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Abstract

Recent experimental advances enable the manipulation of quantum matter by exploiting the quantum

nature of light. However, paradigmatic exactly solvable models, such as the Dicke, Rabi or Jaynes-Cummings

models for quantum-optical systems, are scarce in the corresponding solid-state, quantum materials context.

Focusing on the long-wavelength limit for the light, here, we provide such an exactly solvable model given by

a tight-binding chain coupled to a single cavity mode via a quantized version of the Peierls substitution. We

show that perturbative expansions in the light-matter coupling have to be taken with care and can easily lead

to a false superradiant phase. Furthermore, we provide an analytical expression for the groundstate in the

thermodynamic limit, in which the cavity photons are squeezed by the light-matter coupling. In addition,

we derive analytical expressions for the electronic single-particle spectral function and optical conductivity.

We unveil quantum Floquet engineering signatures in these dynamical response functions, such as analogs

to dynamical localization and replica side bands, complementing paradigmatic classical Floquet engineering

results. Strikingly, the Drude weight in the optical conductivity of the electrons is partially suppressed by

the presence of a single cavity mode through an induced electron-electron interaction.

I. INTRODUCTION

The control of matter through light, or more generally electromagnetic (EM) radiation, is a

research direction that has gained tremendous attention recently.1 It connects to many topical

fields including information processing and steering chemical reactions.2–9 In recent years, some

exciting progress has been made towards this goal by periodically driving materials with light in a

regime where the quantum nature of the light field can be disregarded.10,11 In this classical-light

regime the physics of materials under continuous-wave irradiation is efficiently described by Floquet

theory.12–14 Within Floquet theory, a time-periodic Hamiltonian is replaced by a quasi-static,

effective so-called Floquet Hamiltonian, which can include renormalized effective model parameters,

new synthetically generated terms, as well as Floquet sidebands, i.e., shakeoff features separated

by the driving frequency from the main resonances, in frequency-dependent spectra. The search

for driving protocols that realize certain effective Hamiltonians with specific desired properties has

become known as Floquet engineering.14,15 Along these lines several ways to control matter with

light have been proposed, for example, the manipulation of topologically non-trivial states,10,11,16–22

strongly correlated materials23–27 and superconductors.28–33 However, a fundamental problem for

driving materials with classical light is heating,31,34,35 which in many realistic setups prohibits
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versatile control.

To circumvent detrimental heating, control of materials through quantum light has recently

been proposed.6,9,36–38 The basic idea is to place a material into an optical cavity by which the

light-matter coupling can be enhanced9,39 since the coupling is inversely proportional to the square-

root of the effective mode volume39,40. One can therefore bolster the coupling by manufacturing

smaller devices, or by employing near-field enhancement effects.41 Through this enhancement of

the coupling, vacuum fluctuations or few photon states of the cavity can already have a sizeable

effect on the matter degrees of freedom, alleviating the need of strong classical driving fields. In

the emerging field of cavity engineering, ultra-strongly coupled light-matter systems have been

realized based on different implementation schemes, starting from the first results obtained with

microwave and optical cavities.42,43 More recently, sizeable light-matter coupling (LMC) has been

implemented in superconducting circuits,44 and it is nowadays possible to couple few electrons to

EM fields in split-ring resonators.45–47 These technological advances have led to the observation of

LMC-controlled phenomena such as transport properties being tuned by polaritonic excitations48

and Bose-Einstein condensation of exciton-polaritons.49–51 Another route to control matter by

quantum light is to influence chemical reactions52,53 through the selective enhancement of desired

reactive paths and blocking of others. In addition, there have been several proposals to influence

superconductivity in a cavity, either by coupling cavity modes to the phonons involved in electronic

pairing,54 to magnons that are believed to form the pairing glue in cuprates,55 or by directly

coupling to the electronic degrees of freedom.56–60 Concurrently, experimental evidence of cavity-

enhanced superconductivity was recently reported, whose origin and interpretation are still under

debate.61

To turn the question around and to add another facet to the problem of LMC, one can inversely

ask: How can one engineer the light field of a cavity using matter? One prominent and widely

discussed route is the realization of a superradiant phase in thermal equilibrium.62–70 Generally,

systems that require a quantum-mechanical treatment of both light and matter will host hybrid

states that mix light and matter degrees of freedom.71 Describing such light-matter systems is a

formidable challenge and often relies on using few-body simplifications. For instance, describing

matter through effective few-level systems has led to paradigmatic models such as the Dicke, Rabi

or Jaynes-Cummings models. These simplified models capture certain aspects of the underlying

physics well.39,72–75 However, in order to capture collective phenomena of solid-state systems, a

many-body description of the material is needed. Efforts in this direction include first-principles

approaches, such as the density functional reformulation of QED,76–78 generalized coupled cluster

3



theory79 or hybrid-orbital approaches.80,81 In addition, a recent work presents the analytic solution

of the free 2D electron gas coupled to a cavity.82

In this work, we introduce and study an exactly solvable quantum lattice model for a solid

coupled to the quantized light field of a cavity. At the same time, we aim at connecting quantum-

photon phenomena to previous results of Floquet engineering by investigating the quantum-to-

classical crossover. To this end, we focus on a tight-binding chain coupled to a single mode

modelling a resonance of a cavity, through a quantized version of the Peierls substitution that was

recently introduced.83–86 As we aim to describe solid-state systems, we are mainly interested in the

thermodynamic (TD) limit of this model, but we also connect to prior finite system size studies.

First, we determine the groundstate (GS) of the system. By exact numerical means, we exclude

the existence of an equilibrium superradiant phase, consistent with existing no-go theorems.62,64

We show explicitly that gauge invariance must be taken into account carefully to prohibit false

signatures of a superradiant phase upon expanding the Peierls substitution in orders of the LMC.

We then concentrate on the thermodynamic limit where the electronic groundstate is found to

remain the Fermi sea of the uncoupled system centered at quasi-momentum k = 0 consistent with

the findings of Rokaj et al.82 Using this insight, we analytically determine the photonic GS of the

system to be a squeezed state. Additionally, an analytical expression for the electronic spectral

function is given. With this we establish the quantum analogues to paradigmatic Floquet results,

such as dynamical localization or the emergence of replica bands, and pinpoint the differences

between the classical and quantum cases. To make the connection to Floquet results explicit, we

analyze the quantum-to-classical crossover and show that the nonequilibrium spectral function of

the system approaches that of a classically driven system in the limit of strong driving. Finally, the

current response to a spatially uniform external field, i.e., the optical conductivity, is calculated and

a f-sum rule for cavity-coupled systems is identified. The presence of the single cavity mode induces

a non-complete suppression of the Drude peak that remains even in the TD limit. This result is

consistent with that previously found by Rokaj et al.82 for the 2D electron gas. We attribute this

feature to the effective electron-electron interaction mediated by the cavity.
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FIG. 1. Model and groundstate. (a) Illustration of the studied model: A one dimensional tight-binding

chain with nearest neighbour hopping th is coupled to the first transmittance resonance (blue shaded area)

of a cavity at ω0. We model the frequency (ω) dependent coupling (black line) as a box function (red

line) and assume that its width ∆ω � ω0 to arrive at an effective single mode that couples strongly to the

electrons (see the Model subsection under Results). (b) Energy density eψT(FS)
according to Eq. (5) (colored

lines), with the electronic part of the wavefunction |ψ〉f chosen as a single connected quasi-momentum region

being occupied (Fermi sea, FS). The minimum at wave-vector k = 0 coincides with that of the variational

scheme described in the main text (see the Groundstate subsection under results and the Methods section)

where we have used trial wave-functions with arbitrary distributions in momentum-space, i.e., not limited

to a connected region. Inset: Average photon number Nphot := 〈a†a〉 (colored lines) for varying coupling

strength g, as function of the system size L. For all g values shown, the number of bosons in the cavity

converges at large L to a finite value (black dashed lines). The red vertical line corresponds to the system

size used in the main plot (L = 1010). Nboson
max = 100 has been used for the bosonic Hilbert space. (c) The

exact probability distribution P (nphot) in logarithmic scale of the photon number is compared to the one

given by a squeezed state (black crosses) for the groundstate of a chain of length L = 510 (blue bars) and

L = 10 (yellow bars). Here the coupling constant is set to g = 2 and Nboson
max = 100. In the inset, the same

quantity is plotted on a linear scale. (d) Ratio of variance of canonical momentum and coordinate operator

∆P/∆X (colored lines) as function of the coupling g for three different values of ω0 and two representative

squeezing ellipses for g = 0.2 and g = 0.75, respectively.
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II. RESULTS

A. Model

We consider a non-interacting tight-binding chain with nearest-neighbour hopping, as illustrated

in Fig. 1(a). The chain is coupled to the first transmittance resonance of a cavity. We take into

account a continuum of modes in the cavity but neglect modes that have a wave-vector with non-

zero component in the direction of the chain as their coupling with the matter degrees of freedom

will be strongly suppressed by the presence of the cavity. This essentially amounts to the dipole

approximation. The frequency of the modes is confined to a small region of width ∆ω around the

resonance of the empty cavity at ω0 (∆ω � ω0). We therefore model these modes as all having

the same frequency ω0. Additionally, we assume that they couple to the chain with equal strength

essentially replacing the frequency dependent profile of the coupling by a box function of width ∆ω

centered at ω0 (see Fig. 1(a)). In Supplementary Note 1, we show that having selected N modes,

this setup results in one single mode strongly coupling to the electrons and N−1 uncoupled modes.

Hence, we model the system as electrons coupled to an effective single cavity mode that is spatially

constant along the chain. The corresponding Hamiltonian reads83

H = ω0

(
a†a+

1

2

)
−

L∑
j=1

[
the
−i g√

L
(a†+a)

c†j+1cj + h.c.
]
. (1)

Here cj(c
†
j) is the fermionic annihilation (creation) operator at lattice cite j, and a(a†) is the bosonic

annihilation (creation) operator of the single effective cavity mode. The latter are related to the

quantized electromagnetic vector potential via A = g√
L

(a+ a†), with the convention e = ~ = c = 1

and L the number of lattice sites. We use periodic boundary conditions and set the lattice constant

to 1. One can show that, within a few-band truncation, inclusion of the relevant effects of the

LMC as well as gauge invariance are guaranteed by the quantized form of the Peierls substitution

employed to set up the Hamiltonian given in Eq. (1).83–85 The coupling constant g depends on the

specifics of the system, such as the geometry and material composition of the cavity. We keep the

explicit dependence 1/
√
L, instead of including it in the dimensionless coupling parameter g, in

order to simplify the analysis of the thermodynamic limit. In quasi-momentum space, the model

takes the form

H = cos

(
g√
L

(a+ a†)

)
T + sin

(
g√
L

(a+ a†)

)
J + ω0

(
a†a+

1

2

)
, (2)
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where we have introduced the kinetic energy and current operators

T :=
∑
k

−2th cos(k) c†kck =:
∑
k

εk c
†
kck

J :=
∑
k

2th sin(k) c†kck =:
∑
k

vk c
†
kck,

(3)

and εk, vk are the band dispersion and band velocity at quasi-momentum k, respectively. c
(†)
k

annihilates (creates) and electron at quasi-momentum k. These expressions highlight the extensive

number of constants of motion of the model, namely ρk = c†kck with [ρk, H] = 0 for all k ∈ BZ

(Brillouin Zone), which is a consequence of the spatially constant vector potential not breaking

the lattice periodicity and preserving fermionic quasi-momentum in any electron-photon scattering

process.82 As a consequence, the eigenstates of the Hamiltonian can be factorized as

H|Ψ〉 = EΨ|Ψ〉 ; |Ψ〉 = |φ〉b ⊗ |ψ〉f , (4)

where |φ〉b is the photonic part of the wavefunction, and |ψ〉f is an eigenstate of the electronic

density operator ρ = 1
L

∑
k c
†
kck.

B. Groundstate

We determine the GS of the system |ΨGS〉 = |φGS〉b ⊗ |ψGS〉f in two different ways: (i) by a

variational scheme that exploits the extensive number of constants of motion varying the electronic

occupation and using exact diagonalization for the remaining non-harmonic bosonic system (see

the Methods section) and (ii) by full exact diagonalization of the combined electronic and bosonic

system (ED). The variational scheme can be performed for hundreds of lattice sites while the ED

calculations serve to verify the variational results for small system sizes. Both numerical methods

are exact in the sense that their accuracy is only limited by the cutoff of the maximum boson number

in the Fock space Nboson
max . This can, however, be chosen large enough to converge all calculations

to arbitrary precision, making the results obtained with ED identical to those obtained with the

variational method in the case of small system sizes. Since the data reported in the plots has been

acquired for system sizes too large for ED to handle, all reported results have been obtained with

the variational scheme.

We consider a half-filled electronic system with n := 〈ρ〉 = 1
2 , and choose the cavity frequency

ω0 = th, unless explicitly denoted otherwise. Within the variational scheme, we find that the

electronic part of the GS wavefunction |ψGS〉f is the Fermi sea (FS) around k = 0 even at non-

zero g. In Fig. 1(b) we illustrate this for a subset of possible electronic configurations. Here,
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following the procedure explained in the Methods section, we take as fermionic trial wavefunctions

|ψT(FS)〉f only connected regions in k-space centered at different positions (FS center). Then

we numerically determine the GS energy EψT(FS)
of the resulting bosonic hamiltonian HψT(FS)

=

f 〈ψT(FS)|H|ψT(FS)〉f . In Fig. 1(b) we show the energy density

eψT(FS)
=
EψT(FS)

L
(5)

as a function of the center of the connected region (FS center). The energetic minimum always

remains at the FS centered around k = 0 for all considered coupling values. This shows that the

fermionic part of the GS wavefunction remains unchanged upon turning on a coupling to the bosonic

mode, a result that is consistent with the two-dimensional electron gas considered by Rokaj et al.82

The unbiased variational scheme (see the Methods section) is not limited to connected regions in

k-space, and a full variation in electronic state space confirms the unshifted Fermi sea as the true

ground state.

We now discuss the bosonic part of the wavefunction, |φGS〉b. To this end, we define the

photon number eigenstates as a†a |nphot〉 = nphot |nphot〉 and introduce the probability distribution

P (nphot) := | 〈nphot|φGS〉 |2 of finding nphot photons in the GS.

P (nphot) for g = 2 (Fig. 1(c)) shows that only even number states contribute, implying that

the bosonic wavefunction has a probability distribution that is incompatible with a coherent state.

Instead, P (nphot) agrees perfectly with a squeezed state with the same average photon number,

indicated by the black crosses in Fig. 1(c). This finding does not change qualitatively for different

values of g. In the inset of Fig. 1(b) we show the scaling of the average photon number in the GS,

Nphot = 〈a†a〉. Nphot is found not to grow extensively with the system size, which excludes the

existence of a superradiant phase.

Put differently, the absence of a superradiant phase implies that the expectation value of the

bosonic operators in the GS does not scale with the system size. This allows us to perform a scaling

analysis of contributions to the GS energy

〈ΨGS|H|ΨGS〉 = 〈ΨGS|ω0

(
a†a+

1

2

)
|ΨGS〉︸ ︷︷ ︸

∼1

+ 〈ΨGS|T |ΨGS〉︸ ︷︷ ︸
∼L

+ 〈ΨGS|
g√
L

(
a† + a

)
J |ΨGS〉︸ ︷︷ ︸

∼
√
L

− 〈ΨGS|
1

2

g2

L

(
a† + a

)2
T |ΨGS〉︸ ︷︷ ︸

∼1

+O
(

1√
L

)
.

(6)

In the TD limit, the GS energy is entirely composed of terms that are at most quadratic in

the photon field amplitude A = g√
L

(a†+a). In order to simplify the following discussion, we

8



diagonalize the Hamiltonian up to quadratic (A2) order by a combined squeezing and displacement

transformation yielding (see Supplementary Note 2)

HD =W[T ]

(
β†β +

1

2

)
+ T − g2ω0W[T ]−2

L
J 2 ; W[T ] = ω0

√
1− 2

g2

Lω0
T . (7)

where β(†) annihilates (creates) a coherent squeezed state.30 In terms of the original creation

and annihilation operators of the unsqueezed cavity photons, the corresponding squeezed-state

operators are given as

β† = cosh

(
1

2
ln

(
W[T ]

ω0

))(
a† +

g ω0W[T ]−2

L
J
)

+ sinh

(
1

2
ln

(
W[T ]

ω0

))(
a+

g ω0W[T ]−2

L
J
)
,

β = cosh

(
1

2
ln

(
W[T ]

ω0

))(
a+

g ω0W[T ]−2

L
J
)

+ sinh

(
1

2
ln

(
W[T ]

ω0

))(
a† +

g ω0W[T ]−2

L
J
)
.

(8)

The last term in HD of Eq. (7) highlights that the cavity induces an effective electron-electron

interaction.

Knowing that the electronic part of the GS wavefunction is the unshifted FS, we define the

expectation value of the electronic kinetic energy density and current density in the GS as

tGS =
f 〈ψGS|T |ψGS〉f

L
< 0,

jGS =
f 〈ψGS|J |ψGS〉f

L
= 0,

(9)

and the dressed cavity frequency as

ω̃ =W[tGS] = ω0

√
1 + 2

g2

ω0
|tGS|. (10)

The bosonic part of the GS wavefunction is then given by the GS of the electronically renormalized

bosonic Hamiltonian

HD
b = f 〈ψGS|HD|ψGS〉f = ω̃

(
β†β +

1

2

)
− |tGS|L (11)

which is a squeezed vacuum state |φGS〉b74,87–89 that is connected to the bare cavity vacuum |0〉

through a squeezing transformation,

|φGS〉b = e
1
2(ζ∗a2−ζ(a†)2)|0〉. (12)

The squeeze factor ζ90 is given by (see Supplementary Note 2)

ζ =
1

2
ln

(
ω̃

ω0

)
. (13)
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The squeezed state that was numerically observed to match the exact P (nphot) for the GS

Fig. 1(c) corresponds precisely to the squeeze factor ζ defined in Eq. (13). In Fig. 1(d) we show

how the amount of squeezing depends on the cavity coupling strength g. Defining X :=
(
a†+a

)
and P := i

(
a† − a

)
, and ∆O =

√
〈O2〉 − 〈O〉2 for a generic operator O, a squeezed state minimizes

the Heisenberg uncertainty ∆P∆X = 1. The ratio

∆P

∆X
= e2ζ =

ω̃

ω0
(14)

characterizes the degree of squeezing.74,90 The squeezing of the vacuum is reminiscent of the finding

by Ciuti et al.,91 which was obtained for a different light-matter model. It has recently become

possible to directly measure the vacuum fluctuations inside a cavity,92,93 which enables experimental

tests of our prediction.

C. False superradiant phase transition in the approximate model

Next, we analyze the effect of truncating the Hamiltonian at first and second order in A =

g√
L

(a†+a) on the GS at finite L

H1st = ω0

(
a†a+

1

2

)
+ T +

g√
L

(
a† + a

)
J

H2nd = ω0

(
a†a+

1

2

)
+ T +

g√
L

(
a† + a

)
J − 1

2

g2

L

(
a† + a

)2
T .

(15)

For the first-order truncated Hamiltonian H1st we again determine the GS by the unbiased vari-

ational scheme (see Methods section). The GS is given by a connected region in k-space that is,

however, not always centered at k = 0. This is shown in Fig. 2(a), where the energy density eψT(FS)

(Eq. (5)) for H1st is evaluated as function of the FS shift, in analogy to our analysis in Groundstate

subsection under Results. Here both the energy density and the photon occupation are calculated

analytically. We find that at a critical coupling strength gc there is a phase transition to a GS

hosting a finite current signified by the shift of the FS, Fig. 2(a). This is complemented by an

occupation of the cavity mode that scales linearly with L as shown in the inset of Fig. 2(a) as well

as a non-zero expectation value in the TD limit of the field 〈A〉 = g
√
L

ω0
jGS. The critical coupling

is given by gc =
√

πω0
4th

. A symmetric or anti-symmetric combination of the degenerate GS wave-

functions (FS shifted either to the left or the right) would yield a net zero current restoring the

inversion symmetry of the system but still result in a macroscopic occupation of the cavity mode.

This transition is reminiscent of the one in the Dicke model, for which neglecting the diamagnetic

(A2) coupling yields a superradiant phase defined through 〈A〉 ∼
√
Nemitter (where Nemitter is the

10



FIG. 2. False superradiance and instability for the truncated Hamiltonian. (a) Minimum energy

density eψT(FS)
Eq. (5) (colored lines) of the Hamiltonian truncated at first order for an electronic wavefunc-

tion being a single connected occupied region in k-space, as function of the shift of the Fermi sea (FS). The

position of one minimum of the curves is indicated by a circle. At a critical coupling strength gc =
√

πω0

4th

the center of the Fermi sea realizing the minimal energy moves to a finite k-value which is illustrated by the

small shift of the minimum of the curve corresponding to g = gc+δ where δ = 0.001. Inset: Average photon

number 〈a†a〉 (colored lines) for varying coupling strengths g as function of the system size L. Above the

critical value gc, superradiant scaling of the photonic occupancy sets in. The vertical red line denotes the

system size used in the main plot (L = 1010). (b) Minimum energy density of the second-order truncated

Hamiltonian (colored lines) as function of the shift of the Fermi sea (FS). When the shift is sufficiently

large such that the kinetic energy of the electrons is positive, it is possible to obtain a spectrum of the

electronically renormalized bosonic Hamiltonian that is not bounded from below anymore, rendering the

system unstable. The instability is indicated by the dotted line. Here L = 1010.

number of emitters) yielding a macroscopically occupied photon mode,72,94 which is absent for the

full gauge-invariant coupling.95

In the lattice case, only the inclusion of coupling terms to all orders in A of the the Peierls

substitution guarantees gauge invariance. If one instead includes only terms up to second order

(A2), a large coupling strength g results in a spectrum of the Hamiltonian that is not bounded

from below. Fig. 2(b) is obtained in an analogous way to Fig. 1(b), but with energies calculated

analytically, illustrating the absence of a GS above a critical coupling strength as follows: Fixing the

electronic part of the wavefunction to be a shifted FS, an increased shift will yield a corresponding

bosonic problem with a decreased frequency. At some point the effective frequency vanishes, leading

to the absence of a GS of the remaining bosonic problem beyond that point. We indicate this point

by a dotted line in Fig. 2(b). This instability can be cured by including an arbitrarily small A4

term, signalling the breakdown of the truncation.
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States with a finite current, which have lower energy than the one with zero current when the

energy is truncated after the first two orders of the LMC (see Fig. 2(b)), are moved to higher

energies upon inclusion of all orders of the Peierls coupling (see Fig. 1(b)), which is a manifestation

of gauge invariance.64 This explains the validity of our analytical results obtained including only the

second order of the cavity field together with the electronic GS with zero current. The instability

discussed here, caused by truncation of the LMC after the second order, has previously been noted

by Dmytruk and Schiró85 in the context of a mean-field approach to a two orbital model.

D. Momentum-resolved spectral function in the TD limit

The effects of the cavity on electrons could be investigated via ARPES measurements. For this

reason, but also to pinpoint analogs to Floquet results, we calculate the electronic spectral-function

defined as

A(k, ω) = − 1

π
ImGR(k, ω), (16)

with

GR(k, ω) = −
∫ ∞

0
dt i〈

[
ck(t), c

†
k

]
+
〉eiωt (17)

where [.]+ is the anti-commutator. We evaluate the electronic part of the expectation value in

Eq. (17) analytically by commuting the electronic creation and annihilation operators with the

appearing time-evolution operators and replacing T → tGSL and J → jGSL = 0 in the expression.

The remaining vector-matrix-vector product in the bosonic part of the Hilbert space is then eval-

uated numerically at each time t and the result transformed to frequency space via a FFT. The

result is given in Fig. 3(a) for a chain of length L = 170 including all orders of the Peierls coupling.

In the TD limit, we can use similar arguments to the ones previously utilized in the Groundstate

subsection under Results to give an analytic expression for the electronic spectral function. No

operator in the expectation value Eq. (17) creates a macroscopic number of photons. We can

thus conclude by a similar scaling analysis as in Eq.(6) that in the TD limit the time evolution

can be written with the diagonal Hamiltonian Eq. (7). The spectral function keeping leading 1/L

corrections is analytically found to be

A(k, ω) = (1− nk)e−
g2v2kω0

Lω̃3

∑
`

(
g2v2kω0

Lω̃3

)`
`!

δ

(
ω − εk

(
1− g2

2L

ω0

ω̃

)
− Σk − ω̃`

)

+ nk e
− g

2v2kω0

Lω̃3

∑
`

(
g2v2kω0

Lω̃3

)`
`!

δ

(
ω − εk

(
1− g2

2L

ω0

ω̃

)
+ Σk + ω̃`

)
.

(18)
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FIG. 3. Momentum-resolved spectral function in equilibrium and for a driven cavity. (a)

False-color plot of the momentum(k)-resolved spectral function A(k, ω) Eq. (18) as function of frequency ω

in units of the hopping amplitude th at T = 0. The central white dashed curve shows the bare electronic

band. Replicas of the bare band offset by the bare cavity frequency ±ω0 are shown by white dashed curves.

The quantum replica bands seen in the false-color spectra are at an increased distance from the main band,

which is set by the dressed cavity frequency ω̃ > ω0. The replica bands are below (above) the main band

in the occupied (unoccupied) quasi-momentum regions, reflecting the overall particle-hole symmetry of the

half-filled system. The dashed line at k = 3π
8 denotes the k-space position of the plot in panel (b). Here we

consider L = 170, g = 1 and Nboson
max = 50, the delta functions of Eq. (18) are represented by Lorentzians

with broadening η = 0.025. (b) Nonequilibrium time- and momentum-resolved spectral function according

to Eq.(22) evaluated at k = 3π
8 as a function of frequency (ω) offset by the value of the dispersion ε(k) at

that k-point in units of the hopping amplitude th for several cavity pumping strengths, characterized by

the displacement parameter α with |α|2 = ∆Npump
phot (colored lines). g2∆Npump

phot is kept constant, implying

that g → 0 as the pumping ∆Npump
phot → ∞. The black line corresponds to the ground state for g = 2.5 for

which the y-axis reports the amplitude, while the coloured lines are vertically shifted for clarity and follow

the progressive occupation ∆Npump
phot indicated on the right. For increasing pump strength the side-bands

become more symmetric and their position approaches ω0 as ω̃
g→0−→ ω0. For the largest pump ∆Npump

phot the

curve is overlaid with the Floquet result (red dashed line), that matches the pumped-cavity result. Here

L = 90, Nboson
max = 100, and a Lorentzian broadening η = 0.025 has been included in the delta functions.

Here nk = 〈ρk〉 and the self-energy Σk is given by

Σk =
g2ω0

ω̃2L
v2
k. (19)

The details of the calculation are presented in Supplementary Note 3. From Eq. (18) the spectral
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function of the unperturbed electrons,

A(k, ω)
L→∞→ A0(k, ω) = δ(ω − εk), (20)

is recovered in the limit L→∞. From Eq. (7) one might expect a finite contribution to the elec-

tronic self-energy stemming from the coupling of a single electron to all other electrons collectively.

However, due to the form of the induced interaction, the single electron couples to the total current

that vanishes identically in the GS. Contributions to the spectral function beyond the described

collective effect are small in the TD limit as highlighted in Eq. (18). We discuss how this might be

related to a short-coming of the single-mode approximation in the Discussion.

The spectral function Eq. (18) most prominently contains a sum over δ functions with distance

ω̃ between each other, given by the dressed instead of bare cavity frequency, which is a direct

consequence of the quantum nature of the photons. This is the quantum analog to the Floquet

replica bands visible in Fig. 3(a). Contrary to the Floquet replica bands, the quantum replica

bands lie either above or below the main band, but only on one side for fixed quasi-momentum

k at zero temperature, depending on whether the respective momentum state is filled or empty.

This reflects the particle-hole symmetry of the half-filled system, in which a combined ω → −ω

and k → k + π sublattice particle-hole transformation leaves the spectral function invariant.

Importantly, despite the fact that the cavity induces an effective all-to-all electron-electron

interaction, there is no broadening of the δ-peaks. This is related to the vanishing momentum

transfer of the interaction and the resulting fact that the Bloch states remain exact electronic

eigenstates. As a consequence, the interaction results in a purely real electronic self-energy Σk,

leading to band renormalizations without broadening.

The presence of the cavity squeezes the band dispersion εk by a factor
(

1− g2

2L
ω0
ω̃

)
< 1. This is

the quantum analog to the dynamical localization that leads to a suppression of the band width.

The band renormalization factor 1− g2ω0

2Lω̃ is consistent to leading order in 1
L with the expectation

value of the bosonic operator 〈cos
(

g√
L

(
a†+a

))
〉 as a multiplicative factor to the kinetic energy of

the electrons. The electrons are thus effectively localized by coupling to the vacuum fluctuations

of the electromagnetic field.

E. Quantum to Floquet crossover

In the following, we analyze the quantum to classical crossover and recover known Floquet

physics in the regime of Nphot → ∞ and g → 0, keeping g2 ∆Npump
phot = const. The limit g → 0
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is needed in the crossover to lift the light-matter hybridization that would otherwise lead to the

shifted frequency ω̃ of an effective cavity mode which we identify as an intrinsic quantum effect.

The limit of strong pumping, keeping the coupling g constant, is treated in Supplementary Note 4.

We employ a protocol where the cavity mode is coherently displaced with respect to the GS

with displacement parameter α

|α〉 = eα(a†−a)|φGS〉b. (21)

The photon number is thereby increased relative to the one in the GS by |α|2 = ∆Npump
phot . The

coherent displacement considered here models the application of a laser pumping the cavity on time

scales too short for the coupled system to follow. Thus, the laser is assumed to place the cavity

into a squeezed coherent state in the limit of large system size. The subsequent time evolution of

the light-matter coupled system is considered from starting time t = 0. While for the equilibrium

spectral function only the first two orders in g of the Hamiltonian had to be taken into account,

the time evolution is now affected by all orders of the Peierls coupling due to the occupation of the

photonic mode that is macroscopic in the classical limit.

We calculate the nonequilibrium spectral function, defined via the full double-time retarded

Green’s function,96

Anon-eq.(k, ω) =

1

π
Im

1

τ̃

∫ ∆T+ τ̃
2

∆T− τ̃
2

[∫ ∞
0

ieiω0(t−t′)
f 〈ψGS| ⊗ 〈α|

[
ck(t), c

†
k(t
′)
]

+
|α〉 ⊗ |ψGS〉f d

(
t− t′

)]
d

(
t+ t′

2

)
(22)

where τ̃ = 2π
ω̃ is the period corresponding to the dressed cavity frequency. The form is chosen

in analogy to the diagonal elements of the Floquet representation of the GF.97 Here we include a

waiting time ∆T after the start of the real-time evolution, set to a large value with respect to the

intrinsic timescale, ∆T = 200τ̃ , in the numerical simulation. Otherwise the calculation is performed

in the same manner as that for the equilibrium spectral function Eq. (17). For comparison, we

also consider the nonequilibrium spectral function of a classically driven system where the time

evolution is governed by the Hamiltonian

Hc(t) = −
∑
j

the
−iA(t)c†j+1cj + h.c. (23)

In this case, we couple the chain to the classical field A(t) = A0 sin(ω0t), that oscillates with

the eigenfrequency of the unperturbed cavity ω0. Similar to the quantum case, we calculate the
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nonequilibrium spectral function according to

AFloquet(k, ω) =

1

π
Im

1

τ

∫ τ
2

− τ
2

[∫ ∞
0

ieiω(t−t′)
f 〈ψGS|

[
ck(t)Hc(t), c

†
k(t
′)Hc(t)

]
+
|ψGS〉f d

(
t− t′

)]
d

(
t+ t′

2

) (24)

where τ = 2π
ω0

. Here (.)(t)Hc denotes the time dependence governed by the semi-classical Hamilto-

nian Eq. (23). The spectral function fulfills

AFloquet(k, ω +mω0)|ω∈(−ω02 ,ω02 ] = − 1

π
ImGmm(ω) (25)

with Gmm(ω) the diagonal part of the Floquet representation of the GF.97

We show the evolution from quantum to Floquet spectra for a representative quasi-momentum

k = 3π
8 inside the FS in Fig. 3(b). In the extreme quantum case (GS) the replica band only

appears below the main band. Furthermore, it is not located at the bare cavity frequency ω0 but

at the eigenfrequency of the coupled light-matter system ω̃. By contrast, as the classical limit is

approached, the symmetry of the replica bands is restored and their position moves to ω0. For

the largest displacement (∆Npump
phot = 30) the spectrum matches precisely the Floquet spectrum.

The fact that the system experiences no heating during the driving is a direct consequence of the

absence of electron-electron interactions and the corresponding macroscopic number of constants

of motion.

F. Optical conductivity

In order to discuss the impact of the light-matter coupling on a paradigmatic electronic

two-particle response function, we compute the optical conductivity using the standard Kubo

formalism.82,98 To this end the cavity-chain system is coupled to a spatially uniform external

field Aext(t), in addition to the quantized cavity field. The resulting optical conductivity in the

long-wavelength limit is obtained in the standard form99

σ(ω) = −−〈ekin〉 − Λ(q = 0, ω)

i (ω + i0+)
, (26)

where

ekin =
1

L
cos

(
g√
L

(
a†+a

))
T (27)

is the effective kinetic energy density of the electrons in the cavity-modified GS, and Λ is the

current-current correlator

Λ(q = 0, ω) = − i
L

∫ ∞
0

dt eiωt〈
[
jpq=0(t), jpq=0

]
〉, (28)
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FIG. 4. Optical conductivity (a) Real part of the conductivity Re(σ), Eq. (30) in units of half the

conductance quantum e2

h , for strong (g = 1, dark blue line) and intermediate (g = 0.3, dashed yellow line)

couplings as a function of frequency ω in units of the hopping amplitude th. The result for g = 0 is shown

for comparison (black line). The Drude peak is suppressed with increasing g, and two side peaks appear at

the same time. The inset shows the negative effective kinetic energy 〈ekin〉 (black line) and the integrated

conductivity
∫
σ(ω)dω (red dashed line). The vertical dashed lines indicate the coupling strengths from the

main plot. They match fulfilling the f-sum rule Eq. (35), here we set L = 170, Nboson
max = 50 and a Lorentzian

broadening η = 0.05. (b) Corresponding imaginary parts of the conductivity Im(σ) (Eq. (36)). Again the

central 1
ω feature is suppressed and two side features appear at ω = ±ω̃.

with jpq=0 the paramagnetic current density operator at q = 0. The latter is obtained from the

charge continuity equation as

jpq=0 = − cos

(
g√
L

(a†+a)

)∑
k

2th sin(k)c†kck − sin

(
g√
L

(
a†+a

))∑
k

2th cos(k)c†kck. (29)

We evaluate Eq. (26) numerically for L = 170 and finite broadening 0+ → 0.05. The result is

shown in Fig. 4(a)-(b).

One can gain additional insight into the properties of the optical conductivity by evaluating it

analytically in the TD limit. For the real part of the conductivity we find

Reσ(ω) = Dδ(ω) + σreg(ω), (30)

where the Drude weight D is given as

D

π
= |tGS|

(
1− g2

2L

ω0

ω̃
− 2

g2ω0

ω̃2
|tGS|

)
. (31)

The second term in the brackets in Eq. (31) derives from the squeezing of the band, previously

coined quantum dynamical localization, subsection Momentum-resolved spectral function in the
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TD limit under Results, and vanishes in the TD limit. The last term originates from the current-

current correlator and remains finite even in the TD limit, resulting in a partial suppression of

the Drude weight. In contrast to the spectral function considered in the subsection Momentum-

resolved spectral function in the TD limit under Results, modifications to the optical conductivity

remain finite even in the TD limit since the perturbation of the system within the linear response

framework enables a contribution from the induced electron-electron interaction. Writing

γ =
ω2
p

ω2
0 + ω2

p

; ω2
p = 2g2ω0|tGS| (32)

we find for D in the TD limit

D = D0(1− γ) ; 0 ≤ γ ≤ 1 (33)

where D0 is the Drude weight of the uncoupled chain. This is consistent with the findings Rokaj

et al.82 for an electron gas. For the second contribution σreg in Eq. (30) one finds

σreg(ω)

π
=
g2ω0

ω̃2
t2GS(δ(ω + ω̃) + δ(ω − ω̃)). (34)

Two side-peaks at ω = ±ω̃ appear that balance the suppression of the Dude weight. These effects

are illustrated in Fig. 4(a).

The inset of Fig. 4(a) shows that the real part of the conductivity satisfies the f-sum rule, similar

to other electron-boson models100,

D

π
+

∫ ∞
−∞

σreg(ω) dω = −〈ekin〉, (35)

which is also evident from the corresponding analytical expression.

For completeness, we also state the imaginary part of the conductivity

Imσ(ω) = tGS
1

ω

(
1− g2

2L

ω0

ω̃

)
+
g2ω0

ω̃
t2GS

1

ω

(
1

ω − ω̃
− 1

ω + ω̃

)
. (36)

which fulfills the usual Kramers-Kronig relation Imσ(ω) = − 1
πP
∫∞
−∞

Reσ(ω′)
ω′−ω dω′ and is shown in

Fig. 4(b). Similar to the real part we find a suppression at ω = 0 and shakeoff features at ω = ±ω̃.

III. DISCUSSION

In this work, we have discussed a tight-binding chain coupled to a single spatially constant

cavity mode. The exact solution of this model is enabled by the macroscopic number of constants

of motion that results from the absence of momentum transfer between photons and electrons in
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the long-wavelength limit. Consequently, the GS of the system is a product state of electrons and

photons (subsection Groundstate under Results).

Removing these constants of motion, either through relaxing the dipole approximation or in-

cluding an electron-electron interaction, is expected to lead to interesting new results. It is well

known that a one-dimensional system with local interactions is susceptible to form a charge density

wave at zero temperature.101 The effective interaction induced by the cavity considered in this work

does not lead to such a symmetry-broken GS, since it is featureless. Including local interactions,

it would therefore be interesting to study the effect of the cavity on charge-ordered phases. An

important consequence of the non-interacting limit is the absence of heating in the semi-classically

driven case described in the subsection Quantum to Floquet crossover under Results. In an in-

teracting setup, a continuous classical drive would heat up the system eventually leading to an

infinite temperature state. On the other hand, an initial coherent state of the cavity will dissipate

energy into the system leading to a decay of its amplitude. For these reasons, the comparison

made in the subsection Quantum to Floquet crossover under Results will only hold on time-scales

much shorter than the time it takes for the system to heat up. Previous works noted that even

when including electron-electron interactions but neglecting any momentum transfer by the cavity

photons, a factorized wave-function might still be suitable for a description of the system as the

corresponding mean field picture becomes exact in the TD limit.63,64,85

Relaxing the dipole approximation would lead to a finite-ranged but non-local effective electron-

electron interaction, which opens new opportunities for inducing or modifying materials properties.102

Through this, also existing no-go theorems related to superradiance would be circumvented, pos-

sibly making it worthwhile to revisit the question whether an equilibrium photon condensate can

exist.64,85,103

In order to describe realistic experimental situations, a continuum of modes needs to be in-

cluded, where also the wave-vector in the direction of the chain is a continuous variable. As a

first approximation one might, as we did earlier for the orthogonal directions, treat these modes as

identical. For this case the principle of collective strong coupling that we describe in Supplemen-

tary Note 1 applies, leading to a mere renormalization of parameters.82 However, macroscopically

many modes coupled to all electrons at once will lead to unphysical effects like a diverging effective

mode energy. To remedy this also the dipole approximation would need to be relaxed making all

but the zeroth mode couple to a microscopic quantity.

We have furthermore calculated the single-particle Green’s function analytically (subsection

Momentum-resolved spectral function in the TD limit under Results). Here we found that in
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the limit L→∞ we recover the bare spectral function of the uncoupled electrons indicating that

corrections due to the presence of the cavity vanish in the TD limit. We pointed out that a possible

mean-field term does not contribute due to the current in the GS having zero expectation value,

〈J 〉 = 0. Corrections beyond this are small in the TD limit which we attribute to the vanishing

energy density of the single mode signified by g√
L
→ 0 in that limit. Supplementary Note 1

shows how such corrections could be reconciled through a collective coupling effect, reminiscent of

previously discussed collective (vibrational) strong coupling,75,104–106 when retaining many modes

corresponding to a finite energy density in the TD limit which is reflected in the replacement

g√
L
→ g

√
N√
L

. This argument, however, requires further consideration such as the relaxation of the

dipole approximation as mentioned above, to arrive at a mathematically rigorous conclusion. Such

a calculation goes beyond the scope of this work.

The analytical expression for the single-particle Green’s function derived in this work might

provide the basis for future studies by building a many-body perturbation theory around this

solution to investigate many-body instabilities diagrammatically, such as superconductivity. Note

that the here considered system does not host polaritons since there are no collective bosonic

excitations in our model such as plasmons, excitons or phonons as would be the case in a multi-

band system.85,103 Accordingly, no signatures of such quasi-particles show up in the electronic

spectral function. Using insights from the squeezing transformation, it might be possible to treat

systems with two different bosonic modes analytically. One interesting prospect is to include an

optically active phonon into the model that couples quadratically to the electrons.28,30,107 Extending

the here-presented analytical methods to a bimodal squeezing, it might be possible to analytically

obtain GS properties and signatures in electronic spectra of the coupled bosonic modes. This could

open up a pathway to realize multi-mode squeezed states, with important applications to quantum

information.108 In a similar spirit, one could also study two distinct photonic cavity modes and

search for signatures of the matter-induced photon-photon interaction on the basis of the exactly

solvable model put forward in the present work.

Concerning the connection to experiments, a temperature lower than the eigenfrequency of the

cavity is needed in order for our zero-temperature calculations to hold qualitatively. For a resonance

at ω0 = 0.41THz as used in a recent cavity setup109 this would correspond to temperatures well

below 3.1K. The validity of the dipole approximation depends on the specific experimental setup.

However, a sample that is much smaller that the size of the cavity is necessarily needed110 which

would be fulfilled for a cavity size on the order of 1mm corresponding to the above mentioned

resonance at ω0 = 0.41THz when at the same time considering an atomic wire with a length in
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the sub micrometer range. The electronic spectra calculated here (Fig. 3(a)) should in principle

be observable in ARPES measurements. A quality factor that ensures a linewidth that is smaller

than the cavity frequency is required to observe the side bands, which appears within experimental

reach.109 We attributed the vanishing of corrections to the spectral function in the TD limit to the

vanishing energy-density of the single mode in that limit. In an experimental setup one naturally

has a continuum of modes with finite energy density possibly retaining these corrections. For

small enough in-plane wave-vectors of the photons one might expect qualitative effects, such as

the asymmetry of the shake-off bands in the quantum limit, to remain present also in this case.

However, some further work definitely needs to be dedicated to this aspect in order to support

this claim. The experimental observation of asymmetric shake-off bands would complement the

successful demonstration of classical Floquet replica bands.10

Another prediction of the present work is the squeezing of the vacuum fluctuations in the

GS consistent with predictions for other models.89,91 Recently progress in probing the vacuum

fluctuations of light92,93 puts an experimental confirmation of our prediction within reach.

Finally, a suppression of the Drude peak (Fig. 4(a)) has already been observed experimentally.48

It has previously been explained by Rokaj et al.82 via an analogous result to the one presented

by us but for an electron gas instead of a tight-binding chain. It is an interesting question why

the effective cavity mode with vanishing energy density can influence the macroscopically many

electrons in this particular case. From our point of view, the reason lies in the induced electron-

electron interaction that does not vanish in the TD limit and is probed indirectly through the

optical conductivity.

IV. METHODS

A. Variational scheme

Here, we describe the variational scheme that we use to determine the exact GS. As discussed

before, the Bloch states are fermionic eigenstates of the system. Thus the input to the procedure

is a vector of length L specifying the occupations of each Bloch-state at quasi-momentum k. This

determines the electronic part |ψT〉f of the trial wavefunction |ΨT〉 = |φT〉b ⊗ |ψT〉f , with which

we calculate the eigenvalues of the operators T and J

TψT
= f 〈ψT| T |ψT〉f ; JψT

= f 〈ψT| J |ψT〉f . (37)
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Evaluating the electronic part of the expectation value for the GS energy one is left with the purely

photonic Hamiltonian

HψT
= ω0

(
a†a+

1

2

)
+ cos

(
g√
L

(
a†+a

))
TψT

+ sin

(
g√
L

(
a†+a

))
JψT

. (38)

The problem reduces to that of an anharmonic oscillator, that can be solved by numerical diagonal-

ization introducing a cutoff Nboson
max in the Fock space. All results are converged with respect to this

cutoff. The scheme then varies over trial wave-functions optimizing for the smallest GS energy of

the remaining bosonic problem Eq. (38). It thus only compares eigenenergies of exact eigenstates

making it possible to find the true GS. We have chosen different starting wave-functions for the

optimization procedure including the state where 〈ρk〉 = 0.5 for all k in the BZ and randomly

generated states. Due to somewhat better convergence properties the former have been used to

obtain the shown plots.

We verified our results against an exact diagonalization of the full Hamiltonian for small system

sizes obtaining identical results within machine precision.
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SUPPLEMENTARY INFORMATION

SUPPLEMENTARY NOTE 1: COLLECTIVE STRONG COUPLING IN THE CASE OF

N IDENTICAL MODES

In this supplementary we show that coupling electrons to N identical modes with a coupling

constant g√
L

, in a setup as described in the Model subsection under Results of the main text,
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effectively results in a single mode coupling with enhanced strength g
√
N√
L

and N − 1 completely

decoupled modes. We will start to show how this holds for the Hamiltonian expanded to second

order in the light-matter coupling (also compare Eq. (15) of the main text) and later in this section

argue why this might also hold for the full Peierls substitution including all order in the LMC (also

compare Eq. (2) of the main text). We write the Hamiltonian to second order in the LMC g for

many identical modes as

H = T +
g√
L
J
∑
λ

(
a†λ + aλ

)
− 1

2

g2

L
T

(∑
λ

(
a†λ + aλ

))2

+ ω
∑
λ

a†λaλ. (39)

Here aλ annihilates -; a†λ creates a photon in mode λ. All other symbols are as defined in the main

text.

To find a form where the modes are decoupled we will represent them in terms of their gener-

alized coordinate and momentum according to

Xλ =
1√
2ω

(
a†λ + aλ

)
Pλ = i

√
ω√
2

(
a†λ − aλ

) (40)

with which the Hamiltonian becomes

H = T +
√

2ω
g√
L
J
∑
λ

Xλ −
g2

L
ωT

∑
λ,κ

XλXκ +
∑
λ

1

2
ω2X2

λ +
1

2
P 2
λ . (41)

This can be written in matrix form as

H = T +
√

2ω
g√
L
J
∑
λ

Xλ−
g2

L
ωT XT


Ie − ω L

2g2
T −1 Ie . . . Ie

Ie Ie − ω L
2g2
T −1 Ie . . .

. . . . . . Ie

Ie . . . Ie Ie − ω L
2g2
T −1

X+
1

2
PT IN×N P .

(42)

Here Ie is the identity on the electronic part of the Hilbert space. We have introduced N -

dimensional coordinate and momentum vectors as

X =


X1

. . .

XN

 ; P =


P1

. . .

PN

 (43)

and IN×N is simply the unity in N dimensions with Ie on the diagonal. One eigenvector of the
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above matrix in Eq. (42) is clearly

v1 =
1√
N


1

. . .

1

 (44)

with corresponding eigenvalue (that still contains an operator from the electronic subsystem due

to the composite nature of the system)

ε1 = N − ω L

2g2
T −1. (45)

Each vector v = (v1, . . . , vN )T from the orthogonal N − 1 dimensional subspace of v1, defined

through the equation
∑N

i=1 vi = 0, is an eigenvector with eigenvalue ε = −ω L
2g2
T −1 which is therefore

N − 1 times degenerate. Denoting by P+ and X+ momentum and coordinate corresponding to the

first eigenvector and by P̃κ, X̃κ, κ = 1, . . . , N − 1 momenta and coordinates corresponding to the

other N − 1 eigenvectors we can write the Hamiltonian with decoupled bosonic modes as

H = T +
√

2ω
√
N

g√
L
X+J +

1

2

(
ω2 − 2N

g2

L
ωT
)
X2

+ +
1

2
P 2

+ +
∑
κ

1

2
ω2X̃2

κ +
1

2
P̃ 2
κ . (46)

From this it is clear that the X+ mode couples to the electrons with effective strength g
√
N√
L

while

all other N − 1 modes don’t couple to the electrons or among each other at all.

Next we discuss the case of the full Peierls substitution keeping all orders in the LMC. For this

situation the Hamiltonian including many identical modes with zero momentum transfer would

read

H = sin

(
g√
L

∑
λ

(
a†λ + aλ

))
J + cos

(
g√
L

∑
λ

(
a†λ + aλ

))
T + ω

∑
λ

a†λaλ. (47)

We now write this Hamiltonian in terms of the canonical position and momentum operators intro-

duced in Eq. (40)

H = sin

(
g
√

2ω√
L

∑
λ

Xλ

)
J + cos

(
g
√

2ω√
L

∑
λ

Xλ

)
T +

∑
λ

1

2
P 2
λ +

ω2

2
X2
λ

= sin

(
g
√

2ω√
L

∑
λ

Xλ

)
J + cos

(
g
√

2ω√
L

∑
λ

Xλ

)
T +

1

2
PT IN×N P +

ω2

2
XT IN×N X

(48)

where in the last step we have again introduced N -dimensional notation as in Eq. (43). The fact

that the harmonic oscillator terms can be written using the N -dimensional unity IN×N stems

from our approximation of all modes having equal frequency. Due to this, we can now write the

Hamiltonian in terms of any other set of collective modes in particular the one used to write
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Eq. (46) in which the last term will remain diagonal (ie. in particular not couple different modes)

obtaining

H = sin

(
g
√

2ω
√
N√

L
X+

)
J + cos

(
g
√

2ω
√
N√

L
X+

)
T +

1

2
P 2

+ +
ω2

2
X2

+ +
N−1∑
κ=1

1

2
P̃ 2
κ +

ω2

2
X̃2
κ.

(49)

Here all operators are defined as in Eq. (46). Thus also in the case of keeping all orders in the

LMC we obtain a single mode with effectively enhanced coupling g√
L
→ g

√
N√
L

and N −1 uncoupled

modes.

In Eq. (46) (and also Eq. (49) when expanding again) it seems like the effective frequency of the

X+ mode would scale like
√
N for large enough N which seems counter-intuitive. This is, however,

reminiscent of the dipole approximation that is here taken for all modes. When allowing for any

small but non-zero momentum transfer, the modes immediately couple to a microscopic quantity

instead of all electrons collectively yielding a finite effective frequency.

The here shown mechanism for collective strong coupling is reminiscent of an analogous one

considered in the case of vibrational Strong Coupling104–106 in the case of a cavity coupling to

vibrational excitations of a solid or to collective strong coupling of an electro-magnetic resonator

coupled to many emitters.75,106

SUPPLEMENTARY NOTE 2: DIAGONALIZATION OF THE HAMILTONIAN IN THE

TD LIMIT

In this part we show how to diagonalize the Hamiltonian expanded to second order in the field

that gave the only non-vanishing contribution in the TD limit to the GS energy in Eq. (6). It reads

H2nd = ω0

(
a†a+

1

2

)
+ T +

g√
L

(
a† + a

)
J − g2

2L
(a†+a)2T (S1)

and can be diagonalized using a combined squeezing and displacement transformation30,87

HD = eS
d[T ,J ]eS

sq[T ]HA,A2
e−S

d[T ,J ]e−S
sq[T ]

Sd[T ,J ] =
g√
Lω0

(
W[T ]

ω0

)− 3
2 (
a† − a

)
J ,

Ssq[T ] =
1

4
ln

(
W[T ]

ω0

)(
a2 − (a†)2

)
.

(S2)

The diagonal Hamiltonian HD is given in the main text Eq. (7) together with the definition of

W[T ]. Both displacement and squeezing transformations depend on fermionic operators namely
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the kinetic energy T and the current J . Since T and J are diagonal in k-space the GS of the

whole system is given as (see also Eq. (11) of the main text and below)

|ΦGS〉 = |ψGS〉f ⊗ |0β〉

= |ψGS〉f ⊗ eS
d[−tGSL,jGSL]eS

sq[−tGSL]|0〉.
(S3)

where |ψGS〉f is the unshifted FS and |0β〉 is the vacuum state of the annihilators(creators) β(†) of

the coherent squeezed states, defined in the main text Eq. (8). |0〉 is the vacuum state of the non

squeezed bosonic operators a† and a. Since we found jGS = 0 due to the vanishing shift of the FS

we have eS
d[−tGSL,jGSL]β = Ib where Ib is the identity on the bosonic part of the Hilbertspace. The

photon part of the GS wavefunction is thus given by Eq. (12) of the main part.

SUPPLEMENTARY NOTE 3: MOMENTUM-RESOLVED SPECTRAL FUNCTION IN

THE TD LIMIT

In this part we show how to analytically calculate the spectral function A(k, ω) of the electrons

in the TD limit. Since we do this at temperature T = 0 the expectation values appearing in

the definition of the spectral function (Eq. (16) of the main text) are taken just with respect

to the GS. None of the operators in the expectation value creates a macroscopic occupation of

the photonic mode. Therefore, the scaling analysis of Eq. (6) of the main text can be applied

in this case allowing us to diagonalize the problem by the combined squeezing and displacement

transformation Eq. (S2). To evaluate the expectation values we also need the behaviour of the

fermionic creation (annihilation) operators under these transformations which read

eS
d
eS

sq
cke
−Ssq

e−S
d

= ckXY,

eS
d
eS

sq
c†ke
−Ssq

e−S
d

= c†kX
†Y †

(S6)

with

ln(X) = −gω0W−2

√
L

vk

(
a† − a

)
+O

(
1

L
3
2

)
,

ln(Y ) =
1

2

g2

ω0L
εk

(
1− 2

g2

ω0L
T
)−1 (

a2 − (a†)2
)

+O
(

1

L
3
2

)
.

(S7)
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Considering the first expectation value from the spectral function, Eq. (16) of the main text, we

find

〈ck(t)c†k〉 = f 〈ψGS| ⊗ b 〈φGS|
e−S

sq[T ]e−S
d[T ,J ]eS

d[T ,J ]eS
sq[T ]︷︸︸︷

1 eiHtcke
−iHtc†k 1︸︷︷︸

e−S
sq[T ]e−S

d[T ,J ]eS
d[T ,J ]eS

sq[T ]

|φGS〉b ⊗ |ψGS〉f

= f 〈ψGS| ⊗ 〈0| eiH
DtckXY e

−iHDtc†kX
†Y † |0〉 ⊗ |ψGS〉f +O

(
1

L
3
2

)
= 〈ψGS|f ⊗ 〈0| ck(t)HDX(t)HDY (t)HDc

†
kX
†Y † |0〉 ⊗ |ψGS〉f +O

(
1

L
3
2

)
.

(S8)

With the subscript (.)(t)HD we signify that the time dependence is determined by the diagonal

Hamiltonian HD, Eq. (7) of the main text.

The operators T and J appearing in X and Y have no time dependence since they commute

with HD (and in fact also the full H). The time dependence of the operators X and Y is determined

by that of the bosonic operators

a(t)HD = ae−iWt

a†(t)HD = a†eiWt.
(S9)

Evaluating the electronic part of the expectation value will yield W → ω̃ restoring a simple time

dependence with the dressed cavity frequency ω̃.

Reconsidering the expectation value Eq. (S8) we note that moving the fermionic operators

through X and Y will only yield higher order corrections such that we can write

〈ck(t)c†k〉 = eΦ(t)(1− nk) 〈0|XψGS
(t)HD

b
YψGS

(t)HD
b
X†ψGS

Y †ψGS
|0〉 (S10)

where nk = 〈c†kck〉. Here we have evaluated the time dependence of the fermionic annihilators that

yields the time dependent phase factor eΦ(t). We find, only keeping the leading order as before

ck(t)HD = cke
F(t) ; F(t) = −iεkt+ i

g2εk
L

ω0W−1

(
a†a+

1

2

)
t− ig

2ω0W−2

L
v2
kt (S11)

Evaluating the expectation of this yields

〈eF(t)〉 = eΦ(t) ; Φ(t) = −iεkt+ i
g2εk
2L

ω0

ω̃
t− iΣkt (S12)

with

Σk =
g2ω0

ω̃2L
v2
k. (S13)

In Eq. (S10) we have already executed the fermionic part of the expectation value performing

T
L
→
〈ψGS|f T |ψGS〉f

L
= tGS

J
L
→
〈ψGS|f J |ψGS〉f

L
= jGS

(S14)
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in the X(†) and Y (†) operator writing them as X
(†)
ψGS

and Y
(†)
ψGS

.

Since all operators act on the |0〉 state, contributions come only from commutators of the

operators in the exponentials. Therefore, all contributions from the Y operator are at least

exp
(
O
(

1

L
3
2

))
111,112 and will thus be neglected. We are thus left with

〈ck(t)c†k〉 = eΦ(t)(1− nk) 〈0|XψGS
(t)HD

b
X†ψGS

|0〉+O
(

1

L
3
2

)
. (S15)

The evaluation of the remaining expectation value is a standard textbook problem.113

Evaluating the other expectation value in the definition of the spectral function (Eq. (16) in

the main part) yields the same result, just with a factor nk instead of 1−nk up front and the final

expectation value is in Eq. (S15) is complex conjugated as the order of the operators is reversed.

This reflects the particle-hole symmetry of the half-filled system, which is inherited from the bare

chain.

Performing the remaining FT we arrive at the final result reported in Eq. (18) in the main text.

SUPPLEMENTARY NOTE 4: NON-EQUILIBRIUM SPECTRAL FUNCTION FROM

COHERENT PUMPING

In this part we calculate the non-equilibrium spectral function according to Eq. (22) of the main

text in analogy to our analysis in the Quantum to Floquet crossover subsection under Results in

the main text. However, in contrast to that part, we do not keep g2 ∆Npump
phot = const while sending

∆Npump
phot → ∞ but set g = 0.5. Hence, we here do not perform the classical limit, since the

light-matter hybridization is never lifted, but the limit of strong driving.

The result can be seen in Fig. 1 of this supplement. The side-peaks are at a shifted frequency

ω̃ which reflects the fact that the effective boson of the system represents a mixture of light and

matter degrees of freedom. In contrast to the classical limit, their position stays approximately

constant and does not reduce to ω0 for stronger pumping. At the same time, the evolution of

completely asymmetric side-peaks to fully symmetric ones prevails. The strength of the peaks

increases monotonically with stronger pumping while it stayed almost constant previously.

The last line corresponding to the strongest pump is again compared to the non-equilibrium

spectral function obtained from a classically driven system according to Eq.(24) of the main text.

We set the frequency to ω̃ as stated in Eq. (10). The result matches well with that of the strongest

drive. For even larger numbers of photons injected into the system one will, however, start to see

deviations as the higher, non-harmonic terms in the Hamiltonian become relevant for the dynamics.
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FIG. 5. Strong pumping limit of the non-equilibrium spectral function. Non-equilibrium spectral

function obtained according to Eq. (22) in analogy to Fig. 3(b) of the main text. The LMC is kept constant

at g = 0.5 while the strength of the pump increases from zero to ∆Npump
phot = 30 as reported on the right-

hand side of the plot. The spectral function corresponding to the strongest pump is overlayed with the

non-equilibrium spectral function of the classically driven system (Eq. (24)) at the effective cavity frequency

ω̃ as stated in Eq. (10). In analogy to Fig. 3(b) of the main text, the structure of the peaks changes from

completely asymmetric to symmetric for increased pumping. In contrast to Fig. 3(b), the size of the side-

peaks now increases for stronger pumping. Additionally, features that were previously small in the TD limit

(see Eq. (18)) now emerge as for example the dynamical localization (shift of central peak) and the shake-off

bands (also a second shake-off band is now visible). These features are well reproduced within the classical

drive. Parameters, if not specifically mentioned otherwise, are as in Fig. 3(b) but with an increased size of

the bosonic Hilbertspace of Nboson
max = 130.

As expected, features of the electronic spectral function that were previously small in the TD

limit (see Eq. (18) of the main text) are enhanced through the driving. The dynamical localization

now becomes notable through the shift of the central peak and a second shake-off band appears.

These features are also well reproduced by the classical drive in this regime.
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