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Abstract. The interpretation of data from indirect detection experiments searching for dark
matter annihilations requires computationally expensive simulations of cosmic-ray propa-
gation. In this work we present a new method based on Recurrent Neural Networks that
significantly accelerates simulations of secondary and dark matter Galactic cosmic ray an-
tiprotons while achieving excellent accuracy. This approach allows for an efficient profiling
or marginalisation over the nuisance parameters of a cosmic ray propagation model in order
to perform parameter scans for a wide range of dark matter models. We identify importance
sampling as particularly suitable for ensuring that the network is only evaluated in well-
trained parameter regions. We present resulting constraints using the most recent AMS-02
antiproton data on several models of Weakly Interacting Massive Particles. The fully trained
networks are released as DarkRayNet together with this work and achieve a speed-up of
the runtime by at least two orders of magnitude compared to conventional approaches.
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1 Introduction

The central prediction of the Weakly Interacting Massive Particles (WIMP) paradigm is that
Dark Matter (DM) particles should have a thermally averaged annihilation cross section of
〈σv〉 ∼ 10−26 cm3 s−1 during freeze-out. In many DM models, the present-day annihilation
cross section in astrophysical systems is predicted to be of a similar magnitude, providing a
clear target for indirect detection experiments searching for the products of DM annihilation
processes.

While the most robust constraints on the DM annihilation cross section stem from
observations of the CMB [1] and of the γ-ray sky, in particular from Fermi-LAT [2–4], highly
complementary information can be obtained by precisely measuring the flux of charged anti-
particles arriving on Earth. Very recently, AMS-02 has released results from the first seven
years of data taking [5], which include in particular the flux of antiprotons with unprecedented
precision. Theoretical predictions for this flux however require detailed modelling of the
production and propagation of charged cosmic rays (CRs) in the Galaxy, which are subject
to significant uncertainties and are currently constrained using CR data (see e.g. Ref. [6]),
as well as their non-thermal emissions (see e.g. Ref. [7]).

While various numerical codes, such as Galprop [8] and Dragon [9], exist to address
this challenge and simulate the propagation of CRs, they require as input a large number of
parameters that need to be varied to assess their impact on the predictions. As a result these
simulations are typically computationally so expensive that they become prohibitive in the
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context of a global analysis of DM models, where also the fundamental model parameters need
to be varied [10]. Recent analyses of the AMS-02 antiproton data have therefore typically
focused on simplified DM models with only a single annihilation channel, see e.g. Ref. [11–14].

In the present work we explore the potential of artificial neural networks (ANNs) to solve
this issue and substantially speed up the calculation of predictions for the primary antiproton
flux for a very broad range of DM models.1 Specifically, we employ recurrent neural networks
(RNNs), which are particularly well suited for the prediction of continuous spectra. The
network is trained on a large sample of antiproton fluxes based on propagation parameters
that are chosen to broadly agree with recent AMS-02 data, and a general parametrisation of
the properties of the DM particle in terms of its mass and the branching fractions for various
different final states. Using the same approach we have also developed and trained ANNs to
accurately predict further CR species, like secondary antiprotons, protons or helium.

The predictions of the network can then be used to calculate the likelihood of the AMS-
02 data for a given DM model and varying propagation parameters in order to calculate
exclusion limits using a range of frequentist or Bayesian methods. However, it is important
to ensure that the resulting constraints are not biased by regions of parameter space for
which the ANN has not been sufficiently trained. In the Bayesian approach this potential
pitfall is avoided by evaluating the likelihood for a fixed sample of propagation parameter
points drawn from the posterior probability distribution in the absence of a DM signal.
The marginalisation over propagation uncertainties can then be performed via importance
sampling, i.e. by appropriately reweighing and combining the points in the sample. This
approach is particularly well suited for the analysis of antiproton data, since the propagation
parameters are rather tightly constrained by the proton flux and the secondary antiproton
flux, so that the presence of a DM signal does not dramatically shift the relevant regions of
parameter space.

We emphasise that, while the initial generation of a sample from the posterior is com-
putationally expensive, it does not require specific assumptions on the properties of DM and
therefore only needs to be carried out once in advance. Moreover, the same simulation step
can be used to set up the training data for the ANN, ensuring that the network is trained
specifically on the most interesting regions of parameter space. Once training is completed,
the remaining steps are computationally cheap and can be performed for a large number of
DM parameters. Indeed, the full marginalisation over propagation parameters can be per-
formed in a similar amount of time as it would take to simulate a single parameter point in
the conventional approach.

We apply our fully trained ANN to a number of cases of particular interest. For the case
of DM annihilations exclusively into bottom quarks we show that the most recent AMS-02
data leads to results that are compatible with previous studies. In particular, we recover
a notable excess for DM masses around 100 GeV in the case that no correlations in the
AMS-02 data are considered. We also present new constraints on the well-studied model
of scalar singlet DM and find that antiproton data places competitive constraints on this
model. However, we emphasise that the ANN is not limited to these cases and can be
applied to a wide variety of DM models. Moreover, the general approach that we present
can be extended to consider different propagation models (provided a suitable simulator
exists), systematic uncertainties (such as correlations in the AMS-02 data) or cross-section
uncertainties, enabling the community to fully explore the wealth of the available CR data.

1For other recent works on the use of machine learning for cosmic ray propagation in the context of DM
we refer to Refs. [15, 16].
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The remainder of this work is structured as follows. In section 2 we briefly review the
fundamental concepts of CR production and propagation and present the specific implemen-
tation that we adopt in the present work. We also carry out a first analysis of the most
recent AMS-02 data and perform a parameter scan to identify the most interesting regions
of parameter space. In section 3 we introduce our machine learning approach to simulating
CRs and discuss how we train and validate our ANNs. Finally, in section 4 we apply the
fully trained ANNs to constrain DM models. We present the relevant statistical methods
and discuss the resulting exclusion limits.

2 Cosmic-ray antiprotons in the Galaxy

For the following discussion it is useful to distinguish between primary and secondary CRs.
Primary CRs are directly accelerated and emitted by standard astrophysical sources like
supernova remnants or pulsars. But also more exotic scenarios such as the production of
(anti)particles by DM annihilation or decay are considered as primary origin. Protons pro-
vide the dominant contribution to primary CRs (about 90%) while helium (He) makes up
about 10%. Heavier nuclei only contribute at the percent level. On the other hand, sec-
ondary CRs are produced during the propagation of primary CRs by fragmentation or decay.
More specifically, when the primary CRs interact with the gas in the Galactic disc, com-
monly called interstellar medium (ISM), secondary particles are produced. Because of the
different production mechanism, secondaries are suppressed with respect to primary CRs.
It is commonly believed that CR antiprotons do not have standard astrophysical sources2

such that their dominant contribution comes from secondary production. As a consequence,
antiprotons are suppressed by 4–5 orders of magnitude with respect to protons, which makes
them (together with other antimatter CRs, e.g. antideuterons [21, 22]) a promising channel
for constraining DM signals.

In this section we first discuss the production of antiprotons in the annihilation of
dark matter particles in our Galaxy, followed by a discussion of backgrounds from secondary
antiprotons. We then present the framework that we use to simulate CR propagation and the
strategy to fit the resulting spectra to data. Finally, we perform a scan over the propagation
parameters in order to create the training set for the machine learning approach introduced
in section 3.

2.1 Antiprotons from dark matter annihilation

CR antiprotons are a long standing target used to search for signals of WIMP DM in our
Galaxy [23–39]. More recently, there has been a discussion of an antiproton excess at about
20 GeV, which could be fitted with a primary DM source [11–14, 40]. However, the excess
might also be accounted for by a combination of systematic effects [41–43]. If DM particles
annihilate into standard model particle final states f within the diffusion halo of our Galaxy
as DM+DM → f+ f̄ , we expect a corresponding flux contribution to antiprotons in CRs,
coming from the subsequent decay of for example q+q̄ modes (see e.g. [44]). The source term

of this primary antiproton component, q
(DM)
p̄ , is a function of the Galactic coordinates x and

the antiproton kinetic energy Ekin. For a generic combination of standard model final states

2We note that the possibility of primary antiprotons that are directly produced and accelerated at supernova
remnants [17–20] is also discussed in literature.
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f it reads:

q
(DM)
p̄ (x, Ekin) =

1

2

(
ρ(x)

mDM

)2∑
f

〈σv〉f
dNf

p̄

dEkin
. (2.1)

The factor 1/2 in eq. (2.1) corresponds to Majorana fermion DM. Furthermore, mDM is the
DM mass, ρ(x) the DM halo energy density profile, and 〈σv〉f is the thermally averaged
annihilation cross section for the individual final states f . In the following, we fix 〈σv〉
independent of f and account for this by assigning branching fractions into the relevant
final states. Finally, dNf

p̄ /dEkin denotes the energy spectrum of antiprotons for a single DM
annihilation. This quantity depends on the DM mass and the standard model final state.
Here we implement the widely used tabulated results for the antiproton energy spectrum
presented in Ref. [44] which include electroweak corrections.3

We assume that the DM density in our Galaxy follows an NFW profile [46] ρNFW(r) =
ρh rh/r (1 + r/rh)−2, with a scale radius of rh = 20 kpc and a characteristic halo density, ρh,
which is normalised such that the local DM density at the solar position of 8.5 kpc is fixed
to 0.43 GeV/cm3 [47], compatible also with more recent estimates [48]. We note that the
NFW profile is only one of many viable DM profiles currently investigated. Other profiles
can have a significantly different behavior towards the Galactic center, see e.g. the discussion
in Ref. [49]. However, we stress that choosing a different DM density profile only has a small
impact on the results presented in this paper since CR antiprotons from DM annihilation
dominantly arrive from the local environment. Therefore they are mostly sensitive to the
local DM density and the resulting flux depends only weakly on the shape of the DM density
profile at the Galactic center. More specifically, the impact of changing the cuspy NFW
profile to the cored Burkert profile [50] has been quantified in Ref. [51]; it was found that a
core radius of 5 kpc only weakens DM limits by about 20%.

2.2 Secondary antiprotons

The ISM consists of roughly 90% hydrogen (H) and 10% He. Thus secondary antiprotons are
mostly produced by the interaction of p and He CRs with the H and He components of the

ISM. The source term for the secondary antiprotons q
(sec)
p̄ is thus given by the convolution of

the primary CR fluxes φ of isotope i, the ISM density nISM of component j ∈ {H,He}, and
the energy-differential production cross section dσij→p̄/dEkin,p̄:

q
(sec)
p̄ (x, Ekin,p̄) =

∑
j∈{H,He}

4π nISM,j(x)
∑
i

∫
dEkin,i φi(Ekin,i)

dσij→p̄
dEkin,p̄

(Ekin,i, Ekin,p̄) . (2.2)

By construction, secondaries are suppressed with respect to primary CRs. In the case of an-
tiprotons, the experimentally observed suppression compared to protons is 5 orders of mag-
nitude at 1 GV and increases to about 4 orders of magnitude above 10 GV. Since secondary
CRs constitute the dominant contribution of the measured antiproton flux, considering stan-
dard astrophysical sources only already results in a good fit to the data [11, 41, 52], see also
discussion in section 2.4.

3If DM annihilates into a pair of W or Z bosons it is possible to produce one of them off-shell. This
possibility is not taken into account in the original tables. We extend the tables of W and Z bosons to lower
DM masses using the tables from Ref. [45].
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The cross section of secondary antiproton production is a very important ingredient
of eq. (2.2), which has been discussed by various groups recently [53–56]. In general there
are two different strategies to determine this cross section. On the one hand, Monte Carlo
generators, which are tuned to the relevant cross section data [56], can be used to infer the
relevant cross section. On the other hand, a parametrisation of the Lorentz invariant cross
section can be fitted to all available cross section data. Then the required energy-differential
cross section is obtained by an angular integration [53–55]. We follow the second approach
and use the analytic cross section parametrisation from Ref. [54] with the updated parameters
from Ref. [55]. An important advantage of the analytic cross section parametrisation is that
it is explicitly tuned to cross-section data at low energies, and therefore more reliable below
antiproton energies of ∼ 10 GeV as discussed in Ref. [57].

Finally, we consider that secondary antiprotons may scatter inelastically with the ISM
and lose energy. This antiproton contribution, commonly referred to as tertiary [58], is
suppressed with respect to the secondaries.

2.3 Propagation in the Galaxy and solar modulation

The sources, acceleration and propagation of Galactic CRs are research topics by themselves
[59, 60]. Fast evolution and progresses has been driven in the last years by newly available and
very precise data by AMS-02 [5], PAMELA [61] and Voyager [62]. Some recent developments
include the studies of systematic uncertainties from solar modulation, correlated experimental
data points, secondary production/fragmentation cross sections as well as detailed studies of
propagation phenomena below a rigidity of 10 GV to disentangle diffusion and reacceleration
[6, 63–72], where the rigidity R of a CR particle is defined as its momentum divided by the
absolute value of its charge. Here we will not explore these exciting directions and instead
focus on one standard setup of CR propagation, which was already studied in the context
DM searches with antiprotons in Ref. [40]. The machine learning approach and the statistical
methods introduced below can however be readily applied also to alternative assumptions and
more refined descriptions. We briefly summarise below the main ingredients of this specific
approach and refer to Ref. [40] for a more detailed discussion.

Charged CRs propagate within a diffusion halo assumed to be cylindrically symmetric,
which extends a few kpc above and below the Galactic plane. In particular, it has a fixed
radial extent of 20 kpc, while the half height of the diffusion halo is denoted by zh and typically
enters CRs fits as a free parameters (see section 2.4). When CRs cross the boundary of the
diffusion halo they escape from the Galaxy, while the propagation within the halo is described
by a chain of coupled diffusion equations.

The diffusion equation for the CR number density per volume and absolute momentum
ψi(x, p, t) of CR species i at position x and momentum p is given by [73]:

∂ψi(x, p, t)

∂t
= qi(x, p) + ∇ · (Dxx∇ψi − V ψi) (2.3)

+
∂

∂p
p2Dpp

∂

∂p

1

p2
ψi −

∂

∂p

(
dp

dt
ψi −

p

3
(∇ · V )ψi

)
− 1

τf,i
ψi −

1

τr,i
ψi .

We briefly describe each of the terms in eq. (2.3) below. To solve these equations numerically
we employ Galprop 56.0.2870 [8, 74] and Galtoollibs 8554 with a few custom modification
as described in Ref. [40]. Alternatively, solutions might be obtained analytically, utilizing

4https://galprop.stanford.edu/download.php
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various simplifying assumption [75, 76], or using other fully numerically codes like Dragon [9,
77] or Picard [78]. Galprop assumes that CRs are in a steady state and solves the diffusion
equations on a 3-dimensional grid. Two dimensions describe the spatial distribution of CRs,
the radial distance r from the Galactic center and distance z perpendicular to the plane, and
one dimension contains the CR’s kinetic energy. The grid points of the spatial dimensions
are spaced linearly with step size of ∆r = 1 kpc and ∆z = 0.1 kpc, respectively, while the
grid is spaced logarithmically in kinetic energy with a ratio between successive grid points of
1.4.

The source term qi in eq. (2.3) depends on the CR species. For secondary antiprotons
and antiprotons from DM annihilation it takes the form of eq. (2.2) and eq. (2.1), respectively.
For primary CRs the source term factorizes into a spatial and a rigidity-dependent term. The
spatial term traces the distribution of supernova remnants.5 On the other hand, the rigidity
dependence is modeled as a smoothly broken power-law:

qR(R) =

(
R

R0

)−γ1 (R1/s
0 +R1/s

2R
1/s
0

)−s(γ2−γ1)

, (2.4)

where R0 is the break position and γ1,i and γ2,i are the spectral indices above and below the
break for the CR species i, respectively. The parameter s regulates the amount of smoothing
at the break. In the following analysis we will assume that all primary nuclei except for
protons have a universal injection spectrum such that we adopt γ1,i = γ1 and γ2,i = γ2.
For protons we allow different spectral behaviour and keep the subscript i = p. The broken
power-law spectrum in eq. (2.4) is a widely used phenomenological approximation which
describes well the data in the considered rigidity range. All CR species are affected by several
processes that contribute to CR propagation, which are diffusion, reacceleration, convection,
and energy losses. We assume that diffusion is spatially homogeneous and isotropic. In this
case, the diffusion coefficient, Dxx, can be modeled as a broken power-law in rigidity

Dxx =

βD0

(
R

4 GV

)δ
if R < R1

βD0

(
R1

4 GV

)δ ( R
R1

)δh
otherwise ,

(2.5)

where D0 is an overall normalisation and δ and δh are the power-law indices below and above
the break at position R1. At low energies the diffusion coefficient is proportional to the
velocity β = v/c of the CRs. We allow for a diffusive reacceleration of CRs by scattering
off Alfvèn magnetic waves. The amount of reacceleration is then determined by the velocity
vAlfven of the waves [80, 81]:

Dpp =
4 (p vAlfven)2

3(2− δ)(2 + δ)(4− δ) δ Dxx
. (2.6)

The terms proportional V (x) in eq. (2.3) describe convective winds which drive the
CRs away from the Galactic plane. They are taken constant and orthogonal to the Galactic
plane, such that V (x) = sign(z) v0,c ez. The remaining terms describe different contributions
of energy losses, for which we adopt the default Galprop implementation. In particular,

5We use the default prescription of Galprop where the parameters of the source term distribution are
fixed to α = 0.5, β = 2.2, rs = 8.5 kpc, and z0 = 0.2 kpc. This is slightly different from recent values in
the literature [79]. We note, however, that nuclei are only very weakly sensitive to the chosen distribution as
discussed in Ref. [52].
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continuous energy losses like ionisation or bremsstrahlung are included in the term dp/dt,
while catastrophic energy losses by fragmentation or decay are modeled by the last two terms.
The parameters τf and τr are the corresponding lifetimes.

We emphasise again that the setup of CR propagation described above reflects one
specific choice. The available measurements of CR nuclei are also described well by other
setups. In particular, a model without diffusive re-acceleration, but with an additional break
in the diffusion coefficient between 5 and 10 GeV is currently discussed in the literature
[6, 63, 68].

CRs measured at the top of the atmosphere have to traverse a significant part of the
heliosphere where they are deflected and decelerated by solar winds. The strength of this
effect varies in a 22-year cycle and is commonly known as solar modulation. It mostly affects
low-energetic CRs; in practice the impact on the spectra above a few tens of GV is negligible.
We use the common force-field approximation [82] to model the impact on the CR spectra:

φ⊕,i(E⊕,i) =
E2
⊕,i −m2

i

E2
LIS,i −m2

i

φLIS,i(ELIS,i) , (2.7)

E⊕,i = ELIS,i − e|Zi|ϕi . (2.8)

Here φ and E label the energy-differential flux and the kinetic energy, respectively. The sub-
scripts on the energy or flux denote the position which can either be local interstellar (LIS) or
top of the atmosphere (⊕). Furthermore, Zi is the charge number, e is the elementary charge,
and ϕi is the solar modulation potential. The potential is known to be time and charge-sign
dependent. We note that the force-field approximation is probably an oversimplified treat-
ment of solar modulation.6 To minimise systematic impacts from solar modulation on our
results we will exclude data below 5 GV from our analysis. Furthermore, we allow a different
solar modulation potential for antiprotons to account for a possible charge-sign dependence.

2.4 Fit to AMS-02 data

In the following we summarise very briefly the considered data sets and the fit strategies,
where the latter are directly adopted from Ref. [40]. The most precise measurement of CR
antiprotons above 1 GV is currently provided by the AMS-02 experiment [5]. We consider the
data sets of proton, helium, and the antiproton-to-proton ratio from AMS-02 [5] collected over
7 years from 2011 to 2018 and complement with low-energy data for protons and helium from
Voyager [88]. When fitting the CR data with the model outlined below, the CR likelihood is
defined by

−2 logLCR(θ) = χ2
CR(θ) =

∑
e,s,i

(
φ

(e)
s,i − φ

(m)
s,i,e(θ)

σ
(e)
s,i

)2

, (2.9)

where φ
(e)
s,i denotes the flux of the CR species s that was measured by the experiment e

at the rigidity Ri or energy Ekin,i, while φ
(m)
s,i,e(θ) is the flux computed with Galprop for

the corresponding species and energy. Finally, σ
(e)
s,i is the experimental uncertainty of the

flux measurement. The AMS-02 experiment provides separate statistical and systematic

6In more sophisticated models solar modulation is described by propagation equations similar to eq. (2.3)
but tuned to the environment of the heliosphere. These are typically solved numerically [83–87].
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uncertainties. Here we assume that the systematic uncertainties are uncorrelated and add
the two contribution in quadrature. This is certainly a simplified treatment. In particular, it
was shown that the significance of a potential excess can depend critically on the assumptions
made for the correlations of this uncertainty [41, 42]. However, we expect that the impact on
DM limits is less severe, because of two opposing effects: The covariance matrices as modeled
in Refs. [41, 42] contain contributions with both large and small correlation lengths. A large
correlation length corresponds to a change of the overall normalisation which looks very
different from a peaked signature such as expected from DM annihilation. This potentially
leads to a stronger DM limit. On the other hand, a small correlation length allows for
signatures similar to those from DM and, therefore, potentially weakens the limit. Overall,
we expect these two effects to partly cancel each other. We leave the study of different
systematics and correlations within the new methods introduced in this paper to future
investigation.

Within the phenomenological description of CR injection and propagation outlined in
section 2.3, the parameters of eq. (2.3) are largely unconstrained a priori and are directly
inferred from CR data. We allow for a total of 15 parameters to describe CR injection and
propagation. To sample this large parameter space efficiently we use the Nested Sampling
algorithm implemented in the MultiNest code [89]. The computing efficiency is increased
even further by exploiting a hybrid strategy where only a subset of parameters is sampled by
MultiNest (“slow parameters”) and the remaining parameters are profiled on-the-fly (“fast
parameters”). The slow parameters are the ones that are needed as input for Galprop and
thus changing them is time consuming. More specifically, these are the following eleven pa-
rameters: the slopes of the primary injection spectra γ1,p, γ1, γ2,p, and γ2, the break position
R0 and its smoothing s, the normalisation D0 and slope δ of the diffusion coefficient, the
half-height of the diffusion halo zh, and the velocities of convection v0c and Alfvèn magnetic
waves vAlfvèn. The scan ranges for all of these parameters are summarised in table 1. In
the following we will give results in the frequentist and the Bayesian interpretation. For the
Bayesian interpretation we assume flat priors in the scan ranges.

The four remaining parameters describe the normalisation of the proton (Ap) and helium
(AHe) fluxes and the solar modulation potentials (ϕAMS-02,p,He for p and He and ϕAMS-02,p̄

for p̄). These are the fast parameters, which are treated in a simplified way in our analysis
and therefore can be varied much more easily. Instead of explicitly including them in the
MultiNest parameter scans, we profile over them on-the-fly at each likelihood evaluation
of MultiNest, i.e. we maximise the likelihood over the fast parameters using Minuit [90].
A very weak Gaussian prior is applied to ϕAMS-02,p̄ by adding to the main likelihood the
term −2 log(LSM) = (ϕAMS-02,p,He − ϕAMS-02,p̄)

2/σ2
ϕ where σϕ = 100 MV,7 while no priors

are applied on ϕAMS-02,p,He.

We truncate the rigidity range of the fit to the range between 5 to 300 GV. As men-
tioned above, data below 5 GV is excluded to avoid a strong bias from our modeling of solar
modulation.8 At high energies, the spectra of CR nuclei show a break at R ∼ 300 GV, which
is more pronounced in secondaries with respect to primaries [92, 93]. While in general it
would be possible to introduce spectral breaks in the injection spectrum or in the diffusion

7The prior expresses that the solar modulation potential of antiprotons and the one of protons and helium
are related, even if they are not forced to be the same. In Ref. [91] the average difference between the potential
of electrons and positrons was found to be around 100 MV.

8It was shown in Ref. [40] that the cut at R = 5 GV does not artificially enhance the significance of a
potential DM signal.
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Table 1. Results of the CR fits to AMS-02 and Voyager data of protons, helium, and antiprotons.
The parameter ranges for the MultiNest scan are stated in column 2. In the remaining columns we
state the best-fit parameter values and their uncertainty at the 68% C.L. for a fit with and without
a DM signal. Results are given both in the frequentist and the Bayesian interpretation.

Frequentist Bayesian

Parameter Scan ranges w/o DM w/ DM w/o DM w/ DM

γ1,p [1.2, 2] 1.80+0.04
−0.03 1.79+0.07

−0.06 1.77+0.07
−0.04 1.68+0.14

−0.07

γ1 [1.2, 2] 1.79+0.04
−0.04 1.74+0.08

−0.06 1.75+0.07
−0.04 1.63+0.15

−0.07

γ2,p [2.3, 2.6] 2.405+0.013
−0.007 2.48+0.02

−0.03 2.41+0.01
−0.01 2.48+0.02

−0.03

γ2 [2.3, 2.6] 2.357+0.014
−0.005 2.42+0.02

−0.03 2.366+0.009
−0.012 2.42+0.02

−0.02

R0 [103 MV] [1, 20] 7.92+0.82
−0.80 7.32+1.16

−0.83 7.06+0.93
−1.04 6.42+0.97

−1.13

s [0.1, 0.9] 0.37+0.03
−0.03 0.40+0.03

−0.04 0.38+0.04
−0.04 0.44+0.04

−0.06

D0 [1028 cm2/s] [0.5, 10] 2.05+1.48
−0.39 2.92+2.09

−0.96 3.58+1.30
−0.73 5.37+1.52

−1.78

δ [0.2, 0.6] 0.419+0.009
−0.012 0.35+0.03

−0.02 0.42+0.01
−0.01 0.33+0.03

−0.03

vAlfven [km/s] [0, 30] 8.84+1.45
−2.58 10.25+2.12

−2.06 6.02+3.57
−2.51 7.70+4.15

−3.10

v0,c [km/s] [0, 60] 0.09+1.08
−0.08 0.90+6.77

−0.78 2.48+0.32
−2.48 13.36+2.44

−13.36

zh [kpc] [2, 7] 2.60+2.25
−0.48 2.79+2.87

−0.75 4.70+2.30
−0.86 4.84+2.13

−0.75

log10(mDM/MeV) [4, 7] - 5.07+0.03
−0.05 - 5.08+0.04

−0.05

log10(〈σv〉s/cm3) [−27,−22] - −25.42+0.22
−0.48 - −25.76+0.13

−0.26

ϕAMS−02,pHe [GV] 0.26+0.04
−0.03 0.25+0.05

−0.03 0.30+0.04
−0.05 0.28+0.04

−0.06

(ϕp̄ − ϕp)AMS−02 [GV] 0.200+0.000
−0.036 0.13+0.07

−0.12 0.177+0.023
−0.001 0.09+0.11

−0.03

Ap,AMS−02 1.173+0.004
−0.003 1.173+0.003

−0.004 1.178+0.004
−0.004 1.177+0.004

−0.004

AHe,AMS−02 1.257+0.006
−0.014 1.20+0.02

−0.01 1.253+0.010
−0.010 1.20+0.02

−0.02

χ2
p,AMS−02 7.2 6.2

χ2
He,AMS−02 3.2 2.1

χ2
pbar/p,AMS−02 35.0 21.5

χ2
p,Voyager 7.9 4.1

χ2
He,Voyager 3.9 3.2

χ2 57.2 37.1

coefficient, only the latter naturally explains the different behavior of the primaries and sec-
ondaries [94]. We therefore fix the parameters of eq. (2.5) to R1 = 300 GV and δh = δ−0.12.
The proton and helium data of AMS-02 is described well by this choice. Truncating our fit
at R ∼ 300 GV avoids unnecessary bias.9

To gain a first understanding of the allowed regions of parameter space, we perform a
CR fit as detailed above. The scan is conducted using 1000 live points, a stopping criterion of

9As an alternative, R1 and δh − δ could be treated at free parameters in the fit which would, however,
increase the complexity of the already high-dimensional parameter fit.
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tol=0.1 and an enlargement factor efr=0.7. The final efficiency of the scan is found to be
around 9%, with about 350 000 likelihood evaluations in total. The fit is heavily parallelised
using 96 cores at the same time. The Galprop code is parallelised using openMP while the
nested sampling algorithm of MultiNest can be expanded to multiple MPI tasks. We follow
a hybrid strategy with 24 MPI tasks using 4 cores for each task. We have verified that the
parallelisation efficiency lies above 70%. In total the fit requires about 5.5 days to converge
and consumes 12500 cpu hours, which means that a single likelihood evaluation requires on
average about 130 cpu seconds. To perform this fit, MultiNest starts by broadly sampling
the entire parameter space and then continuously shrinks to the allowed parameters. The
result is an ensemble of parameter points which is denser in the most interesting parameter
region. We will make use of this property in the following section, where our goal is to train
the ANNs in such a way that they perform particularly well in the parameter range preferred
by data. Thus, we save all the sample points during the fit and then use them as a starting
point for the training in section 3.

In table 1 we summarise the best-fit (most probable) values of the various parameters
based on a frequentist (Bayesian) interpretation as well as their 68% confidence intervals
(credible intervals). The best-fit point corresponds to χ2 = 57.2 for the AMS-02 data. These
results broadly agree with the ones from Ref. [40] even though we use the more recent 7-year
AMS-02 data for p, He, and p̄. As expected, for the parameters that are well-constrained by
data, there is good agreement between the frequentist and the Bayesian approach. For less
constrained parameters (such as for example zh) there can be sizeable differences between
the best-fit point (obtained by maximizing the profile likelihood) and the most probable
point (obtained by maximizing the marginalised likelihood). We will return to this issue in
section 4.

Previous analysis have discussed a potential DM signal that could be accommodated at
antiproton energies between 10 and 20 GeV where the antiproton flux shows a small anomaly
at the level of a few percent. This potential signal corresponds, for example, to DM particles
with a mass of about 80 GeV that self-annihilate into bb̄ final states at a thermal cross
section. However, the significance of this potential signal has been discussed controversially
in the literature. The most recent works suggest that the anomaly is well explained by
the combination of several systematic uncertainties, namely uncertainties in the secondary
antiproton production cross section, correlated systematics in the AMS-02 data, and some
additional freedom in the CR propagation model [41–43], which we do not include here.

The focus of this work lies instead on developing new methods for exploiting ANNs and
importance sampling to derive DM limits. In contrast to a DM signal, we expect the limits to
be only weakly dependent on those systematics and leave their investigation to future studies.
Nevertheless, for comparison we also perform one fit where antiprotons from DM annihilation
are included. We choose DM annihilation into a pair of bb̄ quarks as our benchmark. In this
case, two further parameters are considered, the mass of the DM particle mDM and the
thermally averaged annihilation cross section 〈σv〉 (see eq. (2.2)). We explore values of mDM

from 10 GeV to 10 TeV and values of 〈σv〉 between 10−22 and 10−27 cm3/s, with our results
being independent of the precise choice of these ranges. Theses two additional parameters
are sampled with MultiNest.

The results of the additional fit are also shown in table 1. Including a DM signal
formally improves the χ2 by 20.1 which, however, given the discussion above should not be
interpreted as significant. Nonetheless, we can take this value as a point of comparison for
the performance of the ANN in section 4. We furthermore observe that, while the additional
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DM signal affects most CR propagation parameters only marginally, there is a sizeable shift
of the preferred parameter regions for γ2, γ2,p and δ. While this shift is likely overestimated
in our analysis for the reasons mentioned earlier, it highlights the challenges for the training
of the ANN (see section 3) and for the statistical inference via importance sampling (see
section 4).

In the previous paragraph, we focused on a specific case of DM annihilation into a pair
of bottom quarks which serves as an example and a point of comparison. In general, much
more complex scenarios with a range of different final states and combinations at different
branching fractions are possible. The naive approach to obtain results would be to perform an
entirely new parameter scan for each case of interest which obviously requires a substantial
amount of computational resources. Instead, in the following we will discuss methods to
speed up the calculation of CR spectra in a model-independent fashion to quickly obtain
constraints for any given DM model.

3 Deep neural network setup and training

Our aim is to predict the output of Galprop for a wide range of input parameters represent-
ing both uncertainties in the propagation model and the unknown properties of DM. This
output can then be used to calculate experimental likelihoods as described in section 2.4
without computationally expensive simulations. To achieve this goal, we build and train
suitable ANNs and validate their performance. Considering the two different contributions
to the antiproton flux (i.e. primary and secondary CRs), we construct two separate ANNs to
provide fast predictions of each component based on the relevant physical parameters. We
will refer to the networks for the DM component and the secondary component as DMNet
and sNet, respectively. As the underlying method in the development of the neural networks
is the same, both ANNs will be presented in parallel in this section.

3.1 Training Set

The information that a neural network should be able to learn, in general, has to be rep-
resented in the data that is used to train the network. This allows for the interpolation
of data within the parameter space that would, in a conventional approach, require new
simulations. To remain impartial on the specific parameters of the DM model, we consider
a wide range in the mass of the DM particle from 5 GeV to 5 TeV and randomly sample
from a logarithmic distribution in this range. A similar approach is taken for the branching
fractions, where we consider all SM final states that give a non-negligible contribution to a
CR antiproton flux [44]: qq̄, cc̄, bb̄, tt̄, W+W−, ZZ, hh and gg. We logarithmically sample
each branching fractions in the range [10−5, 1] and then normalise the result in such a way
that the sum of all branching fractions equals one. The DM annihilation cross section is fixed
to 〈σv〉 = 3× 10−26 cm3 s−1 in the complete training set, as variations in this parameter can
be included at a later stage by an appropriate rescaling of the flux. These DM parameters,
which we will collectively denote by xDM, are only relevant to the DM component of the an-
tiproton flux and the corresponding neural network, while the secondary flux is independent
of xDM and hence these parameters will not be used as inputs to the sNet.

For the propagation parameters we face the significant challenge that the parameter
space introduced in section 2 is 11-dimensional and that only a very small volume of this
parameter space gives an acceptable fit to AMS-02 data. If we were to simply perform a
grid scan or draw random samples from this parameter space, we would include large regions
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Figure 1. Triangle plot: One and two dimensional histograms showing the frequency of propagation
parameters used in the training set, constructed in such a way that the highest density is achieved in
the regions most favoured by the combination of AMS-02 proton, antiproton and helium data without
DM signal. Top right: One dimensional histogram of the training set for each of the branching fractions
χχ→ SM SM.

of parameter space for which accurate predictions are unnecessary, as they will anyways
be strongly excluded. Conversely, in the preferred regions of parameter space, we want to
achieve an accuracy that is significantly better than the typical relative errors of about 5%
in AMS-02 data, which requires large amounts of training data.

To obtain sufficiently accurate network predictions in the most interesting regions of
parameter space without spending unnecessary time on the simulation and training of less
interesting regions, we want to make use of the AMS-02 data already for the creation of the
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training set. Indeed, we can directly use the MultiNest scan described in section 2.4 to
obtain a sample of propagation parameters (denoted by θprop in the following) that is focused
on the regions of parameter space with the highest likelihood (see also Ref. [95]). Since in
the following we will be most interested in the calculation of exclusion limits, we will base
our training on the MultiNest scan without DM signal. For a detailed investigation of
the excess the same procedure outlined below could be applied to the sample of propagation
parameters from the MultiNest scan with DM signal.

For the creation of the training set we exclude any parameter point in the MultiNest
sample that gives a poor fit to AMS-02 data, specifically with ∆χ2 ≥ 30 compared to the
best-fit point. This results in a total of 117335 remaining parameter points which we show
in figure 1. We emphasise that for each parameter the training data extends well beyond the
68% confidence/credible intervals without DM annihilations quoted in table 1. To ensure a
sufficiently good coverage also of the DM parameter space, we sample 8 combinations of DM
parameters for each propagation parameter point, leading to a very large simulation set of
O(106) parameter points.

3.2 Neural Network Architectures

Although the two networks that we use to predict the two components of the antiproton flux
can be set up and trained in a similar way, we face distinct challenges in each component. For
the DMNet the key challenge is the very large number of input parameters, namely the DM
mass plus 8 branching fractions in xDM and a total of 11 propagation parameters in θprop,
each with a different physical effect on the output, i.e. the antiproton flux. As we want to
have accurate predictions for variations in each of the parameters, we treat the DM mass, the
branching fractions, and the propagation parameters as three distinct sets of inputs, which
are first processed by three independent dense networks before combining the outputs (see
below).

For the sNet the key challenge is to achieve sufficient accuracy in the prediction of
the secondary antiprotons flux, which is tightly constrained by AMS-02 data. Given these
constraints, the secondary antiproton flux only exhibits relatively small variations across the
training set, which nevertheless need to be accurately captured using the sNet. To achieve
the desired accuracy, we provide an increased number of trainable parameters that define the
network. As we will show within the following sections, the training duration consequently
increases with respect to the DMNet but a very good accuracy is achieved.

Rather than directly feeding the physical parameters as inputs to the network, we map
the logarithm of xDM to values in the range [0, 1] and the remaining parameters θprop to a
distribution with a mean of 0 and a standard deviation of 1. Each of the networks is then
trained in a supervised approach. The simulated fluxes serve as training labels or ‘true’ fluxes
to which the network output can be compared.

Given the large variations in the CR fluxes that are desired as the output of the ANNs,
here we choose a natural scaling of the original (simulated) flux Φ(E) for the sNet outputs,

Φ̃s(E) = log10

(
Φ(E)E2.7

)
. (3.1)

The log10 further decreases the variations in the flux values, which would otherwise cover
several orders of magnitude. The energies and their respective fluxes are binned values,
identical to the output from the simulations, which extend over the energy range of the
AMS-02 antiproton measurement. Consequently, we have sequences of distinct values in the
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Figure 2. Transformed DM antiproton fluxes following eq. (3.2) for our training set, which varies
propagation parameters, branching fractions and DM masses as discussed in sec. 3.1. The modest
amount of variation across different parameter points results in a more easily processable version of
the input GALPROP simulated flux for the DMNet.

scaled flux as training labels. The transformation in eq. (3.1) is easily invertible and thus
allows for direct comparison of the network output to the simulated spectra.

As the DM component of the flux predominantly scales with the DM mass, we choose
a different scaling for that flux component,

Φ̃DM(x) = log10

(
m3

DM xΦ(E)
)
, (3.2)

where x = E/mDM is a dimensionless quantity. We use a grid in x with 40 points logarithmi-
cally spaced in the interval [10−3.7, 1], on which we evaluate the training labels and DMNet
output. The advantage of this scaling compared to eq. (3.1) is that it substantially reduces
the impact of changing the DM mass and therefore leads to much less variation across the
training set.10 This is illustrated in figure 2, which shows the resulting DM antiproton fluxes
Φ̃DM as a function of x for a representative set of final state combinations and DM masses in
the training set. We find that for each combination of input parameters we obtain a slowly-
varying function of x that reaches a maximum and then drops towards x → 1. The general
trend is similar across the entire range of DM masses that we consider, but some information
on the DM mass is retained. We find that this approach significantly improves the training
of the DMNet compared to the scaling in eq. (3.1).

Subsequent to the pre-processing of the input, the ANNs contain densely connected
(’dense’) layers, that process the information from the inputs. To address the individual

10To first approximation the DM component of the antiproton flux follows the source term Φp,DM (E) ∝
qDM ∝ m−2

DM dN/dE ∝ m−3
DMx

−1 dN/d log10 x, where dN/d log10 x depends only very mildly on mDM.
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challenges for the networks we set up the architecture as depicted in figure 3. We provide
dense layers for each of the different inputs in the DMNet which are concatenated in the next
step and followed by large dense layers. In the sNet the pre-processed input is fed through a
more intricate set of dense layer, specifically (56, 28, 14, 28, 56) nodes in the set of layers. We
use ReLU activations and add a small dropout probability of 0.1% between the layers. The
precise values of these hyperparameters do not significantly affect the training performance.

The main feature of each of the networks is a recurrent layer. The choice to work
with a recurrent setup instead of other network architecture types has lead to significant
improvements in the architecture development process. Even though the typical application
for RNNs is time-series data, we find our spectra as functions of energy to be handled just
as well by this network type. In particular, it can be reasoned that the information on
the flux that is contained in a specific energy bin is highly correlated with the prior and
subsequent energy bins and a network architecture that is able to propagate the information
of neighbouring units is very beneficial for the task at hand. We chose a GRU layer as
proposed in Ref. [96] in the DMNet and a LSTM layer following [97] in the sNet. Each of
these layer types is useful for long data sequences and far-reaching information propagation
without leading to vanishing or exploding gradients during training. While both methods
can in principle be used for either networks, the final implementations that achieved the best
results was based on different layer types. As network output a final dense layer is set up.
We build the networks using the deep learning API Keras [98] which uses Tensorflow
[99] as backend.

3.3 Training process

We use approximately 75% of the previously described simulation set for the network train-
ing.11 The remainder is used as a test set on which network performance evaluations can be
conducted. Within the training set, a validation split of 20% is used during training to moni-
tor the generalisation capabilities of the network. Unlike the training loss, the loss calculated
on the validation set is not used to update the model parameters during the optimisation
process.

The network training was conducted using the ADAM optimizer [100] and a mean
squared error (MSE) loss. The initial learning rate of 10−2 is decreased during the training
process, based on the behaviour of the validation loss, for an optimal convergence to a minimal
loss. After the learning rate reaches its predefined minimum (lr = 10−5) the training process
is terminated after 40 epochs without improvement of the validation loss, using an early
stopping mechanism. This process helps ensure the convergence of the network optimisation.
The MSE loss for both the training and validation loss over the training epochs is shown in
figure 4 for both ANNs.

We performed the training on a V100-SXM2 GPU. Given the depth of the individual
networks, this resulted in training durations of about 4 minutes per epoch of the DMNet and
about 12 minutes per epoch for the sNet.

3.4 Validation of the Network Performance

Training performance measures, such as the loss based on the training set, can be helpful
while adjusting the architecture and hyperparameters of the networks. The usage of the

11Note that the sNet has a smaller training set compared to the DMNet, as here we have fewer unique
spectra following from our parameter sampling for simulating the training set.
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Input: Propagation parameters

Pre-processing

Set of dense layers

Output: Scaled logarithmic cosmic ray
�ux

Recurrent layer:
LSTM with 100 units, tanh activation

Input: Propagation
parameters

Input: Dark Matter
Mass

Input: Dark Matter
Branching fractions

Pre-processing Pre-processing Pre-processing

Dense Layer:
8 nodes

Dense Layer:
8 nodes

Densely Layer:
11 nodes

Concatenate

Recurrent layer: 
GRU with 40 nodes, tanh activation

Output: Scaled logarithmic cosmic ray �ux

Dense Layer: 40 Nodes

DMNet sNet

Hyperparameters

Activation ReLU

Dropout fraction 0.1 %

Optimizer Adam, learning rate scheduling l ∈ [10−2, 10−5], patience 10 epochs

Loss Mean squared error (MSE)

Batch size 500

Validation split 20 %

Early stopping Monitor val. loss, patience = 40

Figure 3. Schematic of the network structure. Top left: Architecture set up for handling the
complete set of inputs. This network type can be used to be trained on the DM component of the p
flux (DMNet). Top right: Simplified architecture for networks that require only the CR propagation
parameters as input. This network architecture is designed for learning the psecondary fluxes (sNet)
and can be employed to train on proton and helium spectra as well (see appendix A). Bottom: The
hyperparameters used during the training process for each of these networks.

networks however, requires an evaluation of their ability to replace the simulations. Using
the fully trained networks we can compare the simulated spectra from Galprop within the
test set to the network predictions based on the same parameter point. An example for such
a comparison is shown in figure 5. We show the simulated spectra and the output of the
respective ANNs for both the secondary and DM component of the antiproton flux (as well as
for their sum). In the top panel we depict the fluxes in physical space alongside the AMS-02
antiproton data, demonstrating that the network provides fluxes that are extremely similar
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Figure 4. Evolution of the MSE loss for the DMNet (left) and sNet (right) over the training epochs.

to the corresponding simulations. This is illustrated even more clearly in the bottom panel,
which shows the relative differences between the ANN and the simulation with respect to
the simulated total antiproton flux, compared to the relative uncertainties of the AMS-02
antiproton data. Prior to plotting each CR flux we infer the solar modulation and overall
normalization by maximizing the likelihood for the AMS-02 data, as outlined in section 2.4.
This enables a fit to the data measured within the heliosphere and is automatically applied
to each CR flux evaluated in the following. As this is not computationally expensive, it is not
necessary to already include this step in the training process for the ANN. The parameters
inferred for the Galprop and ANN fluxes respectively are in agreement with each other.
The parameter point for the specific example presented in figure 5 was randomly selected
from the extensive test set.

We conclude that the accuracy of the sNet is fully sufficient: the relative difference
between the fluxes predicted by the ANN and the simulated Galprop fluxes are always well
below the relative uncertainty of the AMS-02 measurements. The architecture and training
process used for the sNet can analogously be applied to train an ANN on proton and Helium
spectra based on the same Galprop simulation set, achieving a comparable accuracy. We
provide additional details on these networks in appendix A.

Given that the DMNet is trained on a parameter space of much higher dimensionality,
it is unsurprising that its predictions are on average less accurate than the ones of the sNet.
Indeed when calculating the relative differences between simulations and network predictions
for the DM component only, we find that only 72% of samples lie on average within the
AMS-02 relative uncertainties. However, it is essential to realise that in any realistic setting
the DM component will only constitute a subdominant contribution to the antiproton flux.
Indeed, if the DM contribution in a given bin significantly exceeds the uncertainty of the
AMS-02 data (which is typically at the level of 5%) the model is expected to be excluded.

In order to provide more realistic estimates of the general accuracy and stability of the
DMNet performance within the test set, we therefore focus on DM signals that contribute
5% to the total antiproton flux in the bin where the relative DM contribution is largest.
We then calculate the differences between simulations and network output relative to the
total antiproton flux. This approach shows that even if the DMNet itself is only accurate
at the level of 10%, the total antiproton flux can still be predicted with an accuracy at the
sub-percent level for allowed DM models.
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Figure 5. Exemplary comparison of the ANN versus Galprop antiprotons flux of only the DM
component and the combination of secondary and DM component where the listed parameters and
simulated fluxes are randomly sampled from the test set. Each component of the neural network flux
is predicted by the individual networks. The lower panel depicts the relative difference between the
Galprop (‘true’) and ANN (‘predicted’) fluxes with respect to the Galprop flux compared to the
relative AMS-02 uncertainty. The listed solar modulation potential and overall normalization were
inferred based on the AMS-02 data for each combined antiproton flux as described in section 2.4.

In figure 6, we show this accuracy estimate for a total of 3000 DM component samples
from the test set (1000 samples each for three different mass bins corresponding to the three
different rows). Here we compute the deviation between DMNet prediction and Galprop
simulation to the corresponding total antiproton flux, as in the lower panel of figure 5. Since
the deviations are found to be miniscule when compared to the AMS-02 relative uncertainties,
we provide in the right column of figure 6 a zoomed-in version. It can be seen that the
uncertainty bands (containing the central 68% of the network predictions) are typically at
the level of 0.1% and do not exhibit any systematic shifts nor any significant dependence on
the DM mass.

In the following we will be interested in comparing the total antiproton flux to data in
order to determine which DM signals are allowed by observations. The comparison between
the network accuracy and the AMS-02 uncertainties in figure 6 clearly shows that it is fully
sufficient for this purpose to use the ANNs instead of running Galprop. Indeed, we will
show explicitly in the next section that both approaches lead to very similar values for the
χ2 statistic described in section 2.4.

The fully trained networks, as described in this section and appendix A, are publicly
available as DarkRayNet at https://github.com/kathrinnp/DarkRayNet. In this repos-
itory, we provide an interface to easily access flux predictions for the corresponding CR
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Figure 6. Relative deviations between predicted and simulated fluxes for the DM component binned
into three mass bins and their 68 percentile. Each of the panel shows 1000 samples from the test set.
As in the lower panels in figure 5, in the left panel we again compare this to the benchmark of the
relative AMS-02 uncertainties. The right panel shows a zoomed-in version of the left panel in the
interval [-0.010, 0.010].

species. This tool can for example be used for indirect DM searches as we outline in our
analysis in the subsequent section.

4 Constraining the dark matter annihilation cross section

4.1 Statistical method

The ANNs described in the previous section enable us to obtain predictions of the primary
and secondary antiproton flux as a function of the DM parameters xDM and the propagation
parameters θprop. Given data from observations we can then construct a likelihood function
L(xDM,θprop). We emphasise that, given suitable predictions for the CR fluxes, this likeli-
hood is quick to evaluate and therefore does not need to be predicted by the ANN. This has
the significant advantage that the ANN does not need to learn the various fluctuations that
may be present in the data.

The likelihood function can then be used to constrain both xDM and θprop. In the
present work we primarily focus on the constraints on the DM parameter space, meaning
that we will treat the propagation parameters simply as nuisance parameters that need to
be varied in order to draw robust conclusions. The two main ways to achieve this is to either
calculate the profile likelihood

L̂(xDM) = L(xDM, θ̂prop(xDM)) , (4.1)
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where θ̂prop(xDM) denote the propagation parameters that maximise the likelihood for given
DM parameters xDM, or to calculate the marginalised likelihood

L̄(xDM) =

∫
L(xDM,θprop)p(θprop)dθprop , (4.2)

where p(θprop) denotes the prior probability for the propagation parameters. Given suffi-
ciently constraining data, the profile likelihood and the marginalised likelihood are expected
to be similar and the dependence of the result on the chosen priors should be small. We
find that this is largely true for the case considered here, with some notable exceptions to be
discussed below.

From the point of view of our machine learning approach, however, the two ways of
varying the nuisance parameters are very different. The profile likelihood depends only on
the antiproton flux for a single value of θprop, meaning that highly accurate predictions are
needed close to the maximum of the likelihood. For extreme choices of the DM parameters
this maximum may be pushed to corners of parameter space where the network has not been
sufficiently trained. A single outlier in the prediction will then completely bias the result
and lead to numerical instabilities when sampling the parameter space. This makes accurate
calculations of the profile likelihood a highly challenging task.

The marginalised likelihood, on the other hand, depends on the likelihood across a
range of propagation parameters, which should have substantial overlap with the parameter
regions seen during training. The impact of individual outliers in the predictions is also
reduced significantly compared to the case of the profile likelihood, making the calculation of
marginalised likelihoods based on ANN predictions more robust. Nevertheless, the challenge
remains to ensure that results are not biased by regions of parameter space where only
little training has been performed. In the present work we address this challenge using the
technique of importance sampling [101], which we describe in the following.12

First of all, we note that an approximate marginalisation can be performed by drawing
a random sample of parameter points θi from the prior probability p(θprop) and calculating
the sum

L̄(xDM) ≈ 1

N

N∑
i=1

L(xDM,θi) . (4.3)

In fact, the same can be done by drawing a random sample from any probability distribu-
tion function q(θprop) provided the individual points are reweighted accordingly (so-called
importance sampling):

L̄(xDM) ≈
∑N

i=1 L(xDM,θi)
p(θi)
q(θi)∑N

i=1
p(θi)
q(θi)

. (4.4)

A particularly interesting case is that q(θprop) is taken to be the posterior probability for the
propagation parameters in the absence of a DM signal, i.e.

q(θprop) ∝ L(xDM = 0,θprop) p(θprop) ≡ L0(θprop) p(θprop) . (4.5)

In this case p(θi)/q(θi) ∝ 1/L0(θi) and hence

L̄(xDM) ≈
∑N

i=1
L(xDM,θi)
L0(θi)∑N

i=1
1

L0(θi)

. (4.6)

12For a different approach to Bayesian analyses of cosmic ray propagation with the help of neural networks
we refer to Ref. [37].
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The great advantage of this approach is that the likelihood is only evaluated for plau-
sible values of the propagation parameters, meaning for values that give a large posterior
probability in the absence of a DM signal. These are exactly the same parameter regions
on which we have focused for the training of the ANNs described above. Indeed, it is possi-
ble to generate the training data and sample the posterior probability using the same prior
probabilities and the same MultiNest runs such that a large overlap between the two is
ensured.13 Another significant advantage is that it is straight-forward to include additional
constraints on the propagation parameters that are independent of the DM parameters and
therefore not part of the ANN training. For example, to also include likelihoods for proton
data Lp and He data LHe, it is sufficient to draw a sample from the joint posterior

q(θprop) ∝ L0(θprop)Lp(θprop)LHe(θprop) p(θprop) . (4.7)

To conclude this discussion, we note that in the case that the likelihood can be written
in terms of a χ2 function, L ∝ e−χ2/2, we can define a marginalised χ2 function as χ̄2(xDM) ≡
−2 log L̄(xDM). Importance sampling then yields

χ̄2(xDM) = −2 log

∑N
i=1 exp

(
−∆χ2(xDM,θprop)

2

)
∑N

i=1 exp
(
χ2
0(θprop)

2

) , (4.8)

where χ2
0(θprop) = χ2(xDM = 0,θprop) and ∆χ2(xDM,θprop) = χ2(xDM,θprop) − χ2

0(θprop).
To calculate confidence intervals and exclusion limits for the DM parameters, we then define

∆χ̄2(xDM) = χ̄2(xDM)− χ̄2
0 . (4.9)

Hence, ∆χ̄2 < 0 corresponds to a preference for a DM signal, while parameter points with
∆χ̄2 > 3.84 can be excluded at 95% confidence level.14

4.2 Example A: Single Dark Matter Annihilation Channel

Let us first consider a frequently-used benchmark scenario and assume that the DM particles
annihilate exclusively into pairs of bottom quarks, such that the injection spectrum is fully
characterised by the (velocity-independent) annihilation cross section 〈σv〉 and the DM mass
mDM. As a first step, we can then calculate ∆χ2(mDM, 〈σv〉,θprop) for different values of the
propagation parameters. Figure 7 compares the results that we obtain when using the ANN
predictions of the antiproton flux and when employing Galprop. The two panels correspond
to different values of the DM mass and use the same 10122 sets of propagation parameters
drawn randomly from the posterior distribution q(θprop) as discussed above. In both cases we
find a very strong correlation between the two ways of calculating ∆χ2 (r > 0.98). Indeed,
for 95% of parameter points the absolute difference in ∆χ2 is smaller than 2.1 (0.9) for
mDM = 100 GeV (mDM = 1 TeV), confirming the excellent performance of our ANN.

In each case we use a dashed line to indicate ∆χ̄2 as defined in eq. (4.8). We emphasise
that, since we average over exp(−∆χ2/2), the final result is dominated by the points with the
smallest ∆χ2. Again, we find very good agreement between the marginalised ∆χ2 obtained

13We emphasise that the posterior sample is not part of the training data, i.e. the ANN is never evaluated
on the exact same values seen during training.

14Note that although our treatment of nuisance parameters is motivated by Bayesian statistics, we still
interpret the resulting marginalised likelihood using frequentist methods, such that there is no need to choose
priors for the DM parameters.
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Figure 7. One and two dimensional histograms of ∆χ2 for the AMS-02 antiproton measurement based
on the antiproton fluxes provided by the Neural Network and Galprop for different combinations of
propagation parameters. We consider the annihilations of DM particles with mDM = 100 GeV (left)
and 1 TeV (right) into bb with a cross section of 〈σv〉 = 10−26 cm3 s−1. The values for ∆χ̂2 indicated
by the black dashed lines represent the marginalised values obtained by the importance sampling
technique described in section 4.1.

from the ANN and from Galprop. The values obtained in the left panel correspond to a
substantial preference for a DM signal, while the parameter point considered in the right
panel is slightly disfavoured by data. Although the value ∆χ̄2 = −31.5 (−32.7) that we
obtain for mDM = 100 GeV from the ANN (Galprop) would at face value correspond to
quite a significant excess, we emphasize that our set-up is not designed to provide an accurate
characterisation of this excess. In particular we caution the reader that due to our simplified
implementation of AMS-02 data (in particular neglecting correlations) this number should
be interpreted with care. We expect that a more detailed analysis of AMS-02 data would
lead to a much lower significance.

Comparing the evaluations of the marginalised ∆χ2 with the ANN and Galprop re-
spectively, the reduction of the computational cost achieved with our neural network method
becomes apparent. For the ANN the prediction of the set of CR fluxes for each of the specific
DM parameter points only takes O(1) cpu second in total for the 10122 parameter points,
but the calculation of the respective χ2 while inferring the solar modulation potential takes
up the majority of the computation time (O(10) cpu seconds in total). This time is however
negligible compared to the Galprop simulations which take O(10) cpu hours to obtain the
same number of CR fluxes.

A complementary perspective to the results in figure 7 is provided in figure 8, which
shows ∆χ2 as a function of 〈σv〉 for different values of the DM mass. In the left panel
we fix the propagation parameters to their best-fit values in the absence of a DM signal
(see table 1), while in the right panel we marginalise over all propagation parameters using
importance sampling. Solid (dotted) curves correspond to the ANN (Galprop) predictions
and again show excellent agreement. The horizontal dashed lines indicate the 95% confidence
level upper bound on 〈σv〉 obtained following eq. (4.9).
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Figure 8. ∆χ2 for the AMS-02 antiproton measurement based on the antiproton fluxes provided by
the Neural Network and Galprop as a function of 〈σv〉 and for different values of mDM. We assume
a dominant DM DM → bb annihilation in each case. Left: Propagation parameters are fixed to the
best-fit values in a frequentist setup when only secondary antiprotons are considered (see table 1).
Right: Propagation parameters are marginalised over using importance sampling. We also include
the 95 % upper bound values of the annihilation cross section following eq. (4.9).

As expected, allowing variations in the propagation parameters generally leads to smaller
values of ∆χ2 and hence relaxes the upper bounds on the annihilation cross section. This
effect is most dramatic for the case mDM = 100 GeV (blue line), where there is a preference
for a DM signal in the data and hence the exclusion limit is relaxed by about an order of
magnitude. The small bumps in the blue curve in the right panel are a result of the finite
size of the sample of propagation parameters used for the marginalisation and result from
the approximation made in eq. (4.4).

Repeating this procedure for different values of the DM mass, we can obtain exclusion
limits on 〈σv〉 as a function of mDM. These are shown in figure 9 for the case of fixed
propagation parameters (left) and when marginalising over propagation parameters (right).
The colour shading indicates parameter regions where ∆χ2 > 0, such that a DM signal is
disfavoured, while greyscale is used to indicate parameter regions where ∆χ2 < 0 such that a
DM signal is preferred. We find that this is the case for DM masses in the range 50–250 GeV.
Again, marginalisation leads to relaxed exclusion bounds and an increased preference for a
DM signal. We reiterate however that the magnitude of this preference is likely overestimated
in our analysis.

To assess the impact of marginalisation let us finally compare our results with those
obtained using a profile likelihood. As discussed in section 4.1, special care needs to be
taken when using the ANN predictions to calculate a profile likelihood in order to ensure
that the result is not dominated by regions of parameter space with insufficient training
data. We achieve this goal by restricting the allowed parameter regions as follows: 0.1 <
s < 0.6, 1 GV < R0 < 10 GV, 0.35 < δ < 0.6 and 2.3 < γ2,(p) < 2.5. We then use
MultiNest to explore the remaining parameter space for fixed values of the DM mass
and varying annihilation cross section in order to find the largest value of 〈σv〉 such that
∆χ̂2(mDM, 〈σv〉) ≡ −2∆ log L̂((mDM, 〈σv〉)) < 3.84. Repeating this procedure for different
values of mDM then yields the exclusion limit.

The results are shown in figure 10 together with the exclusion limits obtained for fixed

– 23 –



101 102 103

mDM [GeV]

10−24

10−25

10−26

10−27

10−28

〈σ
v
〉[

cm
3

s−
1
]

Fixed Propagation parameters

95% CL upper bound

101 102 103

mDM [GeV]

10−24

10−25

10−26

10−27

10−28

〈σ
v
〉[

cm
3

s−
1
]

Marginalised

95% CL upper bound

−30

−20

−10

0

10−3

10−2

10−1

100

101

102

103

∆
χ

2

Figure 9. ∆χ2 for the AMS-02 antiproton measurement as a function of 〈σv〉 and mDM using the fixed
propagation parameters specified in table 1 (left) and performing the marginalisation via importance
sampling (right). The dashed lines represent the 95 % CL upper bounds on the annihilation cross
section. The white regions in the upper part of each panel correspond to ∆χ2 > 1000 and are excluded
to improve numerical stability.

propagation parameters and when marginalising over propagation parameters as shown in
figure 9. We find that in most regions of parameter space the profile likelihood approach
yields somewhat weaker exclusion limits than the marginalisation. Such a difference is to be
expected whenever substantial tuning in the propagation parameters is required in order to
accommodate a DM signal. For example, for mDM = 1 TeV and 〈σv〉 = 5 × 10−26 cm3 s−1

we find that ∆χ̂2 < 3.84 can be achieved only if D0, v0,c and zh all take values close to their
lower bounds. Such a tuning is not penalised in the profile likelihood, but the contribution
of these solutions to the marginalised likelihood will be suppressed according to the small
volume of the viable parameter space. The same conclusion can be reached from the right
panel of figure 7: Although there are sets of propagation parameters that yield ∆χ2 ≈ 0,
most parameter combinations give significantly larger ∆χ2, such that marginalisation leads
to ∆χ̂2 ≈ 2.6, close to the 95% confidence level upper bound. In other words, the difference
between the two approaches is a direct consequence of the different statistical methods and
not an artefact of the ANN predictions.

In general the dependence of the DM limit on the chosen value for the halo height is
very well known. To first order the normalisation of the DM flux is proportional to zh and
thus the DM limit is anti-proportional to zh as again nicely demonstrated in a very recent
analysis [102]. The CR fit conducted in section 2 varies zh between 2 and 7 kpc. Because of
the well-known zh-D0 degeneracy the resulting posterior of zh is almost flat in the entire fit
range. The DM limit derived from the marginalisation of the ∆χ̂2 should be understood to
refer to 4.8 kpc, namely the average value of zh in the posterior. This is in perfect agreement
with recent analyses of secondary fluxes by AMS-02 [6, 65, 69, 71]. On the other hand, when
limits are derived in a frequentist approach and in the absence of a DM preference, zh values
are pushed towards the lower boundary of the fit range at 2 kpc. This again explains the
difference between the marginalised and profiled limit in the figure 10. One possible way to
study the zh dependence explicitly in the marginalisation framework is to further restrict the
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from [103].

range of zh.

The differences between marginalised and profiled limits are particularly relevant given
how they affect the conclusions drawn from figure 10. When using the marginalised likelihood
we find that the thermal cross section (indicated by the black dashed line) can be excluded
for DM masses in the range 300–2000 GeV, implying that WIMP models in this mass range
can only be viable if the injection of antiprotons are suppressed. When using the profile
likelihood, on the other hand, almost the entire mass range above 70 GeV is found to be
viable. We note that the agreement between the frequentist and Bayesian approach will
improve with a better determination of zh as expected from the analysis of the forthcoming
Be isotope measurements by AMS-02 [104].

In addition to the reduction in computing time achieved when using the ANN instead
of Galprop, we find that the use of importance sampling leads to another improvement
compared to the more conventional profiling approach. Crucially, our marginalisation using
importance sampling is based on a fixed set of 10122 data points in the propagation model,
which can be evaluated in parallel. The ANN therefore gives a negligible contribution to
the time needed to calculate the upper bound on the annihilation cross section for each of
the 100 mass bins shown in figures 9 and 10. For the profiling approach on the other hand
the evaluation of the data points cannot be performed in parallel by the ANN due to their
sampling. This leads to an increase in computation time, such that the speed-up of the
runtime when using the ANN instead of Galprop is reduced to two orders of magnitude
(rather than three orders of magnitude for importance sampling).
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4.3 Example B: Scalar Singlet Dark Matter

We now illustrate the use of the ANN for the analysis of a specific model of DM with a singlet
scalar field S. Imposing a Z2 symmetry, S → −S, the scalar particle is stable and thus a
DM candidate. The Lagrangian of this scalar singlet DM (SSDM) model reads [105–107]

L = LSM +
1

2
∂µS∂

µS − 1

2
m2
S,0S

2 − 1

4
λSS

4 − 1

2
λHS S

2H†H , (4.10)

where LSM is the Standard Model Lagrangian and H is the Standard Model Higgs field.
After electroweak symmetry breaking, the last three terms of the Lagrangian become

L ⊃ −1

2
m2
S S

2 − 1

4
λS S

4 − 1

4
λHS h

2S2 − 1

2
λHS vhS

2 , (4.11)

with H = (h + v, 0)/
√

2 , v = 246 GeV, and where we introduced the physical mass of
the singlet field, m2

S = m2
S,0 + λHS v

2/2. The DM phenomenology of the SSDM has been
extensively studied in the literature, see e.g. [45, 108–112] and references therein.

The DM phenomenology of the SSDM is fully specified by the mass of the DM particle,
mS = mDM, and the strength of the coupling between the DM and Higgs particle, λHS .
Below the Higgs-pair threshold, mS < mh, DM annihilation proceeds through s-channel
Higgs exchange only, and the relative weight of the different SM final states is determined
by the SM Higgs branching ratios, independent of the Higgs-scalar coupling λHS . Above the
Higgs-pair threshold, mS ≥ mh, the hh final state opens up. The strength of the annihilation
into Higgs pairs, as compared to W , Z or top-quark pairs, depends on the size of the Higgs-
scalar coupling. For our specific analysis we require that the SSDM provide the correct DM
relic density, Ωh2 = 0.1198 ± 0.0015 [113], which in turn determines the size of λHS for any
given DM mass mS . The corresponding branching fractions for DM annihilation within the
SSDM are shown in figure 11 (left panel) as a function of the DM mass.

Using the ANN we analyse the ∆χ2 distribution of the model, marginalising over prop-
agation uncertainties as described in section 4.1. The result is shown in figure 11 (right
panel). Comparing figure 11 with the analogous result for the single annihilation channel
into bb̄, figure 9 (right panel), we observe a similar overall shape of the ∆χ2 distribution.

For light DM the SSDM annihilates dominantly into bottom final states, so one expects
results that are very similar to the case of the single bb̄ channel. However, for the smallest DM
masses that we consider (mχ ≈ 10 GeV) we find that the constraints become considerably
stronger when including even a sub-dominant contribution from cc̄. The reason is that in this
mass range, most antiprotons resulting from annihilation into bottom quarks have energies
below 5 GeV and do therefore not give a contribution in our fits. Annihilation into charm
quarks, on the other hand, can give rise to more energetic antiprotons, leading to stronger
constraints. For DM masses above about 50 GeV, a variety of SM final states contributes in
the SSDM, including in particular WW , hh and ZZ. However, as shown in Ref. [51], the
limits for heavy DM are similar for these final states and for annihilation into bottom quarks,
so that the overall constraints for the SSDM are comparable to those for annihilation into
bottom quarks only.

5 Conclusions

The analysis of cosmic ray (CR) antiprotons is a powerful method for the indirect detection
of dark matter (DM). The accurate experimental measurements, in particular from AMS-02,
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Figure 11. Left: Mass dependence of branching fractions of SS → SM SM in the SSDM model
for λHS fixed by the relic density requirement. Right: Marginal χ2 distribution of the 〈σv〉 −mDM

parameter space in the SSDM model.

allow to probe DM annihilation cross sections close to the value predicted by thermal freeze-
out for a wide range of DM masses. However, a precise description of CR propagation through
the Galaxy is required to exploit the potential of the experimental data. The propagation
models depend on a large number of parameters, and the standard numerical simulation
tools, such as Galprop, are computationally expensive. Therefore, global analyses of generic
models of DM can only be carried out with an immense computational effort, if at all.

In this work we have developed an artificial neural network (ANN) that allows extremely
fast and accurate predictions of the cosmic ray flux for generic DM models. Specifically,
we have employed recurrent neural networks (RNNs) to predict the CR energy spectrum.
RNNs are particularly well suited to learn the correlations between the fluxes contained in
neighbouring energy bins. Additional improvements in performance are achieved by grouping
input parameters that have similar physical origin and by performing a suitable rescaling of
the output spectra.

We have trained the ANN with a large set of antiproton fluxes simulated with Galprop,
where the propagation parameters have been chosen to be broadly compatible with the most
recent AMS-02 data, and a generic parametrisation of the dark matter model in terms of
the DM mass and the branching fractions for the annihilation into various Standard Model
final states. We emphasise that the contribution of different DM models to the antiproton
flux only has a marginal impact on the preferred range of the propagation parameters. It
is therefore possible to focus the training of the ANN on the relevant range of propagation
parameters without specifying the details of the DM model in advance. We have validated
the performance and accuracy of the network by comparing both the predicted antiproton
fluxes and the resulting AMS-02 likelihoods to the ones obtained from explicit Galprop
simulations for a range of different propagation and DM model parameters.

We have then used the neural network predictions to test specific DM models against
current AMS-02 data. We have focused on the DM parameter space and treated the propa-
gation parameters as nuisance parameters by calculating both the corresponding profile and
marginalised likelihoods. While the former approach requires an explicit restriction of the
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parameter space to the regions where the ANN has been sufficiently trained, this requirement
can be automatically fulfilled in the latter case by employing importance sampling. Com-
paring the ANN to Galprop we find a speed-up in runtime of about two (three) orders of
magnitude when using profiling (importance sampling).

For DM annihilation into bottom quarks we have obtained results that are consistent
with previous studies based on simulations and a profile likelihood approach. We find more
stringent bounds on the DM parameter space when using the marginalised likelihood; here a
thermal cross section can be excluded for DM annihilating fully into bottom quarks for DM
masses in the range between approximately 300 GeV and 2 TeV. To illustrate the flexibility
of our approach, we have also used the ANN to derive constraints on scalar singlet DM, for
which DM annihilation results in a variety of Standard Model final states with branching
fractions that depend strongly on the DM mass.

The ANN developed in this work, and the corresponding method for efficient training,
can also be used to study more closely the potential DM interpretation of the antiproton
excess around 20 GeV, for example regarding the impact of correlations in AMS-02 data.
Moreover, it can be easily extended to alternative propagation models and can be applied
to a wide class of DM scenarios. It will thus be possible to fully exploit the potential of
current and future cosmic-ray data in global analyses of general DM models. In future work
a transformation of the ANNs into Bayesian neural networks can be incorporated in the
analysis. With this step, additional more in-depth studies of the uncertainties of the network
predictions will be possible. The fully trained networks together with a suitable user interface
are publicly available as DarkRayNet at https://github.com/kathrinnp/DarkRayNet.
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A Predicting proton and helium spectra

When simulating the antiproton fluxes as described in section 3.1 we can also obtain the
CR spectra of protons, deuterium, and helium (3He and 4He) without significant additional
computation costs due to the setup of Galprop. The task of modelling these spectra using
an ANN is very comparable with the task fulfilled by the sNet. We have thus examined the
ability of the sNet architecture (as described in sec. 3.2) to also accurately predict proton and
helium spectra. The inputs of the sNet remain the same, but we have extended the length
of the final output layer, to accommodate a wider energy range, appropriate for the proton
and Helium AMS-02 and Voyager data. Using also the same training process (see sec. 3.3)
we achieve a similar accuracy as for the secondary antiprotons, as each of the predictions
deviates from the simulations only marginally with respect to the experimental uncertainties.
In figures 12 and 13 we show exemplary results for protons, resp. helium, and their individual
components analogous to figure 5.
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