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The phase behavior of liquids confined in a slit geometry does not reveal a crossover from a three-
to a two-dimensional behavior as the gap size decreases. Indeed, the prototypical two-dimensional
hexatic phase only occurs in liquids confined to a monolayer. Here, we demonstrate that the dimen-
sionality crossover is apparent in the lateral size dependence of the relaxation dynamics of confined
liquids, developing a Debye model for the density of vibrational states of confined systems and per-
forming extensive numerical simulations. In confined systems, Mermin-Wagner fluctuations enhance
the amplitude of vibrational motion or Debye-Waller factor by a quantity scaling as the inverse gap
width and proportional to the logarithm of the aspect ratio, as a clear signature of a two-dimensional
behaviour. As the temperature or lateral system size increases, the crossover to a size-independent
relaxation dynamics occurs when structural relaxation takes place before the vibrational modes with
the longest wavelength develop.

I. INTRODUCTION

The phase behaviour and dynamics of liquids confined
in slit geometries are affected by the competition of sev-
eral length scales. Indeed, for a liquid confined in a slit of
dimension L×L×H , the lateral length L and gap width
H ≪ L interfere with bulk-liquid length scales, such as
the typical distance between the particles, a0 = ρ−1/3,
and the structural correlation length, ξbulk ≃ 10, e.g.,
as estimated from the decay of the radial distribution
function [1–3]. The competition between H and ξbulk
induces a cascade of confinement-induced ordering tran-
sitions [2, 4–6], and a solid like behaviour interpreted as a
signal of a first-order transition [7, 8] or, more recently [9–
11], as a continuous glass transition. For molecular liq-
uids in very narrow confinements, length scales associ-
ated with the anisotropic molecular structure [1, 12–14]
and the details of the interaction between the molecules
and the confining walls also play a role.
The rich and system-dependent phase behaviour

of confined systems makes difficult rationalizing the
crossover from three to two dimensions focusing on its
gap size dependence. Indeed the hexatic phase, which is
a phase with short-ranged translational order and long-
ranged bond-orientational order only occurring in two-
dimensional systems, has been only reported for H ≃ a0
in Lennard-Jones systems [15]. In this extremely confined
limit, the occurrence of a two-dimensional behaviour is
in line with the observed decoupling of the lateral and
transverse degrees of freedom [16, 17].
The size dependence of the relaxation dynamics of con-

fined liquids offers an alternative and unexplored ap-
proach to investigate the dimensionality crossover. In-
deed, two-dimensional systems differ from their three-
dimensional counterpart because Mermin-Wagner [18]
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long-wavelength (LW) fluctuations make their relaxation
dynamics size dependent [19–25]. This alternative ap-
proach is also convenient as Mermin-Wagner fluctua-
tions are always present in two-dimensional systems; con-
versely, the two- and the three-dimensional phase be-
haviour do not qualitatively differ in all systems [26–28].
In this paper, we demonstrate that confined sys-

tems have a relaxation dynamics depending on the lat-
eral size L, as two-dimensional ones, and rationalize
the dimensionality crossover clarifying how this L de-
pendence varies with the gap width H and relaxation
time. We find that, in the solid regime, confinement
enhances the asymptotic value of the mean-square dis-
placement, or Debye-Waller factor, by a factor scaling
as (1/H) ln(L/H). A similar enhancement of the mean
square displacement occurs in the liquid phase. Liquids,
however, exhibit a dimensionality crossover as size-effects
vanish above a characteristic H-independent system size
fixed by sound velocity and relaxation time. We further
clarify that our predictions apply to both molecular and
colloidal liquids through the investigation of experimen-
tally relevant confinement settings.

II. DEBYE’S DOS IN CONFINEMENT

We develop a Debye-like model for the vibrational den-
sity of states (DOS) of confined amorphous solids to ra-
tionalize the size dependence of their dynamical proper-
ties. In confinement, the length scales L and H and the
transverse sound velocity cs fix two characteristic fre-
quencies, ωL = 2πcs/L and ωH = 2πcs/H . ωL is the
smallest possible phonon frequency. The physical role of
ωH is understood considering that phonons with ω < ωH,
which have a wavelength larger than H , do not fit along
the transverse direction. Hence ωH separates the spec-
trum into a low-frequency region, ωL < ω < ωH where
excitations are essentially two dimensional, and in a high
frequency region, ωH < ω < ωD, with ωD the Debye’ fre-
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quency, where excitations are three dimensional. In the
Debye’ approximation, the density of states is

D(ω) =








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c
ω

ω2
D
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(2)
D(ω) is schematically illustrated in Fig. 1(a). We remark
that we have restricted the above investigation to the
transverse modes, which are of greater relevance to our
purposes as having a smaller frequency. The longitudinal
modes can be similarly described.
The vibrational density of states allows us to evaluate

the asymptotic value of the mean square displacement,
or the Debye-Waller factor, averaging the contributions
kBT/mω2 of the different modes. To highlight the de-
pendence on the different length scales involved, we write
ωD = 2πcs/λD, finding
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The three dimensional limit, DW3D ≃ 3kBT

mω2

D

, and the

two-dimensional one, DW2D = 2kBT
mω2

D

ln
(

L
H

)

, are recov-

ered for H → L ≫ λD and for H → λD ≪ L, respec-
tively.
In quasi-2D systems, L ≫ H ≫ λD, Eq. 3 is approxi-

mated by

DW ≃ DW3D

[

1 +
λD

H

(

ln

(

L

H

)

− 1

)]

. (4)

Hence, we predict that in confined systems the DW grows
logarithmically with L, as in 2D, with a slope decreasing
as 1/H . We remark here that, as long as H ≫ λD, the
DW factor grows as H decreases at constant L, e.g., as
the system becomes more confined. This occurs because,
as H decreases, a larger fraction of the phonon spectrum
becomes effectively two-dimensional.

III. NUMERICAL DETAILS

We validate our theoretical prediction, and explore
the effect of confinement on the liquid phase, via ex-
tensive molecular dynamics simulations [29] of the stan-
dard A:B 80:20 Kob-Andersen (KA) Lennard-Jones (LJ)
mixture [30], where particles interact via the potential

Vαβ (r) = 4ǫαβ

[

(σαβ

r

)12
−
(σαβ

r

)6
+ Cαβ

]

, and ǫAB =

1.5ǫAA, ǫBB = 0.5ǫAA, σAB = 0.8σAA, σBB = 0.88σAA,

α, β ∈ {A,B}. The potential is truncated at rc = 2.5σαβ,
and Cαβ enforces V (rc) = 0. The mass of the particles
m, ǫAA, and σAA are our unit of mass, energy and dis-
tance, respectively. We first thermalize the system in the
NPT ensemble, at P = 1.0, allowing the box size to vary
only in the lateral dimensions. Production runs are then
performed in the NVE ensemble. The number of parti-
cles depends on L and H , and varies between 103 to 106

million. We average the dynamical data over at least four
independent runs.

We monitor the relaxation dynamics studying the
mean square displacement, 〈∆r2(t)〉 = 1

N

∑

∆r
2
i (t),

where ∆ri is the displacement of particle i at
time t, and the self-scattering function, Fs (k, t) =
1
N

〈

∑N
j=1 e

ik·∆rj(t)
〉

, where k the wavevector of the first

peak of the static structure factor of bulk systems.
The relaxation time τ is defined by Fs (k, τ) = 1/e.
We further investigate the dynamics using the cage-
relative mean square displacement and self-scattering
function [20–22, 31]. These are defined as above, with
the displacement of particle i replaced by its cage-relative
counterpart, ∆CRri = ∆ri−

1
ni

∑

j ∆rj , where the sum is
over all neighbors of particle i at time t = 0. We identify
the neighbors via the Voronoi construction.
We consider three different confinement approaches.

First, we use periodic boundary conditions in the con-
fining direction, which is an approach that is useful to
avoid layering as well as to compare with the theoreti-
cal predictions. When using this approach, the density
is essentially constant, ρ = 1.1775(5), as we illustrate in
Fig. 2(a). In the figure we also show that, for larger H
values representative of the bulk limit, the radial distri-
bution function becomes constant for r ≃ ξbulk/2 ≃ 5.
Secondly, we confine the system between flat walls.

In this case, the interaction between particles of type
i = A,B and the walls is given by a LJ potential with
energy scale ǫii and length scale σii, truncated in its min-
imum. In the presence of flat walls, the density sensi-
bly decreases with H , and layering occurs, as shown in
Fig. 2b.

Finally, we perform simulations of systems confined
between rough walls. In this case, we first thermalize at
the desired state pressure large samples, using periodic
boundary conditions in all directions, and then freeze the
positions of all particles whose height is outside the in-
terval [0 : H ]. When using rough walls, we work at fixed
density rather than at fixed pressure.

IV. CONFINED AMORPHOUS SOLIDS

We study the density of states of confined amorphous
solid configurations generated by minimizing the energy
of configurations equilibrated at low temperature. We fix
the pressure of these low-temperature configurations to
P = 1 by adjusting the lateral size, which slightly fluctu-
ates around L = 80. We considered several H values, so
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FIG. 1. (a) Schematic illustration of the Debye’s density of states of quasi-2D systems, Eq. 1. (b) Low-frequency cumulative
density of states of confined solids with lateral length L = 80 and different gap sizes H . (c) The data in a collapses when
plotted vs. ωH and vertically scaled, for H > ξbulk ≃ 10. (d) Mean square displacement at T = 0.005 and H = 10, for different
L values. (e) The asymptotic DW factor grows logarithmically with the lateral size L, with a slope scaling as 1/H (inset).
Errors are smaller than the symbol size.

that the number of particles ranges from 36000 to 150000.
We further use periodic boundary conditions in all spa-
tial directions to prevent structural inhomogeneities due
to layering, hence allowing for a more transparent com-
parison with the theoretical predictions. The effect of
walls is discussed in Sec. VI.

We evaluate the low-frequency end of the vibrational
spectrum of the generated energy minima via the di-
rect diagonalization of their Hessian matrix. To compare
the numerical results with our theoretical prediction of
Eq. 1, schematically illustrated in Fig. 1(a), we focus on
the frequency dependence of the cumulative distribution
C(ω) =

∫

D(ω)dω. Due to the large lateral size of our
systems [32], we observe gaps at low frequency, as pre-
dicted by linear elasticity [33]. Figire 1(b) also demon-
strates that C(ω)/ω2 is constant at small frequencies,
and increases above an H dependent crossover frequency
which, according to Eq. 1, should scale as ωH ∝ cs/H .
Indeed, when plotted versus ωH , and vertically scaled,
the data collapse up to their crossover point, as we il-
lustrate in Fig. 1(c). The figure also supports the ω2 to
ω3 crossover for the cumulative distribution suggested by
the theoretical model.

We remark that the data collapse of Fig. 1(c) breaks

for small H . To rationalize this observation, we investi-
gate in Fig. 2 the gap size dependence of the density and
the radial correlation function of a low-temperature solid
configuration. We observe that the density is almost H
independent, for H ≥ 5, and that the radial correlation
function approaches the ideal gas limit at r ≃ 5. This
allows us to estimate the structural correlation length of
the bulk solid, ξbulk ≃ 10. We thus understand that, in
Fig. 1(c), no collapse occurs for small H as confinement
interferes with the structural correlation length of the
system.

We further validate our theoretical prediction for the
dependence of the DW factor of amorphous solids on the
relevant length scales L and H , Eq. 4, performing sim-
ulations at a low-temperature value at which structural
relaxation is negligible. In this limit, the mean-square
displacement approaches a constant DW value at long
times, as illustrated in Fig. 1(d) for H = 10. Figure 1(e)
shows that this limiting DW factor grows as the loga-
rithm of the lateral size L, with a slope scaling as 1/H ,
in agreement with the predictions of Eq. 4.
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FIG. 2. The dependence of the average density on the
gap width, at T = 0.35, when periodic boundary conditions
are used in the confining direction. Confinement does not
strongly influence the average density, in the range of gap
widths we have considered. The radial distribution function,
shown in the inset for H = 20 and L = 20 at T = 0.35,
approaches one at ξbulk/2 ≃ 5.

V. CONFINED LIQUIDS

Having ascertained that LWs influence the behaviour
of confined solids, we now demonstrate that they
similarly affect the relaxation dynamics of quasi-2D
supercooled-liquids. To this end, we investigate the size
and temperature dependence of the mean square dis-
placement and self-scattering function at the wave vector
of the peak of the static structure factor of bulk systems.
Figures 3(a) and (b) show that the transient solid-like
response revealed by the mean square displacement and
the self-scattering function becomes less apparent as the
system size decreases. This size dependence is more ap-
parent at low temperature, where the transient solid like
behaviour is manifest.
We prove that this observed size dependence originates

from LW fluctuations by comparing the L dependence of
the relaxation time τ and of the cage-relative (CR) re-
laxation time τCR. Cage-relative quantities, indeed, are
insensitive to collective particle displacements and hence
filter out the effect of LWs [20–22]. In Fig. 3(c), we ob-
serve that, while the standard relaxation time decreases
logarithmically with L, the CR one is L independent.
These results closely parallel those observed in strictly
two-dimensional systems [19–25] and demonstrate that
LW fluctuations sensibly affect the structural relaxation
dynamics of confined liquids.
In Fig. 3(d), we further show that the relaxation time

τ decreases as the gap width is reduced and a larger frac-
tion of the vibrational spectrum becomes effectively two-
dimensional. This dynamical speed up is particularly
relevant for H < ξbulk, indicating that the structural
changes induced by such strong confinement promote LW

fluctuations. This is consistent with the observation of
a significant increment in the density of low-frequency
modes for H = 5, in Fig. 1(b). The gap independence
of the cage-relative relaxation time, also illustrated in
Fig. 3(d), confirms our interpretation, namely that the
H-induced speed-up originates from LW fluctuations.

We quantitatively investigate the dimensionality
crossover focusing on the mean square displacement,
〈∆r2(t)〉. In the solid phase, 〈∆r2(t)〉 approaches an
asymptotic DW factor value on a time scale tLW ∝ ω−1

L ∝
L. The asymptotic value of the DW factor grows as
lnL/f(L), with f(L) a slowing increasing function of L,
corresponding to the denominator of Eq. 3. In the liquid
phase, therefore, we expect a crossover in the time de-
pendence of the mean square displacement at a time tLW.
Figures 4(a) and 4(b) demonstrate that such a crossover
occurs at tLW ≃ 0.3L, for T = 0.38. At the same tLW
similar crossovers occur at all temperatures.

When LW fluctuations dominate the dynamics, as in

the solid phase, 〈∆r2(tLW)
lnL 〉 ∝ 1/f(L) decreases with L.

We therefore assume LW fluctuations to become neg-
ligible at L values at which 〈∆r2(tLW)〉 grows faster
than lnL. When this occurs, irreversible relaxation
events rather than large-amplitude oscillations dominate
the diffusivity. In Fig. 4(b) we indeed observe that
〈∆r2(tLW)〉/ lnL is not monotonic in L, decreasing with
L when LWs are relevant (solid symbols), and increasing
when they are not (open symbols). This behavior allows
us to identify crossover L values, which we have veri-
fied not to depend on the gap width. This study leads to
the L-T diagram of Fig. 4(c). The system-size dependent
dynamics characteristic of two-dimensional behaviour oc-
curs at low temperature and small lateral size and dis-
appears as either the lateral length or the temperature
increase. We remark that while this diagram does not
depend on the confinement width H , size effects gradu-
ally fade away as 1/H , as in the solid phase, and hence
become not appreciable at large H .

We exploit the size independence of the cage-relative
relaxation time to rationalize this observed dimensional-
ity crossover. Indeed, vibrational excitations cannot last
more than the cage-relative relaxation time, as on this
time scale the structure of the system sensibly changes, as
particles change neighbours. Since the vibrational modes
influencing the structural relaxation dynamics are those
that have time to develop, we expect the crossover be-
tween a two-dimensional size-dependent relaxation dy-
namics and a three-dimensional size-independent relax-
ation dynamics to occur at

L

τCR(T )
= αcs, (5)

with cs being the transverse sound velocity and α being
a constant. In other words, size effects disappear for L >
αcsτCR(T ), as the system relaxes before the lowest size-
dependent mode develops. This theoretical prediction
well describes the data of Fig. 4(d).
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FIG. 3. Long-wavelength fluctuations in confined amorphous solids. (a) Mean square displacement, and (b), self-scattering
function, at three different values of the temperature. We fix H = 10 and show, at each temperature, results for 10 ≤ L ≤ 320.
(c) The relaxation time decreases as the lateral size increases, while the cage-relative relaxation time is L-independent. (d)
The relaxation time decreases as the gap-size decreases, particularly for H ≤ ξbulk, while the cage-relative relaxation time is
H-independent. The relaxation times in (c) and (d) are divided by their respective values at L = 10 and at H = 30, to facilitate
their comparison. In (c) and (d), errors are smaller than the symbol size.
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displacement at the crossover time (circles). Data are for T = 0.35, and different L values. (b) The mean square displacement
at the crossover time grows faster that lnL (open symbols), above a characteristic T dependent lateral system size. When this
occurs, structural relaxation rather than LWs dominate the diffusivity, and hence the system has a 3D-like behaviour. (c) State
points with an effective two-dimensional behaviour according to the analysis in (b), are illustrated as open circles. Diamonds,
conversely, identify those having a three-dimensional behaviour. Stars correspond to the prediction of Eq. 5, L = αcsτCR(T ),
with α ≃ 0.018. The interpolating solid line is a guide to the eye. All panels refer to H = 10. Supplemental Fig. S4 shows
that the results are insensitive to changes in the gap width.

VI. EFFECT OF SMOOTH AND ROUGH

WALLS

Our theoretical analysis and numerical simulations
demonstrate that LW fluctuations affect the dynamics of

confined liquids. However, so far we have described simu-
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FIG. 6. Dependence of the average density on the gap width,
at T = 0.35, for a system confined in between flat walls at
a separation H . The density decreases as the gap width de-
creases. Flat walls, furthermore, induce layering, as we illus-
trate in the inset by plotting the density at a distance h from
a confining wall.

lations obtained using periodic boundary conditions in all
spatial directions; one might wonder, therefore, whether
LWs also play a role in the experimentally relevant set
up of liquids confined between two parallel walls at a sep-
aration H . To address this question, we investigate the
relaxation dynamics of the KA LJ binary mixture con-
fined between two atomically-smooth flat walls. Since
the walls prevent diffusion along the transverse direc-
tion, we focus on particle motion in the lateral direc-
tions, effectively defining two-dimensional mean-square
displacement and self-scattering function. We find that,
under wall confinement, the relaxation dynamics has the
typical size dependence induced by LW fluctuations, the
caging regime becoming less apparent as L increases, as
we illustrate in Figs. 5(a) and 5(b).
The structural changes induced by the walls, however,
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dynamics does not depend on the lateral length, or system size
N , indicating that the rough walls kill the LW fluctuations.

strongly affect the relaxation dynamics, as evidenced by
the H dependence of the standard and CR relaxation
times, which we illustrate in Fig. 5(c). For H ≥ ξbulk,
both relaxation times decrease as the system becomes
more confined; this is, we believe, the combined effect of
layering and the reduction in the average density induced
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by the confinement, which we illustrate in Fig. 6.
Importantly, we observe in Fig. 5(c) that forH ≤ ξbulk,

while the relaxation time decreases as the gap width is
reduced, the cage-relative relaxation sharply increases.
This increase in the CR-relaxation time is in qualitative
agreement with the many previous investigations report-
ing an increase in the viscosity of molecular liquids un-
der confinement [1, 9, 11, 34, 35]. Indeed, we remind the
reader that viscosity and cage-relative relaxation time are
related [25, 36]. This observed decoupling demonstrates
that smooth walls do not kill the LWs, but rather make
their effect more apparent.
While smooth walls do not kill LWs, rough walls

strongly suppress them. Indeed, we show in Fig. 7
that the relaxation dynamics of liquids confined between
rough walls does not depend on the lateral system size.
We remark that for very large gap widths the effect of the
boundary should become negligible, and hence LW fluc-
tuations should play a role. Since the influence of LWs on
the dynamics scales as 1/H , however, their effect in this
large-H limit may be not easily appreciated. We expect
variations [13] in the roughness of the confining walls and
the wall-liquid interaction potential to only qualitatively
affect the observed phenomenology.

VII. CONCLUSIONS AND EXPERIMENTAL

RELEVANCE

The confinement-induced enhancement of the DW fac-
tor described Eq. 3 is an equilibrium property not af-
fected by the underlying microscopic dynamics, equally
valid for molecular and colloidal solids. In the super-
cooled regime, the signatures of LW fluctuations con-
versely depend on how much the system moves along the
phase-space directions of the low-frequency modes before
particles rearrange. Since the size of this displacement
depends on the microscopic dynamics and it is smaller
if the system moves diffusively, rather than ballistically,
we expect the influence of confinement to be more rele-
vant at the molecular scale rather than at the colloidal
scale. Nevertheless, we remind the reader that LWs are

observed in experiments [22, 23, 25] and simulations [25]
of two-dimensional colloidal systems; our predictions con-
cerning the role of LW fluctuations in confined systems
therefore apply to both molecular and colloidal systems.

For the effect of LW fluctuations to be experimen-
tally visible, however, the roughness scale of the confin-
ing walls must be smaller than the size of the particles.
Rough walls, indeed, affect the motion in the lateral di-
mensions and kill the LW fluctuations, as we have shown
in Fig. 7. The requirement of smooth confining walls is
not a technical limitation. Walls that are de facto flat at
the molecular scale exist [10], and it is undoubtedly possi-
ble to confine large colloidal particles between walls that
are flat at the particle scale. In colloidal experiments,
however, one should ascertain that no particles stick ir-
reversibly to the walls, effectively making them rough,
e.g., as observed in Refs. [37, 38]. Hence our predictions
are experimentally testable both in confined molecular
liquids, e.g., comparing the size dependence of the vis-
cosity and of structural relaxation time, and in confined
colloidal systems, comparing, e.g. the standard and cage-
relative relaxation times.

Our results show that confined systems exhibit a grad-
ual dimensionality crossover controlled by the gap width
and the temperature, which is appreciable when investi-
gating the lateral size dependence of the dynamics. The
physics of confined liquids is thus richer than previously
realised. These findings might be relevant to a variety of
applications involving micro- and nanofluidics, e.g., lab-
on-a-chip devices, where particles flow in confined geome-
tries.
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