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The thermodynamic speed limit theorems (SLTs) provide lower bounds on the time required for
a system to evolve between any two given distributions, in terms of the system’s total entropy pro-
duction along the path with which its distribution evolves. Previously derived versions of the SLTs
apply to a single physical system without regard to its internal structure. However, many systems of
interest are multipartite, comprising a set of co-evolving subsystems. Here we derive three strength-
ened versions of the SLT that reflect the multipartite nature of such systems. The first is guaranteed
to be at least as strong as the conventional “global” SLT. While the other two do not always have this
guarantee, in many cases they are stronger than the first of our new SLTs. We demonstrate our results
with a numerical example involving a cell sensing its environment.

Introduction— The classical speed limit theorems
(SLTs) provide the minimum time required for a system
evolving according to a continuous-time Markov chain
(CTMC) to evolve between two probability distributions
over its states. These bounds are growing functions of
the total variation distance between the two distribu-
tions, and shrinking functions of the total entropy pro-
duction (EP) along the path of system evolution [1–5].
Intuitively, the SLTs tell us that if we modify a CTMC to
have it change a distribution by a greater amount and
/ or in less time, then we must “pay for” that increased
speed by increasing (a lower bound on) the total EP.

Like most of the other theorems in (classical) stochas-
tic thermodynamics, the previously derived versions of
the SLTs hold regardless of the size of a system, so long
as its dynamics can be modeled as a CTMC. Indeed, the
previously derived SLTs ignore all aspects of how the
system might decompose into a set of co-evolving sub-
systems. Such “global SLTs” are most appropriate for
nanoscale systems.

However, in information-processing systems above
the nanoscale, inevitably there exist many constraints
on the possible CTMC and associated reservoirs, often
due to their modular nature. As a practical matter, the
minimal EP of any system that obeys those constraints
while also implementing a given conditional distribu-
tion P (xf |xi) to an initial distribution P (xi) is often the
dominant thermodynamic cost. That lower bound on
the EP often far exceeds the associated “generalized
Landauer bound” on the thermodynamic cost of apply-
ing P (xf |xi) to P (xi), which is given by the change in
Shannon entropy between the initial and final distribu-
tions [6]. Since the SLTs can be formulated as lower
bounds on EP, the fact that constraints on the allowed
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CTMC contribute to the minimal EP suggests that ac-
counting for such constraints could lead to tighter SLTs.
In order to investigate this possibility, we must analyze
how the constraints on the allowed dynamics in a sys-
tem affect its stochastic thermodynamics.

One major class of dynamical constraints arises be-
cause many systems are most naturally modeled as a set
of multiple co-evolving subsystems [7–14], where the
interactions between subsystems impose restrictions on
how the system can evolve. Here, we focus on systems
for which this broadly-applicable type of constraint ap-
plies. Such a system evolves as a multipartite process
(MPP) [13, 14]. An MPP can have any arbitrary collec-
tion of dependency constraints, i.e., restrictions on how
the dynamics of each subsystem depends on the states
of the other subsystems [15].

Formally, an MPP is any system with the property that
only one subsystem can change state at a time. MPPs are
extremely common [8, 9], including biological sensing,
information engines, and Ising spin models that can be
modeled with Glauber dynamics. Other examples in-
clude eukaryotic cells, which are naturally modelled as
a set of multiple interacting organelles and biomolecu-
lar species [16]. The subcellular process of protein syn-
thesis could also be modelled as an MPP, with interact-
ing subsystems as ribosomal subunits, mRNA, and sets
of tRNA-activated amino acids [17].
Roadmap— In this paper, we show that accounting

for the multipartite nature of a system’s dynamics re-
sults in strengthened forms of the SLTs. We begin by
reviewing the relevant stochastic thermodynamics of
MPPs, with emphasis on subsystem-indexed contribu-
tions to quantities such as the entropy production. In
the next section, we present our main results, a set of
three SLTs that explicitly account for the MPP nature of
composite systems. The first of these new SLTs is guar-
anteed to be at least as strong as the global SLT, regard-
less of the details of the rate-matrix dependencies of the
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subsystems in the MPP. The other two SLTs do not al-
ways have this guarantee; however, in many cases, they
are stronger than the first of our new SLTs. In order
to illustrate our results, we conduct numerical calcula-
tions for the example of a cell sensing its environment.
We discuss this example and present the resultant speed
limit bounds in the following section. We end the main
text with a discussion of future work.

We derive our new SLTs in full detail in Appendices A
and B. In addition, we discuss the thermodynamic ex-
tensibility of our results to systems whose dynamics are
defined by local rather than global Hamiltonians, along
with definitions of the unique types of local detailed
balance possible in MPPs, in Appendix C.

We then present some auxiliary results in the remain-
ing appendices. In Appendix D, we note that the global
SLT also applies to subsets of subsystems, or units, that
evolve according to their own CTMC; this leads to what
we call “unit-local SLTs”. In Appendix E, we derive
that the strongest of a generalized form of the SLT that
involves a linear combination of unit-local thermody-
namic properties is given by the unit-local SLT for the
system’s slowest -evolving unit. In Appendix F, we con-
sider the SLTs as bounds on the space of distributions
that a system can access within a given time. In par-
ticular, we show that the unit-local SLTs together more
tightly restrict (than the global SLT) this space of final
joint distributions for a pair of independently evolving
spins. In Appendix G, we derive maximum and mini-
mum speeds of evolution for Bayes’ Nets, which are a
type of MPP for which the state transitions occur ac-
cording to a global clock. Finally, in Appendix H, we
derive lower bounds on the difference between the EP
rate and the rate at which one unit “learns” about an-
other using counterfactual thermodynamic quantities.

Stochastic Thermodynamics of Multipartite Processes—
We consider a composite systemN as a particular set of
N subsystems with finite state spaces {Xi : i = 1, . . . ,N }.
x indicates a state vector in X, which is the joint state
space represented by the Cartesian product×i∈N Xi .
For any set of subsystems A ⊂ N , we write −A := N\A.
xA indicates a state vector in XA =×i∈AXi . There is a
set of time-varying stochastic rate matrices governing
the evolution of the joint system: {Kx′x (i; t) : i = 1, . . . ,N },
each a |X | × |X | matrix. The main condition for a multi-
partite process is that Kx

′
x (i; t) = 0 ∀ i, t, {x′ ,x |x′−i 6= x−i},

meaning that at any given time, only one subsystem can
undergo a state transition. For any B ⊆ N , we define
Kx
′
x (B; t) =

∑
i∈BK

x′
x (i; t). The joint dynamics over X is

governed by the master equation:

dpx(t)
dt

=
∑
x′
Kx
′
x (t)px′ (t) =

∑
x′

∑
i∈N

Kx
′
x (i; t)px′ (t). (1)

where the rate matrix governing state transitions in sub-
system i is

Kx
′
x (i; t) := K

x′i ,x
′
−i

xi ,x
′
−i

(i; t) = Kx
′
x (t)δ(x′−i ,x−i) (2)

FIG. 1. An example of a multipartite process. The system con-
sists of four subsystems, indicated by outlined circles. The
arrows represent dependency constraints. Here, the state of
subsystem 1 at time t + δt depends on the state of subsystems
1 and 2 at time t. Subsystem 2 depends on 2 and 3. Subsystem
3 depends only on itself, and subsystem 4 depends on 3 and
4. These dependency constraints can be represented as the de-
pendency graph (1← 2← 3→ 4). The entire system, which is
itself a unit, is denotedN . This dependency graph defines the
units ω,α,φ,β,ψ of the system. Intuitively, each unit is a set
of subsystems that together evolve independently from other
subsystems. Each unit structure, represented by circle-capped
vertical lines, is a set of units that is closed under intersections
and that encompasses all the subsystems (coversN ). There are
four possible unit structures, N ∗1 = {ω,α,φ}, N ∗2 = {ω,α,φ,β},
N ∗3 = {ω,ψ,β}, or N ∗4 = {ω,ψ,α,β,φ}, that emerge from these
units. The labels, A, B, and C, represent a grouping (of sub-
systems) that corresponds to particular physical systems, and
has no effect on the units or unit structure.

We define a dependency constraint for any subsys-
tem i as the specification of which other subsystems can
affect i’s dynamics. This constrains the system’s rate ma-
trix. For each subsystem i, we write r(i; t) for any set of
subsystems at time t that include i and for which

Kx
′
x (i; t) = K

x′r(i;t)
xr(i;t) (i; t)δ(x′−r(i;t),x−r(i;t)) (3)

holds for an appropriate set of
∣∣∣Xr(i;t)∣∣∣× ∣∣∣Xr(i;t)∣∣∣ rate ma-

trices K
x′r(i;t)
xr(i;t) (i; t). In general, for any given i there could

be multiple such sets r(i; t).
We define a unit ω (at an implicit time t) as a set of

subsystems i such that i ∈ω implies that r(i; t) ⊆ω. Any
intersection of two units is a unit, as is any union of two
units. We write N ∗∗ for the set of all units in N , other
than the global system itself. For the example system
shown in Fig. 1,N ∗∗ = {ω,α,φ,β,ψ}.

For any unit ω, we write the |Xω | × |Xω | rate matrix

K
x′ω
xω (ω; t) =

∑
i∈ωK

x′ω
xω (i; t). So, by Eq. (3), Kx

′
x (ω; t) =∑

i∈ωK
x′
x (i; t) = K

x′ω
xω (ω; t)δ(x′−ω,x−ω). At any time t and

for any unit ω, the local marginal distribution pxω (t)
evolves as a self-contained CTMC with the local rate ma-
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trix Kx
′
ω
xω (ω; t) (proved in Appendix A of [14]):

dpxω (t)

dt
=

∑
x′ω

K
x′ω
xω (ω; t)px′ω (t) =

∑
x′ω

∑
i∈ω

K
x′ω
xω (i; t)px′ω (t)

(4)
Any unit, therefore, obeys all the usual stochastic

thermodynamic theorems for Markov processes, e.g. the
second law, FTs, TURs, and SLTs. In general, this is
not true for a single subsystem in an MPP, due to that
subsystem’s dependency constraints [14]. Instead, the
marginal distribution of subsystem i changes as

d
dt
pxi (t) =

∑
x′
Kx
′
x (i; t)px′ (t) (5)

=
∑
x′ 6=x

Kx
′
x (i; t)px′ (t)−Kxx′ (i; t)px(t) (6)

=
∑
x′−i

∑
x′i 6=xi

K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t)−K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t) (7)

Throughout the text, we refer to the bound derived in
[1] as the global SLT. It states that, for any time τ ,

τ ≥

(
L(px(0),px(τ))

)2

2〈σN (τ)〉〈AN 〉τ
(8)

where L(px(0),px(τ)) =
∑
x |px(0)− px(τ)| is the total vari-

ation (L1) distance between the initial and final distri-
butions, 〈AN 〉τ = 1

τ

∫ τ
0

∑
x′ 6=x dtK

x′
x (t)px′ (t) is the global

time-averaged dynamical activity (often interpreted as
the frequency of state transitions), and 〈σN (τ)〉 =∫ τ

0 dt
∑
x′ ,xK

x′
x (t)px′ (t) ln

[
Kx
′
x (t)px′ (t)
Kx
x′ (t)px(t)

]
is the global EP ac-

crued during the evolution.
In order to derive SLTs that account for the multi-

partite nature of the system dynamics, we now define
subsystem-indexed contributions to the EP and dynam-
ical activity. We start by decomposing the global EP rate
〈σ̇N (t)〉 for an MPP at time t as follows:

〈σ̇N (t)〉 :=
∑
x′ ,x

Kx
′
x (t)px′ (t) ln

[
Kx
′
x (t)px′ (t)
Kxx′ (t)px(t)

]
(9)

=
∑
i∈N

∑
x′ ,x

Kx
′
x (i; t)px′ (t) ln

[
Kx
′
x (i; t)px′ (t)
Kxx′ (i; t)px(t)

]
(10)

=
∑
i∈N

∑
x′−i ,x

′
i ,xi

K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t) ln


K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t)

K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)


(11)

:=
∑
i∈N

〈ζ̇i(t)〉 (12)

where we used Eq. (B2) of [14] in the step from Eq. (9)
to Eq. (10). Here we have defined 〈ζ̇i(t)〉 as a subsystem-
indexed contribution [18] to the global EP rate. For any

time τ , we write the time-integrated quantity 〈ζi(τ)〉 =∫ τ
0 dt〈ζ̇

i(t)〉. We derive detailed relations regarding the
thermodynamic extensibility of 〈ζ̇i(t)〉 in Appendix C.

Similarly, we define the dynamical activity due only
to (state transitions in) subsystem i as:

Ai(t) :=
∑
x′−i

∑
xi

∑
x′i 6=xi

K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t) (13)

where AN (t) :=
∑
x′ 6=xK

x′
x (t)px′ (t) =

∑
i∈N Ai(t). The cor-

responding time-averaged dynamical activity (averaged
over an interval [0, τ]) is 〈Ai〉τ = 1

τ

∫ τ
0 A

i(t).
The subsystem-local marginal total variation dis-

tance is defined in the usual way, as L(pxi (0),pxi (τ)) =∑
xi

∣∣∣pxi (0)− pxi (τ)
∣∣∣.

We indicate the Shannon entropy of a distribution
over states XA as SXA or SA. We set kB = 1. Finally,
we emphasize that all thermodynamic speed limits hold
for any chosen time τ . Indeed, since all EPs and activi-
ties depend on τ , the speed limit bounds are functions
of τ . Throughout the paper, we formulate our equations
as if each subsystem i is connected to a single heat bath
(with inverse temperature βi); however, all of our results
extend naturally to the case of multiple reservoirs per
subsystem, using the formalisms detailed in [13].
Strengthened Speed Limits for Multipartite Processes—
As our main result, we find that accounting for the

multipartite nature of a system’s dynamics allows us to
strengthen the thermodynamic speed limit (see deriva-
tion in Appendix A):

τ ≥

(
L(px(0),px(τ))

)2

2
(∑

i∈N
√
〈ζi(τ)〉〈Ai〉τ

)2 (14)

The bound in this speed limit is always at least as tight
as the bound in the global SLT (Eq. (8)) derived in [1]
because the Cauchy-Schwartz inequality ensures that(∑

i∈N
√
〈ζi(τ)〉〈Ai〉τ

)2
≤ 〈σN (τ)〉〈AN 〉τ .

Our second result is a speed limit using only the ther-
modynamic quantities for subsystems within a single
unit ω ⊂N (see derivation in Appendix A):

∀ω ∈ N ∗∗ : τ ≥

(
L(pxω (0),pxω (τ))

)2

2
(∑

i∈ω
√
〈ζi(τ)〉〈Ai〉τ

)2 (15)

One such speed limit holds for every unit ω ∈ N ∗∗.
The bound in this SLT is always at least as tight
as the bound in the unit-local SLT Eq. (D1) for
the unit ω (also referred to as the ω-local SLT) be-
cause of the Cauchy-Schwartz inequality, which gives(∑

i∈ω
√
〈ζi(τ)〉〈Ai〉τ

)2
≤ 〈σω(τ)〉〈Aω〉τ .

Our third result bounds an MPP’s speed of evolution
using only the thermodynamic properties of any single
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subsystem (see derivation in Appendix B):

∀ i ∈ N : τ ≥

(
L(pxi (0),pxi (τ))

)2

2〈ζi(τ)〉〈Ai〉τ
(16)

One such speed limit holds for every subsystem i ∈ N .
Together, they form the set of subsystem-local SLTs.

Although these last two results are not guaranteed to
be tighter than the global SLT, in many cases, at least
one of each kind (i.e., Eq. (15) for for some unit ω
and Eq. (16) some subsystem i) is stronger than even
our first result, Eq. (14). A priori, one cannot rank the
strength of our results (Eqs. (14) to (16)) among them-
selves. However, it is straightforward to write necessary
and sufficient conditions for any one bound to domi-
nate over any other. For example, a necessary and suffi-
cient condition for Eq. (16) (for subsystem i) to outper-

form Eq. (14) is if

(∑
j∈N
√
〈ζj (τ)〉〈Aj 〉τ

)2

〈ζi (τ)〉〈Ai〉τ
(L(pxi (0),pxi (τ)))2 ≥

(L(px(0),px(τ)))2. The fulfillment of such conditions
will vary with the system’s dependency graph and con-
trol protocol.

Example of Cellular Sensing— We quantitatively il-
lustrate our results for an example MPP in which a cell
is sensing and storing information about its environ-
ment. Using these numerical calculations, we evaluate
the strength of our results (Eqs. (14) to (16)) among each
other and in comparison to the global SLT.

The scenario, which has been previously studied in
the literature [14, 16], is captured abstractly in Fig. 1
and illustrated in Fig. 2. The system consists of two sets
of cellular receptors, each of which (belong to a unique
cell and) independently observe the concentration of a
ligand in the medium. One set of receptors additionally
affects a set of proteins that act as a subcellular memory
of the cell’s fraction of bound receptors. Subsystem 3

FIG. 2. The example scenario. Subsystem 3 is l, the concentra-
tion of the ligand in a medium. There are two "nearby" cells
that sense this ligand concentration. The number of bound re-
ceptors, nr1 , in Cell 1 comprise subsystem 2, and the number
of bound receptors, nr2 , in Cell 2 comprise subsystem 4. Sub-
system 1 represents a memory of (phosphorylated) proteins,
nm, in Cell 1 that observes the state of its receptors.

represents the ligand concentration, which is indicated
by the signal l = ln s

s0
, where s0 is some reference con-

centration value. Subsystem 2 represents the number of
receptors bound by the ligand in the cell membrane of
Cell 1. It is given by nr1 = 0,1,2, . . . ,Nr1 , where Nr1 is
the total number of receptors. Subsystem 4 represents
the number bound receptors in Cell 2. It is given by
nr2 = 0,1,2, . . . ,Nr2 , where Nr2 is the total number of re-
ceptors. Subsystem 1 represents the number of phos-
phorylated proteins, serving as a memory of the bound
receptors, in Cell 1. It is given by nm = 0,1,2, . . . ,Nm,
where Nm is the total number of proteins. In our calcu-
lations, we use Nr1 = 3,Nr2 = 3, and Nm = 4.

We construct the time-homogeneous rate ma-
trices (THRMs) according to Section III of
[16]. We set the initial joint distribution as
px(0) = px3

(0)px2 |x3
(0)px4 |x3

(0)px1 |x2
(0), where each

of the conditional distributions are Gaussians with
mean set by the value of the state on which it is
dependent, and where px3

is ∼ N (0,0.01). For more
details, see the code available at https://github.com/
FaritaTasnim/MPP_SLTs_cellular_sensing.

We evolve the joint distribution over time according
to the joint THRM Kx

′
x by solving the master equation to

obtain px(t) = px(0)etK
x′
x . We calculate the distribution

every 50 µs in the interval [0, 55] ms. From the rate ma-
trices and time-t distributions, we calculate all relevant
thermodynamic quantities at each timestep.

Our numerical calculations (Fig. 3) confirm that our
main result, the MPP SLT in Eq. (14) (pink), provides
a tighter bound on the speed of system evolution than
does the global SLT (Eq. (8)) from [1] (dark green). Ad-
ditionally, we find that in this particular example, the
MPP SLTs in Eq. (15) for every unit (lavender, sea green,
violet, dark blue, olive green) and Eq. (16) for every
subsystem (yellow, light blue, orange, lime green) are
stronger than not only the global SLT, but also the MPP
SLT in Eq. (14). Interestingly, even though the rate ma-
trix for system evolution is time-homogeneous, we see
that the strength of the subsystem-local SLT for sub-
system 3 (orange) surpasses that for subsystem 2 (light
blue) after 35 ms of system evolution.

Discussion— In this paper we have extended con-
ventional classical speed limits to derive strengthened
speed limits for the case of multiple, co-evolving sub-
systems — multipartite processes. These results can be
useful for obtaining limits on the speed of state transfor-
mation for any composite system, e.g., chemical reaction
networks [19, 20] or opinion dynamics [21, 22].

We suggest several avenues for future work. The
analyses in this paper as well as those in [11, 13,
14, 23] consider time-homogeneous dependency con-
straints. In many real-world scenarios, however, the de-
pendency constraints may change with time. Integrat-
ing this time-dependence into our framework may fur-
ther strengthen the speed limits for MPPs. Additionally,
we expect that incorporating finer-grained information

https://github.com/FaritaTasnim/MPP_SLTs_cellular_sensing
https://github.com/FaritaTasnim/MPP_SLTs_cellular_sensing
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FIG. 3. Comparison of speed limit bounds for the example of cellular sensing shown in Fig. 2. The dark grey line represents the
actual time of system evolution. All other lines represent the lower bounds on time provided by different SLTs. Note that bounds
represented by the orange and violet lines are equivalent because the unit φ is composed of only subsystem 3.

about the topology of the dependency graph would lead
to stronger SLTs. However, in many cases, one does not
know the full details of the dependency graph, but in-
stead might know certain of its properties, e.g., degree
distribution or community structure. It would therefore
be valuable to extend the stochastic thermodynamics of
MPPs, including the SLTs, to cases where one has such

summary statistics of the dependency graph.
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Appendix A: Derivation of Eq. (14) and Eq. (15)

To begin, we note that subsystem i’s contribution to the EP rate obeys the following inequality:

〈ζ̇i(t)〉 =
∑
x′ ,x

Kx
′
x (i; t)px′ (t) ln

[
Kx
′
x (i; t)px′ (t)
Kxx′ (i; t)px(t)

]
(A1)

=
1
2

∑
x

∑
x′ 6=x

(
Kx
′
x (i; t)px′ (t)−Kxx′ (i; t)px(t)

)
ln

[
Kx
′
x (i; t)px′ (t)
Kxx′ (i; t)px(t)

]
(A2)

=
1
2

∑
x′−i

∑
xi

∑
x′i 6=xi

(
K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t)−K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)
)

ln


K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t)

K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)

 (A3)

≥
∑
x′−i

∑
xi

∑
x′i 6=xi

(
K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t)−K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)
)2

K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t) +K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)
(A4)
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This is because (a − b) ln a
b ≥

(a−b)2

(a+b) for all positive a and b, as pointed out in [1]. We can then use the fact that
d
dtpx(t) =

∑
i∈N

d
dtpxi (t) (which follows from Eq. (5) and Eq. (2)) to bound the global total variation distance as follows:

∑
x

∣∣∣∣∣ ddt px(t)
∣∣∣∣∣ =

∑
x

∣∣∣∣∣∣∣∣
∑
x′ 6=x

∑
i∈N

(
Kx
′
x (i; t)px′ (t)−Kxx′ (i; t)px(t)

)∣∣∣∣∣∣∣∣ (A5)

≤
∑
i∈N

∑
xi ,x−i

∣∣∣∣∣∣∣∣
∑
x′−i

∑
x′i 6=xi

(
K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t)−K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)
)∣∣∣∣∣∣∣∣

=
∑
i∈N

∑
xi

∣∣∣∣∣∣∣∣
∑
x′−i

∑
x′i 6=xi

(
K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t)−K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)
)∣∣∣∣∣∣∣∣

(A6)

≤
∑
i∈N

∑
xi

√√√√√√√√√
∑
x′−i

∑
x′i 6=xi

(
K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t)−K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)
)2

K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t) +K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)


∑
x′−i

∑
x′i 6=xi

K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t) +K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)


(A7)

≤
∑
i∈N

√√√√√√√√√
∑
x′−i

∑
xi

∑
x′i 6=xi

(
K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t)−K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)
)2

K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t) +K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)


∑
x′−i

∑
xi

∑
x′i 6=xi

K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t) +K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)


(A8)

≤
∑
i∈N

√
2〈ζ̇i(t)〉Ai(t) (A9)

Then, integrating over time,

L(px(0),px(τ)) ≤
∑
x

∫ τ

0
dt

∣∣∣∣∣ ddt px(t)
∣∣∣∣∣ (A10)

≤
∑
i∈N

∫ τ

0
dt

√
2〈ζ̇i(t)〉Ai(t) (A11)

≤
∑
i∈N

√
2τ〈ζi(τ)〉〈Ai〉τ (A12)

where we have used the Cauchy-Schwartz inequality in the step from Eq. (A7) to Eq. (A8) and in the step from
Eq. (A11) to Eq. (A12). This leads to the speed limit in Eq. (14). Mutatis mutandis, we can follow a similar exercise
for the subsystems in a unit (same steps as above derivation but with allN replaced with ω, and with the state space
limited to xω instead of x) to obtain the speed limit in Eq. (15). One such speed limit holds for each unit ω ∈ N ∗∗.

Appendix B: Derivation of Eq. (16)

We can bound the marginal total variation distance of subsystem i as follows:

∑
xi

∣∣∣∣∣ ddt pxi (t)
∣∣∣∣∣ ≤∑

xi

∣∣∣∣∣∣∣∣
∑
x′−i

∑
x′i 6=xi

(
K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t)−K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)
)∣∣∣∣∣∣∣∣ (B1)

≤
∑
xi

√√√√√√√√√
∑
x′−i

∑
x′i 6=xi

(
K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t)−K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)
)2

K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t) +K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)


∑
x′−i

∑
x′i 6=xi

K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t) +K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)


(B2)
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≤

√√√√√√√√√
∑
x′−i

∑
xi

∑
x′i 6=xi

(
K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t)−K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)
)2

K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t) +K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)


∑
x′−i

∑
xi

∑
x′i 6=xi

K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t) +K
xi ,x

′
−i

x′i ,x
′
−i

(i; t)pxi ,x′−i (t)


(B3)

≤
√

2〈ζ̇i(t)〉Ai(t) (B4)

Then, integrating over time,

L(pxi (0),pxi (τ)) ≤
∑
xi

∫ τ

0
dt

∣∣∣∣∣ ddt pxi (t)
∣∣∣∣∣ (B5)

≤
∫ τ

0
dt

√
2〈ζ̇i(t)〉Ai(t) (B6)

≤
√

2τ〈ζi(τ)〉〈Ai〉τ (B7)

where we have used the Cauchy-Schwartz inequality in the step from Eq. (B2) to Eq. (B3) and in the step from
Eq. (B6) to Eq. (B7). This leads to the speed limit in Eq. (16). One such speed limit like this holds for each subsystem
i ∈ N .

Appendix C: Thermodynamic Extensibility and the
Different Types of Local Detailed Balance in MPPs

Local detailed balance (LDB), as is standard in litera-
ture, means that the entire system obeys the following
relation for arbitrary state transitions (in any subsystem
i) using the same global Hamiltonian:

ln
[
Kx
′
x (i; t)
Kxx′ (i; t)

]
= βi (Hx′ (t)−Hx(t)) (C1)

We call this global LDB (GLDB).
In a system consisting of multiple, co-evolving sub-

systems, however, it is often impossible to write down a
global Hamiltonian in a thermodynamically consistent
way, e.g., as could be caused by non-reciprocal depen-
dency constraints. Therefore, we also define the follow-
ing types of LDB that can establish thermodynamic con-
sistency for MPPs whose rate matrices are constrained
by non-global Hamiltonians.

Unit LDB (ULDB) means that each unit ω obeys LDB
for state transitions (of any subsystem i in that unit) us-
ing a unit-specific local Hamiltonian, which can only de-
pend on the states of subsystems within that unit:

ln
[
Kx
′
x (i; t)
Kxx′ (i; t)

]
= βi

(
Hx′ω (ω; t)−Hxω (ω; t)

)
(C2)

ULDB does not follow from GLDB.
Subsystem LDB (SLDB) means that each subsystem

i obeys LDB for its own state transitions using its own
local Hamiltonian, which can only depend on the states
of the subsystems (j ∈ r(i)) that affect i:

ln
[
Kx
′
x (i; t)
Kxx′ (i; t)

]
= βi

(
Hx′r(i)(i; t)−Hxr(i)(i; t)

)
(C3)

for some local Hamiltonians Hxr(i)(i; t).
Finally, multi-scale LDB (MSLDB) means that both

ULDB and GLDB hold. It is shown in [13] how to use
“Hamiltonian stubs” to build a global Hamiltonian that
ensures MSLDB. The same paper also works through
some conditions involving “Hamiltonian scaling” in or-
der for MSLDB to approximately hold.

Mathematically, the global SLT from [1] is certainly
valid for all classical stochastic processes. However,
when a system obeys only SLDB, e.g., if it is defined us-
ing local Hamiltonians, there does not necessarily exist
a global Hamiltonian Hx(t) that is consistent with all of
the local Hamiltonians. Therefore, the quantity 〈σN (t)〉,
and thus the global SLT is not thermodynamically exten-
sible (Eq. (5) from [1] becomes nonphysical).

Here we show that the thermodynamic extensibility
of our MPP SLTs does not require GLDB. Instead, SLDB
is sufficient. Therefore, our results vastly open up the
experimental applicability of the thermodynamic speed
limits to scenarios in which systems are defined us-
ing local, rather than global, Hamiltonians. This in-
cludes the growing number of network-based models
for nonequilibrium systems in which a node’s dynam-
ics are defined by its local interactions with neighboring
nodes.

Let’s say that each subsystem i obeys SLDB. We start
by noting that 〈ζ̇i(t)〉, the contribution to the system EP
rate due to state transitions in subsystem i, can be split
into two contributions as follows,

〈ζ̇i(t)〉 =
∑
x′ ,x

Kx
′
x (i; t)px′ (t) ln

[
px′ (t)
px(t)

]

+
∑
x′ ,x

Kx
′
x (i; t)px′ (t) ln

[
Kx
′
x (i; t)
Kxx′ (i; t)

] (C4)
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To simplify the first sum on the RHS of Eq. (C4), using
Eq. (5), we expand∑

x′ ,x

Kx
′
x (i; t)px′ (t) ln

[
px′ (t)
px(t)

]
(C5)

=
∑
x′−i

∑
xi

∑
x′i 6=xi

K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t) ln

px′i ,x′−i (t)pxi ,x′−i (t)

 (C6)

= −
∑
x′−i

∑
xi

∑
x′i 6=xi

K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t) lnpxi ,x′−i (t) (C7)

= −
∑
x′−i

∑
xi

∑
x′i 6=xi

K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t) lnpx′−i |xi (t)

−
∑
x′−i

∑
xi

∑
x′i 6=xi

K
x′i ,x

′
−i

xi ,x
′
−i

(i; t)px′i ,x′−i (t) lnpxi (t)
(C8)

=
di

dt
SX |Xi (t) +

d
dt
SXi (t) (C9)

The first term on the RHS, di

dtS
X |Xi (t), is called the the

“i-windowed derivative of the conditional entropy”. It
was first defined in [14], and equals the negative of the
information flow 〈İ−i→i〉. This is the information flow
from subsystem i to the rest of the subsystems in the
system. In the special case that the system is in a NESS,
this term is referred to in the literature as the “learn-
ing rate” [9], i.e., the rate at which subsystem i “learns”
about the other subsystems −i. The second term on the
RHS, d

dtS
Xi (t), is the rate of change of the Shannon en-

tropy of subsystem i, defined by the marginal distribu-
tion over only subsystem i’s states.

To simplify the second sum on the RHS of Eq. (C4), we
note that the state transitions that contribute to 〈ζ̇i(t)〉
involve only a change in xi , with the state x′−i held fixed.
This is because Kx

′
x (i; t) = 0 if x′−i 6= x

′
−i . Invoking SLDB,

the entropy flow (EF) associated with such a transition
x′(= x′i ,x

′
−i)→ x(= xi ,x′−i) isQix′→x =Hx′r(i)(i; t)−Hxr(i)(i; t),

for some local Hamiltonians Hxr(i)(i; t). The EF rate into

the subsystem i is Q̇i(t) =
∑
x′ 6=xK

x′
x (i; t)px′ (t)Q

i
x′→x.

Therefore, SLDB allows us to write, in a similar fash-
ion to Eq. (5) of [1],

〈ζ̇i(t)〉 =
di

dt
SX |Xi (t) +

d
dt
SXi (t) + βiQ̇

i(t) (C10)

= −〈İ−i→i〉+ d
dt
SXi (t) + βiQ̇

i(t) (C11)

We see, therefore, that subsystem i’s contribution to the
system’s EP rate consists of the information flow be-
tween i and the rest of the system, the rate of change of
Shannon entropy of the marginal distribution of i, and
the EF rate into subsystem i from its reservoirs. This
establishes thermodynamic extensibility of the quan-
tity 〈ζ̇i(t)〉. Thus our MPP SLTs extend in a physically
meaningful way to experimental scenarios in which the
rate matrices are defined with local rather than global
Hamiltonians.

Appendix D: Unit-Local Speed Limits for MPPs

In order for the global system to reach a certain
distribution px(τ) by time τ , each unit ω must have
also reached the corresponding marginal distribution
pxω (τ) =

∑
x−ω

px(τ) by time τ . Therefore, by applying
the SLT to each of the units in N ∗∗ we get a set of addi-
tional lower bounds on the speed of system evolution:

∀ω ∈ N ∗∗ : τ ≥

(
L(pxω (0),pxω (τ))

)2

2〈σω(τ)〉〈Aω〉τ
(D1)

These bounds form the set of unit-local SLTs for
an MPP. Here, L(pxω (0),pxω (τ)) =

∑
xω
|pxω (0) − pxω (τ)|

is the ω-local marginal total variation distance,

〈Aω〉τ = 1
τ

∫ τ
0

∑
x′ω 6=xω dtK

x′ω
xω (ω; t)px′ω (t) is the ω-local

time-averaged dynamical activity, and 〈σω(τ)〉 =∫ τ
0 dt

∑
x′ω ,xω

K
x′ω
xω (ω; t)px′ω (t) ln

Kx′ωxω (ω;t)px′ω (t)

K
xω
x′ω

(ω;t)pxω (t)

 is the ω-

local EP. We note in Appendix E that the strongest of a
generalized form of the SLT that involves a linear combi-
nation of unit-local thermodynamic properties is given
by the unit-local SLT for the system’s slowest-evolving
unit.

Appendix E: Strongest Version of the SLT Involving Linear
Combinations of Unit-Local Thermodynamic Properties is

Given by a Unit-Local SLT

From the global and unit-local speed limits Eq. (D1),
it follows immediately that we can bound the time of
evolution of a system by applying the SLTs to any lin-
ear combination of units. Define N † = N ∗∗ ∪ N . Let
~m be an arbitrary, non-negative, unit-indexed vector
~m ∈ {R+

0 }|
N †|. For any such ~m, the following generalized

SLT holds in an MPP:

τ ≥
∑
ω∈N †mωc

ω(τ)∑
ω′∈N †mω′ 〈σω

′ 〉
(E1)

where, for each unit ω, we have defined the function

cω(τ) = (L(pxω (0),pxω (τ)))2

2〈Aω〉τ
. To see this, weight the unit-

local SLT Eq. (D1) for each ω ∈ N † by mω, add these
inequalities together, and rearrange into a lower bound
on τ . Intuitively, a specific value of ~m corresponds to
using a particular weighting of the local thermodynamic
properties of different units in bounding the speed of
system evolution.

We will now use the generalized mediant inequality
to derive the tightest of these bounds. It states that
the weighted mediant of n fractions, a1

b1
, a2
b2
, . . . , anbn , with

weightswi ≥ 0, lies between the largest and smallest val-
ues of the fractions ai

bi
:

min
i

ai
bi
≤

∑
iwiai∑
jwjbj

≤max
i

ai
bi

(E2)
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Taking the i as units, wi becomes mω, each ai becomes
cω(τ), and each bi becomes 〈σω〉. It immediately follows
that

min
ω∈N †

cω(τ)
〈σω〉

≤
∑
ω∈N †mωc

ω(τ)∑
ω′∈N †mω′ 〈σω

′ 〉
≤ max
ω∈N †

cω(τ)
〈σω〉

(E3)

The tightest (loosest) bound in the set of bounds defined
by Eq. (E1) is achieved when ~m is a Dirac-delta function
over the space of units (N †) such that the only non-zero
value of mω is the one for the slowest-evolving (fastest-
evolving) unit, i.e., the unit with the largest (small-
est) value of the bound in its local SLT. Intuitively, the
slowest-evolving (fastest-evolving) unit (SEU, FEU) cor-
responds to the unit for which the local thermodynamic
and dynamical properties of its evolution are low (high)
enough that in the best case scenario, out of all the units,
this unit would take the most (least) time to reach its de-
sired final distribution.

Appendix F: Unit-Local Speed Limits More Tightly
Constrain Space of Accessible Distributions than Global

Speed Limit (Shown for the Case of Two Independent Bits)

For simplicity of illustration, consider the general
case of an MPP with n non-overlapping units ω, each
with |Xω | = k possible states. The total number of joint
states is then |X | = kn. All valid joint probability distri-
butions comprise the (kn − 1)-simplex, ∆k

n−1 (with side
length

√
2). For our calculations we embed this simplex

in kn-space, where it is an (kn − 1)-dimensional mani-
fold. The global SLT, which states

∑
x |px(τ)− px(0)| ≤√

2τ〈σ〉〈A〉τ , restricts the space of accessible distribu-
tions to the intersection between ∆k

n−1 and Bk
n

1 (px(0)).
Bk

n

1 (px(0)) is the kn-cross polytope (lk
n

1 ball) with edge
length

√
2 ×
√

2τ〈σ〉〈A〉τ centered at the point on ∆k
n−1

that represents the initial joint distribution, px(0).
Each unit-local SLT Eq. (D1), which states∑
xω

∣∣∣pxω (τ)− pxω (0)
∣∣∣ ≤ √

2τ〈σω〉〈Aω〉τ , further re-
stricts this space of accessible distributions to the
collection of points in ∆k

n−1 that are consistent with
the intersection of the marginal simplex ∆k−1 with
Bk1(pxω (0)). Bk1(pxω (0)) is the k-cross polytope with edge
length

√
2×
√

2τ〈σω〉〈Aω〉τ ) centered at the point on the
∆k−1 that represents its initial marginal distribution,
pxω (0) =

∑
x−ω

px(0). Similar geometric relations hold for
overlapping units.

To demonstrate a calculation, we proceed by consid-
ering an MPP consisting of n independent bits that don’t
necessarily evolve according to the same rate matrix.
Thus, any bit i generates an EP of 〈σ i〉 ≤ 〈σ〉 in the in-
terval [0, τ]. Additionally, the time-averaged dynamical
activity of any bit i is 〈Ai〉τ ≤ 〈A〉τ .

Let us consider the case of n = 2 independent bits, i
and j. This means that each bit comprises its own unit,
which doesn’t overlap with the other. For accompany-

ing illustrations, see Fig. 4. Let’s also say that the ini-
tial joint distribution is a Kronecker-delta function cen-
tered at p11, i.e. pij (0) : p00(0) = 0,p01(0) = 0,p10(0) =
0,p11(0) = 1. Due to the symmetry of the problem, the
following calculations hold for a delta function initial
distribution centered at any one of the four joint states.
All final joint distributions pij (τ) must lie on the sim-
plex ∆3, which can be visualized as a tetrahedron. The
total volume Vt of this space of distributions is 1/3 (re-
member that a probability simplex has side length

√
2).

We can write out the global SLT as:√
2τ〈σ〉〈A〉τ = c ≥
|p00(τ)|+ |p01(τ)|+ |p10(τ)|+ |p11(τ)− 1|

(F1)

The RHS is representable by the B4
1(pij (0)), which is a

16-cell centered at one corner of ∆3. The intersection of
this off-centered l41 ball with ∆3 is ∆3

g , a scaled-down ver-
sion of the 3-simplex with side length c√

2
, and this is the

set of accessible distributions as restricted by the global
SLT alone. The volume Vg of (the convex hull of) this set
of points reachable in time τ by the global SLT is the vol-
ume of a tetrahedron of side length c√

2
. Thus Vg = c3/24.

Therefore, the fraction of distributions reachable in time
τ by the global SLT is fg = Vg /Vt = c3/8. Note, by exten-
sion, that for any system with a total of |X | states and
delta-function initial distribution, the fraction of distri-
butions reachable in time τ as constrained by the global
SLT is ( c2 )|X |−1.

Now we consider the restrictions placed by the unit-
local SLTs for each bit. Since the bits are independent, it
must hold that 〈σ〉 = 〈σ i〉+ 〈σ j〉−〈∆IN ∗〉 (where 〈∆IN ∗〉
is the change in inclusion-exclusion information defined
in [14]) and 〈A〉τ = 〈Ai〉τ + 〈Aj〉τ . We write out the unit-
local SLTs as:√

2τ〈σ i〉〈Ai〉τ = b ≥

|p00(τ) + p01(τ)|+ |p10(τ) + p11(τ)− 1|
(F2)

√
2τ〈σ j〉〈Aj〉τ = d ≥

|p00(τ) + p10(τ)|+ |p01(τ) + p11(τ)− 1|
(F3)

where, without loss of generality, we set b ≤ d. Us-
ing these restrictions, we can draw, as shown in Fig. 4,
the convex hull of the set of points reachable in time τ
by the set of these two local SLTs. To obtain this con-
vex hull, simply note that p01 and p10 can increase to-
gether by b√

2
and d√

2
, respectively, but that for any other

pair of joint probabilities, the sum of their probabilities
(i.e. p00 + p10 or p00 + p01) can at maximum change by
min[ b√

2
, d√

2
] = b√

2
. The volume Vu of this convex hull,

as shown in Fig. 4b, is b2(d−b)
8 + b3

12 . Therefore, the frac-
tion of distributions reachable in time τ by the global

SLT is fu = 3b2(d−b)
8 + b3

4 . Therefore, for two identical but
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FIG. 4. For two independent bits, the set of unit-local SLTs more tightly restricts the space of accessible final joint distributions
than does the global SLT. Geometrical representations and calculations of the space of accessible distributions as restricted by
(a) the global SLT alone and by (b) the set of unit-local SLTs are shown for the case of two independently evolving bits. In both
panels, the large tetrahedron represents the 3-simplex that constrains all probability distributions with 4 possible states, and the
highlighted convex hull within its interior represents the space of joint distributions accessible by time τ . In (b) right, the 2D
graphs show the space of accessible marginal distributions for each individual bit (shaded squares), as given by the unit-local
SLTs. In (b) left, the joint distributions that are consistent with these marginal distributions form the highlighted convex hull.
The dotted grey lines represent the convex hull of the space of accessible joint distributions as constricted by the global SLT, and
are provided for visual comparison to the space consistent with the unit-local SLTs.

independently-evolving bits,

fu
fg

=
3b2(d − b) + 2b3

c3 (F4)

Note that in the case that b = d = c
2 , this reduces to 1

4 .
Also note that for the case of n = 1 bit, or for a set of
fully connected bits (where each bit interacts with all
other bits), the only unit is the global system itself, and
thus there exist no local SLTs apart from the global SLT.

Therefore, in this case,
fu=fg
fg

= 1.

We suspect that it is true in general (for any type
of unit structure and for any initial distribution) that
the unit-local SLTs combined with the global SLT more
tightly restrict the space of accessible final distributions
than does the global SLT alone. We posit this is because
the unit-local SLTs, since they involve marginal distri-
butions, provide multiple constraints on the same joint
probabilities. Note that if all of the transitions in a sys-
tem occur in a single unit, the unit-local SLTs reduce to
the global SLT and no additional constraints are possi-
ble. We also suspect that the MPP SLTs we show in the
main text (and derived in Appendices A and B) taken to-
gether would more tightly constrain the space of acces-
sible final distributions than the global SLTs, and poten-
tially even the unit-local SLTs taken together. We leave
these investigations for future work.

Appendix G: Maximum and Minimum Speeds for Bayes’
Nets

We can run an MPP as a Bayes’ Net (BN) [11]. This
means that state transitions are no longer stochastically
timed, but occur according to a global, synchronous
clock. Therefore, for the results in this section, we are
concerned with discrete-time thermodynamics instead
of continuous-time dynamics as we were for the more
general case of MPPs. We emphasize that although a BN
is a special case of an MPP, the SLTs for MPPs do not re-
duce simply to the SLTs for BNs. We derive these results
from relations specific to BNs (and which don’t apply to
MPPs). We therefore introduce these BN-specific rela-
tions here.

In a BN, For any times t, t′ > t, the joint distribution
at t′ is

p(xt
′

1 ,x
t′
2 , . . .) =∑

xt1,x
t
2,...

p(xt
′

1 ,x
t′
2 , . . . |x

t
1,x

t
2, . . .)p(xt1,x

t
2, . . .) (G1)

Typically, there are conditional independencies in
how each of the subsystems evolve. In general, this
means that p(xt

′
1 ,x

t′
2 , . . . |x

t
1,x

t
2, . . .) can be decomposed

into a product of conditional distributions, each of
which captures one of those conditional independen-
cies. If we consider the example in Fig. 1 and take in-
stead as subsystems A, B, and C, retaining the same de-
pendency constraints, and set xt

′
B = xtB with probability
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FIG. 5. (a) An example BN showing the conditional inde-
pendencies between subsystems A, B, and C. The top three
nodes are the root nodes of the DAG, representing the time-t
states of the three subsystems. The bottom nodes are the leaf
nodes, representing the time-t′ states of two of the subsystems.
(Subsystem B does not evolve, so we dispose of its leaf node.)
The directed edges into the bottom-left leaf node indicate that
xt
′
A depends only on xtA and xtB, the two parents of that node.

Similarly, the edges into the bottom-right leaf node indicate
that xt

′
C depends only on xtB and xtC , the two parents of that

node. (b) An example of running the same BN as a sequence
of solitary processes. Dashed gray arrows indicate the identity
map. In the first solitary process, the evolving system consists
of subsystems A and B, while in the second solitary process it
consists of B and C.

1, then

p(xt
′
A,x

t′
B ,x

t′
C |x

t
A,x

t
B,x

t
C) =

p(xt
′
A |x

t
A,x

t
B)p(xt

′
C |x

t
B,x

t
C)δ(xt

′
B ,x

t
B).

(G2)

These conditional (in)dependencies can be repre-
sented as a directed acyclic graph (DAG), as shown in
Fig. 5. This representation of a distribution is an exam-
ple of a Bayes’ net. BNs can be generalized to represent
the dynamics over an arbitrary number of subsystems.
In addition, they can represent dynamics over an arbi-
trary number of times, not just the two times illustrated
in Fig. 5(a), simply by adding more layers to the DAG.

Following the convention in [10, 11], we restrict at-
tention to BNs where only one node’s conditional distri-
bution is implemented at a time. This means the evolu-
tion of any node v in the BN occurs in a solitary process,
where the evolving system a is the union of the subsys-
tem corresponding to v and the subsystems correspond-
ing to the parents of v. For a solitary process occurring

over the time interval [0, τ], the local EP of the evolving
system a along a trajectory x is

σa(x,p
0
a ,p

τ
a ) :=

(
ln[p0

a (x0
a )]− ln[pτa (xτa )]

)
−Q1(xa) (G3)

Q(x) is the entropy flow (EF) from the heat bath into
the joint system during the process. For a solitary pro-
cess, Q(x) = Q1(xa) for some function Q1. The evolving
system of a solitary process is called a solitary system,
and the local EP of a solitary process is only a function
of xa. The global EP generated by the evolving system a
and the fixed system b is

σ (x,p0,pτ ) =
(
ln[p0(x0)]− ln[pτ (xτ )]

)
−Q(x) (G4)

= σa(x,p
0
a ,p

τ
a )−∆Ip0,pτ (xa;xb) (G5)

where ∆Ip0,pτ (xa;xb) is the difference between the end-
ing and starting (stochastic) mutual information be-
tween the evolving and the fixed systems.

We write the set of nodes in a BN as V , and label
them with successive integers. In general, more than
one v ∈ V might refer to evolution of the same sub-
system, just at different times. In light of the fact that
the evolving system in each solitary process will be the
union of a node and its parents, for any V ′ ⊂ V we define
[V ′] := V ′ ∪ pa(V ′) := ∪v∈V ′v ∪ pa(v), where pa(v) indi-
cates the parents of node v. In addition, for any subset
V ′ ⊂ V , we define −V ′ = V \V ′ . We write the distribu-
tion over all subsystems after the process implementing
node v has run as ptv , and unless indicated otherwise,
assume that it runs in the time interval [tv−1, tv]. The
root nodes are jointly sampled at t = 0 according to dis-
tribution p0(x), and the BN is allowed to run through all
its nodes, resulting in full trajectory x. For any v ∈ V , we
write the segment of x corresponding to the time inter-
val when node v runs as xv , reserving superscripts for
time slices and subscripts for specification of particular
subsystems. As an example of this notation, x[v] is the
full trajectory of the components of x specified by [v],
while xv[v] is the segment of that trajectory in the time
interval [tv−1, tv].

Let π = {πv(xv |xpa(v))} indicate the set of the condi-
tional distributions at the nodes of the BN. We write
the local EP generated in the solitary process associated
with running node v as σ[v]. Since EP is cumulative over
time, by repeated application of Eq. (G5), once for each
node in the BN, we see that the global EP incurred by
running all nodes in the BN if the joint system follows
trajectory x is

σ (x,π,p0) =
|V |∑
v=1

[
σ[v](x

v
[v],πv ,p

v−1)

+
(
Ipv−1(xv−1

[v] ;xv−1
−[v])− Ipv (xv[v];x

v
−[v])

)]
:=

∑
v∈V

(
σ[v](x)−∆Iv(x)

)
(G6)
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where ∆Iv(x) is the change in (stochastic) multi-
information between [v] and −[v]. Taking the ensemble
average over all trajectories x, we arrive at the decom-
position of the global EP in a BN,

〈σ〉 :=
∑
v∈V

(
〈σ[v]〉 − 〈∆Iv〉

)
(G7)

We define the local dynamical activity of running the
node v of a BN,

Av[v] =
∑

x′[v] 6=x[v]

∑
i∈[v]

K
x′[v]
x[v] (i)px′[v]

(tv−1), (G8)

where tv−1 =
∑v−1
v′=1 τv′ , tv = tv−1 + τv , x′[v] = x[v](tv−1),

x[v] = x[v](tv), and we drop the time dependence of the

rate matrix elements K
x′[v]
x[v] (i) , because they don’t change

while node v runs. The global and local dynamical ac-
tivities are related as

〈A〉 =
∑
v

〈Av[v]〉τv . (G9)

1. Speed Limits for Bayes’ Net Evolution

We can plug in lower bounds analogous to the unit-
local SLT for each local EP 〈σ[v]〉 into Eq. (G7) to obtain a
new SLT applicable to a BN (this follows from Eq. (G6)):

〈σ〉 ≥
∑
v∈V


(
L[v](ptv−1 ,ptv )

)2

2τv〈Av[v]〉τv
− 〈∆Iv〉

 (G10)

where L[v](ptv−1 ,ptv ) is the total variation distance in the
joint distribution and 〈Av[v]〉τv is the time-averaged dy-
namical activity produced due to running node v, which
occurs over a span of time τv = tv − tv−1. Eq. (G10)’s
lower bound on global EP is different from that obtained
by treating the process as the evolution of a single phys-

ical system 〈σ〉 ≥
(
L(p0,pτ )

)2
/(2τ〈A〉τ ), where L(p0,pτ )

is the total variation distance of the system distribution
and 〈A〉τ is the time-averaged dynamical activity pro-
duced incurred by running the entire BN during the
time interval [0, τ].

For a given global EP, Eq. (G10) serves as a trade-
off between changing the speed, inverse activity, and
total variation distance of one step in the process (e.g.
that in which node v runs) and changing those of other
steps (e.g. in which other nodes v′ 6= v run). We can
see that slowing down any particular node in the BN
could potentially give a smaller lower bound on EP.
Therefore, one can exploit Eq. (G10) to identify the
thermodynamically costlier nodes, i.e., those with the
largest value of inverse activity-weighted total variation

distance
(
L[v](ptv−1 ,ptv )

)2
/〈Av[v]〉τv . Slowing down these

particular nodes provides the most effective way to try
to lower the dissipative cost of running a BN while mak-
ing the fewest possible changes to the process. As a re-
sult, Eq. (G10) offers fine-grained control over a BN. In
the example of a digital circuit, this translates to know-
ing which gates, if slowed down enough, could drasti-
cally reduce the circuit’s dissipative cost. Finally, this
result also shows the role of the multi-information in
connecting the local run-time of a single node in the BN
to the total EP of the entire BN.

We can also derive a bound for the time τ of running
the entire BN. We first rearrange the speed limit for each
local EP to get a local speed limit for each step in the
process of running the BN:

τv ≥

(
L[v](ptv−1 ,ptv )

)2

2〈σ[v]〉〈Av[v]〉τv
(G11)

Upon summing this over all steps of the BN, we obtain
a system-wide speed limit:

τ =
∑
v

τv ≥
∑
v

(
L[v](ptv−1 ,ptv )

)2

2〈σ[v]〉〈Av[v]〉τv
(G12)

which is different from the speed limit obtained by
treating the process as the evolution of a single physical

system: τ ≥
(
L(p0,pτ )

)2
/(2〈σ〉〈A〉τ ). For a given desired

speed of evolution of the entire system, Eq. (G12) serves
as a trade-off between the changing the local thermody-
namic quantities of one step in the process (e.g. that in
which node v runs) versus changing those of other steps
(e.g. in which other nodes v′ 6= v run).

Importantly, we remark that in the special case that
the system begins and ends in the same non-equilibrium
steady state (NESS) but can stray away from the NESS
during the system evolution, the global SLTs applied to
BNs provide lower bounds of zero. However, our re-
sults, Eqs. (G10) and (G12), provide strictly positive
lower bounds.

2. Minimum Speeds of Bayes’ Net Evolution

We now derive a minimum speed for the evolution of
a BN. We start by noting that in each step of running a
BN, the local EP 〈σ[v]〉 obeys all the regular TURs. We
can rearrange the thermodynamic uncertainty relation
(TUR) for arbitrary initial states, derived in [35], to ob-
tain a lower bound on the speed of evolution of for each
step (i.e. running of a node v of the BN)

τv ≤

√
〈σ[v]〉Var(J[v])

2〈jτv[v]〉
(G13)

Upon summing this relation across all steps, we obtain
a system-wide minimum speed (or maximum time) re-
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quired to evolve the BN according to some set of instan-
taneous currents {〈jτv[v]〉} and with a variance in the accu-
mulated current Var(J[v]):

τ =
∑
v

τv ≤
∑
v

√
〈σ[v]〉Var(J[v])

2〈jτv[v]〉
(G14)

where for a local current J[v] produced by running a
node v, Var(J[v]) is a measure of the bulk local cur-
rent fluctuations and 〈jτv[v]〉 is the ensemble-average lo-
cal instantaneous current observed right when node
v has finished running. This minimum speed (Eq.
(G14)) is different from that obtained by treating the
BN as a single, undecomposed physical system: τ ≤√

(〈σ〉Var(J))/(2〈jτ〉), where for a global current J pro-
duced by running the entire BN, Var(J) is a measure of
the bulk global current fluctuations and 〈jτ〉 is the in-
stantaneous final current observed after running the en-
tire BN.

For an engineer with a maximum allowable time of
BN evolution, Eq. (G14) can be interpreted as a trade-
off between changing the precisions of local bulk cur-
rents, the local EPs, and the local instantaneous currents
of each step in the process (i.e. running node v) versus
changing those quantities for another step (i.e. running
node v′ 6= v).

Appendix H: Lower Bounds on the Difference between the
EP Rate and the Rate at which One Unit Learns about
Another Based on Counterfactual Thermodynamic

Quantities

Here we utilize the decomposition of the global ex-
pected EP rate as derived in [14]:

〈σ̇ (t)〉 = 〈σ̇φ(t)〉+ 〈σ̇K(ω\φ;t);ω(t)〉+ 〈σ̇K(N\ω;t)(t)〉

+
dφ

dt
SXω |Xφ (t) +

dω

dt
SX |Xω (t)

(H1)

where ω and φ ⊂ ω are both units under Kx
′
x (t). This

equation applies to the example MPP depicted in Fig. 1.
The first term on the RHS, 〈σ̇φ(t)〉, is the local ex-

pected EP rate of the unit φ at time t. The second
term, 〈σ̇K(ω\φ;t);ω(t)〉 is the expected EP rate of the unit
ω at time t if at that instant it were to evolve for an in-
finitesimal time δt under the counterfactual rate matrix
K(ω\φ; t). Similarly, the third term, 〈σ̇K(N\ω;t)(t)〉 is the
expected EP rate of the entire system at time t if at that
instant it were to evolve for an infinitesimal time δt un-
der the counterfactual rate matrix K(N\ω; t). The coun-
terfactual rate matrix K(A; t) indicates the rate matrix if
at time t only the subsystems in A are allowed to change
state, and the states of the remaining subsystems in the
system are held fixed. In a physical system, this corre-
sponds to the counterfactual case of removing the reser-
voirs coupled to the subsystems inN\A at time t.

The fourth term on the RHS is the windowed φ-
derivative of the conditional entropy in Xω given Xφ.

It is a measure of how quickly the statistical coupling
between Xω and Xω\φ changes at time t, if rather than
evolving under the actual rate matrix, the system were
to evolve under a counterfactual rate matrix K(φ; t) in
which xω\φ is not allowed to change. Similarly, the fifth
term is the windowed ω-derivative of the conditional
entropy in X given Xω. We note that the general quan-
tity dA

dt S
X |XA(t) is the derivative of the negative mutual

information between XA and X−A under the counterfac-
tual rate matrix K(A; t), because SX−A(t) doesn’t change
under that counterfactual rate matrix. In the special
case of two subsystems, both leading each other, with
A as one of those subsystems, d

A

dt S
X |XA(t) is the same as

the “information flow", termed the learning rate, ana-
lyzed in [8, 36]. See Eq. 4 in [9] for a generalization of
information flows to multiple subsystems that is similar
to the general expression dA

dt S
X |XA(t). We can therefore

identify dφ

dt S
Xω |Xφ (t) as the rate at which unit φ learns

about the set of subsystems, ω\φ, in unit ω but not in φ.
To proceed, we will now derive relations to instanta-

neous changes in distributions. We begin with the defi-
nition for a generalized counterfactual EP rate:

〈σ̇K(A;t);B(t)〉 =∑
xB,x

′
B

K
x′B
xB (A; t)px′B(t) ln

K
x′B
xB (A; t)px′B(t)

KxBx′B
(A; t)pxB(t)

,
(H2)

whereA ⊆ B ⊆N , and B is a unit, butA is not necessarily

a unit. K
x′B
xB (A; t)px′B(t) is the infinitesmal probability flow

from x′B→ xB in the distribution pXB if at that instant in
time, pXB were to evolve under K(A; t) instead of K(B; t).
KxBx′B

(A; t)pxB(t) is the infinitesmal probability flow from

xB → x′B in that same situation. These quantities can
also be viewed as the frequency of jumps between those
states x′B and xB if the entire distribution over XB were
to evolve under the counterfactual rate matrix at that
instant in time. This means that these quantities are re-
lated to the instantaneous counterfactual dynamical ac-
tivity,

AB;K(A;t)(t) :=
∑
x′B 6=xB

K
x′B
xB (A; t)px′B(t). (H3)

Following the analysis in [2], we define π
x′B
xB as the for-

ward transition from x′B → xB(6= x′B) and introduce a
probability distribution for the forward transition un-
der the counterfactual rate matrix:
→
P K(A;t)(π

x′B
xB )(t) := (AB;K(A;t)(t))−1(K

x′B
xB (A; t)px′B(t)). (H4)

Similarly, the probability distribution of the back-
ward transition πxBx′B

from xB → x′B under the counter-

factual rate matrix is
←
P K(A;t)(π

xB
x′B

)(t) := (AB;K(A;t)(t))−1(KxBx′B
(A; t)pxB(t)). (H5)
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The counterfactual EP rate can thus be rewritten as

〈σ̇K(A;t);B(t)〉 =

AB;K(A;t)(t) ∗D[
→
P K(A;t)(π

x′B
xB )(t)||

←
P K(A;t)(π

xB
x′B

)(t)].
(H6)

We can then apply the same analysis as in Eqs. (16) -
(19) of [2] to arrive at√

2AB;K(A;t)(t)〈σ̇K(A;t);B(t)〉 ≥
∑
xB

∣∣∣∣∣∣dK(A;t)

dt
pxB(t)

∣∣∣∣∣∣, (H7)

where dK(A;t)

dt pxB(t) is the instantaneous counterfactual
change in the probability pxB(t) if at that moment the
distribution pXB evolved according to the counterfactual
rate matrix K(A; t) instead of the rate matrix K(B; t) (un-
der which it will actually evolve). In Fig. 6, this counter-
factual infinitesemal change is represented by the dot-
ted lines, whereas the actual evolution of the probabil-
ity distributions ṗxB(t) and ṗAxB(t) are represented by the
solid lines.

We also define the following relation for the deriva-
tive of the total variation distance of a distribution pxB
under a counterfactual rate matrix K(A; t)

lim
δt→0

δLB;K(A;t)(pxB(t))
δt

=

lim
δt→0

∑
xB

∣∣∣∣pxB(t)− pK(A;t)
xB (t + δt)

∣∣∣∣
δt

(H8)

L̇B;K(A;t)(pxB(t)) =
∑
xB

∣∣∣∣∣∣dK(A;t)

dt
pxB(t)

∣∣∣∣∣∣ (H9)

where dK(A;t)

dt pxB(t) is the distribution at time t + δt if
pxB(t) were evolved using the rate matrix KB(A; t) for a
time δt.

We can then arrive at the desired lower bound on a
generalized counterfactual EP rate:

〈σ̇K(A;t);B(t)〉 ≥(∑
xB

∣∣∣∣dK(A;t)

dt pxB(t)
∣∣∣∣)2

2AB;K(A;t)(t)
=

(
L̇K(A;t)(pxB(t))

)2

2AB;K(A;t)(t)
,

(H10)

where L̇K(A;t)(pxB(t)) is the instantaneous rate of change
of the distribution pXB and AB;K(A;t)(t) is the instanta-
neous dynamical activity in unit B if, at that time t,
pXB were to evolve under the counterfactual rate ma-
trix K(A; t). Eq. (H10) provides an upper bound on
the (inverse activity-weighted) instantaneous change in
the probability distribution over XB if the subsystems
in B\A were not allowed to change state. Note that it
would be mathematically incorrect to integrate these re-
sults over time to obtain speed limits for system evo-
lution. The trouble arises from trying to integrate the

FIG. 6. An illustration of the mathematical complication in-
volved in calculating the time-integral of the instantaneous
counterfactual EP rate. The white circular dots represent
instantaneous probability distributions. The arrows repre-
sent the evolution of probability distributions for infinitesi-
mal times. The leftward path of solid magenta arrows repre-
sents the evolution of the probability distribution over unit B
under a rate matrix K(A; t) which at every time t only allows
the subsystems in A ⊂ B to change state. The rightward path
of solid magenta arrows represents the evolution of the prob-
ability distribution over unit B under the actual rate matrix
K(B; t). Each dotted magenta arrow represents the evolution
of the actual probability distribution pxB (t) if at time t it were
to evolve for an infinitesimal time period δt under the counter-
factual rate matrix K(A; t). This means that the states of sub-
systems in B\A would be held fixed for that infinitesimal time
period δt. Since the set of dotted arrows do not provide a con-
tinuous path integral over which to integrate thermodynamic
quantities, such time integrals cannot be consistently evalu-
ated unless it would be mathematically equivalent to integrate
instead over the yellow path. The yellow path represents an
experimentally inaccessible evolution between disjoint proba-
bility distributions.

quantities in Eq. (H7) over time, since such a time in-
tegral would equate to path-integrating over the dis-
jointed dotted paths in Fig. 6. For example, integrat-
ing expected counterfactual EP rate 〈σ̇K(A;t);B(t)〉 over
time to get 〈σK(A;t);B(t)〉, the “total EP if at each instan-
taneous point in time the probability distribution were
to evolve under a counterfactual rate matrix" wouldn’t
make sense unless it is acceptable to equate such a time
integral to a path integral over the yellow path in Fig. 6.

We also note that in Appendix C of [14], it is shown
that the fourth and fifth terms on the RHS of Eq. (H1)
are non-negative. Using the non-negativity of the fourth
term and plugging in relevant versions of Eq. (H10), we
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obtain the following result. For any time t,

〈σ̇ (t)〉 − d
ω

dt
SX |Xω (t) ≥(

L̇(pxφ (t))
)2

2Aφ(t)
+

(
L̇K(ω\φ;t)(pxω (t))

)2

2Aω;K(ω\φ;t)(t)
+

(
L̇K(N\ω;t)(px(t))

)2

2AN ;K(N\ω;t)(t)
(H11)

This inequality provides, for any time t, a lower
bound on how much greater the global EP rate must be
than the rate at which the subsystems in ω learns about
the subsystems in −ω (the ω − N learning rate). This
bound involves counterfactual instantaneous dynamical
activities and counterfactual instantaneous total varia-
tion distances of the probability distributions over units
φ ⊂ ω, ω, and N . These quantities are either evaluated
under the actual rate matrix or under an instantaneous
(i.e. evaluated at time t) counterfactual rate matrix. This
inequality can also be interpreted as an upper bound
on the thermodynamically allowable instantaneous (in-
verse activity-weighted) change in the distributions of
these units under actual or counterfactual rate matrices.

If we also incorporate the non-negativity of the fifth
term on the RHS of Eq. (H1), we obtain

〈σ̇ (t)〉 ≥

(
L̇(pxφ (t))

)2

2Aφ(t)
+

(
L̇K(ω\φ;t)(pxω (t))

)2

2Aω;K(ω\φ;t)(t)

+

(
L̇K(N\ω;t)(px(t))

)2

2AN ;K(N\ω;t)(t)

(H12)

Eq. (H12) states that, for the evolution of φ dur-
ing [0, τ], there is a greater entropic cost than would
be expected by the classical speed limit derived from
properties only related to φ. This is due to the way in
which the subsystems in φ interact with other subsys-
tems within a larger dependency structure. The clas-
sical speed limit indirectly (i.e., if the last application
of the Cauchy-Schwartz inequality to the time integrals
in its derivation is omitted) gives a lower bound on the
EP rate for unit φ that equals the first term on the RHS
of Eq. (H12). When considering the composite system
within which φ resides, however, we realize that there
is an increased instantaneous minimal thermodynamic
cost (in terms of EP rate) that must be paid. This in-
creased cost is equal to the second and third terms on
the RHS. The second term equals the minimal cost in
EP rate of evolving unit ω, of which φ is a subset, dur-
ing [0, τ] if the subsystems in φ remain fixed. The third
term equals the minimal cost in EP rate of evolving the
global system N , of which ω is a subset, during [0, τ] if
the subsystems in ω remain in a fixed state. Since these
two terms are positive, Eq. (H12) thus provides a lower
bound on the instantaneous global EP rate that is tighter
than the lower bound obtained from the classical speed
limit derived from the dynamics of one unit. Thus, we
show that knowing the details of the larger dependency
structure provides a stronger lower bound on the global
EP rate.

Instead of replacing the local EP rate of φ with its
lower bound, we could also keep the φ-local EP rate in
Eq. (H12) and rearrange to obtain

〈σ̇ (t)〉 − 〈σ̇φ(t)〉 ≥(
L̇K(ω\φ;t)(pxω (t))

)2

2Aω;K(ω\φ;t)(t)
+

(
L̇K(N\ω;t)(px(t))

)2

2AN ;K(N\ω;t)(t)

(H13)

Eq. (H13) explicitly provides the minimum addi-
tional EP rate that must be paid due to the interactions
φ has within a larger dependency structure. It is a lower
bound on the minimum difference in the EP rate for the
entire system and the EP rate for a unit φ ⊂ ω in that
system using thermodynamic quantities under counter-
factual rate matrices. This can also be interpreted as an
upper bound on the thermodynamically allowable in-
stantaneous (inverse activity-weighted) changes in the
distributions of unit ω and the entire system N under
counterfactual rate matrices.

These results relate actual EP rates and learning
rates to entirely counterfactual thermodynamic quanti-
ties, which implies that in multipartite systems, what
could be the case but is not actually happening has an ef-
fect on what is actually happening in the system. We note
that, while the LHS of Eqs. (H12) and (H13) can be inte-
grated over time, the RHS cannot, due to the reasoning
discussed in Fig. 6.

Finally, we note that because the decomposition con-
sidered here is iterative, many valid equations such as
Eq. (H1) exist in an MPP [14]. Therefore, in general, for
any given MPP, there exist very many results analogous
to those shown in Eqs. (H11), (H12), and (H13). As one
example, the analogous result to Eq. (H11) as applied to
the decomposition in Eq. (15) from [14] is

〈σ̇ω(t)〉 − d
φ

dt
SXω |Xφ (t) ≥

+

(
L̇(pxφ (t))

)2

2Aφ(t)
+

(
L̇K(ω\φ;t)(pxω (t))

)2

2Aω;K(ω\φ;t)(t)

(H14)

which is a lower bound on how much greater the local
EP rate of ω must be than the rate at which the sub-
systems in φ learn about the subsystems in ω\φ (the
φ − ω learning rate) based on counterfactual instanta-
neous thermodynamic quantities.

A wealth of other lower bounds can also be derived.
As a final example, instead of replacing the φ-local EP
rate with its lower bound, we can move it to the LHS to
obtain a lower bound on how much greater the difference
between the ω-local and φ-local EP rates must be than
the φ−ω learning rate:

(
〈σ̇ω(t)〉 − 〈σ̇φ(t)〉

)
− d

φ

dt
SXω |Xφ (t) ≥

(
L̇K(ω\φ;t)(pxω (t))

)2

2Aω;K(ω\φ;t)(t)
(H15)
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