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Previously derived “global” thermodynamic speed limit theorems state that increasing the max-
imum speed with which a system can evolve between two given probability distributions over its
states requires the system to produce more entropy in its evolution. However, these theorems ig-
nore that many systems are not monolithic, but instead comprise multiple subsystems that interact
according to an (often sparse) network. Indeed, most naturally-occurring and human-engineered sys-
tems of increasing complexity can be decomposed into sets of co-evolving subsystems, where there
exist a priori constraints on the dynamics of each subsystem, restricting which other subsystems can
affect its dynamics. Here we derive three new SLTs that account for the thermodynamic effects of
such constraints. Our first new speed limit strengthens the global speed limit. While our other two
SLTs do not have this guarantee, in some situations they are even stronger than our first speed limit.
Our results establish that a stochastically evolving system will, on average, produce more entropy in
evolving between two distributions within a given time simply due to its comprising multiple, co-
evolving subsystems. We illustrate our results with numerical calculations involving a model of two
cells sensing and storing information about their environment.

Introduction

We can characterize a stochastic process by the mini-
mum time it takes to evolve from one particular, spec-
ified probability distribution over its states into an-
other specified distribution. To give just a few ex-
amples, such lower bounds usefully describe: a cell
that senses a change in its environment [}, [2]] or syn-
thesizes a protein [3]; a set of chemical species that
changes their concentrations via a chemical reaction
network [4] [5]; a genome that evolves to include par-
ticular mutations [6} [7]; a digital device that completes
a particular computation [8, [9]; a network of neurons
that store, process and transmit information [10H12]] or
(re)configures itself [13] [14]; and an opinion network
that evolves from a unimodal to a bimodal state [15][16].

Continuous-time Markov chains (CTMC’s) can accu-
rately serve as models of many of these stochastic pro-
cesses. With the new body of work sometimes called
(classical) “stochastic thermodynamics” [I7H22] devel-
oped in the last two decades, we have drastically im-
proved our ability to analyze the thermodynamics of
CTMCs. For example, thermodynamic uncertainy re-
lations (TURs) [23],/24] have shown that dissipated work
constrains the fluctuations in any current flowing in a
system at a steady state arbitrarily far from equilib-
rium. Additionally, fluctuation theorems (FTs) 18] 25}
26 have shown that probability distributions over any
functional of a stochastic trajectory obey symmetries
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that constrain their even and odd moments.

In addition to these powerful new results, the last few
years have brought about a quickly growing set of lower
bounds on the time it takes a system evolving according
to a CTMC to move from one given distribution over the
system’s states to another one [27H33]. These “thermo-
dynamic speed limit theorems" (SLTs) reveal a trade-off
between the time for the evolution to take place, and
the amount of work dissipated (and, thus, free energy
consumed) during that evolution.

As a canonical example, the SLT derived in [33]] lower
bounds this time of evolution with a quantity propor-
tional to the total variation distance between the initial
and final distributions over system states; and inversely
proportional to the total entropy production (EP) and
time-averaged dynamical activity. When local detailed
balance holds, the EP equals the work a system must
dissipate during a process, i.e., the degree to which the
total entropy of the universe increases, or the expended
free energy that cannot be recovered. Therefore, in-
tuitively, this SLT declares that if we modify a CTMC
to make it change its distribution either by a greater
amount or in less time, then we must “pay for” that
faster evolution by increasing (a lower bound on) the
total dissipated work.

However, like most of the other theorems in (clas-
sical) stochastic thermodynamics [17, [19, 20, [34], the
previously derived SLTs do not exploit any information
concerning the internal structure of a system. In par-
ticular, these SLTs ignore all aspects of how the system
might decompose into a set of co-evolving subsystems.
Although this attribute allows for their broad applica-
bility, these SLTs will, in general, provide increasingly
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weak bounds for systems of increasing complexity. As a
result, such “global SLTs”, along with other previously
derived thermodynamic relations (such as the TURs and
FTs) that formalize systems as monolithic entities, most
appropriately apply to nanoscale systems [18] [35H41]],
whose internal structure is either unimportant (because
the system is so small) or unknown.

Importantly, this shortcoming needlessly limits the
strength of these results. For many systems above the
nanoscale, we know much about how their internal sub-
systems influence each other. For example, many sets of
co-evolving subsystems form modular interaction net-
works [42H52]. This kind of internal structure can be
formulated as a set of constraints on the CTMC govern-
ing the overall dynamics of the whole system.

Here we derive tighter SLTs by analyzing how con-
straints on the allowed dynamics in a system affect its
stochastic thermodynamics. Specifically, we explore a
major class of dynamical constraints that arises in sys-
tems of increasing complexity, as imposed by the prop-
erty that they decompose into sets of co-evolving sub-
systems, where the interactions between subsystems re-
strict how the overall, combined system can evolve.

We begin by reviewing the relevant stochastic ther-
modynamics of co-evolving subsystems, with empha-
sis on subsystem-indexed contributions to thermody-
namic quantities such as the entropy production. As
commonly done in the literature, we assume that sub-
systems are spatially separated, and therefore that the
overall system evolves as a multipartite process (MPP)
(43 [44] [48] [49].

We next derive three major results, each a new SLT ap-
plicable to multipartite processes. The first SLT demon-
strates that accounting for the dynamical constraints re-
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FIG. 1. An example of a multipartite process. This MPP con-
sists of four subsystems and maps to the abstracted MPP given
in Fig.[2| Subsystem 3 is I, the concentration of the ligand in a
cellular medium. Two "nearby" cells sense this ligand concen-
tration. The number of bound receptors, 1y, in Cell 1 com-
prise subsystem 2, and the number of bound receptors, 7;,, in
Cell 2 comprise subsystem 4. Subsystem 1 represents a mem-

ory of (phosphorylated) proteins, #,,, in Cell 1 that observes
the state of its receptors.

sulting from the internal structure of interactions in an
MPP strengthens the bound on the minimum time re-
quired for that system to evolve between two distribu-
tions. In deriving our second SLT, we note that an im-
portant concept in analyzing a set of co-evolving sub-
systems is that of a "unit", which is a subset of subsys-
tems whose joint dynamics is independent of the state
of all the other subsystems. While subsystems outside
of a unit can “observe” (depend on the state of) a sub-
system in a unit, the reverse is not true. This SLT shows
that a system can never evolve faster than its slowest-
evolving unit. Our third SLT shows that a system can
never evolve faster than its slowest-evolving subsystem.

We prove that the first SLT is always at least as strong
as the global SLT in [33]], regardless of the details of the
system’s dependency constraints. The other two SLTs do
not always have this guarantee; however, in many cases,
they are stronger than our first SLT. We derive our new
SLTs in full detail in Appendices S1 and S2.

We then conduct numerical calculations to explore
the strength of our new SLTs for the example MPP of a
cell sensing its environment, a model previously studied
in the literature [1,[53]]. This example, depicted in Fig.
consists of two sets of cellular receptors and a cellular
memory that sense and record the value of a changing
ligand concentration.

We end the main text with a discussion of the signifi-
cance of our results, a summary of thermodynamic con-
sistency and auxiliary results (including new speed lim-
its for Bayes’ Nets) derived in the sections S3 - S10 of the
Appendices, and suggestions for future work.

We summarize all notation used in the main text in
Appendix S11.

Results

Stochastic thermodynamics of multipartite
processes

A set of co-evolving systems can be modeled to evolve
as a multipartite process (MPP). Formally, an MPP de-
scribes any system with the property that no two of its
subsystems can change state at exactly the same time.
We call this the multipartite property. MPPs are ex-
tremely common [43} [44] [48] [49], including biologi-
cal sensors, information engines, and Ising spin sys-
tems that can be modeled with the Gillespie algorithm
or kinetic Monte Carlo simulations [54]. Other exam-
ples include eukaryotic cells, which consist of multi-
ple interacting organelles and biomolecular species [1I].
Subcellular processes such as protein synthesis could
also be modelled as MPPs, with subsystems as riboso-
mal subunits, mRNA, and sets of tRNA-activated amino
acids [3]. An MPP can have any arbitrary collection
of dependency constraints, i.e., restrictions on how the
dynamics of each subsystem depends on the states of
the other subsystems. This includes non-reciprocal cou-
plings between subsystems [553]], such as those that can
be found in networks represented by directed acyclic
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FIG. 2. An example of a multipartite process. The system con-
sists of four subsystems, indicated by outlined circles. The ar-
rows represent dependencies that restrict the associated sub-
system’s rate matrices: the state of subsystem 1 at time t + 6t
depends on the state of subsystems 1 and 2 at time t; sub-
system 2 depends on 2 and 3; subsystem 3 depends only on
itself, and subsystem 4 depends on 3 and 4. The set of all de-
pendency constraints can be represented as a directed acyclic
graph (DAG), called a dependency graph (1 « 2 « 3 — 4).
Five units exist in the system aside from the global system it-
self: {w,a,,B,1}. Each unit structure, indicated by circle-
capped vertical lines, is a set of units that is closed under in-
tersections and that covers N. There are four possible unit
structures, Ny = {w, &, ¢}, N = {w, @, ¢, 8}, N3 = {w, 9, B}, or
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graphs (DAGs) [56]. This assumption of no “back-
action” is used throughout literature [1}[57].

The ubiquity of MPPs arises because, unless two sub-
systems occupy the exact same location, they will not
be coupled to the same degrees of freedom in the exter-
nal reservoirs. Therefore, it is physically impossible for
them to change state at the exact same moment due to
a single fluctuation in their interaction with a reservoir.
Additionally, continuous time also allows for successive
state transitions to occur arbitrarily closely in time.

We consider an MPP A that comprises a set of N sub-
systems with finite state spaces {X;:i=1,...,N}. x indi-
cates a state vector in X = X;c X;, the joint state space
of the full system. For any set of subsystems A C N,
we write —A := N\A, and x4 indicates an element of
X4 =Xiea X;. For any two distributions p and p’ over X,
we write the total variation (L1) distance between them

as
)= |px—pi] (1)

We indicate the Shannon entropy of a distribution over
states X4 as S*4 or S4. We set kg = 1.
The joint dynamics over X is given by the master

equation

It ZK" I 2

In an MPP, there also exists a set of N (possibly time-
varying) stochastic rate matrices, {K}C"(i;t) :i=1,...,N}
where K (i;t) = 0 Vi,t, {x",x|x’; # x_;}, and we can de-

compose
= ) KXG;t) (3)
ieN
Similarly, for any BC N, KX (B;t) = ¥ ;e K¥ (i51).

In an MPP, K¥'(t) = 0 if x” and x differ in more than
one component. In other words, at any given moment in
time, only one subsystem can undergo a state transition.
This means that the global rate matrix is sparse for many

MPPs.
Note that for all x’ £ x,

K¥ (i) = K (£)8(x;,x_;) (4)

For each subsystem i, we write r(i;¢) for any set of sub-
systems at time ¢ that include i and for which we can
write

’ X,
K3 (i50) = K000 80 oy %) (5)
In general, for any given i there could be multiple such
sets r(i;t). We refer to a specification of any r(i;¢) as a
dependency constraint.

We define a unit w (at an implicit time f) as a set of
subsystems i such that i € w implies that r(i;t) C w.
Consequently, any intersection of two units is a unit,
as is any union of two units. For any unit w, we can
decompose K;;f(w;t) = Z,ewKx;”(z t). So, by Eq. ( .,
K (w031) = Yiew K¥ (i51) = Kz (@3 1)0(X 0 X_qy)-

We write A/ for the set of all units in N, other than
the global system itself. For the example system shown
in Fig.[2} N** = {w, a, $, B, ). For later use, we also de-
fine N7 = N UN.

As is standard in the recent literature on MPPs [47-
49, we assume that there are pre-fixed time intervals in
which A doesn’t change, and restrict attention to such
an interval.

Crucially, the local marginal distribution p,_(f) of any
unit w at any time t evolves as a self-contained CTMC

with the local rate matrix K,’:j’(w; t) (proved in Appendix

A of [49]):
ZK ZZK “(i3t)py (1)

X X, i€w
(6)

This means that any unit obeys all the usual stochas-
tic thermodynamic theorems for CTMCs, e.g. the sec-
ond law, FTs, TURs, and SLTs. In general, this prop-
erty does not hold for any single subsystem or any set of

dpxm



subsystems (that is not a unit) in an MPP, due to each
subsystem’s dependency constraints [49]]. Instead, the
marginal distribution of subsystem i changes as

px, ZK i )py (t (7)
= ) K (i) ()= KX (i30)pa(t) (8)
x'Ex
= Z ZK g 71' (i tpx X ( ) - K;/ x;Z(l t)pxi,xii(t) (9)
x'; xl#x;

For any MPP, we write the global time-averaged dynam-
ical activity (often interpreted as the frequency of state
transitions) during the time interval [0, 7] as

Aye= 1 [ Y dr o (10)

X' #x

We write the global EP rate as
/ KX,(t)px’(t)]
N x x
t)y=) Ki(t)py(t)ln 11
=) K (et [K;(t)px(t) (1)

Integrating the global EP rate over the interval [0, ] pro-
vides the total global EP (N (7).
In our notation, the major result of [33] —

2
SIT” — reads 7 > T := m% Note that al-

though the global SLT can be applied to an MPP, it
does not account for any of the MPP’s dependency con-
straints.

In order to derive SLTs that account for the multipar-
tite nature of the system dynamics, we decompose the

global EP rate (6N (t)) for an MPP at time ¢:

=) ) K(0pe(dln [w

byva K3 (5 )pa(t)

“global

|

xx
Kl v (Z;t)px;,xii(t)

x],x; .
= Z Z, Kxi,xii (l; t)pxi,xii (t) In - x_]

iEN x7,x]x; Kxf ',(l t)px X i(t)
(13)
= ) (L) (14)
ieN

(C}'\/(t)) is a subsystem-indexed contribution to the
global EP rate, i.e., it changes only due to the state
transitions in subsystem i (compare it to the integrand
in Eq. (11)). We make the associated time-integrated
definition, (T} (7)) = Iordt(Cj\[(t)); therefore, (o?V(t)) =
Zie/\/(cj\/(t» for all times t. Similarly, for any unit
w, we can write (%(t)) := Ziefu(Cf;)(t)) and (c¥(t)) =
Y icw(Cl(t)). We define the vector whose components
are the time-t subsystem-indexed contributions to the

global EP as (C (), and to the w-local EP as (C,(t)).

4

Similarly, we define the dynamical activity due only
to the state transitions in subsystem i as:

=)0

/
x_; Xi x7éx1

K ipge (0 (15)

where AN () := ¥, K¥ (H)p (1) = Ljenr A'(t). The cor-
responding time-averaged dynamical activity is (A'), =
%IOT Al(t). Similarly, fgr any unit w, A®(t) = Y ;.. Al(t)
and (A“Y); = Y ;c,(A")¢. Unlike its entropy produc-
tion, a subsystem’s contribution to the dynamical activ-

ity does not depend on whether that dynamical activity
is a global or local quantity (see Appendix S3 for proof).

We write <~"TN>t for the vector with components A’(t),

and write (.Za)t for the vector with components A%(t).

We formulate our analysis below as if each subsystem
i interacts wih a single heat bath (of inverse temperature
Bi); however, all of our results extend naturally to the
case of multiple reservoirs per subsystem, as discussed
in [48]. As a final comment, we emphasize that all ther-
modynamic speed limits hold for any chosen run-time
7. Indeed, since all EPs and dynamical activities depend
on 7, the speed limit bounds are functions of 7.

Strengthened speed limits for multipartite
processes
Our first main result, derived in Appendix S1, states

2
£X TPX
Ty (L(p<(0), px(1))) e

2(Zien (Tl (0 A |
Furthermore, the Cauchy-Schwartz inequality ensures

: 2
that (Ziex (Ch () Az ) < (0¥ (0))(AY),.. Combin-

o (L 0pi(0)’ _
= AN (A T

Therefore, accounting for a system’s internal struc-
ture strengthens the thermodynamic speed limit.

Our second main result is a speed limit involving only
the thermodynamic contributions (and thus the depen-
dency constraints) for the subsystems within any single
unit w ¢ NV (proof in Appendix S1):

ing establishes that 7 >

(L (0 ()
2
(z,@, <cz;<r>><Af>T)

7> max |7, :
weN™

(17)

In this sense, the slowest of all the units is the limiting
factor on how fast the overall system can evolve. Below
we will refer to the set of SLTs based on all of the 7, as
the unit-based SLTs.

Our third main result bounds an MPP’s speed of evo-
lution using only the thermodynamic contributions of



any single subsystem (proof in Appendix S2):

2
£ i ’ X
T > max| T := (£(px,(0),p l'(’t))) |
ieN min e vt e 2¢Co (T)A

In general, the unit satisfying the minimum in the de-
nominator will be given by the smallest unit containing
i. Intuitively, this result shows that an MPP can evolve
only as fast as its slowest-evolving subsystem. The set of
all 7; form the subsystem-local SLTs.

These second two results are not guaranteed to be
tighter than the global SLT. However, in many cases,
at least one of each kind of SLT (i.e., Eq. for
some unit w or Eq. some subsystem i) is stronger
than even the bound given in our first result, Eq. .
In general, which of our three main results will pro-
vide the tightest bound will vary depending on the
details of the CTMC, particularly on the dependency
graph and the control protocol (time sequence of rate
matrices). We can easily write necessary and suf-
ficient conditions for any one of the three SLTs to
be stronger than any one of the others. For in-
stance, a necessary and sufficient condition for Eq.
(for subsystem i) to outperform Eq. is if the

2
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CTMC satisfies

(L(px;(0), py, (1)) =

Numerical calculations of speed limit bounds
for a model of cellular sensing

We now illustrate our results for an MPP model of a
cell sensing and storing information about its environ-
ment [1},[49,53]. This system is illustrated in Fig.[I]and
captured abstractly in Fig.|2] Two sets of cellular recep-
tors, belonging to different cells, each independently ob-
serve the concentration of a ligand in the medium. Ad-
ditionally, a set of proteins in one of the cells acts as a
subcellular memory of that cell’s fraction of bound re-
ceptors.

Subsystem 3 is the ligand concentration, whose state
isl =1In %, where sg is a reference concentration. Sub-
system 2 is the number of receptors bound by the lig-
and in the cell membrane of Cell 1. Its possible states
aren, =0,1,2,...,N,, where N, is the total number of
receptors. Subsystem 4 is the number of bound recep-
tors in Cell 2. Its possible states are n,=0,1,2,...,N,,
where N,, is the total number of receptors. Subsystem
1 is the number of phosphorylated proteins in Cell 1,
serving as a memory of that cell’s fraction of bound re-
ceptors. Its possible states are n,, =0,1,2,...,N,,, where
N,, is the total number of proteins. In our calculations,
weuse N, =3,N,, =3,and N,,, = 4.

We construct the time-homogeneous rate matrices
governing the evolution of this model system accord-
ing to Section IIT of [1]. These rate matrices account
for quantities such as the free energy required for a

ligand-receptor binding event and for a phosphoryla-
tion reaction. We set the initial joint distribution as
px(0) = Dx; (O)px2|X3 (0)px4|X3 (O)px1|x2 (0), where each of the
conditional distributions are Gaussians with mean set
by the value of the state on which it is dependent, and
where the initial distribution of subsystem 3, p,,(0),
is ~ N(0,0.01). For more details, refer to the code
available at https://github.com/FaritaTasnim/MPP_
SLTs_cellular_sensing.

We evolve the joint distribution over time according
to the global rate matrix K by solving the master equa-
tion to obtain p,(f) = p,(0)e®. We calculate the distri-
bution every 50 ps in the interval [0, 55] ms. From the
rate matrices and time-t distributions, we calculate all
relevant thermodynamic quantities at each timestep.

Our numerical calculations are illustrated in Fig.
for both subsystem-local SLTs (left panel) and for unit-
based SLTs (right panel). These calculations confirm
that our first main result (7, = pink) provides a tighter
bound on the speed of system evolution than does the
global SLT from [33]] (7 = dark green).

Additionally, we find that in this particular example,
each unit-based SLT (7, = lavender, 7, = sea green, 7 =
violet, 7;3 = dark blue, T¢ = olive green), as well as each
subsystem-local SLT (7; = yellow, 7, = light blue, 73 =
orange, 7, = lime green), is stronger than not only the
global SLT, but also our first SLT. (As an aside, the units
that minimize the denominator in the bound 7; for each
subsystem i are as follows: {1 :w, 2: 8, 3: ¢, 4: a}.)
As noted before, each of these units is the smallest unit
containing i.

Interestingly, even though the rate matrix for system
evolution doesn’t change (i.e., it is time-homogeneous)
we see that the strength of the subsystem-local SLT for
subsystem 3 (73 = orange) surpasses that for subsystem
2 (7, = light blue) after 35 ms of system evolution.

Discussion

In this paper we extended the conventional thermo-
dynamic speed limit to derive a set of strengthened
speed limits for the case of co-evolving subsystems.
These results can be useful for analyzing naturally oc-
curring systems of many types where one would sup-
pose there exist design pressures to make the evolution
of an MPP as fast as possible, e.g., in a biological setting,
where speed might directly translate into fitness value.
These results could additionally augment the evaluation
of trade-offs between control protocols for evolving a
system along a desired path of distributions [58H60].

We present other interesting properties related to
SLTs in MPPs, as well as some auxiliary results in Ap-
pendices S4 - S10. In Appendix S4, we discuss how
our results extend the applicability of thermodynamic
speed limits to systems characterized by local, rather
than global, interactions. In doing so, we establish
thermodynamic consistency of our results for systems
whose dynamics are defined by local, rather than global,
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FIG. 3. Comparison of speed limit bounds for the example of cellular sensing shown in Fig. |1} The dark grey line represents the
actual time of system evolution. All other lines represent the lower bounds on time provided by different SLTs. Note that bounds
represented by the orange and violet lines are equivalent because the unit ¢ is composed of only subsystem 3.

Hamiltonians. In Appendix S5, we show that each of
the subsystem-indexed contributions to the global EP
follows an integral fluctuation theorem. In Appendix
S6, we note that the global SLT also applies to subsets
of subsystems, or units, that evolve according to their
own CTMC; this leads to what we call “unit-local SLTs”.
In Appendix S7, we prove that the strongest of a gen-
eralized form of the SLT that involves a linear combi-
nation of unit-local thermodynamic properties is given
by the unit-local SLT for the system’s slowest-evolving
unit. In Appendix S8, we consider the SLTs as bounds
on the space of distributions that a system can access
within a given time. In particular, we show that the
unit-local SLTs together more tightly restrict (than the
global SLT) this space of final joint distributions for a
pair of independently evolving spins. In Appendix S9,
we derive maximum and minimum speeds of evolution
for Bayes’ Nets, which are a type of MPP for which the
state transitions occur according to a global clock. In
Appendix S10, we derive lower bounds on the differ-
ence between the EP rate and the rate at which one unit
“learns” about another using counterfactual thermody-
namic quantities.

Finally, we note that the results in this paper suggest
several avenues for future work. Our results investigate
how the dynamical constraints imposed by the interac-
tion network of co-evolving subsystems that comprise
an MPP demand a decrease in the system’s maximum
possible speed of evolution. However, we note that the
effect on speed due to other types of dynamical con-
straints should be explored. In general, any constraints
on a system’s CTMC will contribute to its minimal EP,
strengthening the Second Law of thermodynamics. As a
practical matter, for any CTMC that obeys a given set of
constraints while also implementing a given conditional
distribution P(x¢|x;) on an initial distribution P(x;), of-

ten the EP is the dominant contributor to the total heat
dissipation of the system. This contribution of the EP to
the thermodynamic cost of evolution often far exceeds
the minimal cost established by the generalized Lan-
dauer bound, which is simply given by the change in
the entropy of the system [61},[62].

Although dynamical constraints govern the thermo-
dynamic costs of classical, many-degree-of-freedom sys-
tems, the analysis of the thermodynamic implications of
constraints on a system’s allowed dynamics remains in
its infancy. One example of relevant research derives
the stochastic thermodynamics under protocol con-
straints [59]. There has also been some important work
where the “constraint” on a many-degree-of-freedom
classical system is simply that it be some very narrowly
defined type of system, whose dynamics is specified by
many different kinds of parameters. For example, there
has been analysis of the stochastic thermodynamics of
chemical reaction networks [4} (5] [63], [64], of electronic
circuits [65H67], of spin glasses where all spins are cou-
pled to one another [68]], of biological copying mecha-
nisms [[69]], and of systems in which the state transitions
of subsystems occur according to a synchronous global
clock [45] 46].

The analyses in this paper as well as those in [46), [48],
49, [70] consider time-homogeneous dependency con-
straints. In many real-world scenarios, however, the de-
pendency constraints may change with time. Integrat-
ing this time-dependence into our framework may fur-
ther strengthen our speed limits for MPPs. Additionally,
we expect that incorporating finer-grained information
about the topology of the dependency graph would lead
to stronger SLTs. However, in many cases, one does not
know the full details of the dependency graph, but in-
stead might know certain of its properties, e.g., average
degree, degree distribution, or features of community



structure. It would therefore be valuable to extend the
stochastic thermodynamics of MPPs, including the SLTs,
to cases where one has such summary statistics of the
dependency graph.
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