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Quantum thermal machines make use of non-classical thermodynamic resources, one of which
is interactions between elements of the quantum working medium. In this paper, we examine the
performance of a quasi-static quantum Otto engine based on two spins of arbitrary magnitudes
subject to an external magnetic field and coupled via an isotropic Heisenberg exchange interaction.
It has been earlier shown that the said interaction provides an enhancement of cycle efficiency for
two spin-1/2 particles, with an upper bound which is tighter than the Carnot efficiency. However,
the necessary conditions governing engine performance and the relevant upper bound for efficiency
are unknown for the general case of arbitrary spin magnitudes. Analyzing extreme-case scenarios,
we formulate heuristics to infer the necessary conditions for an engine with uncoupled as well as
coupled spins model. These conditions lead us to a connection between performance of quantum
heat engines and the notion of majorization. Further, the study of complete Otto cycles inherent in
the average cycle also yields interesting insights into the average performance.

I. INTRODUCTION

Thermodynamics originated as an empirical study of steam engines, which blossomed into a framework of exceptional
generality and simplicity. Quantum thermodynamics is an emerging research field that aims to extend classical
thermodynamics and statistical physics into the quantum realm—offering new challenges and opportunities in the
wake of a host of non-classical features. A dominant interest is to understand energy-conversion processes at length
scales and temperatures where quantum effects become imperative. Inspired by our enhanced capabilities towards
nanoscale design and control, this endeavour is being pursued by scientists from diverse backgrounds, such as statistical
physics, quantum information, quantum optics, many-body physics and so on.

To lay foundations for technological breakthroughs, a variety of fundamental questions are being addressed—
ranging from issues of thermalisation of quantum systems to examining the validity of thermodynamic concepts,
such as definitions of work, heat, efficiency and power at the nanoscale. The accord between quantum mechanics and
thermodynamics is yet to fully unfold [1–3]. Its fundamental implications have inspired numerous proposals for thermal
machines based on quantum working media [4–49]. Two major issues which are addressed in such proposals, are: What
are the performance bounds of heat engines working in quantum regime and what are the thermodynamic properties
of these quantum systems which control these bounds? The performance analysis of various quantum analogues of
classical heat engines serve as test bed to study different extensions of thermodynamic ideas in the quantum world.
With the recent development of quantum information technology [50–53] and a number of interesting results, the
study of quantum heat engines (QHEs) has drawn much interest. In fact, the past few years witnessed conducive
studies exploring how the quantum statistics, discreteness of energy levels, quantum adiabaticity, quantum coherence,
quantum measurement and entanglement affect the operation of heat engines and cycles in various experimental
set-ups including trapped ions, transmon qubits and more [54–83].

Finite time thermodynamic cycles [32, 34, 84–96] and the study of open quantum systems [97–104] have drawn
significant attention in the recent years. These studies aim to arrive at more practical estimates of the performance
measures for these machines. However, the importance of quasi-static models of QHEs lies in the fact that they provide
a benchmark against which we can compare the behavior of finite time or more realistic models of heat engines. A
variety of quantum working substances have been used to model these QHEs. Amongst these, the study of simple,
coupled quantum systems [6, 18, 30, 31, 105–114] can yield important insights into the role of quantum interactions
in enhancing the performance of model thermal machines. In particular, an upper bound (ηub) for quantum Otto
efficiency using coupled spin-1/2 particles has been obtained which is tighter than the Carnot bound (ηC) [6, 18].
However, this upper bound seems to be violated for coupled spins with higher magnitudes [109].
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It is apparent that as the quantum working medium becomes complex–as for a many-body system or when the
energy spectrum is non-trivial, an exact analysis may become intractable. This is especially true when the working
medium is neither a few-particles system with a simple energy spectrum nor a medium close to thermodynamic limit
where some scaling law may aid in mathematical simplicity [115]. Thus, to target this intermediate regime, it seems
useful to formulate heuristics. The latter are of significance in various disciplines such as cognitive science, behavioral
economics and computer science, to name a few. Broadly speaking, a heuristic is a rule of thumb providing insights
into the behavior of a system in the face of complexity or uncertainty [116–118]. The solution suggested by a heuristic
may not be optimal or may simply be an approximate solution. However, the value of a heuristic lies in providing a
shortcut method that requires a simpler analysis, thus trading accuracy and completeness for speed.

Based on this understanding, we analyze complete Otto cycles (COCs) to characterize the performance of our
engine. In a COC, the working medium starts and ends in the same state. In general, during thermal interaction
with reservoirs, the transitions in the system are not deterministic. We show that COCs which follow the second law
under a certain operation (say as an engine), also yield conditions to analyze the global or average performance of
the machine.

In this paper, we carefully make use of the information discerned from the energy-level structure of the working
medium, as well as general relations between the canonical probabilities arising from interactions with heat reservoirs.
The worst-case or best-case scenarios (WCS/BCS) under a given situation are employed to infer necessary conditions
for an Otto engine. Thus, we are able to derive positive work condition and establish consistency with the second
law of thermodynamics. We also infer an upper bound for the efficiency of the Otto cycle setting new benchmarks
for Otto efficiency that is tighter than Carnot limit.

The paper is organized as follows. In Section II, we introduce our model of two coupled spins (s1, s2) as the working
substance of the Quantum Otto engine. In Section II.A, various stages of the heat cycle are described and positive
work condition for the uncoupled model is discussed. The proof for the same is sketched in Appendix A. In Section
III, the spins are coupled and we find the coupling range in which positive work extraction is ensured (proofs are
sketched in Appendices B and C) which is related to the notion of majorization in Section III.A and further used
to order the system’s energy levels for J 6= 0 in Section III.B. In Section IV conditions for maximal enhancement
of coupled system’s efficiency over the uncoupled model are discussed. An upper bound to engine’s efficiency is also
calculated in the considered domain of coupling. A detailed proof for the positive entropy production for the coupled
system is sketched in Appendix D. In Section V, an analysis is carried out using the notion of complete Otto cycles.
Finally, we discuss the results of our analysis in Section VI.

II. QUANTUM OTTO CYCLE

The working substance consists of two spins with arbitrary magnitudes, s1 and s2, coupled by 1-D isotropic Heisen-
berg exchange interaction, in the presence of an externally applied magnetic field of magnitude B along z-axis. The
system Hamiltonian in the first Stage of the cycle can be written as:

H1 ≡ H1 +Hint = 2B1

(
s
(z)
1 ⊗ I + I ⊗ s(z)2

)
+ 8J~s1.~s2 (1)

where J > 0 is the strength of the anti-ferromagnetic coupling. ~s1 ≡ {s(x)1 , s
(y)
1 , s

(z)
1 }, ~s2 ≡ {s

(x)
2 , s

(y)
2 , s

(z)
2 } are the

spin operators for the first and the second spin respectively. Hint is the interaction Hamiltonian and H1 is the free
Hamiltonian. We have taken Bohr magneton µB = 1 and the gyromagnetic ratio for both spins has been taken to be
2 [119].

Let n=(2s1 + 1) (2s2 + 1) be the total number of energy levels with |ψk〉 as the corresponding energy eigenstates.
When the system is in thermodynamic equilibrium with a heat bath at temperature T , the density matrix ρ1 for the
working substance can be written as:

ρ1 =

n∑
k=1

Pk|ψk〉〈ψk|, (2)

where Pk = e−Ek/T /Z are the occupation probabilities of the energy levels and Z =
∑

k e
−Ek/T is the partition

function for the system. We have put the Boltzmann constant kB equal to unity.
Let us consider the case where one spin is an integer and other is a half integer. Some examples of such spin

combinations are
(
3
2 , 2
)
,
(
1
2 , 2
)
,
(
5
2 , 4
)
. The energy eigenvalues of the Hamiltonian H for a general (s1, s2) coupling

are shown in Fig. 1. It is to be noted that a term 8s1s2J common in all the eigenvalues has been neglected as
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−2sB

(a) Uncoupled system (b) Coupled system

−2sB

−2(s− 1)B − 8sJ
−2(s− 1)B

−2(s− 2)B − 8sJ − 8(s− 1)J
−2(s− 2)B − 8sJ
−2(s− 2)B

−B − 8sJ − ...− 8(s− (2s1 − 1))J

−B

B − 8sJ − ...− 8(s− (2s1 − 1))J

B

2(s− 2)B − 8sJ − 8(s− 1)J
2(s− 2)B − 8sJ
2(s− 2)B

2(s− 1)B − 8sJ
2(s− 1)B

2sB

−2(s− 1)B

−2(s− 2)B

−B

B

2(s− 2)B

2(s− 1)B

2sB

FIG. 1. The above figure shows the energy levels of the two-spins (s1, s2) system for (a) J = 0 and (b) J > 0. The degeneracy
in the energy levels is lifted as the interaction is switched on (J 6= 0). Here s1 < s2 and s = s1 + s2.

the physical properties of the system would be independent of it. The ordering of these energy levels would depend
upon the conditions on the parameters which the positive work condition for the system would provide, which will be
discussed in the coming sections.

II.A. The heat cycle

The four stages constituting the Otto cycle are as follows.
Stage 1 : The system is at thermal equilibrium with a heat reservoir at temperature T1 with energy ek whose occupation
probabilities are pk and the corresponding density matrix is ρ1 (here we are considering two non interacting spins
with energy eigenvalues denoted by ek and occupation probabilities by pk).
Stage 2 : The system undergoes a quantum adiabatic process after it is isolated from the hot bath and the magnetic
field is changed from B1 to a smaller value B2. Here, the quantum adiabatic theorem is assumed to hold according to
which the process should be slow enough so that no transitions are induced as the energy levels change from ek to e

′

k.
Stage 3 : Here the system is brought in contact with a cold bath at temperature T2(< T1). The energy eigenvalues
remain at e

′

k and the occupation probabilities change from pk to p
′

k with the external magnetic field at B = B2 and
the density matrix of the system is ρ2.
Stage 4 : The system is detached from the cold bath and the magnetic field is changed from B2 to B1 with occupation
probabilities remaining unchanged at p

′

k and energy eigenvalues change back from e
′

k to ek such that only work
is performed on the system during this step. Finally, the system is attached to the hot bath again and the cycle
is completed such that the average heat absorbed is q1,av = Tr[H1∆ρ], and the net work performed per cycle is
wav = Tr[(H1 −H2)∆ρ]. Here, Tr[·] denotes the trace operation, and ∆ρ = ρ1 − ρ2. In this paper, we consider the
free Hamiltonian of the form Hi ≡ 2Bih0 (i = 1, 2), where h0 is an operator. We now have, wav = 2(B1−B2)Tr[h0∆ρ],
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k ek

1 −2sB

2, 3 −2(s− 1)B

4, 5, 6 −2(s− 2)B

. .

. .

(n/2− 2s1), ..., n/2 −2(s− r)B
(n/2 + 1), ..., (n/2 + 2s1 + 1) 2(s− r)B
. .

. .

(n− 5), (n− 4), (n− 3) 2(s− 2)B

(n− 2), (n− 1) 2(s− 1)B

n 2sB

TABLE I. Levels indicating degeneracy and energy eigenvalues (ek) for two uncoupled spins. Here, s1 < s2 with s = s1 + s2
and r ≡ s− 1/2.

and therefore, the efficiency in the absence of interaction is

η0 = 1− B2

B1
. (3)

Let us first discuss about the positive work condition when s1 and s2 are non-interacting. The energy eigenvalues (ek)
of the free Hamiltonian, written in the order of increasing energy (if one spin is integer and the other is half integer)
are listed in Table I and as can be seen many energy levels for the non-interacting system are degenerate. There is
only one level with energy proportional to −s as well as s, two levels with energy proportional to −(s− 1) as well as
(s− 1) and so on, the proportionality constant always being 2B. Therefore, denoting the degeneracy by ”g” we have
the following from Table I,

g|s| = 1, g|s−1| = 2, g|s−2| = 3, ..., g|s−r| = 2s1 + 1 (4)

such that the total number of energy levels are, n = (2s1 + 1)(2s2 + 1) = 2(g|s| + g|s−1| + g|s−2| + ...+ g|s−r|).

The Stage 1 occupation probabilities are written as, pk = e−ek/T1/z1, where z1 =
∑n

k=1 e
−ek/T1 is the partition

function of the system which can be expressed as follows.

z1 = 2

s+1/2∑
l=1

g|s−l+1|. cosh [2(s− l + 1)B1/T1]. (5)

The average heat exchanged with the hot reservoir is

q1,av =

n∑
k=1

ek

(
pk − p

′

k

)
= 2B1v, (6)

where the primed probabilities are tabulated at T = T2 and B = B2. The average heat exchanged with the cold bath
is

q2,av =

n∑
k=1

e
′

k

(
pk − p

′

k

)
= 2B2v, (7)

so that the work done on average is:

wav = q1,av − q2,av = 2(B1 −B2)v. (8)

The explicit expression of v is given by Eq. (A.1). Since B1 > B2 is assumed, the system works as an engine on
average, iff v > 0. We prove in Appendix A that the condition required to satisfy v > 0 is

B2

T2
>
B1

T1
, or B2 > B1θ, (9)
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where θ = T2/T1. Further, as proved in Appendix A, Eq. (9) implies z2 > z1 as well as

p
′

1 > p1, and p
′

n < pn, (10)

From the above conditions, we can make the following inferences. Positive work extraction is favoured when the
occupancy of ground (top) level is more (less) at the cold bath than at the hot bath which suggests that heat is
absorbed at the hot bath, decreasing (increasing) the occupancy of the ground (top) level, while heat is released at
the cold bath, thus increasing (decreasing) the occupancy of the ground (top) level.

Since the working medium returns to its initial state (restoring the Hamiltonian as well as coming to be in equilibrium
with the hot reservoir), the net change in entropy ∆S0,av is due to the entropy changes only in the heat baths. The
decrease in the entropy of the hot bath is −q1,av/T1 and increase in entropy of the cold bath is q2,av/T2. So, the net
entropy change in one cycle is,

∆S0,av = −q1,av
T1

+
q2,av
T2

=

(
−B1

T1
+
B2

T2

)
v. (11)

We have seen that wav > 0 or v > 0 requires Eq. (9) to hold. Under these conditions, it follows that ∆S0,av > 0 and
so the consistency with the second law is established at the level of average performance as an engine. Similarly, we
observe that the efficiency satisfies: η0 < 1− T2/T1 = ηC .

III. THE COUPLED MODEL

Let us now couple the two spins, with J > 0 being the anti-ferromagnetic coupling strength. The corresponding
energy eigenvalues are shown in Fig. 1b, where the ordering of the eigenvalues can be considered when the coupling
parameter J is small. Also, as the coupling is switched on, the degeneracy of the previously degenerate levels is now
lifted. Let us express an energy eigenvalue of the coupled system as: Ek = m1B − 8m2J , where m1 = −2s, ...,+2s
and m2 can only take positive values including zero, as shown in Table III in Appendix C. The values m1 and m2

depend on the index k, but we have omitted it here for brevity of notation.
Now, the average heat absorbed from the hot bath (Q1,av), the heat rejected to the cold bath (Q2,av) and the average
work done in one cycle, Wav = Q1,av −Q2,av, are given as

Q1,av = 2B1X + 8JY,

Q2,av = 2B2X + 8JY, (12)

Wav = 2(B1 −B2)X,

where

X =
1

2

n∑
k=1

m1(Pk − P
′

k), Y =

n−2∑
k=2

m2(P
′

k − Pk). (13)

The spin dependent factors m1 and m2 are obtained from the expressions of the equilibrium occupation probabilities
of the energy levels Ek (shown in Fig. 1), which in general are written as,

Pk =
e−m1B1/T1+8m2J/T1

Z1
. (14)

For explicit expressions of Pk, refer to Table II in Appendix B. Z1 is the Stage 1 partition function of the system
whose expression may be rewritten as,

Z1 =


Z1 + 2 cosh [2(s− 1)B1/T1] .e8sJ/T1+

2 cosh [2(s− 2)B1/T1] .
(
e8sJ/T1 + e8(s−1)J/T1

)
+ ...+

2 cosh [2(s− r)B1/T1] .
(
e8sJ/T1 + e8(s−1)J/T1 + ...+ e8(s−(2s1−1))J/T1

)
,

(15)

where Z1 ≡ 2
∑s+1/2

k=1 cosh [2(s− k + 1)B1/T1]. Similarly, we can define P
′

k, the canonical probabilities due to cold
bath, by replacing B1 → B2 and T1 → T2 in the above expressions for Pk.
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For the proof of PWC for the coupled model (Appendix B), we show that for the so-called worst case scenario
(WCS), given by

P
′

k < Pk, k = 2, 3, ..., n, and P
′

1 > P1, (16)

along with Eq. (9), it follows that X > 0. Consistent with Eqs. (16) and (C.1), we then calculate the strictest
condition on the allowed range of J (Appendix C) which is given by

0 < J <
B2 −B1θ

4s (1− θ)
≡ Jc. (17)

Therefore, we conclude that X > 0 or PWC is satisfied under Eqs (9) and (17) with the latter constituting the
sufficient condition for the coupled system to work as an engine.

III.A. Majorization

Majorization [120] is a powerful mathematical concept that defines a preorder on the vectors of real numbers. It
is particularly useful to compare two probability distributions. We will highlight its occurance in the context of the
working regime of our engine by comparing the two equilibrium probability distributions.

Now, for the uncoupled model, the relevant probability distributions are the canonical probabilities {pk} and {p′

k},
which, at finite temperatures, are ordered as: pn < pn−1 < · · · < p1 and p

′

n < p
′

n−1 < · · · < p
′

1, respectively. In
Lemma 2 of Appendix A, we proved that Eq. (9) is a necessary condition that ensures wav > 0, in the regime of the
so-called worst case scenario (WCS), given by

p
′

k ≤ pk, k = 2, 3, ..., n and p
′

1 ≥ p1,

where the equality holds for B2/T2 = B1/T1. Therefore, the above relations imply

p
′

n ≤ pn,

p
′

n + p
′

n−1 ≤ pn + pn−1,

... (M)

n−1∑
k=1

p
′

k ≤
n−1∑
k=1

pk,

n∑
k=1

p
′

k =

n∑
k=1

pk.

The above set of conditions (M) is summarised by stating that {p′

k} majorizes {pk}, and denoted as {pk} ≺ {p
′

k}. As
a powerful tool, majorization can be used to prove other results too. Intuitively, it indicates that the distribution {pk}
is more mixed than {p′

k}. Thus, as an important consequence, {pk} ≺ {p
′

k} implies that S(pk) ≥ S(p
′

k), where S(p)
is the Shannon entropy of the distribution {p} (proportional to the thermodynamic entropy of the working medium
in equilibrium with a reservoir). In fact, this is expected, since the flow of heat for the engine is on the average from
hot to cold. Then, along with heat, thermodynamic entropy is also lost to the cold reservoir. However, the condition
of majorization is more general than the above mentioned relation between the entropies.

Similarly for the coupled model, we have shown that Eqs. (9) and (17) ensure Wav > 0 under the conditions:
P

′

k < Pk,∀ k = 2, 3, ..., n and P
′

1 > P1. In general, we may write

P
′

k ≤ Pk; k = 2, 3, ..., n and P
′

1 ≥ P1. (18)

Thus, for the coupled model too, we can write down the set of conditions equivalent to Eq. (M), and infer that
{Pk} ≺ {P

′

k}, which implies S(Pk) ≥ S(P
′

k). In other words, if the Stage 3 equilibrium distribution majorizes Stage
1 equilibrium distribution, then we have positive work extraction from the coupled system.

It is possible to find a range of parameter values which satisfy Eq. (18). In Fig. 2, we show the behavior of
(Pk−P

′

k) for (1/2, 1) system. It is observed that (P2−P
′

2) changes sign within the range [0, Jc], indicating that every
condition of Eq. (18) may not hold in this range, especially at high bath temperatures. However, we observe that the
majorization conditions continue to hold and {Pk} ≺ {P

′

k}, even if P
′

2 > P2 (see Fig. 3).
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FIG. 2. (a) Variation of Pk − P
′
k with the coupling factor J for (1/2, 1) system, with k values ranging from 2 to 6. The

parameters are set at B1 = 4, B2 = 3, with temperatures, a) T1 = 4, T2 = 2 and b) T1 = 6, T2 = 3. Here, Jc = 1/3. The value

of J for which P2 −P
′
2 (red curve) changes sign (from positive to negative) approaches Jc for lower temperatures (see also Fig.

3).

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.00

0.05

0.10

0.15

0.20

J

(a)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.00

0.05

0.10

0.15

0.20

J

(b)

FIG. 3. (a) Majorization conditions shown by positivity of all quantities P6−P
′
6 (purple),

∑6
k=5 Pk−P

′
k (green),

∑6
k=4 Pk−P

′
k

(blue),
∑6

k=3 Pk − P
′
k (brown), and

∑6
k=2 Pk − P

′
k (red) as function of the coupling strength J for (1/2, 1) system of Fig. 2.

The point where the red curve intersects the lower curve is where P
′
2 = P2. It is seen that for higher bath temperatures (for a

given ratio T2/T1), this point shifts to lower J values.

III.B. Energy level ordering

The actual arrangement of the energy eigenvalues depends on the positive work conditions derived above. As for
the relative position of 2sB energy level, it will not change, because it is the highest energy eigenvalue of the system
regardless of the coupling strength J . The ground state or the minimum energy state will be decided as follows.

There are two energy levels −2sB and −2(s− 1)B − 8sJ which can possibly form the ground state of the coupled
system, and their energy gap is |2B − 8sJ |. Given that B1 > B2 and 0 < J < Jc, we can check that

J < Jc <
B2

4s
<
B1

4s
. (19)

The above implies that 2B−8sJ > 0, thereby making −2sB as the lowest energy of the system and −2(s−1)B−8sJ
as the energy of the first excited state. Now, Eq. (19) opens different possibilities for the arrangement of other energy
levels. For example, the levels −2(s−2)B−8sJ−8(s−1)J and −2(s−1)B have an energy gap |−2B+8sJ+8(s−1)J |,
and either of them can be at higher energy state than the other, and both the arrangements are acceptable. For
concreteness, we assume the condition that there is no level crossing when B1 is changed to a lower value B2. One
way of arranging the energy levels, in accordance with Eq. (19), is shown in Fig. 1, which is assumed for the discussion
that follows.

The net entropy production in one cycle ∆Sav for the coupled system, ∆Sav = −Q1,av/T1 + Q2,av/T2, can be
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written as:

∆Sav = 2X

(
B2

T2
−
B1

T1

)
+ 8JY

(
1

T2
−

1

T1

)
. (20)

In the above expression, due to Eq. (9), the first term is always positive, but since T1 > T2, the sign of the second
term depends on Y which may not be positive.

We will consider the WCS whereby under Eq. (16), all terms in the defining sum Y (Eq. (13)) are negative, thus
making Y negative definite (note that m2 > 0 for all k). Defining

Y1 = −Y/s, a = 2

(
B2

T2
−
B1

T1

)
> 0 b = 8sJ

(
1

T2
−

1

T1

)
> 0,

we have, ∆Sav = aX − bY1. The condition, given by Eq. (17), on the coupling strength which ensures Wav > 0,
implies that a > b. Then, for Y1 > 0, we have shown in Appendix D that PWC for the coupled system encapsulated
in Eqs (9) and (17) suffice to prove X > Y1 and hence ∆Sav > 0. This establishes the consistency of our engine with
the second law, in the considered domain.

IV. EFFICIENCY ENHANCEMENT AND THE UPPER BOUND

In the above, we have established conditions for work extraction in the quantum Otto cycle for the coupled system
and verified consistency with the second law. In this section, we explore how the coupling between the spins may
enhance the efficiency of the engine.
The heat absorbed from the hot reservoir is given by: Q1,av = 2B1X+8JY , where X and Y are as defined in Eq. (13).
From the energy levels diagram, it is clear that the contribution 8JY to the exchanged heat comes solely from levels
which depend on parameter J , apart from the field B. Now, since, Q2,av = 2B2X + 8JY , this ’extra’ contribution to
heat is not available for conversion into work, and is wasted if 8JY > 0. However, it may be utilized to enhance the
efficiency of the cycle if 8JY < 0, thus effectively decreasing the heat absorbed from the hot reservoir. Remarkably,
the WCS considered earlier implies that all terms entering the sum for Y are negative, and so with J > 0, we have
Y ≤ 0. Thus, the WCS directly leads to regime where we can expect an enhancement of the efficiency. Thus, for the
operational regime discussed in previous sections, we can rewrite the expression for efficiency, η = 1−Q2,av/Q1,av as
follows.

η =
η0

1 +
8JY

2XB1

=
η0

1−
4sJY1

XB1

(21)

where Y1 = −Y/s > 0. We have proved in Appendix D that X > Y1. With B1 > 4sJ (Eq. (19)), we obtain

η <
η0

1− 4sJ/B1
< 1−

T2

T1
= ηC , (22)

where the second inequality follows due to the permissible range of J (Eq. (17)). Thus, the expression

ηub =
η0

1− 4sJ/B1
(23)

constitutes an upper bound to the system’s efficiency which is tighter than Carnot efficiency, and within the coupling
range 0 < J < Jc.

The above expression bounding the efficiency of Otto cycle is our main result of the paper. This expression is
validated with numerical calculations in the discussion section. Note that ηub given by Eq. (23) is dependent solely
on the field values and the total spin of the two particles while it is independent of the bath temperatures. This
expression generalizes the upper bound derived earlier in Ref. [6] for the ( 1

2 ,
1
2 ) system.

We close this section with a remark on the three possible spin combinations for our (s1, s2) system.

• when one spin value is half-integral and other is integral

• when both valus are half-integral or both are integral
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• when both are of the same magnitude (both as half-integral or integral)

In this paper, we have discussed the first case only. The only difference between the present case and the other
two cases is that for the latter, when the spins are uncoupled, an energy level with zero energy and 2s1 + 1-fold
degeneracy occurs but that does not affect the performance of the system. The reason is that after the coupling is
turned on between the spins, this energy state splits into 2s1 + 1 non-degenerate energy levels which depend only on
the coupling factor J . Since J is kept fixed during the cycle, therefore these levels do not shift in a cycle and hence
do not contribute to the average work resulting in the same PWC as already derived for the first case. Similarly, it
can be seen that these levels do not change the condition for maximal efficiency enhancement and same upper bound
can be obtained, whatever be the spin combination.

V. COMPLETE OTTO CYCLES

The working medium for the classical Otto cycle is usually a macroscopic system amenable to thermodynamic
treatment. This medium may be a collection of statistically independent, non-interacting individual quantum systems
or elements, such as spin-1/2 particles, or harmonic oscillators and so on. In the adiabatic step of the Otto cycle, the
thermodynamic entropy of the working medium stays constant. This implies that there is no intrinsic control on the
transitions experienced by individual elements of the working medium.

On the other hand, the working medium of a quantum Otto engine consists of individual elements. In a quasi-static
cycle, the isochoric steps are stochastic while the adiabatic steps are deterministic. The quantum adiabatic step is
executed slowly enough such that no transition is induced between energy levels of the element which continues to
occupy its initial state throughout the process. Thus at the level of the ensemble, the occupation probabilities do not
change during this process. Such a process thus imposes maximal control on the evolution of the isolated element,
and it is described by a quantum unitary process.

Still, due to the stochastic nature of the contact with the reservoirs, the element may not return to its initial state,
after the four steps of the cycle. Usually, we are interested in the average properties of the cycle by which the quantities
like heat and work are defined at the ensemble level. In this section, we focus on the complete Otto cycles (COCs)
inherent in the average Otto cycle considered in earlier sections. The reason that Otto cycle is so often studied in the
quantum thermodynamics literature is that the contributions towards heat and work can be clearly separated into
different steps—which helps in the analysis. This distinction also holds at the level of COCs; the interaction of the
working medium with a reservoir involves only exchange of heat with the reservoir, whereas the quantum adiabatic
step involves only work.

Consider, the COC shown as an engine in Fig. 4. If the working medium starts in energy level ei, then by the
end of the four stages, it is again found in level ei. Such a cycle can either run forward as an engine, or backwards
as a refrigerator. Analysing the performance of COCs is much easier since we are dealing with only two levels at a
time without invoking occupation probabilities of the levels and any average quantities. Let us represent an energy
eigenvalue of the uncoupled system as, e ≡ m1B, where m1 varies from m1 = −2s, ...,+2s. Based on the final (f)
and initial (i) values of m1, let us define the quantity x = m1,f − m1,i, ranging as x = ±2, ...,±4s. Let q1, q2, w
respectively denote the heat exchanged with the hot bath, cold bath and the work performed:

q1 = ef − ei = xB1,

q2 = e
′

f − e
′

i = xB2, (24)

w = q1 − q2 = x(B1 −B2).

With B1 > B2 > 0, we have qh, qc > 0 and w > 0, if x > 0. It is clear that for x > 0 (x < 0), a COC runs as an
engine (refrigerator). The net entropy change (∆S0) is contributed only by the reservoirs. Thereby, we obtain

∆S0 = − q1
T1

+
q2
T2

= x

(
−B1

T1
+
B2

T2

)
. (25)

Now, for x > 0, the condition B2/T2 > B1/T1 ensures that ∆S0 > 0, or we may say that the second law is then
satisfied at the level of COC. Note that there is a subtle difference in the statement about the second law at the level
of a COC versus the average performance level. In the former case, x > 0 guarantees the operation of an engine,
whereas the additional condition, B2/T2 > B1/T1, makes this operation consistent with the second law. On the other
hand, for the average operation as an engine, we require v > 0 which itself requires the condition (9). The latter then
automatically ensures consistency with the second law at the level of average performance.
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FIG. 4. Schematic of a complete Otto cycle (COC) as an engine using two heat reservoirs (T1 > T2), involving two energy
levels of the working medium. The heat absorbed from the hot reservoir is q1 = ef − ei, while the heat rejected to the cold

bath is q2 = e
′
f − e

′
i. The work extracted per complete cycle is w = q1 − q2.

Also note that we do not impose the second law at the level of a COC, and the net entropy change for a COC may
be negative, as for instance, with x < 0 or a COC operating as a refrigerator, if B2/T2 > B1/T1. Thus, we do not
imply that COCs with ∆S0 < 0 do not happen. These observations lead to the following interesting conclusion about
the uncoupled model. A consistency with the second law for the average performance as engine ensures consistency
with the second law for a COC as engine, and vice versa.

Let us study the effect of coupling between the spins. Now, there are no degenerate levels. Expressing an energy
eigenvalue of the coupled system as, E ≡ m1B − 8m2J , where m1,m2 values are given in Table III. The levels with
same m1 were originally degenerate in the uncoupled model. For the coupled model, energy levels belong to the same
band if they have the same value of m1, but have different values of m2. Also note that in every band, there is one
level that stays at the same energy even after the coupling is switched on.

Now, for a COC between any two energy levels of the coupled system, the general forms of heat exchanged with
the reservoirs, Q1, Q2, and the work performed, W = Q1 −Q2, can be written as

Q1 = xB1 + 8Jy,

Q2 = xB2 + 8Jy, (26)

W = x(B1 −B2),

with x = m1,f −m1,i and y = m2,f −m2,i. The net entropy change in one cycle is

∆S = −Q1

T1
+
Q2

T2
= x

(
B2

T2
− B1

T1

)
+ 8Jy

(
1

T2
− 1

T1

)
. (27)

We discuss the possible COCs as below.
1. x 6= 0,y = 0: These cycles occur between any two different energy bands having the same m2. Therefore, if such a
cycle proceeds as an engine (x > 0), its efficiency is W/Q1 = 1−B2/B1 = η0. From Eq. (27), this COC is consistent
with the second law, for B2 > B1θ.
2. x = 0,y 6= 0: These cycles are possible between energy levels of the same band i.e having same m1. The work
performed is zero, and the heat exchanged is, Q1 = 8Jy = Q2. Thus, for y > 0, the corresponding efficiency is also
zero.
3. x,y 6= 0 with the same sign: These cycles are possible between different bands for levels with different m1 and
m2. If such cycles proceed as engine i.e x > 0 (and y > 0), then the corresponding efficiency is

η =
η0

1 +
8yJ

xB1

< η0. (28)

From Eq. (27), this type of COC is consistent with the second law for B2 > B1θ, without imposing any further
condition on the coupling strength J ≥ 0. Therefore, if the second law allows COCs with η = η0, then it also allows
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COCs with η < η0.
4. x,y 6= 0 with opposite signs: These cycles occur between energy levels of different bands with different m1 and
m2. If x > 0 for such cycles (and y < 0), the corresponding efficiency is

η =
η0

1−
8|y|J
xB1

> η0. (29)

From Eq. (27), this COC is allowed by the second law, if B2 > B1θ and

0 < J <
x(B2 −B1θ)

8|y|(1− θ)
≡ Ja. (30)

Now, we look for the values of x and y which place the most stringent condition on the second law (Eq. (27)), or,
in other words, which make ∆S as the least positive. This will be the worst-case scenario (WCS) in this context, as
other values of x and y would yield a larger upper bound Ja. Thus, the range imposed by the WCS will hold for all
COCs, making all of them consistent with the second law.

The first term in Eq. (27) takes the minimum value if x = 2. For the second term, let ymin < 0 denote the minimum
value of y. Then, we obtain −ymin = [s+ (s− 1) + ..+ (s− (2s1 − 1))] = s1(2s2 + 1). Substituting the above values
of x and y in Eq. (30), we obtain the following range of J :

0 < J <
B2 −B1θ

4s1(2s2 + 1)(1− θ)
≡ Jx. (31)

Therefore, it follows that for B2 > B1θ and within the range 0 < J < Jx, all the COCs perform as an engine and
satisfy the second law.

Now, from the probabilistic or average analysis, we concluded that the conditions B2 > B1θ and the coupling range
0 < J < Jc, ensure the average performance as an engine. To compare the two ranges for J , note that s1(2s2 +1) ≥ s,
where the equality is obtained for s1 = 1/2 implying that, in general, Jx ≤ Jc. This has the following important
consequence. The range for the parameter J , in which the machine behaves as an engine on average, subsumes the
range for J in which all COCs, performing as an engine, are also consistent with the second law. Conversely, if we
restrict to the range 0 < J < Jx, allowing all COCs running as engine to follow the second law, then the average
operation as an engine, in that range of parameters, is also consistent with the second law.

Also, from Section V, we learn that out of all the possible COCs with η > η0, the maximum possible value of
efficiency is obtained from Eq. (29) for minimum x i.e x = 2 and |ymin| = s1(2s2 + 1), given by

ηmax =
η0

1−
4s1(2s2 + 1)J

B1

. (32)

This cycle is allowed by the second law for the condition B2 > B1θ and in the 0 < J < Jx range of coupling.
Interestingly, the coupling range required for Wav > 0 goes beyond J = Jx, since Jx ≤ Jc. The case of Ja = Jc is
obtained when we substitute x = 2, |y| = s in Eq. (30), and out of all the COCs allowed in this range, the maximum
efficiency is given as, η0/(1− 4sJ/B1). The latter value is same as the upper bound, ηub, inferred by analysing the
average performance of the system. As can be seen, ηub ≤ ηmax. For the special case of (1/2, s2) working medium,
Jx and Jc values coincide irrespective of the value of s2, leading to ηmax = ηub.

VI. DISCUSSION

We have analyzed the performance of a quantum Otto engine based on a working medium with a complex energy
spectrum. An insight into the possible operational regimes is hard to obtain analytically for such a system. Using
a heuristic-based approach and employing techniques such as worst-case/best-case reasoning, we have highlighted a
regime in which the machine definitely works as an engine on average. These set of conditions can be related to the
concept of majorization for the given model. Thereby, we find that majorization serves as a more robust criterion for
positive work extraction from our engine.

We also introduced an analysis based on complete Otto cycles (COCs). Compared to the probabilistic analysis,
the COC approach is much simpler and straightforward. The latter utilizes much less information than the ’average’
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FIG. 5. Variation of efficiency (solid lines) for different values of spin s2, with s1 = 1/2, B1 = 4, B2 = 3, T1 = 1 and T2 = 0.5.
The corresponding upper bounds (ηub) have been shown by dashed lines. The uncoupled efficiency (η0) shown by horizontal
black line.
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FIG. 6. Variation of extracted work with coupling strength J for different spin combinations (s1, s2). The fields are set at
values B1 = 4, B2 = 3 and the bath temperatures are: (a) T1 = 1,T2 = 0.5 (b) T1 = 6, T2 = 3.

analysis, and the conclusions so obtained may not be as general. However, as a starting point, the criteria for COCs
may serve as a useful heuristic to gain insight into the average performance of the Otto machine. As we have seen,
there is an interesting correspondence between the COCs and the average Otto cycle with regard to the validity of the
second law. One of our main results is an explicit expression for the upper bound of Otto efficiency for the coupled
system. This expression reduces to the one found for (1/2, 1/2) case, with s = 1 [6], or to the case of coupled, effective
two-level systems [18]. The dependence of the average efficiency on coupling factor J and validity of the upper bound
is demonstrated in Fig. 5.

Besides the above analytic approaches, we may also numerically study the implications of using higher spins on the
performance of thermal machines. To make a few observations, we note that the higher ”s” values shift the maximum
of work to the weak coupling regimes as shown in Fig. 6a. Thus, higher magnitudes of spin may be a useful resource
to achieve more work output for weak coupling strengths. Numerical analysis also shows that increasing the bath
temperatures may increase the work output by orders of magnitude (see Fig. 6b). We also observe an extended
regime of positive work extraction from the system at high temperatures and this effect is more pronounced for lower
”s” values. Along these lines, variations of the efficiency and work output with the coupling factor J , may be studied
where s1 and s2 are varied for a fixed s value. Fig. 7 shows different cases for the case of s = 7/2. Note that ηub and
Jc (which depend on s and not on the values of individual spins) are same for a given s.

Finally, other possible domains of operation such as refrigerator and accelerator may be addressed using the tech-
niques explored in this paper. The study of local thermodynamics of individual spins relative to the global performance,
and other models of coupled spins featuring different interactions are some of the potential avenues of future inquiry.
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FIG. 7. Variation of (a) efficiency and (b) work with coupling strength J for different spin combinations (s1, s2) where s = 7/2
is held fixed. The solid pink, green and brown lines respectively show the variation for (1/2, 3), (1, 5/2) and (3/2, 2) cases. The
parameters are set at values B1 = 4, B2 = 3, T1 = 4, T2 = 2. Here, Jc = 0.142. The upper bound and the uncoupled efficiency
are respectively shown by dashed blue and black lines in (a). The Carnot efficiency is 0.5.

Appendix A: PWC for the uncoupled model

The net work extracted from the system when s1 and s2 are uncoupled, is given as, wav = 2(B1 − B2)v. Since we
assume B1 > B2, we need to find conditions for v > 0 to hold, i.e.

v =


s
(
p

′

1 − p1 + pn − p
′

n

)
+

(s− 1)
(
p

′

2 − p2 + p
′

3 − p3 + pn−2 − p
′

n−2 + pn−1 − p
′

n−1

)
+ ...+

(s− r)

(
p

′

n/2−2s1 − pn/2−2s1 ...+ p
′

n/2 − pn/2+

pn/2+1 − p
′

n/2+1 + ...+ pn/2+2s1+1 − p
′

n/2+2s1+1

) > 0, (A.1)

where r = s − 1/2. Let us denote the term in v with the largest coefficient s, as L ≡ (p
′

1 − p1 + pn − p
′

n). We will
show that L < 0 implies v < 0 or in other words if the term with largest coefficient in wav is negative, the system
cannot work as an engine.

Lemma 1: L < 0 implies v < 0

Let us look at the explicit expression of L ≡ (p
′

1 − p
′

n)− (p1 − pn):

L =
e2sB2/T2 − e−2sB2/T2

z2(B2/T2)
−
e2sB1/T1 − e−2sB1/T1

z1(B1/T1)
, (A.2)

where zi(Bi/Ti) is the partition function for the system given by Eq. (5). The above expression is of the form,

L = f(B2/T2)− f(B1/T1). (A.3)

Let us observe the function f(B1/T1) = p1 − pn. First, due to canonical form of probabilities, we know that p1 > pn,
and so f(B1/T1) > 0. Then, for a given value B1, if we increase the temperature T1, thereby decreasing B1/T1, we
know that the difference p1 − pn decreases and vice versa. This implies that f(B1/T1) is a monotonically increasing
function of B1/T1. The same is also true for f(B2/T2).
Since f(B/T ) > 0 is a monotonic increasing function of B/T > 0, so if L < 0, the following condition must hold:

B2

T2
<
B1

T1
. (A.4)

The above condition further implies z2 < z1, and so

pn − p
′

n =
e−2sB1/T1

z1
−
e−2sB2/T2

z2
< 0, (A.5)
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p
′

1 − p1 =
1∑2s

l=0 g|s−l|e
−2lB2/T2

− 1∑2s
l=0 g|s−l|e

−2lB1/T1

< 0. (A.6)

We now rewrite the expression of v as follows

v =


s
[
p

′

1

(
1− e−4sB2/T2

)
− p1

(
1− e−4sB1/T1

)]
+

(s− 1)
{(
p

′

2 + p
′

3

) (
1− e−4(s−1)B2/T2

)
− (p2 + p3)

(
1− e−4(s−1)B1/T1

)]
+ ...+

(s− r)
[(
p

′

n/2−2s1 + ...+ p
′

n/2

) (
1− e−2B2/T2

)
−
(
pn/2−2s1 + ...+ pn/2

) (
1− e−2B1/T1

)]
.

(A.7)

Now, if L < 0 and so Eq. (A.4) holds, then in the first term above, accompanying the coefficient s, we have

1− e−4sB2/T2 < 1− e−4sB1/T1 .

Similarly, in the second term of the expression for v,

1− e−4(s−1)B2/T2 < 1− e−4(s−1)B1/T1 ,

and so on, till we have

1− e−2B2/T2 < 1− e−2B1/T1 ,

in the last term.
It is important to note that Eq. (A.4) does not imply any definite relation between pk and p

′

k for k = 2, ..., n/2. On

the other hand, it is clear from Eq. (A.7) that p
′

k > pk for all k = 2, .., n/2, would favor the case v > 0. So, assuming
L < 0, we will now consider the BCS (Best Case Scenario), mathematically written as,

p
′

k > pk ∀ k = 2, .., n/2, (A.8)

and show that v < 0. The proof is as follows.

Proof: It has been noted earlier that L < 0 implies Eq. (A.4) and z2 < z1. From inspection of the form of
canonical probabilities, this further leads to pk < p

′

k, ∀ k = n/2 + 1, ..., n. Using these relations in the normalization

condition of probabilities given as,
∑n

k=1(p
′

k − pk) = 0, we have, s
∑n/2

k=1(p
′

k − pk) < 0 along with the following:

(s− r)(pn/2+1 − p
′

n/2+1) < 0, ... (s− 1)(pn−1 − p
′

n−1) < 0, s(pn − p
′

n) < 0.

Also, under BCS, we have

(−1).
(
p

′

2 − p2
)
< 0, (−1).

(
p

′

3 − p3
)
< 0, ..., (−r).

(
p

′

n/2 − pn/2
)
< 0.

Adding all the above inequalities, we arrive at the result v < 0, thereby proving Lemma 1.

Lemma 2: L > 0 implies v > 0

Using the monotonic property of L, it is obvious that if L > 0, the following must hold:

B2

T2
>
B1

T1
. (A.9)

It can be seen that the above condition implies p
′

1 > p1 and pn > p
′

n. Eq. (A.9) favors v > 0 as it leads to the
condition

1− e−2m1B2/T2 > 1− e−2m1B1/T1 ,

in all the terms in Eq. (A.7), as m1 > 0 for all the upper-half levels i.e for k = n/2 + 1, ..., n (see Table 3). Also
under Eq. (A.9), positivity of Eq. (A.7) is always favored irrespective of the relation between pk and p

′

k for all
k = n/2 + 1, ..., n. As for the rest of the occupation probabilities, Eq. (A.9) does not imply any relation between
them except for p

′

1 > p1. But it is obvious from Eq. (A.7) that p
′

k < pk for all k = 2, .., n/2 would not favor v > 0.
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So, assuming L > 0, we will now consider the WCS (Worst Case Scenario), mathematically written as,

p
′

k < pk ∀ k = 2, 3..., n/2, (A.10)

and then show v > 0. This would prove Lemma 2.
Proof: The condition L > 0 yields Eq. (A.9), leading to z2 > z1 which further implies

p
′

k < pk, k = n/2 + 1, ..., n. (A.11)

Thus, we can write

p
′

k < pk, k = 2, ..., n. (A.12)

These inequalities, along with the normalization of each probability distribution, imply

p1 < p
′

1. (A.13)

Now, using Eq. (A.11) and the normalization of probability distributions, we can write

s

n/2∑
k=1

(p
′

k − pk) > 0,

along with the following conditions:

(s− r)(pn/2+1 − p
′

n/2+1) > 0, ..., (s− 1)(pn−1 − p
′

n−1) > 0, s(pn − p
′

n) > 0.

Also, under WCS, we have:

(−1).
(
p

′

2 − p2
)
> 0, (−1).

(
p

′

3 − p3
)
> 0, ..., (−r).

(
p

′

n/2 − pn/2
)
> 0.

Adding all the above inequalities, we obtain v > 0, thereby proving Lemma 2 and concluding that L > 0, or Eq.
(A.9), is a necessary and sufficient condition for positive work extraction from the uncoupled spin system.

Appendix B: PWC for the coupled model

When the spins are interacting, the work extracted is given as

Wav = 2(B1 −B2)X,

where X =
1

2

∑n
k=1m1(Pk − P

′

k). The explicit expressions of occupation probabilities are given in Table II. With

B1 > B2, we need to find the condition for which we have X > 0, where

X =


s
(
P

′

1 − P1 + Pn − P
′

n

)
+

(s− 1)
(
P

′

2 − P2 + P
′

3 − P3 + Pn−2 − P
′

n−2 + Pn−1 − P
′

n−1

)
+ ...+

(s− r)

(
P

′

n/2−2s1 − Pn/2−2s1 ...+ P
′

n/2 − Pn/2+

Pn/2+1 − P
′

n/2+1 + ...+ Pn/2+2s1+1 − P
′

n/2+2s1+1

)
.

(B.1)

As shown in Appendix A, for the uncoupled spins case, the term with the largest coefficient (s) must be positive, i.e
L > 0, for the system to run as an engine and that is possible if the system’s parameters satisfy Eq. (A.9). Now, we
are interested to seek additional conditions which ensure positive work extraction for the coupled case, provided that
the uncoupled model works as an engine.

For completeness, we first show that the same conditions as (A.9) also serve as PWC for the coupled model. To
prove it, consider the term LX ≡ (P

′

1 − P1 + Pn − P
′

n). We will first show that the opposite condition, given by Eq.
(A.4) yields LX < 0 and so X < 0. Assuming Eq. (A.4), we have Z2 < Z1 as well as

Pn − P
′

n =
e−2sB1/T1

Z1
−
e−2sB2/T2

Z2
< 0. (B.2)
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Now, it can be seen from the explicit expressions of P1 and P
′

1 that for T1 > T2, Eq. (A.4) implies P
′

1 < P1.
Therefore we conclude that, under Eq. (A.4), LX is negative definite. Consider now the expression of X, rewritten

as

X =


s
[
P

′

1

(
1− e−4sB2/T2

)
− P1

(
1− e−4sB1/T1

)]
+

(s− 1)
[(
P

′

2 + P
′

3

) (
1− e−4(s−1)B2/T2

)
− (P2 + P3)

(
1− e−4(s−1)B1/T1

)]
+ ...+

(s− r)
[(
P

′

n/2−2s1 + ...+ P
′

n/2

) (
1− e−2B2/T2

)
−
(
Pn/2−2s1 + ...+ Pn/2

) (
1− e−2B1/T1

)]
.

(B.3)

As can be seen, Eq. (A.4) or LX < 0 implies, that the following conditions

1− e−4m1B2/T2 < 1− e−4m1B1/T1

hold in all the terms in Eq. (B.3), since m1 > 0. Similar to the uncoupled case, the sign of X does not depend
on the relation between Pk and P

′

k for all k = n/2 + 1, ..., n. However, a definite relation between Pk and P
′

k for
k = 2, 3..., n/2 is not apparent under Eq. (A.4).

Considering the BCS, mathematically written as,

P
′

k > Pk; k = 2, 3..., n/2 (B.4)

and then showing X < 0 will prove that LX < 0 or Eq. (A.4) cannot make the coupled system work as an engine.
Now Eq. (B.4) leads to the following conditions

P
′

k > Pk; k = n/2 + 1, ..., n− 1 (B.5)

For example using Eq. (A.4) and P
′

2 > P2 (due to Eq. (B.4)) we have,

P
′

n−1 = P
′

2.e
−4(s−1)B2/T2 > Pn−1 = P2.e

−4(s−1)B1/T1 .

In this manner, all the relations given by Eq. (B.5) follow from Eqs. (A.4) and (B.4). Also, as noted above, Eq. (A.4)
implies P

′

n > Pn. Therefore, using all these relations in the normalization condition of probabilities we obtain

s

n/2∑
k=1

(Pk − P
′

k) > 0.

Relations (B.5) along with P
′

n > Pn imply the following

(s− r)(Pn/2+1 − P
′

n/2+1) < 0, ..., (s− 1)(Pn−1 − P
′

n−1) < 0, s(Pn − P
′

n) < 0.

Under BCS, we have

(−1).
(
P

′

2 − P2

)
< 0, (−1).

(
P

′

3 − P3

)
< 0, ..., (−r).

(
P

′

n/2 − Pn/2

)
< 0.

Adding all the above inequalities, we obtain the result that X < 0. This means that under Eq. (A.4), LX as well as
X are negative definite.

On the other hand, Eq. (A.9) implies Z2 > Z1, which further yields Pn > P
′

n. However, unlike the case with
the uncoupled model, this does not determine the relative magnitudes of the ground state probabilities P1 and P

′

1

(explicit expressions of these probabilities are given in Table II). Therefore, here we cannot be sure of the sign of the
quantity LX .

Now, due to Eq. (A.9), we note that

1− e−4m1B2/T2 > 1− e−4m1B1/T1 ,

holds in all the terms in Eq. (B.3). Also note that X > 0 is always favored under this condition irrespective of the
relation between Pk and P

′

k for all k = n/2 + 1, ..., n. The relation between Pk and P
′

k for k = 2, 3..., n/2 is also not
apparent under Eq. (A.9). As in the uncoupled case, here also we will consider the WCS, written as

P
′

k < Pk; k = 2, 3..., n/2. (B.6)
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P1 = e2sB1/T1/Z1

P2 = e2(s−1)B1/T1+8sJ/T1/Z1

P3 = e2(s−1)B1/T1/Z1

P4 = e2(s−2)B1/T1+8sJ/T1+8J(s−1)/T1/Z1

P5 = e2(s−2)B1/T1+8sJ/T1/Z1

P6 = e2(s−2)B1/T1/Z1

.

.

.

Pn/2−2s1 = eB1/T1+8sJ/T1+8J(s−1)/T1+8J(s−2)/T1+...+8J(s−(2s1−1))/T1/Z1

.

.

.

Pn/2 = eB1/T1/Z1

Pn/2+1 = e−B1/T1+8sJ/T1+8J(s−1)/T1+8J(s−2)/T1+...+8J(s−(2s1−1))/T1/Z1

.

.

.

Pn/2+2s1+1 = e−B1/T1/Z1

.

.

.

Pn−5 = e−2(s−2)B1/T1+8sJ/T1+8(s−1)J/T1/Z1

Pn−4 = e−2(s−2)B1/T1+8sJ/T1/Z1

Pn−3 = e−2(s−2)B1/T1/Z1

Pn−2 = e−2(s−1)B1/T1+8sJ/T1/Z1

Pn−1 = e−2(s−1)B1/T1/Z1

Pn = e−2sB1/T1/Z1

TABLE II. Stage 1 occupation probabilities of the energy levels Ek of the coupled spin system. s1 is smaller of the two spins
in the terms involving the factor 2s1 + 1.

Now, WCS leads to the following conditions

P
′

k < Pk; k = n/2 + 1, ..., n− 1. (B.7)

For example, using Eq. (A.9) and P2 > P
′

2 (from (B.6)) we have

P
′

n−1 = P
′

2.e
−4(s−1)B2/T2 < Pn−1 = P2.e

−4(s−1)B1/T1

and thus, all the relations given by Eq. (B.7) follow from Eqs. (A.9) and (B.6). Also Eq. (A.9) implies Pn > P
′

n as
shown above. Thus, in total, we get

P
′

k < Pk; k = 2, 3, 4, ..., n. (B.8)

Thereby, due to the normalization condition on probabilities, we conclude

P
′

1 > P1. (B.9)

In this manner, the WCS provides definite relations between the two probaility distributions.
We may combine Eqs. (B.8) and (B.9), to write

P
′

k

P
′
1

<
Pk

P1
=⇒

e−E
′
k/T2

e2sB2/T2
<
e−Ek/T1

e2sB1/T1
, k 6= 1. (B.10)
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Now, as shown in Appendix C, the above inequality yields the strictest condition on the permissible range of J , which
is obtained for k = 2, and is given as

0 < J <
(B2 −B1θ)

4s (1− θ)
≡ Jc. (B.11)

It implies that for J to be in the above range, all inequalities (B.10) hold good.
Now, using Eq. (B.7) and Pn > P

′

n in the normalization condition of probabilities we have,

s

n/2∑
k=1

(P
′

k − Pk) > 0.

Eq. (B.8) implies the following

(s− r)(Pn/2+1 − P
′

n/2+1) > 0, ..., (s− 1)(Pn−1 − P
′

n−1) > 0, s(Pn − P
′

n) > 0,

(−1).
(
P

′

2 − P2

)
, (−1).

(
P

′

3 − P3

)
, ..., (−r).

(
P

′

n/2 − Pn/2

)
> 0.

Adding all the above inequalities, we have X > 0. Therefore, we conclude that for WCS, the following conditions
ensure X > 0: B2 > B1θ and 0 < J < Jc, where θ = T2/T1.
Let us sum up the above discussion. There are two relevant cases:
a) B2 < B1θ, which implies the following:
1. LX ≡ (P

′

1 − P1) + (Pn − P
′

n) < 0.
2. X < 0, thereby proving that under B2 < B1θ, it is not possible for the coupled system to work as an engine at all.
b) B2 > B1θ, which implies that:
1. LX does not bear a definite sign. Although the term (Pn −P

′

n) in LX is positive definite, yet the sign of the other
term (P

′

1 − P1) is not definite.
2. Under WCS, we are able to prove X > 0 for B2 > B1θ, thereby implying that it is a necessary condition for
Wav > 0. But, WCS also demands P

′

1 > P1 or 0 < J < Jc. Therefore, the latter constitutes a sufficient condition for
Wav > 0.
3. When P

′

1 > P1 does not hold, LX does not have definite sign. So, depending on the control parameters, other
terms in X can be positive. In this case, we cannot predict the sign of Wav.
We therefore conclude the following regarding positive work extraction for the coupled model:
a. If, LX < 0 (which happens for B2 < B1θ), then Wav < 0.
b. If LX > 0 (which happens for B2 > B1θ and 0 < J < Jc), then Wav > 0.
c. If no definite sign can be assigned to LX (which may happen even when B2 > B1θ holds, but with no condition
on the range of J), the system may or may not work as an engine.

Appendix C: Condition on J from Wav > 0

From the conditions given by Eqs. (B.8) and (B.9), we obtained Eq. (B.10), which leads to the following

Ek

T1
−
E

′

k

T2
< 2s

(
B2

T2
−
B1

T1

)
. (C.1)

The above condition yields different possible ranges for J corresponding to different energies Ek. Out of these, the
shortest range will clearly be permissible for all energy levels. Thus, we will find the strictest condition on J that
ensures Wav > 0. Let us express an energy eigenvalue as,

Ek = m1B1 − 8m2J, E
′

k = m1B2 − 8m2J. (C.2)

As can be seen from Fig. 1, there are energy bands in the spectrum of the coupled system such that the energy levels
corresponding to the same band have an identical value of m1, but different values of m2. From the spectrum, we
observe that m1 varies from the minimum value of −2s up to 2s, while m2 can only take positive values (see Table
III) Eq. (C.1) now takes the following form
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m1 m2 k

−2s 0 1

−2(s− 1) s, 0 2, 3

−2(s− 2) [s+ (s− 1)], s, 0 4, 5, 6

−2(s− 3) [s+ (s− 1) + (s− 2)], [s+ (s− 1)], s, 0 7, .., 10

. . .

. . .

−2(s− r) [s+ (s− 1) + ...+ (s− (2s1 − 1))], ..., 0 n/2− 2s1, ..., n/2

2(s− r) [s+ (s− 1) + ...+ (s− (2s1 − 1))], ..., 0 n/2 + 1, ..., n/2 + 2s1 + 1

. . .

. . .

2(s− 3) [s+ (s− 1) + (s− 2)], [s+ (s− 1)], s, 0 (n− 9), .., (n− 6)

2(s− 2) [s+ (s− 1)], s, 0 (n− 5), (n− 4), (n− 3)

2(s− 1) s, 0 (n− 2), (n− 1)

2s 0 n

TABLE III. Spin dependent factors m1 and m2 when the energy eigenvalues of the coupled system are expressed as: Ek =
m1B − 8m2J . The energy levels ”k” which fall within the same band (i.e having same m1) have also been specified.

8m2

(
1

T2
−

1

T1

)
J < (2s+m1)

(
B2

T2
−
B1

T1

)
=⇒ J <

(2s+m1)(B2 −B1θ)

8m2(1− θ)
. (C.3)

Now within one band (fixed value of m1), it is obvious that the highest m2 value will give the strictest condition on
J . Now, by referring to the spectrum, we infer that for m1 = −2(s− q), where q = 0, 1, 2, ..., the largest value of m2,
denoted by m2,L is

m2,L = s+ (s− 1) + ...+ (s− q + 1) =
q

2
(2s− q + 1).

Substituting these values on R.H.S of Eq. (C.3), we get the upper limit on J as

1

2(2s− q + 1)

B2 −B1θ

1− θ
.

Now, the strictest condition on the range of J will be obtained for the lowest permissible value of q, i.e. q = 1 (since
m2 = 0 for q = 0). Thus, we obtain

0 < J <
1

4s
.
B2 −B1θ

1− θ
≡ Jc. (C.4)

Therefore, we conclude that for the above range we have Wav > 0. Note that Eq. (C.4) is obtained for m1 = −2(s−1)
and m2 = s, which corresponds to the first excited state of the coupled system.

Appendix D: Proof for X > Y1

As discussed in the main text, for proving ∆Sav > 0 we need to show,

X > Y1

⇒ X − Y1 > 0⇒ X + (Y/s) > 0

for a case where all the terms of Y are negative.
We will show that the PWCs, given by Eqs (9) and (17), derived for the coupled model are enough to show the above
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k m3 = s+m4

1 s

2, 3 s, (s− 1)

4, 5, 6 (s− 1
s
), (s− 1), (s− 2)

7, 8, 9, 10 (s− 1
s
− 2

s
), (s− 1− 1

s
), (s− 2), (s− 3)

. .

. .

(n/2− 2s1), ..., n/2
[
s− (r − 2s1)− 1

s
− ...− (2s1−1)

s

]
, ..., (s− r)

TABLE IV. Coefficients m3 of the terms (P
′
k − Pk) in U with k varying from 1, 2, ..., n/2.

relation and hence ∆Sav > 0. As already proved in the previous sections that with B2 > B1θ, the condition J < Jc
is obtained by combining the following set of conditions and then substituting k = 2:

P
′

k < Pk; k ≥ 2 (D.1)

P
′

1 > P1

Eq. (D.1) also implies maximally negative Y . U ≡ X + Y/s > 0 will now be proved using Eq. (D.1) where X and Y
are given by Eq. (13).
Before starting the proof, note that all the levels contribute to X but only the J dependent levels contribute to Y/s.
The steps followed for proving U > 0 under relations Eq. (D.1) are:
1. We first consider the lower half levels. With m1 being negative for all k = 1, .., n/2 (see Table III), the total
contribution from these levels to X takes the form,

1

2

n/2∑
k=1

|m1|(P
′

k − Pk)

Similarly, the coefficients of these terms in Y/s can be calculated from Table III as m2/s (note that m2 > 0 holds
for all k).

Now we add these to get the coefficients of these terms in U , denoted by m3 ≡
|m1|

2
+
m2

s
, which have been listed in

Table IV. As can be seen, m3 has a positive part given by ”s” and a negative part, say m4. The total contribution
from the lower half levels to U is therefore written as,

n/2∑
k=1

(
|m1|

2
+
m2

s

)
(P

′

k − Pk) =

n/2∑
k=1

m3(P
′

k − Pk)

=

n/2∑
k=1

(s+m4)(P
′

k − Pk) = s

n/2∑
k=1

(P
′

k − Pk) +

n/2∑
k=1

m4(P
′

k − Pk)

With m4 < 0, the second part is positive because of Eq. (D.1) and the first part is considered later on.
2. We now consider the upper half levels. The total contribution of these levels to X and Y/s is considered separately.
The former is given as,

n∑
k=n/2+1

m1

2
(Pk − P

′

k)

With m1 being positive (Table III) for all k = n/2 + 1, .., n, the above expression is positive because of Eq. (D.1).
As for these levels’ contribution to Y/s, it is given as,

n−2∑
k=n/2+1

m2

s
(P

′

k − Pk) ≡
n−2∑

k=n/2+1

(m5 +m6)(P
′

k − Pk) =

n−2∑
k=n/2+1

m5(P
′

k − Pk) +

n−2∑
k=n/2+1

m6(P
′

k − Pk)
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k m2/s = m5 +m6 m5

(n/2 + 1), ..., (n/2 + 2s1 + 1) 2s1 − 1
s
− ...− (2s1−1)

s
, ..., 0 2s1, ..., 0

. .

. .

(n− 9), (n− 8), (n− 7), (n− 6) (3− 1
s
− 2

s
), (2− 1

s
), 1, 0 3, 2, 1, 0

(n− 5), (n− 4), (n− 3) (2− 1
s
), 1, 0 2, 1, 0

(n− 2), (n− 1) 1, 0 1, 0

n 0 0

TABLE V. Coefficients m2/s (obtained from Table III) of the terms (P
′
k−Pk) in Y/s with k running over all upper half energy

levels i.e k = n/2 + 1, ..., n.

Note that not all the levels contribute to Y because many levels do not explicitly depend on J . Here m5 and m6 are
respectively the positive and negative parts of m2/s (see Table V). The second part in the above equation is positive
because of (D.1) and the first part is considered later on.
3. Adding up the total contribution to U from all the energy levels we have,

n/2∑
k=1

(s+m4)(P
′

k − Pk) +

n∑
k=n/2+1

m1

2
(Pk − P

′

k) +

n−2∑
k=n/2+1

(m5 +m6)(P
′

k − Pk)

From the first and second points, we now have two parts which are yet to be proved positive. Their sum is given as,

n/2∑
k=1

s(P
′

k − Pk) +

n−2∑
k=n/2+1

m5(P
′

k − Pk) (D.2)

Using relations like P
′

n < Pn and P
′

n−1 < Pn−1 (from Eq. (D.1)), and P
′

1 > P1 in the normalization condition of
probabilities

n∑
k=1

(P
′

k − Pk) = 0

we have,

n/2∑
k=1

s(P
′

k − Pk) +

n−2∑
k=n/2+1

s(P
′

k − Pk) > 0.

As shown below, m5 < s. Therefore, with P
′

k < Pk, we can safely replace s by m5 in the above inequality, thereby
proving U > 0.

1. Proof for m5 < s

To prove m5 < s, consider as an example, the k = n− 5 level, the explicit expression of the occupation probability
is,

Pn−5 = e−2(s−2)B1/T1+8sJ/T1+8J(s−1)/T1/Z1

and m5 = 2 (see Table V). On carefully observing the energy spectrum, it can be seen that the energy level cor-
responding to this occupation probability exists only if the sum of spins ”s” in the power of the exponent satisfies,
2 < s. Similarly 1 < s holds in Pn−2, 3 < s holds in Pn−9, ..., Pn−6. So this is true for all the energy eigenvalues.

Since
(
P

′

n−5 − Pn−5

)
< 0 (Eq. (D.1)) therefore we have

s
(
P

′

n−5 − Pn−5

)
< 2

(
P

′

n−5 − Pn−5

)
.
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E1 = −2sB

E2 = −2(s− 1)B − 8sJ

E3 = −2(s− 1)B

E4 = 2(s− 1)B − 8sJ

E5 = 2(s− 1)B

E6 = 2sB

FIG. 8. Energy levels Ek of the coupled two-spins system (1/2, 1), where s = 3/2.

m1 m2 k

−2s 0 1

−2(s− 1) s, 0 2, 3

2(s− 1) s, 0 4, 5

2s 0 6

TABLE VI.

Similarly we have the following:

s
(
P

′

n−2 − Pn−2

)
< 1

(
P

′

n−2 − Pn−2

)
,

s
(
P

′

n−4 − Pn−4

)
< 1

(
P

′

n−4 − Pn−4

)
,

...

s
(
P

′

n/2+1 − Pn/2+1

)
< 2s1

(
P

′

n/2+1 − Pn/2+1

)
.

The last inequality follows from the fact s1 < s2. This proves m5 < s.

Case study: s1 = 1/2, s2 = 1

As an illustration of the above proof for the upper bound of Otto efficiency, we consider the (1/2, 1) coupled system
(Fig. 8), where n = 6. The Stage 1 equilibrium occupation probabilities of these levels are of the form: Pk =
e−m1B1/T1+8m2J/T1/Z1, where the spin-dependent factors m1 and m2 have been specified in Table VI and the partition
function is

Z1 = Z1 + 2 cosh [2(s− 1)B1/T1] .e8sJ/T1

with

Z1 ≡ 2

s+1/2∑
k=1

cosh [2(s− k + 1)B1/T1] = 2 (cosh[2sB1/T1] + cosh[2(s− 1)B1/T1]) .

The heat absorbed from the hot bath and average work are given as,

Q1,av = 2B1X + 8JY, Wav = 2(B1 −B2)X,

where

X =
1

2

n=6∑
k=1

m1(Pk − P
′

k), Y =

(n−2)=4∑
k=2

m2(P
′

k − Pk) = (P
′

2 − P2) + (P
′

4 − P4).
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Proof for X > Y1

As discussed in the main text, we will be proving U = X + (Y/s) > 0 using Eq. (D.1) and the condition P
′

1 > P1.
Note that all levels contribute to X but only the J dependent levels (E2 and E4) contribute to Y . The steps followed
for proving U > 0 under relations Eq. (D.1) are:
1. We first consider the lower half (k = 1, 2, 3) of the levels. With m1 being negative (see Table VI), the total
contribution from these levels to X takes the form,

1

2

3∑
k=1

|m1|(P
′

k − Pk) = s(P
′

1 − P1) + (s− 1)(P
′

2 − P2 + P
′

3 − P3)

Similarly contribution of lower half levels to Y/s is written as,

Y/s =
m2

s
(P

′

2 − P2) = (P
′

2 − P2)

Total contribution of lower half levels to U is,

U = X + Y/s = s(P
′

1 − P1) + (s− 1)(P
′

2 − P2 + P
′

3 − P3) + (P
′

2 − P2)

U = s(P
′

1 − P1) + s(P
′

2 − P2) + (s− 1)(P
′

3 − P3) =

3∑
k=1

s(P
′

k − Pk) + (−1)(P
′

3 − P3)

The second part is positive because of Eq. (D.1) and the first part is considered later on.
2. We now consider the upper half levels. The total contribution of these levels to X and Y/s is considered separately.
The former is given as,

6∑
k=4

m1

2
(Pk − P

′

k) = (s− 1)(P4 − P
′

4 + P5 − P
′

5) + s(P6 − P
′

6)

The above expression is positive because of Eq. (D.1).
As for these levels’ contribution to Y/s, it is given as,

Y/s =
m2

s
(P

′

4 − P4) = (P
′

4 − P4)

This part is negative and will be considered later on.
3. From points 1. and 2., the following terms in U are yet to be shown positive,

3∑
k=1

s(P
′

k − Pk) + (P
′

4 − P4)

Using relations like P
′

6 < P6, P
′

5 < P5 (from Eq. (D.1)) and P
′

1 > P1 in the normalization condition of probabilities,
given as,

6∑
k=1

(P
′

k − Pk) = 0

we have,

4∑
k=1

s(P
′

k − Pk) > 0 =⇒
3∑

k=1

s(P
′

k − Pk) + s(P
′

4 − P4) > 0

With P
′

4 < P4 and 1 < s (s = 3/2 for the present case), we can safely replace s by 1 in the the above expression
thereby proving U > 0.
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