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Abstract. We discuss the properties of the residence time in presence of moving defects or

obstacles for a particle performing a one dimensional random walk. More precisely, for a

particle conditioned to exit through the right endpoint, we measure the typical time needed

to cross the entire lattice in presence of defects. We find explicit formulae for the residence

time and discuss several models of moving obstacles. The presence of a stochastic updating

rule for the motion of the obstacle smoothens the local residence time profiles found in the

case of a static obstacle. We finally discuss connections with applicative problems, such as

the pedestrian motion in presence of queues and the residence time of water flows in runoff

ponds.
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1. Introduction

The characterization of transport regimes in presence of obstacles and irregular patterns is a

classical problem of fluid dynamics [1,2], which is also relevant to a number of biological [3]

and engineering [4, 5] applications. For instance, a careful design of the shape and the

location of the obstacles in microfluidic channels was observed to enhance the mixing of fluid

flows [6]. Moreover, crowding effects, generated by obstacles of different size and shape, turn

out to significantly affect the transport properties by even altering the sign of the fluxes, as

recently reported, e.g., in active matter numerical experiments [7, 8].
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From the perspective of statistical mechanics, the subject is particularly rich and may

be tackled from different routes. One first important question, for instance, concerns the

study of anomalous diffusions resulting from the presence of obstacles [9, 10]. The onset

of anomalous transport stemming from the motion of intruders in a host matrix of slowly

moving particles was studied in [11]. The inclusion of flower shape obstacles in billiards was

considered in [12] in order to highlight the fractal structure of the diffusion coefficient as a

function of control parameters. Another interesting research line concerns the derivation of

the hydrodynamic limit of interacting particle systems in an inhomogeneous environment.

In [13] it was shown that a detailed characterization of the inhomogeneities at the micro-

scopic level is necessary to determine the structure of the macroscopic diffusion laws in the

hydrodynamic limit. Furthermore, in the framework of Zero Range Processes, the inclusion

of local defects proved to be a mechanism able to give rise to condensation phenomena in

the hydrodynamic limit [14].

The investigation of inhomogeneous random walks continues to be a core topic in statis-

tical mechanics, see e.g. [15] for a general review of the subject.

In this work we study the residence time in a random walk on a one-dimensional lattice

in presence of local inhomogeneities. The walker is conditioned to exit through the right

endpoint of the lane. Our approach permits explicit computations that nicely complement

the classical literature based on the gambler’s ruin problem. We consider both symmetric and

asymmetric random walks, and discuss the residence time in presence of defects, represented

by lattice sites on which the hopping probabilities of the walker are perturbed by a bias. In

particular, analytical formulae for the residence time are obtained for random walks with

static defects as well as in presence of defects following a stochastic updating rule.

By exploiting the theory of absorbing Markov chains, we succeed, to a certain general

extent, to express the residence time of the conditioned random walk in terms of quantities

evaluated in the non conditioned walk: the mean number of visits on the generic site of

the lattice and the right exit probability. Thus, we dwell on the derivation of analytic

formulae for these two quantities and use them to write explicit formulae for the residence

time in presence of static defects. The prominent effect of the inclusion of a defect obeying

a stochastic dynamics is the smoothing of the local residence time profiles. Our analysis,

supported by numerical simulations, also shows that the presence of a stochastic defect may

induce a decrease of the residence time. Moreover, for certain distributions of the defect, the

residence time turns out to be invariant with respect to the sign of the bias acting on the

defect.

Our results are also amenable to a variety of applications. We discuss, in particular, the

use of our formalism in the modelling of pedestrians forming queues and also outline useful
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links with hydrogeological problems. In both cases, we show that the results found in those

contexts by means of sophisticated models can be recovered to some extent in the framework

of our one dimensional random walk model through a suitable choice of the parameters.

In addition, we show in the Appendix how our results on the stationary local residence

time profile connect with the stationary fugacity profiles of arbitrary Zero Range Processes

subject to specific injection rates at the boundaries.

Our work is organized as follows. In Sec. 2, we introduce the theoretical set-up for the

computation of the residence time, based on the fundamental matrix, and define the main

quantities of interest. In Sec. 3 we apply our formalism to both symmetric and asymmetric

random walks and obtain explicit formulae in presence of static defects. In Sec. 4 we study

the residence time problem in presence of moving defects which follow a stochastic updating

rule. The discussion of relevant applications and our conclusions are deferred to Sec. 5,

while the analogy with Zero Range Processes is outlined in the Appendix A.

2. Model and quantities of interest

The problem discussed above is approached in this paper via a one–dimensional model based

on a simple random walk. At each side of the lattice an absorbing site is present. We shall first

consider a completely general simple random walk and then we will specialize our discussion

to particular models describing the effect of static or moving defects.

We thus consider a one–dimensional simple random walk on {0, 1, . . . , L}, called lane.

Each element of the lane will be called site. The sites 0 and L are absorbing, so that when

the particle reaches one of them the walk is stopped. They will be called, respectively, the

left and right exit of the lane. The sites 1, . . . , L− 1 are called transient.

Time t = 0, 1, 2, . . . is discrete and at each time the walker jumps from a transient site i to

site j with probability pij. We assume pij = 0 if |i−j| = 0 or |i−j| ≥ 2 and pij > 0 otherwise.

Moreover, we shall use the notation pii+1 = pi and pii−1 = qi, for any i = 1, . . . , L − 1. We

will obviously have that pi + qi = 1. In other words, at each time the walker jumps from the

transient site i to its left neighbor i− 1 with probability qi or to its right neighbor i+ 1 with

probability pi = 1− qi.
We denote by X(t) the position of the walker at time t and by Pi and Ei the probability

associated to the process and the related expected value operator for the walk started at

X(0) = i, with i = 1, . . . , L− 1.

We denote by Q the (L − 1) × (L − 1) square matrix in which we collect the transition
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probabilities between transient sites, namely, Qij = pij for i, j = 1, . . . L− 1. The matrix

I−Q =



1 −p1 0 · · ·
−q2 1 −p2 0 · · ·

0 −q3 1 −p3 0 · · ·
...

. . .

· · · 0 −qL−2 1 −pL−2

· · · 0 −qL−1 1


(2.1)

is invertible, see, for instance, [16, Theorem 3.2.1], and its inverse N = (I − Q)−1 is called

the fundamental matrix.

2.1. Residence time

The residence time is defined by starting the walk at site 1 and computing the typical time

that the particle takes to reach the site L provided the walker reaches L before 0. More

precisely, we denote by τ = inf{t > 0 : X(t) ∈ {0, L}} the duration of the walk and define

the residence time, as

Γ = E1(τ |RE), (2.2)

where we conditioned to the event RE meaning that the particle exits the lane through the

right exit in L.

We shall compute the residence time following ideas differing from the approaches already

developed in [17–19]. In particular, we shall exploit several properties of the fundamental

matrix of absorbing Markov chains [16] that will allow us in Section 3 to derive remarkable

explicit formulae.

Given a site i, the number of visits ni = |{t > 0 : X(t) = i}| to i counts the number

of times that the walker visits the site i. Its mean value for the walk started at site j

can be computed using the fundamental matrix, indeed one has that Ej[ni] = Nji, see [16,

Theorem 3.2.4]. The mean number of visits of the walker started at 1 conditioned to the

event that it exits the lane in L, namely, E1[ni|RE], is called local residence time at i. Since,

for the walker started at 1, τ =
∑L−1

i=1 ni, the residence time can be written as sum of the

local residence times, namely,

Γ =
L−1∑
i=1

E1[ni|RE]. (2.3)

Using the standard theory of absorbing Markov chains it is possible to get rid of the

conditioning, as it is can be proven that

E1[ni|RE] =
Pi[RE]

P1[RE]
E1[ni]. (2.4)
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Indeed, we consider the random walk conditioned to exit the lane in L, which is a Markov

chain with the single absorbing state L. The fundamental matrix of such a random walk,

see [16, Chapter III, page 65], is given by D−1ND, where D is the (L−1)× (L−1) diagonal

matrix whose elements are Pi[RE] for i = 1, . . . , L− 1. The inverse D−1 is diagonal and its

elements are 1/Pi[RE]. Thus, for i fixed

(D−1ND)1i = D−1
1s NsrDri =

1

P1[RE]
N1rDri =

1

P1[RE]
N1iPi[RE],

which proves (2.4).

Using the equality (2.4) the residence time computation can be reduced to the computa-

tion of properties of the non conditioned random walk, indeed

Γ =
1

P1[RE]

L−1∑
i=1

Pi[RE]E1[ni]. (2.5)

2.2. Mean number of visits

Since, as mentioned above, E1[ni] = N1i, in order to compute the mean number of visits of

the walker at the generic transient site i, we have to compute the first raw of the fundamental

matrix, which, we recall, is the inverse of the tridiagonal matrix I−Q given in (2.1). This can

be done in several different ways, here we follow the approach proposed in [20], which will

show to be very powerful to deduce the explicit formulae that we shall derive in Section 3.

Moreover, this approach will also allow an elegant derivation of the analogy that we shall

discuss in the Appendix A.

First we note that from [20, equation (1.2)] the determinant of the matrix I−Q is equal

to the last term θL−1 of the sequence θi defined by the following recursive equations{
θi = θi−1 − qipi−1θi−2 i = 1, 2, . . . , L− 1

θ−1 = 0, θ0 = 1.
(2.6)

We borrow from [20] also the definition of the sequence φi given through the recursive

equations {
φi = φi+1 − qi+1piφi+2 i = L− 1, L− 2, . . . , 2, 1

φL = 1, φL+1 = 0.
(2.7)

The sequences θi and φi are not independent, indeed, [20, Lemma 2] states that

θiφi+1 − qi+1piθi−1φi+2 = θL−1 i = L− 1, L− 2, . . . , 2, 1. (2.8)

In particular, since from (2.6) θ1 = 1, comparing (2.8) and (2.7) both for i = 1, we get

φ1 = θL−1. (2.9)
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Now, by using [20, Lemma 4 and Theorem 2] and exploiting the equality (2.9), we have

that

N1i =
1

φ1

φi+1

i−1∏
k=1

pk i = 1, . . . , L− 1. (2.10)

Equations (2.10) and (2.7) can be combined to derive a set of recursive equations for N1j.

Indeed, using (2.7) for i = 1 and (2.10) for i = 1, 2, we have

1 =
1

φ1

φ2 −
1

φ1

q2p1φ3 = N11 − q2N12. (2.11)

Using (2.7) for i = L− 1, and (2.10) for i = L− 1, L− 2, we get

φL−1 = 1⇒ 1

φ1

φL−1

L−3∏
k=1

pk =
1

φ1

L−3∏
k=1

pk ⇒ N1L−2 =
1

pL−2

N1L−1. (2.12)

Now, we consider (2.7) for i = L−2, . . . , 2 and multiply it for a suitable coefficient to obtain

1

φ1

φi

i−1∏
k=1

pk =
1

φ1

φi+1

i−1∏
k=1

pk − qi+1pi
1

φ1

φi+2

i−1∏
k=1

pk.

Exploiting (2.10) for i = L− 1, L− 2, . . . , 1, we get

N1i−1pi−1 = N1i − qi+1N1i+1. (2.13)

The derivation of equations (2.13) is the key point of our computation: the recursive

equations for θi and φi, thanks to the introduction of N1i, have been recast in a form which

can be easily solved once it is rewritten in the form of a current conservation law. Indeed,

by exploiting the fact that pi + qi = 1, we rewrite the whole set of equations (2.11)–(2.13) as

1− q1N11 = p1N11 − q2N12 = · · · = pL−2N1L−2 − qL−1N1L−1 = pL−1N1L−1. (2.14)

Thus, the recursive equations (2.13), together with the boundary equations (2.11) and (2.12),

allow to find the mean visit number profile N1i for i = 1, . . . , L− 1.

We denote by c the conserved quantity defined by equations (2.14) and solve by induction

the first L− 1 equations

1− q1N11 = p1N11 − q2N12 = · · · = pL−2N1L−2 − qL−1N1L−1 = c

obtaining1

N1i =

∏i−1
k=1 pk∏i
k=1 qk

− c
i−1∑
s=0

∏i−1
k=s+1 pk∏i
k=s+1 qk

i = 1, . . . , L− 1. (2.15)

1We remark that here, and in the following, we shall always adopt the convention that the sum and the

product symbols mean, respectively, 0 and 1 when the index corresponding to the first element is greater

than the one corresponding to the last one.
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The last equation pL−1N1L−1 = c of the set of equations (2.14) can be then used to set the

value of the constant c, indeed, from

pL−1

[∏L−2
k=1 pk∏L−1
k=1 qk

− c
L−2∑
s=0

∏L−2
k=s+1 pk∏L−1
k=s+1 qk

]
= c,

we get

c =

∏L−2
k=1 pk∏L−1
k=1 qk

[
1

pL−1

+
L−2∑
s=0

∏L−2
k=s+1 pk∏L−1
k=s+1 qk

]−1

. (2.16)

We remark that, summing N1i for i = 1, . . . , L − 1, one can use (2.15) to compute the

total length of the walk that, in the gambler’s ruin language, is the duration of the game. It

is a straightforward exercise to show that for the symmetric walk, namely, pi = qi = 1/2 for

i = 1, . . . , L− 1, one finds c = 1/L and N1i = 2− 2i/L, so that the duration of the walk is

2
∑L−1

i=1 (1− i/L) = L− 1, see [21, equation (3.5) in Chapter XIV]. The computation is more

involved in the homogeneous driven case, i.e., pi = p and qi = q for i = 1, . . . , L − 1 with

p 6= q. In such a case one finds c = (pL−2/qL−1)[1/p+(pL−2/qL−1)((q/p)L−1−1)/(q/p−1)]−1

and N1i = (pi−1/qi)[1− c((q/p)i − 1)/(q/p− 1)], and summing from 1 to L− 1 we find the

length of the walk 1/(q − p)− (L/(q − p))(1− q/p)/(1− (q/p)L), see [21, equation (3.4) in

Chapter XIV].

2.3. Right exit probability

The probability of absorption by one particular absorbing state is a classical topic both in

the gambler’s ruin problem [17,21] and in the absorbing Markov chains literature. Adopting

the gambler’s ruin point of view, we let ti = 1 − Pi[RE] be the probability that the walker

started at i exits the lane at 0, namely, the probability that the gambler with initial fortune

i is eventually ruined, and we note that
ti = qiti−1 + piti+1 i = 2, . . . , L− 2

t1 = q1 + p1t2

tL−1 = qL−1tL−2.

(2.17)

We just mention that the same set of equations can be found taking the absorbing Markov

chain point of view, indeed we let R be the (L−1)×1 column vector collecting the probability

to jump from any transient site to L, i.e., Ri1 = 0 if i = 1, . . . , L − 2 and RL−11 = pL−1.

Moreover, we consider the (L − 1) × 1 column vector B such that Bi1 = Pi[RE] is the

probability that the walker started at site i ends its walk in L. From [16, Theorem 3.3.7] we

have that B = NR, so that

Bi1 = NijRj1 = NiL−1pL−1. (2.18)
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Thus, the computation of the right exit probability is reduced to that of the last column of

the fundamental matrix. A computation similar to the one performed in Section 2.2 yields

the recursive equations for Bi1 analogous to (2.17).

Now, we come back to the study of the recursive equations (2.17), which can be rewritten

in the more compact form{
ti = qiti−1 + piti+1 i = 1, . . . , L− 1

t0 = 1, tL = 0.
(2.19)

To solve (2.19) we first note that the sequences si = 1 and ri =
∑i

k=1

∏L−1
r=k pr/qr are solutions

of the recursive equations, but do not satisfy the boundary conditions (recall the footnote 1).

The statement is trivial for si, while it requires some effort for ri:

qiri−1 + piri+1 = qi

i−1∑
k=1

L−1∏
r=k

pr
qr

+ pi

i+1∑
k=1

L−1∏
r=k

pr
qr

= qi

i−1∑
k=1

L−1∏
r=k

pr
qr

+ pi

i∑
k=1

L−1∏
r=k

pr
qr

+ pi

L−1∏
r=i+1

pr
qr

and thus

qiri−1 + piri+1 = qi

i−1∑
k=1

L−1∏
r=k

pr
qr

+ pi

i∑
k=1

L−1∏
r=k

pr
qr

+ qi

L−1∏
r=i

pk
qk

= qi

i∑
k=1

L−1∏
r=k

pr
qr

+ pi

i∑
k=1

L−1∏
r=k

pr
qr
,

which is equal to ri as qi + pi = 1. Thus, exploiting the recursive linearity of the equation

(2.19), we can look for a solution satisfying the boundary condition in the form ti = asi +

bri, where a, b are real constants. It is not difficult to verify that a = 1 and b = −[1 +∑L−1
k=1

∏L−1
r=k pr/qr]

−1 do the job, so that the sought for solution of the system (2.19) is

ti = 1− 1

1 +
∑L−1

k=1

∏L−1
r=k

pr
qr

i∑
k=1

L−1∏
r=k

pr
qr
. (2.20)

It is a straightforward exercise to check that in the homogeneous case, in which the jumping

probabilities are the same at each site, the classical results of the gambler’s ruin problem

(see, e.g., [21, equations (2.4) and (2.5) in Chapter XIV] or [17, Section 3.1]) are recovered.

Finally, recalling that ti is the probability that the walker started at i exits the lane at

0, we have that the right exit probability is given by

Pi[RE] =
1

1 +
∑L−1

k=1

∏L−1
r=k

pr
qr

i∑
k=1

L−1∏
r=k

pr
qr
. (2.21)

3. Explicit expression of the residence time in presence of a static defect

ResidenceTime˙RW˙Defect.tex – 3 gennaio 2022 8 0:33



In this section we suppose that all the sites 1, . . . , L− 1 share the same behavior, i.e., they

are regular, save for one site called defect [17, 18]. The defect site is the site 2 ≤ d ≤ L− 2.

More precisely, we assume that pi = p and qi = q = 1− p for all i = 1, . . . , L− 1 such that

i 6= d and pd = p̄ and qd = q̄ = 1 − p̄. We shall also write p̄ = p + ε and q̄ = q − ε, with

ε ∈ (−p, q) called bias. We will call symmetric the case in which p = q and driven that in

which p 6= q. In the driven case p− q is called drift.

Note that, if ε = 0 the defect is not present and the classical gambler ruin problem is

recovered. The case ε = −p cannot be considered, because it would mean that the walker

is reflected to the left with probability one by the defect and, hence, it would never reach

the right–end exit in L. The case ε = p is meaningful, but rather extreme, indeed, in such

a case, the defect pushes the walker to the right with probability one and this means that,

once the walker started at 1 has overcome the defect, it will never come back to the part of

the lane on the left of the defect. In any case this case is not covered by our study.

3.1. The symmetric case

We start by computing c given in (2.16). In the first factor all the terms cancel but the one

associated with the defect and the last term qL−1 at the denominator. The sum in the second

factor behaves similarly if s ranges from 0 to d − 1. On the other hand, for the remaining

L− 2− (d− 1) terms corresponding to s ranging from d to L− 2, the ratio results equal to

1/qL−1. Thus, we have

c =
2(1/2 + ε)

(1/2− ε)

[
2 +

2(1/2 + ε)

(1/2− ε)
d+ 2(L− 2− d+ 1)

]−1

,

which yields

c =
1 + 2ε

L(1− 2ε) + 4εd
. (3.22)

To compute the mean number of visits profile (2.15) we use similar arguments, but we

have to distinguish three cases. We get

N1i =



2− 2ci i = 1, . . . , d− 1
2

1− 2ε
(1− cd) i = d

2(1 + 2ε)

1− 2ε
− c 8εd

1− 2ε
− 2ci i = d+ 1, . . . , L− 1.

(3.23)

The following step is the computation of the right exit probability. From (2.21), distin-
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guishing two different cases, we have

Pi[RE] =


(1 + 2ε)i

L(1− 2ε) + 4εd
i ≤ d

(1− 2ε)i

L(1− 2ε) + 4εd
+

4εd

L(1− 2ε) + 4εd
i > d.

(3.24)

In view of computing the residence time, we now use (2.4) to give an explicit expression

of the local residence time profile:

Ei[ni|RE] =



2i− 2ci2 i = 1, . . . , d− 1
2d

1− 2ε
(1− cd) i = d

(1− 2ε)i+ 4εd

1 + 2ε

[
2(1 + 2ε)

1− 2ε
− c 8εd

1− 2ε
− 2ci

]
i = d+ 1, . . . , L− 1.

(3.25)

Finally, (2.3) is used to compute the residence time

Γ = (1− c)(d− 1)d+
2d(1− cd)

1− 2ε

−L− d− 1

3(1− 4ε2)
(−3d+ cd+ 2cd2 − 3L− cL+ 2cdL+ 2cL2 − 24dε− 4cdε

+ 16cd2ε+ 4cLε+ 16cdLε− 8cL2ε− 36dε2 + 4cdε2 + 56cd2ε2

+ 12Lε2 − 4cLε2 − 40cdLε2 + 8cL2ε2)

=
L3(1− 2ε) + 12dεL2 − L(1 + 24d2ε− 2ε) + 16d3ε− 4dε

3[L(1− 2ε) + 4εd]
.

(3.26)

The leading term for L large, uniformly in the choice of the other parameters d and ε, is

L2/3. Thus, the presence of the defect does not affect for large L the diffusive character of

the walk.

Finally, it is worth noting that equation (3.26), in the case ε = 0, reduces to the residence

time for the symmetric model in absence of defect, namely, for the gambler’s ruin problem.

Indeed we get Γ = (L2 − 1)/3 as also shown in [18, Section IV.A].

Note that the model presented and analyzed so far is analogous to the one studied by

Ciallella et al. in [17]. Fig. 3.1 shows the dependence of the residence time Γ on the defect

site position d in a symmetric random walk, computed through the use of formula (3.26).

In particular, Fig. 3.1 shows that the behavior of the residence time as a function of

the defect site d is analogous to that already observed in [17]. In fact, the residence time is

maximized or minimized by the position of the defect, depending on the sign of ε, and it is

not affected by the defect intensity when d coincides with the central site of the lattice.
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Figure 3.1: Residence time as a function of d for a symmetric random walk (i.e., p = q = 0.5)

for L = 101. In particular, plain circles, triangles and diamonds refer to the defect intensities

ε = −0.4, −0.3, −0.2 respectively, while same symbols but empty refer to ε = 0.4, 0.3, 0.2.

The solid line corresponds to the residence time of the system without any defect, namely

Γ = 3467.7 time steps.

3.2. The driven case

We start by computing c given in (2.16). In the first factor all the terms contribute with the

ratio p/q but the one associated with the defect, which is p̄/q̄, and the last term qL−1 at the

denominator. The sum in the second factor behaves similarly if s ranges from 0 to d − 1.

On the other hand, for the remaining L− 2− (d− 1) terms corresponding to s ranging from

d to L− 2, the ratio results equal to (p/q)L−2−s(1/q).

In order to make the following formulae more compact and legible, we will use the short-

hand notation

A =
q

p
and Ā =

q̄

p̄
.

With this convention, we have

c = A3−L 1

Ā

1

q

[
1

p
+

d−1∑
s=0

As+3−L 1

Ā

1

q
+

L−2∑
s=d

As+2−L1

q

]−1

,

which, after some algebra, yields

c = A3−L 1

Ā

1

q

[
1

p
+ A3−L 1

Ā

1

q

Ad − 1

A− 1
+ A2−L1

q

AL−1 − Ad

A− 1

]−1

. (3.27)
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To compute the mean number of visits profile (2.15) we use similar arguments, but we

have to distinguish three cases. We get

N1i =



A1−i1

q

[
1− cA

i − 1

A− 1

]
i = 1, . . . , d− 1

A1−d1

q̄

[
1− cA

d − 1

A− 1

]
i = d

A2−i 1

Ā

1

q
− c
[
A2−i 1

Ā

1

q

Ad − 1

A− 1
+ A1−i1

q

Ai − Ad

A− 1

]
i = d+ 1, . . . , L− 1.

(3.28)

Note that, due to the presence of the term 1/q̄ in the front factor, the second case is not

simply a particularization of the first one.

The following step is the computation of the right exit probability. Although not strictly

necessary to derive the expression of the residence time, we first compute the front factor

appearing in (2.21):

Z = 1 +
L−1∑
k=1

L−1∏
r=k

pr
qr

= 1 +
1

ĀAL
Ad+1 − A
A− 1

+
1

AL
AL − Ad+1

A− 1
. (3.29)

Distinguishing two different cases, from (2.21) we have

Pi[RE] =


1

Z
A2−L 1

Ā

Ai − 1

A− 1
i ≤ d

1

Z
A2−L

[ 1

Ā

Ad − 1

A− 1
+

1

A2

Ai+1 − Ad+1

A− 1

]
i > d.

(3.30)

Using (2.4), (3.28), and (3.30) it is possible to give an explicit formula for the local

residence time profile Ei[ni|RE] for i = 1, . . . , L − 1. Finally, using (2.3) we compute the

residence time that we report here without adopting the shorthand notations A and Ā. We

have

Γ =
[
(p− q)2

(
− pq + pq

(q
p

)L
− qε− p

(q
p

)L
ε+

(q
p

)d
ε
)]−1(q

p

)−d
×
[
− 2pq

(q
p

)L
ε−

(q
p

)2d(
(1 + 2d− L)p2 + 4pq + (1− 2d+ L)q2

)
ε

+
(q
p

)d(
pq(p− Lp+ q + Lq) + q(3p− Lp+ q + Lq)ε

− p
(q
p

)L(
(1 + L)p(q − ε) + q(q − Lq + (L− 3)ε)

))]
.

(3.31)

The leading order in L, uniformly in the choice of the other parameters d and ε, is L/|p −
q|. Thus, the presence of the defect does not affect the ballistic character of the drifted
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conditioned walk. It is interesting to remark that this behavior, due to the right conditioning,

is conserved also for q > p, where in a not conditioned walk we would expect an exponential

behavior with L of the mean first hitting time to L.

Fig. 3.2 shows the behavior of the residence time Γ in a driven random walk as a function

of the defect site d. In particular, two cases have been distinguished, both with positive drift

(p− q > 0): the first with ε < 0 and the second with ε > 0.

Figure 3.2: Residence time as a function of d and of the drift p − q, with p > q, for a

uniformly driven random walk and for L = 101. The left and right panels refer to the

system with ε = −0.3 and ε = 0.3 respectively. In both panels, circles, triangles, diamonds

and square refer to p = 0.51, 0.52, 0.53, 0.54 respectively. Dashed lines refers to the reference

residence time for the symmetric random walk (i.e., p = 0.5), while horizontal solid lines

correspond to the residence times of the driven random walks with same values of p, but

without defects. From the top plot to the bottom one, the no-defect residence times are

Γ = 2775, 1926, 1422, 1119 time steps for p = 0.51, 0.52, 0.53, 0.54 respectively.

Fig. 3.2 shows how the system with driven random walk and positive drift (i.e., where

p > q) behaves differently depending on the sign of ε, especially for small values of the drift.

In particular, in the system characterized by p > q and ε < 0 it can be noted that for small

values of the drift there are intervals of the defect position where the residence time is larger

than in the symmetric walk case, despite the drive towards the right exit of the lattice (see

Fig.3.2, left panel). In both cases (ε > 0 and ε < 0), an increasing value of the drift yields

a weaker dependence of the residence time on the position of the defect. In all the cases

reported in Fig. 3.2, the residence times have been computed using formula (3.31).
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4. Models with one stochastic defect

In the present work, we are interested in studying the effect of different dynamics of

the defect on the mean number of visits and on the local and total residence times. Thus

the model with static and fixed defect is modified yielding four different versions. The first

two are obtained by assuming that the defect is fixed in space, but it is active (ε 6= 0) or

not (ε = 0) according to a certain stochastic rule (Models A and B). In the other two, the

position of the defect is chosen according to a certain probability distribution over the lattice

sites (Models C and D). All the models will be described more in detail and the analytical

results obtained in the previous sections are used to derive the mean number of visits and

the local and total residence times. These models will be recast as a random walk without

defects or with a single static defect through a suitable choice of parameters.

Model A: the defect placed at site d is kept fixed during the random walk, but it is active

with probability ψ at each time step. It is immediate to prove that this model generates

a behavior which is equivalent to the model with a single static defect at site d, where the

defect site is characterized by modified jump probabilities, namely p̄ = p+ψε and q̄ = q−ψε.
Model B: the defect placed at site d is kept fixed during the random walk, but it is active

for a random number of time steps (defect is attached to the lattice), sampled from a Poisson

distribution of parameter λA and non-active for a random number of time steps (defect is

detached from the lattice), sampled from a Poisson distribution of parameter λD [22]. This

model generates an average behavior which is equivalent to that of the fixed and static

defect model, where the defect site is characterized by jump probabilities p̄ = p + λA
λA+λD

ε

and q̄ = q − λA
λA+λD

ε.

Model C: the defect position is sampled uniformly over the lattice sites at each time step.

This model generates a behavior which is equivalent to that of a driven random walk with

jump probabilities p̄ = p+ ε
L

and q̄ = q − ε
L

, evolving through a lattice with no defects.

Model D: the defect position is sampled at random from a discrete triangular distribution

over the lattice sites at each time step. The triangular distribution is characterized by its

mode d and its support [d − a, d + a], with d − a ≥ 2 and d + a ≤ L − 2. This model

generates a behavior which is equivalent to that of a non-homogeneous random walk with

jump probabilities p̄(i) = p + βiε and q̄(i) = q − βiε, where βi is the probability to find the

defect at site i.

For Models A and B we shall use results provided in Section 3.1 if the walk is symmetric

and those of Section 3.2 if the walk is driven. For Model C we use results of Section 3.2

particularized to the case of no defect. Finally, for Model D we will use the general results

of Section 2.

ResidenceTime˙RW˙Defect.tex – 3 gennaio 2022 14 0:33



Figure 4.3: Mean number of visits and local residence time for Models A and B for d = 51.

Solid lines refer to the random walk model without defects, dash-dotted lines refer to the

model with fixed and static defect, empty triangles refer to Model A with ψ = 0.75, and

empty diamonds refer to Model B with λA = λD = 100. In all cases ε = 0.4 and L = 101.
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Figure 4.4: Mean number of visits and local residence time for Models A and B. From the

top to the bottom d = 26 and d = 76. Solid lines refer to the random walk model without

defects, dash-dotted lines refer to the model with fixed defect, empty triangles refer to Model

A with ψ = 0.75, and empty diamonds refer to Model B with λA = λD = 100. In all cases

ε = 0.4 and L = 101.
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Fig. 4.3 and 4.4 show a comparison in terms of mean number of visits and local residence

times between the model with fixed and static defect and Models A and B. Details on the

parameters are reported in the figures captions. Notice that the mean number of visits and

local residence times have been computed using formulae (3.23) and (3.25) respectively. The

lattice has a odd length to account for the possibility of properly defining a central site. It

can be observed that adding a stochastic dynamics to the defect results in a reduction of the

amplitude of the jump discontinuity in the mean number of visits and in the local residence

times profiles. Another remarkable effect of the defect is that on the local residence times

(see Fig. 4.3, right panels). In fact, the values of the local residence times and the amplitude

of the jump discontinuity are remarkably higher when d = 26 than when d = 76. Recalling

equation 2.3, it can be seen that this behavior is in agreement to that of Γ as a function of

d in Fig. 3.1 when ε > 0, where the asymmetric effect of the defect position on the total

residence time is stronger on the left half of the lattice than it is on the right half. In general,

residence times for Model A and B behave exactly as those in the fixed and static defect

model, except for a proper scaling of Γ due to the reduced effectiveness of the defect site

(whose intensity is diminished by a factor of ψ or λA
λA+λD

for Model A and B respectively).

Figure 4.5: Mean number of visits and local residence times for Model D for different values

of a and same metrics for Model C. Dash-dotted lines and asterisks refer to the model with

fixed and static defect and to Model C respectively. Triangles, diamonds and squares refer

to Model D with a = 5, 25, 49 respectively. All the models are characterized by ε = 0.4,

d = 51 and L = 101. Solid lines refer to the no-defect model.

In Fig. 4.5 the effect of the motion of the defect in terms of mean number of visits and

local residence times is reported, comparing the model with fixed and static defect with

Models C and D. The mean number of visits and local residence times corresponding to

the fixed and static defect model and to Model C have been computed through formulae
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(3.23), (3.25), (3.28) and (3.30) respectively. The profiles for Model D have been obtained

through the general formulae (2.15) and (2.4) where (2.21) has been used for the right-exit

probability.

In this case, the main effect of the defect motion on the mean number of visits and on

the local residence times is to smooth out the profiles and produce a transition from the

discontinuous piecewise-linear behavior of the model with fixed defect to the continuous,

smooth profile related to Model C, where the defect can be found uniformly at random in

every site of the lattice. In particular, taken Model D, the case a = 0 ideally coincides with

the model with fixed defect, since the defect has probability 1 to be placed in a specific site.

Figure 4.6: Residence times for Model D as functions of a/L. From the left to the right,

Model D with mode d = 25, 51, 75. In all the panels L = 101 and empty circles, triangles

and diamonds refer to defect intensities of ε = 0.2, 0.3, 0.4 respectively. The solid horizontal

lines correspond to residence times in the model with fixed and static defect, namely Γ =

5167.5, 4565.4, 4110.3 time steps for d = 25 and ε = 0.2, 0.3, 0.4 respectively, Γ = 3467.7

time steps for d = 51 and Γ = 3035.8, 2868.9, 2725.5 time steps for d = 75 and ε =

0.2, 0.3, 0.4 respectively. Asterisks in central panel indicate the residence times obtained

from simulations.

A noticeable aspect is the effect of the defect motion on the residence time Γ. It can

be observed that, independently of the value of ε (with ε > 0) and from the width of the

triangular distribution (parameterized by the width normalized to the lattice length, namely

a/L), the residence time in presence of a moving defect is always shorter than that of the

system with fixed defect, at least when the center d of the distribution coincides with the

central lattice site or it is placed at its left, see left and central panels in Fig. 4.6. When

ε > 0 and the center of the distribution is placed in the right half of the lattice, there is

only a finite interval of values of a/L for which the residence time in presence of the moving

defect is shorter than the corresponding for the fixed defect, as can be seen from the right

panel in Fig. 4.6.

ResidenceTime˙RW˙Defect.tex – 3 gennaio 2022 18 0:33



The most important observation about this model is the residence time invariance with

respect to the sign of ε when Γ is a function of the defect motion (to be intended as the

triangular distribution spread a). In fact, the behavior of Γ shown in Fig. 4.6 is also obtained

for ε < 0, except for the fact that the behavior observed for d = 25 in the case ε > 0 is

recovered for d = 75 and ε < 0 and vice-versa. This symmetry with respect to the central

site of the lattice for different signs of ε is of the same nature of that shown in Fig. 3.1 and

can be traced back to the effects of the hopping probabilities pk and qk on formulae (2.15),

(2.16) and (2.21). More specifically, this result can be explained as follows: defect moving

around the central lattice site and having positive intensity will increase the local residence

time in the sites to the right of the center and decrease it in those to the left; on the other

hand, defect moving around the central lattice site and with negative intensity will have the

opposite effect. In these two systems, the local residence times will be distributed differently

(in particular, they will be symmetric with respect to the lattice center) but they will sum

up to the same value of Γ.

These remarkable results on the behavior of such a system have been tested against

computer simulations (see Fig. 4.6, central panel, for the residence times resulting from

simulations). In particular, a random walk on the line algorithm has been implemented which

takes into account the dynamics of the defect site. A large enough number (15 ·106) of walks

have been simulated and averages over the resulting set of trajectories have been computed.

As shown in the central panel of Fig. 4.6, an optimal agreement between simulations and

theory is obtained for all the tested values of ε and a.

5. Discussion and conclusions

We have studied the residence time in the framework of a simple random walk on a 1D

lattice that we called lane. By using the theory of absorbing Markov chains we have first

derived the expression (2.5), in which the residence time is written in terms of the probability

that the walker started at a generic site i exits the lane through the right exit at L and the

mean number of visits that the walker pays at site i. For these building bricks we have found

general expressions, in Sections 2.2 and 2.3, which are valid for any choice of the left an right

jump probabilities, qk and pk, defining the walk.

These results have then been used in Section 3 to write the residence time in the case of

a homogeneous walk with a single static defect. In particular, in Sections 3.1 and 3.2, we

have derived explicit expressions for the residence time in the symmetric and in the driven

case. Those expressions revealed to be very useful in the following sections to study cases in

which a defect dynamic is considered. In particular we have shown that adding a dynamic

to the defects induces a smoothing of the observable behaviors that present abrupt jumps in
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the case of a static defect.

Although the simple random walk is a very basic model, we have seen how it can provide

general interesting insights for the residence time behavior, such as the large L behavior.

One of the interesting features of studying simplified models is the fact that they can help

to shed some light on the behavior of much more complex systems. We want to discuss two

interesting cases coming from two very different applicative contexts.

We first consider the crowd dynamics problem introduced in the paper [23]: pedestrians

move from the left to the right through a rectangular corridor avoiding other pedestrians

which form vertical queues, namely, queues orthogonal with respect to the direction of motion

of the passing pedestrians. The model introduced in this paper is very complicated, many

parameters accounting for the several interaction acting on the pedestrians are considered,

and it is used to study in detail the different effects that enter in the computation of the

residence time, i.e., the mean time needed by the passing pedestrian to cross the corridor.

In particular the authors compute the quantity Ipas, which is defined as the ratio between

the residence time in absence of queues and the residence time in presence of queues. In

particular, in [23, Fig. 8], the authors study its behavior as a function of the parameter φ,

which is the parameter weighting the repulsive force that the passing pedestrians exert on

the queuing ones.

In our simplified modelling, the walker can be thought as the passing pedestrian and the

effect of the queuing pedestrians on it can be reduced to the presence of the defect site. Our

model can be thought as a sort of effective model for the passing pedestrian problem with the

parameter ε, associated with the defect, containing all the informations on the interactions

conditioning the motion of the passing pedestrians. For instance, coming back to [23, Fig. 8],

it is possible to use our explicit formula (3.31) for the residence time in the driven case to

fit the data of [23, Fig. 8] assuming that the effective ε is related to the parameter φ by the

very general function

ε(φ) = ā
φα

φα + c
− b̄. (5.32)

If we consider, in our model, p = 0.55 and q = 0.45, from the extreme data in the picture

we have that ā = 0.2230 and b̄ = 0.4152. Performing the best fit we find α = 6.043 and

c = 1.074. The comparison between our prediction and the data in [23] is depicted in Fig.5.7.
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Figure 5.7: Fitting of the values of the efficiency parameter Ipas as extracted from [23, Fig. 8].

Dotted line with empty circles represents the data to be fitted, while the solid line is the

analytical Ipas as a function of ε(φ) obtained by using formula (3.31) for the residence times

and fitting the parameters in formula (5.32).

Equation (5.32) gives the effective value, as a function of the parameter φ, of the decrease

in probability that the passing pedestrian crosses the queue when it reaches it. It is worth

nothing that this result is robust in the sense that the fitting parameters α and c appear to

depend poorly on the choice of the left and right jumping probabilities p and q in the simple

random walk model.

Another relevant application of the residence time idea is related to stormwater runoff

ponds design. Water running off from residential and urban areas, possibly after severe

meteorological events like storms and heavy rainfalls, is known to drain and transport lots

of different pollutants, which may result in a serious threat for water or marine ecosystems.

To prevent drained pollutants to reach delicate water ecosystems, natural and artificial

ponds are used to accelerate the deposition and absorption of undesired substances and

components. As it has been demonstrated [24], residence times of the water flow inside the

ponds are of crucial impact on their effectiveness. In particular, the higher the residence

time, the higher is the pond efficiency in terms of deposition of pollutants [25]. Different

design strategies, aimed at increasing the efficacy of the ponds, have been proposed. For

instance, the installation of baffles, underwater berms or surface islands, acting as obstacles

to the water flow, can increase significantly the residence time [26,27].

Design aspects, like the maximization of the residence time, are studied in the literature

by means of fluidodynamic approaches [26]. It is very interesting to remark that the qual-

itative behavior of those results can be interpreted by using our random walk model. We

ResidenceTime˙RW˙Defect.tex – 3 gennaio 2022 21 0:33



analyze, for instance, the results discussed in [26] where a rectangular pond is considered

and the water inlet and outlet are placed symmetrically on the shortest sides of the pond.

In particular we focus on the results reported in [26, Fig. 5], where RTD curves are plotted

versus time in five cases: pond with no baffle (case 1), pond with an island placed at one

quarter of pond length from the inlet (case 5), pond with an island placed at one tenth

of pond length from the inlet (case 6), pond with a subsurface bern placed at one quarter

of pond length from the inlet (case 7), pond with a subsurface bern placed at half pond

length from the inlet (case 8). Those curves have been found by solving numerically suitable

fluidodynamic equations.

These geometries are compatible with our 1D model, since the islands and the berns

act symmetrically along the direction parallel to the shortest sides of the pond, namely, the

direction orthogonal to the main water motion.

Data in [26, Fig. 5] show that the residence time in case 5 is larger than that in case 6,

which, on turn, is larger than the residence time in case 1. This is precisely what we observe

in our random walk driven model discussed in Section 3.2. Indeed, if one focuses on any of

the curves with larger drift plotted in the left panel of Fig. 3.2, one can see that the residence

time increases when a defect is placed at the site 10 (one tenth of the length of the lane) and

increases even more when it is placed at the site 25 (one fourth of the length of the lane).

Figure 5.8: Residence time as a function of d for a uniformly driven random walk with

p = 0.54, ε = −0.3 and L = 101. Dotted line with plain squares refers to the residence

time of the walker for varying defect site. Horizontal solid line corresponds to the residence

time of the driven random walk with same value of p, but without defects. The no-defect

residence time is Γ = 1119 time steps, while for d = 10 and d = 25 the residence times are

Γ = 1127, 1274 time steps respectively.
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In particular, Fig. 5.8 shows the case in which p = 0.54, where this behavior is more

visible.

The random walk model does not appear to be completely effective when berns are

considered. Indeed, data in [26, Fig. 5] show that the residence time in case 7 (very similar

to the one measured in case 5) is larger than that in case 8, which, on turn, is larger than

the residence time in case 1. The fact that the residence time in case 7 is larger than that in

case 1 is compatible with our results plotted in the left panel of Fig. 3.2. On the other hand,

based on our analysis, we would have expected that the residence time in case 8 would have

been very similar to the one measured in case 7, but this seems not to be the case.

Summarizing, we have developed a rather complete theory of the residence time for the

random walk in presence of defects. In particular, we have found explicit expressions in the

case of a single defect, both in the symmetric and in the driven case. We have discussed our

results in the framework of our abstract model and we have also shown how they can help,

to some extent, to understand the behavior of much more complex systems.

A. Analogy with the stationary occupation number profile

We consider a system of many independent particles performing a random walk on 1, . . . , L−
1 in continuous time. We suppose particles move with rate one according to the jump

probabilities introduced in Section 2. Moreover, particles are introduced with rate α at site

1 and δ at site L− 1.

This system can be recast as a Zero Range Process with open boundaries and intensity

function associated with site i equal to the number of particles occupying such a site [28,29].

The mean value of particles occupying each site of the lane 1, . . . , L − 1 at stationarity

satisfy a set of recursive equation identical to equations (2.14) provided we choose α = 1

and δ = 0. See, for instance, [30, equation (13)], where the equations are reported for a

case in which the jump probabilites are spatially homogeneous, or [29, equation (14)], where

the equations are again reported for a case in which the jump probabilites are spatially

homogeneous but the presence of a defect site is taken into account. The generalization of

the formulae in [29,30] to the case of arbitrary jumping probabilities is straightforward.

Thus, we can conclude that the mean number of visits profile of a random walk with two

absorbing site coincides with the stationary occupation number profile of the independent

particles Zero Range Process with same jumping probabilities and inlet rate 1 on the left–end

of the lane and 0 on the right–end of the lane.

In [29] the stationary occupation number profile has been explicitly computed in the

symmetric case discussed here in Section 3.1 for the defect at the center of the lane. Indeed,
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equations (3.22) and (3.23) reduces to [29, equations (20) and (21)] provided we choose the

parameters as follows: L− 1 = 2R + 1, d = R + 1, α = 1, and δ = 0.
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