with boundary on γ1; of course, away from their boundary on γ1, such local
surfaces of section are disjoint. We shall extend these b-many components outside
Y1 in such a way to create a (connected) global surface of section.

On the torus π−1(∂1B0) = π−1(∂B1), our defined surface of section winds −α-
times around f1 and β-times around h1. We distribute the windings around h1 into
k − 1 groups as in the example of Figure 1(b), where the shaded regions are the
annuli π−1(∂1B0 ∩ Ri), i = 2, ..., k. We set B′0 := B0 \ (R2 ∪ ... ∪ Rk), and extend
the surface of section to π−1(B′0) ∼= B′0 × S1 as α distinct constant sections

B′0 × {t1}, ..., B′0 × {tα};
On π−1(Ri), we extend the section in π−1(∂1B0 ∩ Ri) by taking the product with
an interval. As a result, in each torus π−1(∂Bi), i = 2, ..., k, our surface of section
winds α times around fi, and αβi/αi times around hi (Figure 1(c)); this means
that the surface of section winds α/αi times around mi, and zero times around li.
Therefore, we can extend it to π−1(Bi) ∼= Bi × S1 as α/αi many distinct constant
sections

Bi × {ti,1}, ..., Bi × {ti,α/αi}.
It remains to show that the resulting surface of section is connected. For each

i = 2, ..., k, in π−1(∂Bi) as in the left of Figure 1(c) outside the shaded region, the
j-th horizontal line is connected with the (j + βiα/αi)-th one modulo α. Hence, in
order the prove the claim, it suffices to remark that

gcd
(
α, β2α

α2
, ..., βkααk

)
= 1.

This latter equality follows from the fact that αi and βi are coprime and α =
lcm(α2, ..., αk). �

Now, we consider the global surface of section ι : Σ→ Y given by Theorem 3.1,
and the differential forms

ν0 := ι∗λ0, ω0 := dν0.

Since the Reeb vector field Rλ0 is transverse to ι(int(Σ)), we readily infer that ω0

is symplectic on int(Σ). A simple computation shows that ω0 vanishes at all points
of ∂Σ, and indeed satisfies Assumption 2.4 from Section 2.2. This is a consequence
of the fact that our surface of section restricts to a (p0, q0)-local surface of section
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near any connected component C of ∂Σ (Theorem 3.1(i)). Indeed, consider a collar
neighborhood AC ⊂ Σ of C, and the solid cylinder neighborhood Y1 ⊂ Y of γ1.
Under suitable identifications

AC ≡ [0, ρ)× S1, Y1 ≡ B1 × S1,

the restriction ι|AC : AC → Y has the form

ι|AC (r, s) =
(
re2πq0si, p0s

)
,

and ω0|AC can be written as

ω0|AC = 4π
α1

(
q0 +

α′1
α1
p0

)
︸ ︷︷ ︸

(∗)

r dr ∧ ds. (3.5)

The constant (∗) is strictly negative, and up to rescaling in the r variable, it can
be replaced by −1, as in Assumption 2.4.

The global surface of section ι : Σ→ Y induces a surjective map

ι̃ : Σ× S1 → Y, ι̃(z, t) = φtλ0
(ι(z)),

which restricts to an α-th fold branched covering map

ι̃|int(Σ)×S1 : int(Σ)× S1 → Y \ γ1. (3.6)

Here,

α = − b p0

e(Y )α1
> 0

is the number of intersections of any regular Reeb orbit in Y \ γ1 with ι(int(Σ)),
according to Theorem 3.1(ii). The branch set has the form Σsing × S1, where Σsing

is the finite set of points in int(Σ) which are mapped by ι to points on singular
orbits. The map ι̃ is a local diffeomorphism also at the branch points.

We denote by pr1 : Σ×S1 → Σ the projection onto the first factor. The one-form

λ̃0 := ι̃∗λ0 = dt+ pr∗1ν0 (3.7)

is a contact form on the interior int(Σ)× S1, with associated Reeb vector field

Rλ̃0
= ∂t.

Notice in particular that Rλ̃0
is well-defined and smooth up to the boundary ∂Σ×S1

as well.
The global surface of section allows to compute the volume of our Besse contact

manifold. This was pointed out by Geiges [Gei20], and we provide the details here
for the reader’s convenience.

Lemma 3.2. If (Y, λ0) is a Besse contact 3-manifold whose closed Reeb orbits have
minimal common period 1, its volume is equal to the negative of its Euler number.
More precisely, if ι : Σ→ Y is a global surface of section as above, we have:

vol(Y, λ0) =
1

α
area(Σ, ω0) = −e(Y ).

Proof. The contact volume form λ0 ∧ dλ0 is pulled back to

ι̃∗(λ0 ∧ λ0) = λ̃0 ∧ dλ̃0 = dt ∧ pr∗1dν0.
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We recall that ι̃ restricts to an α-th fold branched covering map (3.6). Therefore

α vol(Y, λ0) = α

∫

Y

λ0 ∧ dλ0 =

∫

Σ×S1

ι̃∗(λ0 ∧ dλ0) =

∫

Σ×S1

dt ∧ pr∗1ω0 =

∫

Σ

ω0,

and the latter term is precisely area(Σ, ω0). Moreover, since ι|∂Σ is an orientation
preserving b p0-th fold covering map of the 1/α1-periodic Reeb orbit γ1, Stokes’
theorem implies

∫

Σ

ω0 =

∫

∂Σ

ν0 = b p0

∫

γ1

λ0 =
b p0

α1
= −α e(Y ). �

3.4. From Besse to nearly Besse contact forms. Once the existence of a global
surface of section for Besse contact 3-manifolds established, the construction of
global surfaces of section for nearly-Besse contact 3-manifolds will be a generaliza-
tion of the one of nearly-Zoll contact 3-manifolds provided in [ABHS18, BK21]. We
work out the details in this section.

We consider the global surface of section ι : Σ→ Y of the Besse contact manifold
(Y, λ0) with boundary on γ1, and its related objects from the previous subsection.
Let λ be a contact form on Y such that

Rλ|γ1
= Rλ0

|γ1
(3.8)

We set

λ̃ := ι̃∗λ, ν := ι∗λ, ω := dν = ι∗dλ.

We recall that the analogous differential forms for the Besse contact form λ0 are
denoted by λ̃0, ν0, and ω0. Since ι̃ is a local diffeomorphism on int(Σ)× S1, λ̃ is a
contact form on this open manifold.

The next lemma is analogous to [ABHS18, Prop. 3.6] and [BK21, Prop. 3.10].

Lemma 3.3.

(i) The pull-back of ν via the inclusion ∂Σ ↪→ Σ satisfies

ν|∂Σ = ν0|∂Σ.

(ii) The 2-form ω vanishes at all points of ∂Σ, i.e.

ωz = 0, ∀z ∈ ∂Σ.

(iii) The Reeb vector field Rλ̃, a priori only defined on the interior of Σ × S1,
admits a smooth extension to Σ×S1 that is tangent to the boundary ∂Σ×S1.

(iv) For all ε > 0 there exists δ > 0 such that, if the above contact form λ
further satisfies ‖Rλ−Rλ0

‖C2 < δ, then ‖Rλ̃−∂t‖C1 < ε. Here, the norms
are associated with arbitrary fixed Riemannian metrics.

Proof. Let us consider a collar neighborhood AC × S1 of a connected component
C × S1 of ∂Σ × S1, and the solid cylinder neighborhood Y1 ⊂ Y of γ1. With the
identifications AC ≡ [0, ρ)×S1, Y1 ≡ B1×S1, and γ1 ≡ {0}×S1, as in the previous
subsection, the restriction of the map ι̃ can be written as

ι̃|AC×S1 : AC × S1 → Y1 ≡ B1 × S1, ι̃(r, s, t) =
(
re2π(q0s−α′1t)i, p0s+ α1t

)
.

and λ̃0|AC×S1 can be written as

λ̃0|AC×S1 := dt+
(
p0

α1
+ 2π

α1

(
q0 +

α′1
α1
p0

)
r2
)
ds. (3.9)
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The computations

ι̃∗∂t|C×S1 = Rλ0 = Rλ, ι̃∗∂s|C×S1 = p0∂s = p0

α1
Rλ0 = p0

α1
Rλ,

imply

λ̃(∂t)|C×S1 = λ̃0(∂t)|C×S1 ≡ 1, λ̃(∂s)|C×S1 = λ̃0(∂s)|C×S1 ≡ p0

α1
,

and

(∂t y dλ̃)z = ι̃∗(Rλ0
y dλ)z = ι̃∗(Rλ y dλ)z ≡ 0,

(∂s y dλ̃)z = p0

α1
ι̃∗(Rλ0

y dλ)z = p0

α1
ι̃∗(Rλ y dλ)z ≡ 0,

∀z ∈ C × S1.

These identities, together with ν0 = λ̃0|Σ×{0} and ν = λ̃|Σ×{0}, readily imply points
(i) and (ii).

As for point (iii), let us write Rλ|Y1 in coordinates (x+ iy, s) = (reiθ, s) as

Rλ|Y1
= F1∂x + F2∂y + ∂s

= (F1 cos(θ) + F2 sin(θ)) ∂r + 1
r (F2 cos(θ)− F1 sin(θ))∂θ + F3 ∂s,

for some smooth functions Fj : Y1 → R. Since Rλ and Rλ0
coincide along the

closed Reeb orbit γ1, we have

F1(0) = F2(0) = 0, F3(0) = α1.

Since

ι̃∗∂r = ∂r, ι̃∗∂s = 2πq0 ∂θ + p0 ∂s, ι∗∂t = −2πα′1 ∂θ + α1 ∂s,

the Reeb vector fiels Rλ̃ on the interior int(AC)× S1 is given by

Rλ̃ = f1 ∂r + f2 ∂s + f3 ∂t,

where, if we set

θ(s, t) := q0s− α′1t, Gj(r, s, t) :=
Fj ◦ ι(r, s, t)

r
, j = 1, 2,

the functions fj : int(AC)× S1 → R are given by

f1 = cos(θ)F1 ◦ ι̃+ sin(θ)F2 ◦ ι̃, (3.10)

f2 =
(
2π
(
q0 +

α′1
α1
p0

))−1
(
− sin(θ)G1 + cos(θ)G2 + 2π

α′1
α1
F3 ◦ ι̃

)
, (3.11)

f3 = 1
α1

(
F3 ◦ ι̃− p0 f2

)
. (3.12)

Since F1 ◦ ι̃|C×S1 = F2 ◦ ι̃|C×S1 ≡ 0, the functions G1 and G2 extend smoothly to
the whole AC ×S1, and so do the functions f1, f2, f3. Moreover, f1|C×S1 ≡ 0. This
proves that Rλ̃ extends smoothly to a vector field on Σ× S1 that is tangent to the
boundary ∂Σ× S1.

Finally, assume that Rλ is C2-close to Rλ0
. Away from any fixed neighborhood

of ∂Σ × S1, Rλ̃ is C2-close to Rλ̃0
= ∂t. On Y1, since Rλ = −2πα′1∂θ + α1∂s, the

functions

F1 − 2πα′1r sin(θ), F2 + 2πα′1r cos(θ), F3 − α1

are C2-small and vanish at ∂Σ× S1. Therefore, the function

− sin(θ)G1 + cos(θ)G2 + 2π
α′1
α1
F3 ◦ ι̃



30 A. ABBONDANDOLO, C. LANGE, AND M. MAZZUCCHELLI

is C1-small. Equation (3.10) implies that f1 is C2-small, and Equations (3.11) and
(3.12) imply that f2 and f3 − 1 are C1-small. Overall, we conclude that Rλ̃ is
C1-close to Rλ̃0

= ∂t. �

Besides (3.8), we now assume:

Assumption 3.4. The vector field Rλ̃ on Σ × S1 is transverse to Σ × {s} and
oriented as ∂s, for every s ∈ S1. �

Thanks to Lemma 3.3(iv), Assumption 3.4 is implied by the C2-closeness of Rλ
to Rλ0

. By Assumption 3.4, the first-return time

τ : Σ→ (0,∞), τ(z) := min
{
t > 0

∣∣ φt
λ̃
(z, 0) ∈ Σ× {0}

}
, (3.13)

is a well-defined smooth map, and the first-return map

φ : Σ→ Σ, (φ(z), 0) = φ
τ(z)

λ̃
(z, 0), (3.14)

is a diffeomorphism. The diffeomorphism φ is isotopic to the identity through the
isotopy {φs} defined by φ0 := id and, for s ∈ (0, 1],

(φs(z), s) = φ
τs(z)

λ̃
(z, 0), (3.15)

where

τs(z) := min
{
t > 0

∣∣ φt
λ̃
(z, 0) ∈ Σ× {s}

}
.

In the particular case λ = λ0, we would get that τ is identically equal to 1 and φs
equals the identity on Σ for every s ∈ [0, 1].

The next lemma relates the volume of (Y, λ) to the integral of the first return
time.

Lemma 3.5. The contact volume of (Y, λ) is given by

vol(Y, λ) =
1

α

∫

Σ

τ ω.

Proof. The bijective map

j : Σ× [0, 1)→ Σ× S1, j(z, s) := φ
sτ(z)

λ̃
(z, 0),

satisfies

j∗(λ̃ ∧ dλ̃) = τ ds ∧ pr∗1ω,

where pr1 : Σ × [0, 1) → Σ is the projection onto the first factor. Together with
the fact that the restriction of ι̃ to the interior of Σ× S1 is an α-th fold branched
covering map of a full measure subset of Y pulling the volume form λ∧ dλ back to
λ̃ ∧ dλ̃, we obtain

α vol(Y, λ) = α

∫

Y

λ ∧ dλ =

∫

Σ×S1

λ̃ ∧ dλ̃ =

∫

Σ×[0,1)

j∗(λ̃ ∧ dλ̃)

=

∫

Σ×[0,1)

τ ds ∧ pr∗1ω =

∫

Σ

τ ω.

�

The next lemma relates the first return map φ to the first return time τ via the
1-form ν.
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Lemma 3.6. The first-return map φ is an exact symplectomorphism of (Σ, ω), and
more precisely

φ∗ν = ν + dτ.

The boundary restriction of the first return time τ is given by

τ(z) = 1 +

∫

{s7→φs(z)}
ν, ∀z ∈ ∂Σ.

Proof. The first statement follows by the well-known computation

φ∗ν = (φ
τ(z)

λ̃
)∗λ̃|Σ×{0} + φ∗(λ̃(Rλ̃))dτ = ν + dτ.

For each z ∈ ∂Σ, the curve

ζz : [0, 1]→ ∂Σ× S1, ζz(s) := (φs(z), s) = φ
τs(z)

λ̃
(z, 0),

is a reparametrization of the restriction of the orbit of (z, 0) by the Reeb flow of

λ̃ to the interval [0, τ(z)], which makes one full turn around the second factor of
∂Σ× S1. Therefore,

τ(z) =

∫

ζz

λ̃ =

∫

ζz

λ̃0 =

∫

ζz

(
ds+ pr∗1ν

)
=

∫

ζz

ds+

∫

pr1◦ζz
ν = 1 +

∫

{s7→φs(z)}
ν,

where the second equality follows by Lemma 3.3(i), and the third one from (3.7). �

In order to prove Theorem A, we will need to apply the fixed point Theorem 2.5,
which concerns symplectomorphisms that are C1-close to the identity on a sur-
face Σ equipped with a fixed 2-form symplectic in the interior and vanishing in a
suitable way at the boundary. By Lemma 3.6, the diffeomorphism φ : Σ → Σ is
symplectic with respect to the 2-form ω = ι∗dλ, which varies with λ. However,
assumption (3.8) and its consequence ν|∂Σ = ν0|∂Σ from Lemma 3.3(i) imply that

area(Σ, ω) =

∫

∂Σ

ν =

∫

∂Σ

ν0 = area(Σ, ω0).

Therefore, we can conjugate φ by a diffeomorphism κ : Σ → Σ pulling ω back
to ω0 and obtain a symplectomorphism with respect to the fixed 2-form ω0 on Σ.
The construction of this diffeomorphism and the proof of its further properties are
based as usual on Moser’s trick but require a bit of care, since we are working on
a surface with boundary. We work out the details in the following lemma, which is
a variation of [BK21, Prop. 3.9].

Lemma 3.7. If λ is C2-close enough to λ0, then there exists a diffeomorphism
κ : Σ → Σ such that κ|∂Σ = id and κ∗ω = ω0. Moreover, κ C1-converges to the
identity as λ C2-converges to λ0.

Proof. Note that the smallness of ‖λ−λ0‖C2 implies the smallness of ‖ν−ν0‖C2 and
‖ω− ω0‖C1 . Assumption 3.4 guarantees that ω is a symplectic form in the interior
of Σ inducing the same orientation as ω0. Therefore, the 2-forms ωt := tω+(1−t)ω0

are symplectic on int(Σ) for every t ∈ [0, 1]. They are actually uniformly C1-close
to ω0 when ‖λ− λ0‖C2 is small.

We look for an isotopy κt : Σ → Σ such that κt|∂Σ ≡ id and κ∗tωt = ω0. We
build the time-dependent vector field Xt realizing such isotopy, i.e. d

dtκt = Xt ◦ κt.
By differentiating κ∗tωt with respect to t, we obtain

0 = d
dtκ
∗
tωt = κ∗t

(
d(X yωt) + ω − ω0

)
= κ∗t d

(
X yωt + ν − ν0

)
. (3.16)
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We define Xt on int(Σ) by the equation

Xt yωt = ν0 − ν + dft (3.17)

for a suitable C2-small smooth function f : Σ × [0, 1] → R to be determined. A
suitable choice of f will guarantee that Xt has a smooth extension to the whole Σ
with Xt|∂Σ ≡ 0.

For every connected component C of ∂Σ, we fix a collar neighborhood AC ⊂ Σ
so that, with the usual suitable identification [0, ρ) × S1, the differential forms ω0

can be written as in (3.5). Actually, up to rescaling the interval [0, ρ), we can even
write ω0|AC as

ω0|AC = −r dr ∧ ds,

where r ∈ [0, ρ) and s ∈ S1. Lemma 3.3(i-ii) implies ν|C = ν0|C and ωz = (ω0)z for
all z ∈ C. Therefore we can write

(ν0 − ν)|AC = h1 dr + r h2 ds, ω|AC = −r h3 dr ∧ ds,

for some smooth functions hi : AC → R. If ν0 and ν are C2-close, the function
h1 is C2-small, while h2 is C1-small. Moreover, since ω0 and ω are C1-close, the
function 1−h3(0, ·) is C0-small. In particular, up to choosing the annulus AC small
enough, h3 is strictly positive on the whole AC . Since d(ν0 − ν) = ω0 − ω, we have

∂r(r h2)− ∂sh1 = r(h3 − 1). (3.18)

The two-form ωt|AC is given by

ωt|AC = −r (t(h3 − 1) + 1) dr ∧ ds,

and if we write the vector field Xt|AC in (r, s) coordinates as Xt = Rt ∂r + St ∂s,
Equation (3.17) becomes

Rt = − r h2 + ∂sf

r (t(h3 − 1) + 1)
, St =

h1 + ∂rf

r (t(h3 − 1) + 1)
.

We now choose f : Σ→ R to be a smooth function such that f |∂Σ ≡ 0 and, on any
collar neighborhood AC = [0, ρ)× S1 as above, satisfies

f(r, s) =




−
∫ r

0

h1(x, s) dx, if r ≤ 1
3ρ,

0, if r ≥ 2
3ρ.

We shall choose such an f so that ‖f‖C2 ≤ const ‖h1‖C2 , and in particular f is
C2-small since ν and ν0 are C2-close. With this choice of f , we have St(r, s) = 0 if
r ≤ 1

3ρ. As for the function Rt, for all r ≤ 1
3ρ Equation (3.18) implies

Rt(r, s) = −r h2(r, s) + ∂sf(r, s)

r (t(h3 − 1) + 1)
= −r h2(r, s)−

∫ r
0
∂sh1(x, s) dx

r (t(h3 − 1) + 1)

= −r h2(r, s) +
∫ r

0

(
x(h3(x, s)− 1)− ∂x(xh2(x, s))

)
dx

r (t(h3 − 1) + 1)

= −
1
r

∫ r
0
x(h3(x, s)− 1) dx

t(h3 − 1) + 1
.
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We already know that the function t(h3 − 1) + 1 appearing in the denominator of
the above equation is nowhere vanishing. As for the numerator, we can rewrite the
integral as

∫ r

0

x(h3(x, s)− 1) dx = r2 h4(r, s)

for some C0-small smooth function h4 : AC → R such that h4(0, s) = h3(0, s)− 1.
Therefore

Rt(r, s) = − r h4(r, s)

t (h3 − 1) + 1
.

From this expression we readily infer that Rt is C1-small, extends smoothly to the
whole Σ, and Rt|∂Σ ≡ 0. Summing up, we obtained a C1-small smooth vector field
Xt on Σ satisfying (3.17) and X|∂Σ ≡ 0. Its flow κt is C1-small for all t ∈ [0, 1],
and satisfies κt|∂Σ = id and, by (3.16), κ∗tωt = ω0. �

The following proposition sums up the arguments of this section and will play a
crucial role in the proof of Theorem A(ii).

Proposition 3.8. Let λ0 be a Besse contact form on the closed manifold Y whose
closed Reeb orbits have minimal common period 1, and let γ1 be any orbit of Rλ0

.
Then there exists a closed surface with boundary Σ endowed with an exact 2-form
ω0 which is symplectic on the interior of Σ and satisfies Assumption 2.4 such that
the following holds. For every ε > 0 small enough and for every C1-neighborhood

U of the identity in H̃am0(Σ, ω0) there exist δ > 0 and, for each contact form λ on
Y such that

Rλ|γ1
= Rλ0

|γ1
, ‖λ− λ0‖C2 < δ, ‖Rλ −Rλ0

‖C2 < δ,

a global surface of section

j : Σ→ Y

for Rλ mapping each component of ∂Σ onto some positive iterate of γ1 and an
element

ψ̃ ∈ U
with the following properties:

(i) The normalized Calabi invariant of ψ̃ is related to the volumes of (Y, λ) and
(Y, λ0) by

Ĉal(ψ̃) =
vol(Y, λ)

vol(Y, λ0)
− 1.

(ii) A point z ∈ int(Σ) is a contractible fixed point of ψ̃ if and only if

γz(t) := φtλ(j(z))

is a closed Reeb orbit of Rλ in Y \ γ1 with (not necessarily minimal) period

1 + aψ̃(z) ∈ (1− ε, 1 + ε).

Here, aψ̃(z) is the normalized action of the contractible fixed point z.

(iii) The element ψ̃ is the identity in H̃am0(Σ, ω0) if and only if (Y, λ) is Besse
and its Reeb orbits have common period 1.
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Proof. We consider a global surface of section

ι : Σ→ Y

for the Reeb flow of λ0 as in Theorem 3.1 and the corresponding map

ι̃ : Σ× S1 → Y, ι̃(z, t) := φtλ0
(ι(z)).

The 2-form
ω0 := ι∗dλ0,

is symplectic in the interior of Σ, satisfies Assumption 2.4 (see the discussion after
the proof of Theorem 3.1) and, thanks to Lemma 3.2, has total area

area(Σ, ω0) = α vol(Y, λ0), (3.19)

where α is the positive integer appearing in Theorem 3.1. Given another contact
form λ on Y , we set as before

λ̃ := ι̃∗λ, ν := ι∗λ, ω := dν = ι∗dλ.

Here, we are assuming that Rλ|γ1
= Rλ0

|γ1
, which is exactly condition (3.8), and

that ‖Rλ − Rλ0
‖C2 is small enough, so that also Assumption 3.4 holds thanks to

Lemma 3.3(iv). In particular, ι is also a global surface of section for the Reeb flow

of λ. Moreover, by Lemma 3.3 the 1-form λ̃ defines a flow on Σ×S1 having Σ×{0}
as global surface of section and we denote by τ and φ the corresponding first return
time and first return map, see (3.13) and (3.14). By Lemma 3.3(iv), the map φ is
C1-close to the identity when ‖Rλ −Rλ0‖C2 is small.

By further assuming that ‖λ − λ0‖C2 is small enough, we can use Lemma 3.7
to find a diffeomorphism κ : Σ → Σ that is C1-close to the identity and satisfies
κ∗ω = ω0. Up to conjugating φ by κ and replacing ι by j := ι ◦ κ, which is still a
global surface of section for the Reeb flow of λ, we may assume that ω equals ω0.

In this case, ν is a primitive of ω0 and the equality

φ∗ν − ν = dτ (3.20)

proved in Lemma 3.6 shows that φ is an exact symplectomorphism on (Σ, ω0).
Being C1-close to the identity, φ is the image under the universal cover

π : H̃am(Σ, ω0)→ Ham(Σ, ω0)

of a unique ψ̃ = [{ψt}] which is also C1-close to the identity (see Theorem 2.8).
Moreover, the C1-closeness to the identity implies that the Hamiltonian isotopy
{ψt} is homotopic with fixed ends to the (non necessarily symplectic) isotopy {φt}
which is defined in (3.15), and hence Lemma 3.6 gives us the identity

τ(z) = 1 +

∫

{t7→ψt(z)}
ν, ∀z ∈ ∂Σ. (3.21)

Identities (3.20) and (3.21) imply that ψ̃ has vanishing flux (see Remark 2.2),
so we may assume that it belongs to the C1-neighborhood U of the identity in

H̃am0(Σ, ω0), and give us the following relationship between the function τ and the

normalized action of ψ̃ with respect to the primitive ν of ω0:

τ = 1 + aψ̃,ν . (3.22)

Therefore, (3.19) and Lemma 3.5 imply the identity

Ĉal(ψ̃) =
1

area(Σ, ω0)

∫

Σ

(τ − 1)ω0 =
vol(Y, λ)

vol(Y, λ0)
− 1,
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which proves (i). Moreover, if z ∈ int(Σ) is a contractible fixed point of ψ̃, then the
Reeb orbit

γz(t) := φtλ(j(z))

is different from γ1 and closes up at time τ(z) = 1 + aψ̃,ν(z). This number belongs

to the interval (1− ε, 1 + ε) when ‖Rλ −Rλ0
‖C2 is small enough, again by Lemma

3.3(iv). Conversely, if ε is small enough then any closed orbit of Rλ other than γ1

and with (non necessarily minimal) period in the interval (1− ε, 1+ ε) correesponds

to an interior fixed point of φ = π(ψ̃). All fixed points of φ are contractible as fixed

points of the lift ψ̃, as this is C1-close to the identity. This proves (ii).

If ψ̃ is the identity, then every orbit of the Reeb flow of λ is closed and, since the
action aψ̃,ν vanishes identically, has (non necessarily minimal) period 1 by (3.22).

Therefore, (Y, λ) is Besse with orbits having common period 1. Conversely, if (Y, λ)

has this property then the fact that τ is close to 1 and the closeness of ψ̃ to the
identity imply that ψ̃ is the identity. This proves (iii). �

Remark 3.9. The above result can be generalized to a more general situation in
which the Reeb flows of λ and λ0 have more closed orbits γ1, . . . , γh in common
and the boundary of Σ is mapped onto their union, but with a caveat: If Rλ|γi =

ciRλ0
|γi then the flux of the Hamiltonian isotopy defining ψ̃ is in general non zero,

unless all numbers ci coincide.

4. Proof of Theorem A

Proof of Theorem A(i). Let λ be a contact form on Y such that there exists a point
z ∈ Y whose Reeb orbit is open or has minimal period strictly larger than τk(λ).
The same must be true for all points in a sufficiently small compact neighborhood
U ⊂ Y of z. Let f : Y → (−∞, 0] be a non-positive smooth function supported in U
and such that f(z) < 0. For each ε > 0 small enough, the contact form λε := eεfλ
satisfies fix(φtλε) = fix(φtλ) for all t ∈ [0, τk(λ)]. In particular, τk(λε) = τk(λ). Since

vol(Y, λε) =

∫

Y

e2εfλ ∧ dλ <
∫

Y

λ ∧ dλ = vol(Y, λ),

we have that ρk(λε) > ρk(λ), and therefore λ is not a local maximizer of ρk.
This proves that each local maximizer of ρk is a Besse contact form λ0 such that
k0(λ0) ≤ k.

Now, let λ0 be a Besse contact form on Y with k0 := k0(λ0). It remains to show
that λ0 is not a local maximizer of ρk for any k > k0. Without loss of generality,
we can assume that τk0

(λ0) = 1, so that the Reeb flow of λ0 defines a locally free
S1 = R/Z-action on Y and

τk(λ0) = τk0
(λ0) = 1 ∀k ≥ k0.

We denote by γ1, . . . , γh the singular orbits of Rλ0 and by α1, . . . , αh the integers
greater than 1 such that γi has minimal period 1/αi (if λ0 is Zoll, we have h = 0).
Then

k0 = α1 + · · ·+ αh − h+ 1.

We denote by B := Y/S1 the quotient orbifold and by π : Y → B the quotient
projection. We choose a small open disk D ⊂ B with smooth boundary such that,
for all b ∈ D, the preimage π−1(b) is a closed Reeb orbit of minimal period 1. We
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can identify D with the open disk of radius ρ in C and assume that the restriction
of λ0 to π−1(D) has the form

λ0 = ds+
r2

2
dθ, ∀(reiθ, s) ∈ D × S1, (4.1)

where r, θ are polar coordinates on C. We now choose a smooth function h : B → R

such that

(i)
∫
Y
h ◦ π λ0 ∧ dλ0 = 0;

(ii) h equals a positive constant c+ on Y \D;
(iii) on D, h has the form h = χ(r) where χ : [0, ρ]→ R is a smooth function such

that −c− := χ(0) < 0, χ(ρ) = c+ and χ′(r) > 0 for every r ∈ (0, ρ).

For every ε > 0, we consider the 1-form

λε := (1 + ε h ◦ π)λ0,

which is a contact form for ε small enough. By (i), we have

vol(Y, λε) =

∫

Y

(1 + ε h ◦ π)2 λ0 ∧ dλ0 = vol(Y, λ0) + c ε2, (4.2)

where

c :=

∫

Y

(h ◦ π)2 λ0 ∧ dλ0.

Let ε > 0 be so small that λε is a contact form. Condition (ii) implies that the
set π−1(B \D) is invariant under the Reeb flow of λε, and hence the same is true
for its complement π−1(D). The Reeb orbits of λε on π−1(B \D) are exactly the
Reeb orbits of λ0 reparametrized in such a way that their period gets multiplied by
1 + εc+. In particular, on π−1(B \D) the Reeb flow of λε has exactly

k0 − 1 = α1 + · · ·+ αh − h
closed orbits with period strictly less that 1 + εc+: the iterates γmi with 1 ≤ m ≤
αi − 1.

On π−1(D), the Reeb flow of λε has an orbit of minimal period 1 − εc−, which
is given by the inverse image by π of the center of D, and all other orbits are
either non-periodic or have a very large minimal period when ε is small. The latter
assertion follows from (4.1) and (iii), which imply that the Reeb orbits of λε in
π−1(D) are lifts of Hamiltonian orbits on D defined by the standard symplectic
form r dr ∧ dθ and the radial Hamiltonian χ. These orbits wind around the circle

of radius r ∈ (0, ρ) with frequency εχ′(r)
2πr > 0, which by the mean value theorem

has the upper bound

εχ′(r)
2πr

≤ ε

2π
max
r∈[0,ρ]

|χ′′(r)|, ∀r ∈ (0, ρ).

If ε is so small that the above upper bound is smaller than (1 + εc+)−1 and

2(1− εc−) ≥ 1 + εc+,

we conclude that on π−1(D) the Reeb flow of λε has precisely one closed orbit
whose period is strictly less that 1 + εc+.

Summing up, λε has k0 many orbits whose period is strictly less that 1 + εc+.
Together with the fact that this Reeb flow has infinitely many closed orbits of
minimal period 1 + εc+, we deduce that

τk(λε) = 1 + εc+ ∀k > k0,
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when ε > 0 is small enough. By (4.2), we conclude that for every k > k0 the k-th
systolic ratio of λε has the lower bound

ρk(λε) =
τk(λε)

2

vol(Y, λε)
=

(1 + εc+)2

vol(Y, λ0) + c ε2
≥ 1 + 2εc+

vol(Y, λ0) + c ε2
,

which is strictly larger than

1

vol(Y, λ0)
= ρk(λ0)

if ε is small enough. This shows that λ0 is not a local maximizer of ρk in the
C∞-topology if k > k0. �

Proof of Theorem A(ii). Let (Y, λ0) be a Besse contact 3-manifold. We recall that
the positive integer

k0 := k0(λ0)

is the minimal k so that the Reeb orbits of (Y, λ0) have minimal common period
τk(λ0). Without loss of generality, up to multiplying λ0 with a positive constant,
we can assume that

τk0
(λ0) = 1.

We first carry out the proof under the assumption that (Y, λ0) is not Zoll, so
that k0 > 1. We denote by γ1, ..., γh the singular Reeb orbits of (Y, λ0), that is, the
closed Reeb orbits with minimal period strictly less than 1. We denote by αi > 1
the positive integer whose reciprocal 1/αi is the minimal period of γi, and by γmi
the closed Reeb orbit γi seen as a m/αi-periodic orbit. Therefore,

k0 = α1 + ...+ αh − h+ 1. (4.3)

It is well known that all the periodic orbits γmi with 1 ≤ m ≤ αi − 1 are non-
degenerate, i.e.

ker(dφ
m/αi
λ0

(γi(0))− I) = span{Rλ0(γi(0))}, ∀m = 1, ..., αi − 1.

We refer the reader to [CGM20, Section 4.1] for a proof of this fact. Standard
results about perturbation of vector fields imply that, for every

ε ∈
(
0, 1

2 max{α1,...,αh}
)
,

there is a C3-neighborhood V of λ0 such that every λ ∈ V satisfies the following
properties.

(i) Rλ has pairwise distinct closed orbits γ̃i, i = 1, . . . , h, such that γ̃i has
minimal period in ( 1

αi
− ε, 1

αi
+ ε) and is C2-close to γi.

(ii) The family of possibly iterated closed orbits of Rλ of period less than or
equal to 1− ε is

{
γ̃mi

∣∣ i ∈ {1, ..., h}, m ∈ {1, ..., αi − 1}
}
.

Here, we say that two closed curves γ : R/pZ→ Y and γ̃ : R/p̃Z→ Y are C2-close
if γ and γ̃ are C2-close on [0,max{p, p̃}].

In particular, for any λ ∈ V, the closed Reeb orbit γ1 of (Y, λ0) with minimal
period 1/α1 is C2-close to some closed Reeb orbit γ̃1 of (Y, λ) with minimal period
T ∈ ( 1

α1
− ε, 1

α1
+ ε). Up to multiplying the contact form λ with a constant close

to 1, we can assume that T = 1/α1, that is, γ1 and γ̃1 have the same minimal
period 1/α1. By an argument analogous to [ABHS18, Prop. 3.10], there exists a
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diffeomorphism υ : Y → Y such that υ ◦ γ1 = γ̃1 and the quantities ‖υ∗λ− λ0‖C2

and ‖Rυ∗λ−Rλ0‖C2 are small. Therefore, up to pulling back λ by υ, we can assume
that

Rλ|γ1
= Rλ0

|γ1
,

that is, γ1 is a closed orbit of minimal period 1/α1 for both Rλ and Rλ0 . After this
modification, we can assume that λ and Rλ are arbitrarily C2-close to λ0 and Rλ0

respectively, so that the assumptions of Proposition 3.8 are fulfilled.
The contact form λ satisfies

τk0
(λ) ≤ τk0

(λ0) = 1;

as a consequence of (4.3), of point (ii) above and of the fact that γα1
1 is an orbit

of Rλ of period 1. If vol(Y, λ) > vol(Y, λ0), we have ρk0
(λ) < ρk0

(λ0), and we are
done. Therefore, it remains to consider the case in which

vol(Y, λ) ≤ vol(Y, λ0). (4.4)

We now apply Proposition 3.8 (using the objects and terminology introduced

therein), choosing a C1-neighborhood U ⊂ H̃am0(Σ, ω0) of the identity such that
the conclusion of the fixed point Theorem 2.5 with c := 1

2 holds for all elements of

U . We require λ and Rλ to be sufficiently C2-close to λ0 and Rλ0 respectively, so

that the element ψ̃ ∈ H̃am0(Σ, ω0) provided by Proposition 3.8 is contained in U .

By Proposition 3.8(i) and (4.4), the normalized Calabi invariant of ψ̃ has the value

Ĉal(ψ̃) =
vol(Y, λ)

vol(Y, λ0)
− 1 ≤ 0.

By Theorem 2.5, ψ̃ has a contractible fixed point z ∈ int(Σ) whose normalized
action satisfies

aψ̃(z) +
1

2
aψ̃(z)2 ≤ 1

2
Ĉal(ψ̃) =

1

2

(
vol(Y, λ)

vol(Y, λ0)
− 1

)
. (4.5)

Moreover, if ψ̃ is not the identity, then the above inequality is strict.
Assume first that ψ̃ is not the identity. By Proposition 3.8(ii), the contact

manifold (Y, λ) has a closed Reeb orbit of period 1 + aψ̃(z) ∈ (1− ε, 1 + ε). By the

strict inequality in (4.5), we obtain the desired strict upper bound

ρk0
(λ) =

τk0
(λ)2

vol(Y, λ)
≤

(1 + aψ̃(z))2

vol(Y, λ)
=

1 + 2aψ̃(z) + aψ̃(z)2

vol(Y, λ)

<
1 + vol(Y,λ)

vol(Y,λ0) − 1

vol(Y, λ)
=

1

vol(Y, λ0)
=

τk0
(λ0)2

vol(Y, λ0)
= ρk0

(λ0).

Assume now that ψ̃ is the identity. By Proposition 3.8(iii), (Y, λ) is Besse and its
Reeb orbits have common period 1. Since the only closed Reeb orbits of (Y, λ) with
minimal period less than 1 are γ̃1, ..., γ̃h, we infer that 1 is the minimal common
period of the closed Reeb orbits of (Y, λ). Every γ̃i is C2-close to the corresponding
γi and has minimal period close to the minimal period 1/αi of γi. This, together
with the Besse property, implies that γ̃i and γi have the same minimal period (once
again, provided λ is sufficiently C3-close to λ0). We conclude that the C2-close
Besse flows of λ and λ0 have the same common period 1 and there is a period
preserving bijection between their singular orbits. Thanks to the local rigidity of



HIGHER SYSTOLIC INEQUALITIES 39

Seifert fibrations, we can find a diffeomorphism θ : Y → Y such that θ∗Rλ = Rλ0
.

Deforming θ by means of a Moser’s trick, we can actually ensure that θ∗λ = λ0.
Actually, the existence of a diffeomorphism θ : Y → Y with the latter property

follows also from a theorem of Cristofaro-Gardiner and the third author, stating that
the prime action spectrum determines Besse contact forms on closed 3-manifolds.
Here, the prime action spectrum σp(λ) is the set of minimal periods of the Reeb
orbits of λ, and the above discussion implies in particular that σp(λ) = σp(λ0). Ac-
cording [CGM20, Theorem 1.5], the equality σp(λ) = σp(λ0) implies the existence
of a diffeomorphism θ : Y → Y such that θ∗λ = λ0, also without assuming λ to be
close to λ0.

It remains to consider the case in which (Y, λ0) is Zoll, for which k0 = 1. This
case was already treated by Benedetti-Kang [BK21], generalizing the result of the
first author together with Bramham-Hryniewicz-Salomão [ABHS18] for the special
case Y = S3, but we add some details here for the reader’s convenience. The
argument provided above in the non-Zoll case goes through in the Zoll case as
well, except for the existence of the closed orbit γ̃1, which now cannot be obtained
perturbatively starting from a non-degenerate orbit of Rλ0

as in (i) above. Since
all orbits of Rλ0

have the same minimal period 1, we choose γ1 to be any one of
them. This is the orbit we will apply Proposition 3.8 to. Note that if γ is any other
orbit of Rλ0 , then we can find a diffeomorphism ηγ : Y → Y such that η∗γλ0 = λ0

and ηγ ◦ γ = γ1. Moreover, the set of these diffeomorphisms can be chosen to be
pre-compact in the Ck-topology for every k ∈ N.

We now consider a perturbation λ of λ0. If λ− λ0 is C3-small, then Rλ admits
a closed orbit γ̃1 of period close to 1 which is C2-close to some orbit γ of Rλ0

. This
is a consequence of the fact that the space of 1-periodic closed Reeb orbits of the
Zoll contact form λ0 is Morse-Bott non-degenerate (see, e.g., [Wei73], [Bot80] or
[Gin87]). Up to replacing λ by η∗γλ, which is still C3-close to λ0 = η∗γλ0, we may

assume that γ̃1 is C2-close to γ1. The rest of the proof continues as in the non Zoll
case. �

Remark 4.1. There is a key point in which the proof of Theorem A(ii) above
differs from the proofs of the local systolic maximality of Zoll contact forms in
[ABHS18] and [BK21]. The proofs from these two papers use the weaker version
(2.9) of the fixed point Theorem 2.5, and in this case it is crucial that the boundary
of the global surface of section is given by a closed orbit of λ having minimal period.
In the Besse case, the same argument would require us to have the boundary of
the global surface of section on an orbit γ which realizes τk0

(λ), where k0 = k0(λ0).
This orbit might be close to a singular orbit of λ0, and hence be one of the orbits
that are considered in assertion (i) of the above proof, but could also be an orbit
of minimal period close to 1 bifurcating from the set of regular orbits of λ0. In the
latter case, finding a global surface of section with boundary on γ and first return
map C1-close to the identity seems problematic: we could apply a diffeomorphism
bringing this orbit to a fixed regular orbit of Rλ0

, but we cannot hope to have a
uniform bound on the Ck norms of this diffeomorphism, because the set of regular
orbits of λ0 is not compact and γ could be very close to some iterate of a singular
orbit of λ0. This issue is overcome by the more precise fixed point Theorem 2.5
which we proved here, whose use does not require the boundary periodic orbit to
have any minimality property. �
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