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A generalized set of Clifford cellular automata, which includes all Clifford cellular automata, result
from the quantization of a lattice system where on each site of the lattice one has a 2k-dimensional
torus phase space. The dynamics is a linear map in the torus variables and it is also local: the
evolution depends only on variables in some region around the original lattice site. Moreover it
preserves the symplectic structure. These are classified by 2k× 2k matrices with entries in Laurent
polynomials with integer coefficients in a set of additional formal variables. These can lead to fractal
behavior in the evolution of the generators of the quantum algebra. Fractal behavior leads to non-
trivial Lyapunov exponents of the original linear dynamical system. The proof uses Fourier analysis
on the characteristic polynomial of these matrices.

Generic classical dynamical systems are chaotic. Given
initial conditions are near each other, their differences
grow exponentially. The Lyapunov exponents measure
these growing deviations. If we have a system with n
degrees of freedom (more precisely, a dynamical system
on an n-dimensional manifold), there are n non trivial
such exponents. If there is at least one exponentially
growing direction, the system is chaotic (we refer the
reader to [1] chapter 4, for more information). Recent
advances in quantum theory have placed bounds on Lya-
punov exponents in terms of the temperature [2] using
out of time correlation functions (OTOC). The bound
can also be proved using the eigenstate thermalization
hypothesis [3]. It is important to understand the relation
between Lyapunov exponents and quantum dynamics in
general setups that do not involve the temperature.

Recent advances in quantum control also make it in
principle possible to study the dynamics of qubit sys-
tems by direct simulations on a quantum computer. Such
simulations usually involve a discrete time dynamics. If
we consider systems that are also translation invariant,
we land on systems that are called quantum cellular au-
tomata (see [4] for a review). Most of these can not be
understood in detail analytically.

Usually Lyapunov exponents have to be measured nu-
merically. There are a few systems where one can under-
stand the Lyapunov exponents analytically. Two stan-
dard examples are geodesic flows in constant negative
curvature geometries, and the Arnold cat map. We are
most interested in generalizations of the Arnold cat map.
The Arnold cat map is associated to the linear dynamics
on the 2-torus given by(

xn
yn

)
=

(
2 1
1 1

)(
xn−1
yn−1

)
mod (2π). (1)

here the mod (2π) indicates that the left hand side vari-
ables are each on a circle: x ≡ x+2π, y ≡ y+2π, giving a
2-torus. The map is essentially linear and the Lyapunov
exponents are given by the logarithm of the eigenvalues
of the 2× 2 matrix appearing in the dynamics. In other
linear setups, Lyapunov exponents control the evolution

of entanglement entropy between subsystems (see for ex-
ample [5]).

Some celullar automata that are easier to understand,
because their dynamics can be simulated easily with a
classical computer [6]. These are Clifford cellular au-
tomata and some of their generalizations. The space of
periodic Clifford cellular automata on a one dimensional
lattice with periodicity one on the lattice (and some of
their generalizations) are classified by a set of 2× 2 ma-
trices of determinant one [7, 8], given by

M =

(
a(q, q−1) b(q, q−1)
c(q, q−1) d(q, q−1)

)
(2)

where the a, b, c, d are Laurent polynomials with integer
coefficients modulo N for some integer N and q is a for-
mal variable of translations. These are palindromes in q,
namely, a(q, q−1) = a(q−1, q). In the case of Clifford cel-
lular automata, we have that N = 2. When the dynamics
is iterated, we end up with the matrix of M t mod (N).
These dynamical systems produce three classes of be-
haviors: periodic dynamics, gliders and fractal behav-
ior. Periodic dynamics occurs when the trace of M is
independent of q. Gliders occur when Tr(M) is of type
±(qn + q−n), so that the eigenvalues of M are ±qn and
±q−n. In all other cases the powers of M give rise to
fractals in the evolution of the operator spectrum.

In this paper we find a connection between generalized
cat maps, where there is a lattice of variables like x, y
above, and also more general periodic cellular automata
where there are k such variables on each site (one can say
the period is k rather than 1). The cellular automata are
a quantization of the generalized cat map. We prove
that if the analog of M has fractal behavior, then the
original matrix that generalizes (1) has some non-zero
Lyapunov exponent. The fractal behavior can be said to
be a remnant of chaos in the original classical system.

The connection asks us to start with generalizations
of (2) with coefficients in the integers, which preserve
a symplectic form. To quantize, we take the coefficients
modulo N . The Lyapunov spectrum arises by computing
eigenvalues of M with a replacement of the q variable by
a pure phase q → exp(iθ). We show that if there is
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fractal behavior in the reduction modulo N , then there
are some values of θ for which the Lyapunov exponents
are not zero.

GENERALIZED CAT MAPS AND SYMPLECTIC
CELLULAR AUTOMATA

A symplectic torus is a two dimensional phase space,
with periodic variables x, y and a non-trivial Poisson
bracket {x, y} = 1. The periodicity is given by x ≡ x+2π,
y ≡ y + 2π. A cat map is a linear morphism of the
x, y system variables (which we call M) that preserves
the periodicity and the Poisson bracket structure. This
becomes a dynamical system when iterated. The peri-
odicity forces the matrix elements of M to have integer
values (

x(t)
y(t)

)
= M t

(
x
y

)
=

(
a b
c d

)t(
x
y

)
(3)

Preserving the bracket requires that

M · Ω ·MT = Ω (4)

where Ω is the symplectic matrix of the system

Ω =

(
0 1
−1 0

)
(5)

It is easy to show that this leads to det(M) = 1. Hence,
the set of possible cat maps can be characterized as an
element of SL(2,Z). For us, a generalized cat map is a
similar map on n copies of the symplectic torus, see [10].
The linear space of periodic x, y variables get converted
to vectors of periodic variables ~x, ~y. The linear space can
be described as a tensor product Span(~x, ~y) ' (x, y)⊗Rn
and the symplectic structure becomes Ω→ Ω⊗ 1 in this
setup, where 1 is the n × n identity matrix. To have a
generalized cat map, we get a matrix with 2n×2n entries,
with integer coefficients such that (4) is true, where the
right hand side uses the 2n × 2n version of Ω. If λi are
the eigenvalues of M , the Lyapunov exponents of the
dynamics of M are given by

κi = log(|λi|) (6)

The eigenvalues have the following properties. If λ is
an eigenvalue, then so is, λ̄, λ−1, λ̄−1 (see for example
[5]). If λ is a generic complex number, they come in
families of 4 eigenvalues and some κ 6= 0. If λ is real,
then there is only one paired eigenvalue λ−1 and κ 6= 0.
Only if λ is unitary (and so is λ−1 = λ̄), we get that the
corresponding κ vanish.
Quantization: Since the variables x, y on a single

torus are not single valued, they can not correspond to
quantum observables upon quantization. A general ob-
servable on a torus can be decomposed in Fourier series,

so exp(ix), exp(iy) generate the algebra of observables.
As the torus is a compact phase space, on quantization
we expect that the Hilbert space H associated to the
torus is finite dimensional, dimH = N . Consider the
quantum variables U = exp(ix), V = exp(iy). It is easy
to show by the Baker-Cambell-Haussdorf formula that
UV, V U differ by a phase

UV = V U exp(iζ) (7)

here the phase ζ plays the role of ~, and U, V are uni-
tary operators. In a Hilbert space of dimension N , the
exp(iζ) is taken as a primitive N-th root of unity. We
also require UN = V N = 1, so that U, V are realized
by clock-shift matrices (monomials in the U, V are called
Weyl operators). In these circumstances we would have
that we can interpret this quantum condition as Nx ≡ 0,
so the entries of matrix M are only well defined mod-
ulo N . When N is two, U, V are Pauli matrices, and a
quantum torus gets quantized into the Hilbert space of
a single qubit. For the n torus system, we have a U, V
pair per each torus, and the U, V commute with each
other if they belong to different tori. A quantized gen-
eralized cat map takes monomials in the Ui, Vi variables
to monomials in these variables. Because it preserves the
phase space structure, it is realized as a unitary operator
on the Hilbert space, and can be described as an alge-
bra automorphism of the algebra generated by the U, V .
When we quantize n copies of the system, we take the
Hilbert space to be Htot ' H⊗n. In these systems, the
algebraic properties of the Unitary makes it easy to de-
scribe the dynamics in the Heisenberg picture, where it
can be simulated with classical physics [6]. This reduces
to essentially computing the powers of the matrix M ,
modulo the integer N [7], which is usually taken to be
prime (non-primes lead to the Clifford group not being a
unitary 2-design [14]).

FRACTAL CELLULAR AUTOMATA

We are now ready to start working on the problem of
cellular automata. We will require that the dynamics of
the system take place on a lattice. For simplicity we will
choose a one dimensional lattice first, and then we will
explain how to go to higher dimensions. At each site a
cell will contain k (quantum) tori. We want a dynamics
that is translation invariant on the lattice and that is
also a generalized cat map. The variables are therefore
classified by a set xi,α, yi,α where the i ∈ {1, . . . k} and
α ∈ Z is the lattice site location. Let us also call the
set of all the xi,α, yi,α at a single lattice site by zI,α, and
I ∈ {1, . . . 2k}. There is a translation operator on the
lattice that we will label with the variable q, which acts
as follows

q(xi,α) = xi,α+1, q(yi,α) = yi,α+1. (8)
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It is easy to check that q is a matrix similar to M with
integer coefficients. Also, the transpose of q is qT = q−1.
A periodic dynamics of the ~x, ~y variables is a map of the
form

zI,α(t) =
∑
J,β

MIJ,αβ(t)zJ,β (9)

where the M are finite integers, and only finitely many
are non-zero. This is a locality property. It is periodic
if MIJ,(α+k)(β+k) = MIJ,αβ . We can use the images of
the zI,0 to get the full dynamics. For example, zI,s =
qs(zI,0). This is also true if we use the time translates
zI,s(t). This way we get that the image of the zero-th
cell variables can be written as

zI,0(t) =

∞∑
s=−∞

MIJ,s(t)q
s(zJ,0). (10)

If we apply qr on the left, it is easy to see that it com-
mutes with the action of M , so we can think of M being
defined identically by

M(t) ≡
∞∑

s=−∞
MIJ,s(t)q

s = M(1)t.

In this presentation, q can be treated as a formal variable
and in the time evolution we take the t-th power of the
matrix M(1) including the powers of the variable q. We
get for each t, a 2k × 2k matrix of Laurent polynomials
in q with integer coefficients. This is denoted by saying
that M ∈ Mk×k[Z[q, q−1]]. It is easy to convince oneself
that the symplectic condition is identical to equation (4),
where Ω is a 2k×2k symplectic matrix which is indepen-
dent of q, whereas M is q-dependent and the transpose
must include q → q−1 as follows

MT
IJ =

∞∑
s=−∞

MJI,s(t)q
−s (11)

If the lattice is finite and periodic, we can also impose the
constraint qL = 1. If we think of M as a 2k× 2k matrix,
it satisfies its characteristic polynomial of degree 2k. The
coefficients of the characteristic polynomial will also be
Laurent polynomials in q. The symplectic condition can
also be written as

M−1 = Ω ·MT · (Ω−1)

which shows that the inverse dynamics is also an allowed
dynamics an that the generalized Clifford quantum cel-
lular automata have a group structure.

When we include the naive quantization condition
NzI,α ≡ 0, the coefficients of M are well defined only
modulo N and the same is true for the coefficients of
the characteristic polynomial. Given M , we can say its
naive quantization just takes M with integer coefficients

to their reduction modulo N . The dynamics of the U, V
operators is well defined given M and N , up to a cocy-
cle condition that tells us the phase of the U, V images.
We will assume that this is given and then the dynamics
associated to M becomes a quantum cellular automaton.
In each cell we have a local algebra associated to the
Hilbert space (CN )k, which generalizes the notion of a
qubit algebra. The condition that monomials in the U, V
variables go to monomials in U, V variables generalizes
the notion of the Clifford cellular automata. This is also
a case where the classical dynamics associated to the ma-
trix M characterizes the Heisenberg evolution of the U, V
operators. This is important for us now.

Self-similarity: We now want to argue that the quan-
tum dynamics associated to M is self-similar and leads
to fractal behavior in the iterated images of the U, V
variables. This is understood in the classification of Clif-
ford cellular automata. In this more general case, the
simplest way to do this is to assume that N is a prime
number p for simplicity. Since the matrix M satisfies its
characteristic polynomial equation, we have that

M2k +
∑

0<s<2k

bsM
s + b0 = 0 (12)

where b0 = det(M) and bs ∈ Zp[q, q−1]. We now want
to replace M by a formal commutative variable ξ, which
also satisfies the same polynomial equation of M , where
the coefficients are in the set of Laurent polynomials with
coefficients in Zp. In this sense ξ is a formal eigenvalue
of the matrix M . This replacements takes us from prob-
lems of matrices to a problem involving roots of polyno-
mials with coefficients in the ring of Laurent polynomials
with coefficients in Zp. This replacement has taken the
problem from matrices to algebraic number theory. The
condition that the coefficients of the Laurent polynomi-
als are numbers modulo p is expressed by saying that we
are working with a commutative algebra in characteris-
tic p. In this setup, there is an algebraic endomorphism
of these algebras to themselves called the Frobenius en-
domorphism. It takes u → up. One can easily show
that for two commutative variables with coefficients in
Zp that (a + b)p = ap + bp, so this produces an algebra
morphism that takes products to products and is linear in
sums. When applied to equation (12), the characteristic
equation of the iterates of this morphism has coefficients
(bs)

pr . This morphism acts by taking q → qp, but other-
wise leaving the coefficients of each Laurent polynomial
intact. This way the iterates of powers of p (iterates of
the Frobenius morphism), ps for each M have the same
number of non-zero coefficients in each Laurent polyno-
mial. Each time we apply this morphism, we rescale time
by a factor of p, so we see that a simple property of
the coefficients of the characteristic polynomial are self-
similar. By this, we mean that we count the number of
non-zero entries in the rescaled images of the map by a
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factor of p, we get a constant number. A formal proof of
self-similarity can be found in [12, 13]

We will say that the self-similar behavior has fractal
dimension d if the number of non-zero elements of one of
the coefficients of the characteristic polynomial bs scale
on average like td at time t. Basically, at time t, we
define a function f(t) such that f(t) is the number of
non-zero coefficients of the bs Laurent polynomials. More
precisely, a notion of the fractal dimension d is defined
by requiring that

g(s) =

∞∑
t=0

f(t)t−s−1 (13)

is convergent if s > d and divergent otherwise. If the
fractal dimension is zero, then f(t) is bounded above:
there is no growth in the number of non-zero coefficients
bs(t). This notion of dimension seems to coincide with
the fractal dimension of the cellular automaton in simple
cases for one of the coefficients. We say we have fractal
behavior if d > 0. The d = 0 case arises in the case where
the celullar automaton has gliders. This guarantees the
growth property of f(t) that we need, by comparing to
the harmonic series. This is all we are going to need in
what follows.

FRACTAL BEHAVIOR IMPLIES NON-ZERO
LYAPUNOV EXPONENTS

Our goal is now to obtain the eigenvalues of the matrix
M , which is a matrix with Laurent polynomials in q over
the integers, and we assume that the reduction modulo
N of M has fractal dimension d > 0. Once we decide
that the matrix M is over the integers, we can think of
it also as a complex matrix.

Remember that q is a translation operator. The dy-
namics is translation invariant. This is stated by say-
ing that M commutes with q. Basically, M and q can
be diagonalized simultaneously. This is Bloch’s theo-
rem applied to q,M . The action of q is unitary, so the
eigenvalues of q are of the form exp(iθ). The problem of
the eigenvalues of the big matrix MIJ,αβ gets reduced to
computing the eigenvalues of the small 2k × 2k matrix
MIJ(q → exp(iθ)) for each θ. If for some θ we have at
least one eigenvalue of M(q = exp(iθ)) which is not in
the unit circle, then we have a non-zero Lyapunov ex-
ponent. This is what we want to show. We will do so
by contradiction assuming both that the reduction of M
modulo N is fractal and that the eigenvalues of M all lie
in the unit circle.

The basic idea is the following: the coefficients of the
characteristic polynomial of some power ofM , M t (which
depends on q) are sums of t-powers of products of eigen-
values of M evaluated at q = exp(iθ). If two matrices
have the same characteristic polynomials, then they will

have the same spectrum of eigenvalues and hence the
same Lyapunov spectrum. This suggests some weak no-
tion of equivalence of the two dynamical systems.

More precisely, bs(t, q = exp(iθ)) is a sum of products
of s eigenvalues. There are Ns =

(
2k
s

)
distinct products

of eigenvalues λti. Each of these products is a unitary
number if the eigenvalues are all unitary. The sum is
bounded above |bs(t, q = exp(iθ))| ≤ Ns. We will use this
inequality by squaring it and averaging over the phase
q = exp(iθ) as follows

1

2π

∫ 2π

0

|bs(t, q = exp(iθ))|2dθ ≤ N2
s (14)

If this inequality is violated, then the hypothesis that the
eigenvalues are in the unit circle for all θ is wrong, and
there is some θ for which this is not true. At that value,
at least one of the eigenvalues is outside the unit circle.

Let us now find a lower bound on the integral. Here
we use the fact that for some s and some t, the number
of non-zero coefficients of bs(t) modulo N can be as large
as we need, of order td. This number can be chosen to
be larger than N2

s . This implies that the polynomials of
q in the characteristic polynomial of M has at least as
many non-zero integer coefficients. After all, if a coef-
ficient is non zero modulo N , it comes from a non zero
coefficient in the original polynomial with integer coeffi-
cients: the characteristic polynomial reduced mod N is
the characteristic polynomial of M reduced modulo N .
Each of those non-zero coefficients in the characteristic
polynomial coefficient can be thought of as a Fourier co-
efficient of the function bs(t, θ). The integral (14) is the
L2 squared norm of bs(t, θ) and is also given by the sum
of the squares of said Fourier coefficients. These are in-
tegers, so each such coefficient is greater than or equal to
one in absolute value. Our lower bound on the number of
non-zero entries implies that for that particular times t
and s, the bound is violated. This proves our main claim.

When the lattice is finite size, the same argument
works so long as the lattice is large enough, and instead
of summing over all θ, we sum over the L roots of unity
in q. This would use a discrete Fourier transform of bs.
If the lattice is bigger than one dimensional, we have a
site lattice that must cover a unit cell, and we have as
many q translation variables as the dimension of the lat-
tice (see for example [15]). These all commute with each
other, so the Bloch argument works the same. Instead
of doing a single integral over a circle, we average over a
torus whose dimension is the dimension of the lattice.

We would like to thank S. Mukherjee for discussions.
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SUPPLEMENTARY MATERIAL

This material complements certain observations made
in the paper with illustrative examples. The two observa-
tions that are important are the following: the character-
istic equation of the matrix that determines the general-
ized Clifford cellular automata dynamical system encodes
the fractal structure of the cellular automata and there-
fore it is possible to extract the fractal dimension from
it.

FRACTAL IN THE CHARACTERISTIC
EQUATION

We will deal with two standard cellular automata. The
simplest Clifford cellular automata of period one and the
CNOT gate system studied in [9].

For the first system, studied in [], the 2 × 2 matrix
determining the dynamics is given by

M2×2 =

(
1 + q + q−1 1

1 0

)
(15)

The characteristic equation for M is

ξ2 − tr(M)ξ + 1 = 0 (16)

For the iterates of M , Mn, the characteristic equation is
determined entirely by tn = tr(Mn). Since M satisfies
it’s own characteristic equation, and if we multiply by
ξn−2 and take traces, we get the recursion

tn − t1tn−1 + tn2 = 0 (17)

with initial conditions t0 = 0 (the trace of the 2 × 2
identity matrix is zero modulo 2), and t1 = 1 + q + q−1.

The polynomial tn ' q−n + · · · + qn is of order n. To
see the fractal, we count the positions ak,n 6= 0 in the
polynomial. We get the picture in figure 1

A fit to the dimension of the fractal shows that the
fractal dimension is h ' 1.830. This implies that the
number of terms at each time grows like t0.83.

For the second system, the CNOT cellular automata,
the matrix is given by

M4×4 =


q + 1 q 0 0

1 1 0 0
0 0 1 1
0 0 q−1 1 + q−1

 (18)

where we also have that the symplectic form is

Ω =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 (19)
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FIG. 1. Fractal for the traces of the standard quantum cellular
automaton with period 1

As can be seen, the matrix M splits into two blocks, each
a 2× 2 matrix. This persists when we take powers. Call
the matrices

M1 =

(
q + 1 q

1 1

)
(20)

M2 =

(
1 1
q−1 q−1 + 1

)
(21)

and set ωn = tr(Mn
1 ), τn = tr(Mn

2 ). The characteristic
equation of Mn is

(ξ2 − ωnξ + 1)(ξ2 − τnξ + 1) = 0 (22)

and it factorizes. The trace of Mn is equal to τn+ωn and
each of these satisfy an independent recursion like (17).
This sum is also a palindrome. This is where we find the
Sierpinski triangle fractal in the characteristic equation:
the figure is a double copy, see the figure 2. A fit to the
dimension shows that h ' 1.585, so the number of terms
at each time grows as t0.530.
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FIG. 2. Fractal for the traces of the CNOT gate
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