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Understanding the interplay between different wave excitations, such as phonons and localized

solitons, is crucial for developing coarse-grained descriptions of many-body, near-integrable sys-

tems. We treat the Fermi-Pasta-Ulam-Tsingou (FPUT) non-linear chain and show numerically that

at short timescales, relevant to the largest Lyapunov exponent, it can be modeled as a random

perturbation of its integrable approximation— the Toda chain. At low energies, the separation be-

tween two trajectories that start at close proximity is dictated by the interaction between few soliton

modes and an intrinsic, apparent bath representing a background of many radiative modes. It is

sufficient to consider only one randomly perturbed Toda soliton-like mode to explain the power-law

profiles reported in previous works, describing how the Lyapunov exponent of large FPUT chains

decreases with the energy density of the system.

I. INTRODUCTION

Recently, there is a new interest in many-body classical, and quantum integrable systems, following experimental

advances in solid-state physics [1] and new analytical technics to treat exactly solvable models [2]. This led to a

generalized thermodynamic and hydrodynamic formulations for integrable models [3–8], where a macroscopic set of

conserved quantities dictates in- and out-of-equilibrium phenomena. When integrability is slightly broken, two natural

questions arise: (A) Do the weakly broken conserved quantities continue to govern the dynamics? and (B) if yes, do

all quantities contribute equally?

The answer to the second question depends on the model and the physical process in question, and actually, this

question is relevant for integrable systems as well. For example, one can ask whether solitary waves are crucial for the

anomalous heat transport in near-integrable (or integrable) non-linear chains [9]. The answer to question (A) above is

typically positive: in near-integrable systems there is a generic separation between Lyapunov and diffusion timescales,

which implies that quasi-conserved quantities dictate the slow dynamics of such systems [10, 11]. Recently, based on

this observation, coarse-grained models were shown to describe the slow thermalization of isolated 1D classical chains,

using numerical simulations [12], and of 1D quantum gases, using the formalism of generalized hydrodynamics [13].

In the current paper we address the shortest timescales for which an effective, coarse-grained model can be relevant

to describe the dynamics of quasi-integrable systems— the Lyapunov times. We focus on the Fermi-Pasta-Ulam-

Tsingou (FPUT) chain and show that replacing the fast variables with noise can quantitatively capture the typical

timescales for chaos in the system, which are much shorter than equilibration times. Using numerical simulations we

can explore the conserved modes of the underlying integrable model— the Toda chain, and study the different roles

played by radiative and soliton-like modes.

∗ tomergf@gmail.com

http://arxiv.org/abs/2107.12489v2
mailto:tomergf@gmail.com


2

Lyapunov exponents measure chaos as the exponential rate at which the distance between two initial conditions in

close proximity diverges in time. The maximal Lyapunov exponent is defined as

λ ≡ lim
t→∞

lim
|u(0)|→0

1

2t
ln

|u(t)|2
|u(0)|2 , (1)

where u(t) = x(1)(t)−x(2)(t) is the separation between two trajectories in phase-space. For integrable systems, all the

Lyapunov exponents vanish, as the flow (in action-angle variables) is laminar. In the presence of small integrability

breaking perturbation, the Kolmogorov-Arnold-Moser (KAM) theorem states that phase-space breaks into a mixed

state of regular regions and unstable chaotic ones. However, in the case of many degrees of freedom, for any practical

reason, the KAM theorem is irrelevant, since the transition at which the non-chaotic islands have a non-zero measure

is expected to be exponentially small with the system’s size [14, 15].

One way to describe the chaotic behavior of many-body, quasi-integrable systems beyond the KAM regime is

the one suggested in Ref. [10]: integrability breaking is replaced by a time-dependent random drive. The resulting

dynamics has a positive Lyapunov exponent which scales as σ1/3, where σ being the variance of the external noise.

This result qualitatively explains the aforementioned typical separation between Lyapunov and equilibration times

(∼ σ for the randomly driven system) in deterministic, many-body quasi-integrable system. Well known examples

of this phenomenon are the Solar System, which has a Lyapunov time of ∼ 5 Myrs but stability times larger than

5 Gyrs [16], or the FPUT chain whose equilibration times can be larger by more than four orders of magnitudes than

their Lyapunov times [17] (see also Refs. [18, 19] for more recent examples).

The main result of the current Paper is to provide a quantitative correspondence between the deterministic, complex

dynamics of the quasi-integrable FPUT chain and the dynamics of a randomly perturbed integrable Toda chain. In

particular, we show, with the aid of numerical simulations, that the Lyapunov separation in the FPUT model is

governed by the dynamics of several soliton-like modes of the Toda chain perturbed by an effective bath of radiative

(linear) modes. This result is somewhat surprising, since solitons are considered as a signature of integrability. We

find that a minimal model of a single soliton subjected to a random drive captures how the Lyapunov exponent

decreases with the energy, or equivalently, with integrability breaking, in large FPUT chains.

Developing such minimal models is crucial for understanding the complex dynamics of many-body, quasi-integrable

systems. For example, previously it was shown how an effective model for the dynamics of Mercury yields the short

Lyapunov exponent of the Solar System, and how the stochastic features of this model allow to explore orbital

instabilities at long times [20], or short rare events of destabilization [21].

The rest of the Paper is organized as follows: In Sec. II we introduce the FPUT and the Toda chains, and in Sec. III

we present our minimal stochastic model. The main results are given in Sec. IV, where we show an agreement between

this effective model and the deterministic FPUT system. Finally, we discuss the results in Sec. V.

II. THE FPUT AND THE TODA MODELS

Consider a one-dimensional chain of size N + 1 with fixed ends, whose Hamiltonian has the general form

Hchain =
1

2

N
∑

n=1

p2n +

N
∑

n=0

V (qn+1 − qn), q0 = qN+1 = 0, (2)



3

where (qn, pn) are the coordinate and momentum of the nth bead, whose unit mass is set to 1, and V (r) is the

nearest-neighbor potential. We focus on the chaotic dynamics of the α+ β FPUT chain, whose potential is:

VFPUT(r) =
1

2
r2 +

α

3
r3 +

β

4
r4, (3)

where we set the time units to 1, and hereafter we also fix α = 1. The dynamics of the chain thus depends on

its size N , its energy density ǫ ≡ HFPUT/N , and the parameter β. At low energies, the FPUT chain can be

considered as a small perturbation to the linear chain, which has the potential VL(r) = 1
2r

2. The corresponding

Hamiltonian HL is integrable, and its distance from the non-integrable FPUT Hamiltonian can be quantified as

|VL − VFPUT| ∼ αr3 ∼ αǫ3/2. A closer integrable approximation to HFPUT is the nonlinear, integrable Toda chain,

whose potential reads:

VToda(r) = V0

(

eAr − 1−Ar
)

. (4)

Hereafter we choose the parameters V0 = (2α)−2 and A = 2α, which implies |VToda − VFPUT| ∼ βr4 ∼ βǫ2.

Throughout the paper we work with different coordinate systems which we now define. The first system is the usual

phase-space, designated with x ≡ (q,p). The second coordinate system, the normal modes X ≡ (Q,P), corresponds

to the linear chain, and is defined as

Qk ≡ ωk

√

2

N + 1

N
∑

n=1

qn sin

(

πkn

N + 1

)

,

Pk ≡
√

2

N + 1

N
∑

n=1

pn sin

(

πkn

N + 1

)

,

(5)

where ωk ≡ 2 sin
(

πk
2(N+1)

)

. Eq. (5) is simply the Fourier space, where we normalize the Fourier variable of positions

with ωk. In these coordinates the Hamiltonian of the linear chain is HL =
∑

k
1
2 (P

2
k + Q2

k) ≡
∑

k Ek, and one can

clearly see that the normal modes’ energies Ek are proportional to the action variables of the linear chain. To these

we add the normal modes’ angles

φk ≡ arctan

(

Pk

Qk

)

, (6)

which form our third coordinate system (φk, Ek). Next we present our last set of coordinates, which is based on the

Toda model.

A. Toda modes

We construct a specific set of conserved quantities for the Toda Hamiltonian, which we term hereafter as the Toda

modes {Jk}Nk=1, based on gaps between eigenvalues of Lax matrices. The properties of this set of quantities, as well as

their relevance to the FPUT dynamics, were originally introduced by Ferguson et. al. [22], and were discussed more

recently in Ref. [12], where it was shown how the slow evolution of Jk governs the equilibration of the FPUT chain.

Before defining the conserved quantities, let us indicate their key properties which are crucial for the theoretical

arguments in the next Sections: (A) The Jk-s are proportional to the canonical action variables of the Toda chain,

namely, the number of excited modes corresponds to the dimension of the invariant tori. (B) In the limit of low
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energies, the Toda modes are proportional to the normal modes of the linear chain, Ek. (C) Excitation of low Toda

mode numbers k ∼ 1 corresponds to localized waves, whereas high mode numbers correspond to Fourier modes.

Hereafter we refer to the former and the latter as soliton (see comment at the end of this Section) and radiative modes

of the periodic Toda chain, respectively. In more detail, the Toda spectrum contains two parts: one part of localized

excitations 1 ≤ k ≤ ks, and a second radiative part, ks < k ≤ N , in which a higher mode number k is related to a

shorter wavelength.

We now provide the mathematical definition for the Toda modes, a complete discussion and a demonstration on

how this definition is related to properties (A)–(C) above are given in Refs. [12, 22]. We start with extending our

fixed ends chain of size N + 1 to a chain of size N ′ = 2N + 2, which is periodic and asymmetric: x′
n = xn and

x′
N+1+n = −xN+1−n for n = 1 . . .N + 1. Then, we define the Flaschka variables [23] an = 1

2e
α(q′n−q′n−1), bn = αp′n−1,

and construct two symmetric Lax matrices, L+ and L−, of size N ′ ×N ′:

L± =





























b1 a1 ±aN ′

a1 b2 a2
. . .

. . .
. . .

. . .
. . .

. . .

aN ′−2 bN ′−1 aN ′−1

±aN ′ aN ′−1 bN ′





























, (7)

where the unoccupied entries are zero. The eigenvalues of these matrices do not vary in time under the Toda

dynamics [23], and gaps between (part of) these 2N ′ eigenvalues define our N Toda modes as:

{Jk}Nk=1 = {λ2k − λ2k+1}k=N
k=1 , (8)

where {λn}2N
′

n=1 is the combined spectrum of both matrices, given in a decreasing order −λ1 ≤ · · · ≤ −λN ′−1 ≤ 0 ≤
0 ≤ λN ′−1 ≤ · · · ≤ λ1. Note that for the definition of Jk in Eq. (8) we take only the positive part of the spectrum,

which is asymmetric, and assume that N = (N ′ − 2)/2 is odd. Soliton-like excitations correspond to modes that

involve eigenvalues λn which are larger than 1 [22]. Therefore, the separation between the soliton and radiative parts

of the spectrum, at k = ks, is defined as the largest mode number k such that λ2k+1 > 1.

We can formally add the angle variables {Ψk}Nk=1 of the Toda model to define our fourth coordinate system, (Ψ,J).

The quasi-periodic motion of the integrable Toda chain is thus given by: J̇ = 0, Ψ̇ = Ω, where the Toda frequencies

Ω are functions of the initial values of Toda modes. The explicit definition of the canonical angle variables of the

Toda chain [24] is not necessary for our work as we demonstrate the results numerically. For example, motion along

the angle coordinates is given by evolving the Toda dynamics in the usual phase-space x. In Sec. IVC we discuss how

we can numerically move in the space spanned by the Toda modes Jk.

Finally, let us comment that the terminology of soliton excitations used throughout the text is slightly inaccurate,

since an exact, single traveling soliton exists only at an infinite Toda chain. However, as shown in Ref. [22], truncated

solitons, or superposition of solitons result in low Toda modes excitations of a finite chain.
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III. EFFECTIVE RANDOM MODEL

The Lyapunov exponent of an integrable system slightly perturbed with noise was explored in detail in Ref. [10]: The

idea is to study the separation between pairs of trajectories which feel the same realization of the noise. For weak noise,

the resulting Lyapunov time-scales were found to be much smaller than the diffusion time-scales induced by the noise,

and the separation of trajectories is roughly confined to the invariant tori. It was suggested that replacing integrability

breaking interactions with a time-dependent random drive can faithfully describe the deterministic dynamics of many-

body quasi-integrable systems. In the current work we show that this is indeed the case for the FPUT chain.

Before introducing our specific model of a perturbed Toda chain, let us recap the known results for a generic,

randomly perturbed integrable Hamiltonian [10, 11]. It is sufficient to consider a one-dimensional, dynamical random

system

İ = g(I, θ)η(t),

θ̇ = ω(I),
(9)

where (I, θ) are action-angle variables, g is some function, and η is a Gaussian white noise of zero mean and variance σ.

Eq. (9) can result from a randomly perturbed integrable Hamiltonian H = Hint(I) +Hp(I, θ)η(t) (the random drive

on θ is omitted from the dynamical equation since it does not effect the dynamics in the weak noise limit). The

Lyapunov exponent of this system was found to be [10]

λ ∼
(

dω

dI

)2/3
(

〈g2〉θσ
)1/3

, (10)

where 〈·〉θ is an average over the angle variable. As mentioned above, the Lyapunov separation occurs mostly along

the angle direction, thus, I is assumed to be constant in Eq. (10).

There are three important ingredients which bring forth the result in Eq. (10): (i ) The action variable is subjected

to a multiplicative, θ-dependent, random drive. (ii ) The integrable part is nonlinear, i.e., dω
dI 6= 0. (iii ) There is a

separation of timescales τc ≪ ω−1 ≪ λ−1, were τc is the correlation time of the noise (which goes to 0 in the white

noise limit) [25].

Let us now go back to the deterministic FPUT model, whose dynamics in terms of the Toda variables can be

formally written as:

J̇k = Fk(J,Ψ),

Ψ̇k = Ωk(J) +̟k(J,Ψ),
(11)

where F and ̟ are the integrability breaking perturbation terms. We are seeking to write a model in view of Eq. (9),

from which one can obtain the Lyapunov exponent of the FPUT chain. The central claim of the current paper, which

is verified in detail in Sec. IV, is the following: the Lyapunov instability of the FPUT chain originates from an effective,

random time-dependent perturbation on the Toda solitons. Namely, considering only Fk for small 1 ≤ k ≤ ks and its

stochastic modeling, is enough to quantify chaos in the FPUT chain.

The rationale behind our approach is that for large systems, it is plausible that the complex integrability-breaking

perturbation acts effectively as noise. The seemingly random drive on one part of the system, in our case the solitons,

has very short correlation time. This correlation time is intrinsic to the system, emerging from interplay with other
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parts of the system— the radiative modes in our case. This picture is somewhat analogous to features of chaos in the

Solar System. For example, Ref. [26] showed that while the complete system of Sun + 8 planets is chaotic, a system

of Sun + 4 inner planets is not. The conclusion was that it is the interplay between the outer and terrestrial (inner)

planets that gives rise to chaos in the Solar System.

In what follows, it is further assumed that the interaction between solitons does not play a role in our model for

chaos, and thus we can take a very simplified model where only one Toda soliton feels a random drive. In addition, we

drop the angular perturbation ̟ in Eq. (11) since it gives higher order corrections to the Lyapunov exponent [10, 27].

An effective stochastic model for the FPUT dynamics can thus be written in the Toda coordinates (Ψ,J) as

J̇k = δk,1f(J,Ψ)η(t),

Ψ̇k = Ωk(J),
(12)

where f is some unknown phase-space function discussed below, and η(t) is a Gaussian white noise with

〈η(t)〉 = 0, 〈η(t)η(t′)〉 = σδ(t − t′). (13)

If the deterministic expression for F1(J,Ψ) ≡ J̇1(J,Ψ) under the FPUT dynamics was given, then, together with

the assumption that this function has sufficiently short correlation time, one could obtain its stochastic asymptotic

f(J,Ψ)η(t) written in Eq. (12). This is called homogenization in the theory of stochastic averaging [28]. We do not

have the analytic form of F1(J,Ψ), however, we can show numerically that indeed it has a short correlation time,

as well as evaluate its magnitude in the white noise limit. In addition, the specific form of f(J,Ψ) is irrelevant for

obtaining the scaling of the Lyapunov exponent with the energy density ǫ. All of these statements are examined in

the next Section.

Finally, let us remark that the lack of energy conservation in our effective model, induced by the external drive,

does not affect the results and conclusions concerning the Lyapunov exponent. This is because the change in energy,

coming from the diffusion of J1, occurs on timescales that are much larger than the Lyapunov time.

Next, we analyze the simple stochastic model in Eq. (12). It is written in the Toda space (Ψ,J ), to which we do

not have analytical, or complete numerical access: the Toda modes Jk are complicated functions of the phase-space

x, and the Toda frequencies Ωk are not known. Yet, we can explore numerically the essential properties of this model

and show that the resulting Lyapunov exponent agrees with the deterministic one. In particular, the model can be

used to estimate the scaling of λ with the energy density ǫ.

IV. RESULTS

Below we show how the stochastic model in Eq. (12) can explain the Lyapunov instability in FPUT chains. We

present three different results: (A) we study the instantaneous change of the Toda modes under the FPUT dynamics,

Fk in Eq. (11), and show that their autocorrelation for small k (solitons) resembles a random signal with short

correlation times, whereas for large k (radiative modes) the signal is correlated for longer times. (B) We combine

theory, namely Eq. (10), and numerical simulations to find how the Lyapunov exponent of the randomly perturbed

Toda chain scales with the energy density ǫ, and show that it agrees with the scaling found in a previous work [29].

(C) We preform a direct simulation for an effective model— a Toda chain with an additional random drive acting
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only on the first Toda mode, J1. We find an agreement between the Lyapunov exponent of this stochastic system,

and the one of the deterministic FPUT chain. For parts (A) and (C) we treat a chain with N = 63 points, whereas

for part (B) we study a larger chain with N = 1023.

The Lyapunov exponent is examined for initial conditions drawn from an equilibrium state of the normal modes,

namely for each k, Ek is taken from an exponential distribution with mean ǫ, and φk from a uniform distribution in

the interval [0, 2π]. The numerical simulations we present below contain different elements. One numerical procedure

is integrating the Hamiltonian dynamics of the FPUT and Toda chains. This is done using a 4-th order Störmer-

Verlet method according to Yoshida scheme [30], with time-steps ranging from 0.01 to 0.1. We have verified that

decreasing time-step results in increasing accuracy of energy conservation (and conservation of Toda modes for the

Toda dynamics) over time. Other, less standard parts of the computation concern the Toda modes, and are explained

in the following subsections IVA-IVC, whereas the discussion on numerical errors appears in Appendix B.

A. Autocorrelations of Toda modes in the FPUT dynamics

Before treating the stochastic model directly, we verify its applicability by testing whether under the deterministic

FPUT dynamics the soliton Toda modes are effectively driven by a random force. We integrate a chain of size

N = 63 with the FPUT dynamics, calculate the instantaneous change of the Toda modes’ spectrum, and analyze its

autocorrelation:

Ck(t) =
1

Tf

∫ Tf

0

[

J̇k(t
′ + t)− ¯̇Jk

] [

J̇k(t
′)− ¯̇Jk

]

dt′, (14)

where ¯̇Jk ≡ 1
Tf

∫ Tf

0 J̇k(t
′)dt′, and Tf is the final time of integration. In Fig. 1 we plot Ck(t) for various mode numbers

k, and energy density ǫ. Computation of the Toda modes Jk includes finding the eigenvalues of the Lax matrices

L± in Eq. (7). We note that this numerical operation can be facilitated by transforming the almost tridiagonal Lax

matrices to an exact pentadiagonal ones, see Ref. [31] or Appendix in Ref. [12]. The time-derivative of Jk is obtained

by evolving the system with the FPUT dynamics for an infinitesimal time-step dt ∼ 10−4 − 10−6.

As shown in Fig. 1(a), the correlation for the Toda mode k = 1 falls rapidly after some typical time τc. On the

other hand, the instantaneous change of higher Toda modes stays correlated for longer times. Hence, it is plausible

to think of the radiative modes as acting effectively as a random drive on the solitons. The Figure also presents

autocorrelations for the normal (Fourier) modes, namely, Eq. (14) with replacing Jk → Ek. As expected for these

linear modes, lower mode numbers are correlated for longer times.

Recall that the lower the energy density ǫ, the closer is the system to the linear chain, and hence, the closer are the

Toda modes to the linear modes. Therefore, we expect that at very small ǫ we have only few soliton excitations, which

effectively feel a random drive, whereas at high energies even high mode numbers show an uncorrelated behavior.

This is demonstrated in Fig. 1(b), where we compare between the behavior of the first and the 60th Toda modes at

small energy ǫ = 8 × 10−4, and present how at high energy density of ǫ = 0.1 both modes evolve incoherently in a

similar fashion.

In summary, the results presented in Fig. 1 support the idea presented by the effective model in Eq. (12).
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FIG. 1. Autocorrelation for the time-derivative of the Toda modes (Eq. (14)) and the normal modes ((Eq. (14) with replacing

Jk → Ek) under the FPUT dynamics, for different mode numbers k and energy density ǫ. (a) After a short correlation time,

τc, the FPUT perturbation induces an incoherent signal on the soliton mode J1 of the Toda chain. The perturbation on higher

Toda modes (J40), or on the normal modes (E1, E40), shows a slower decay. (b) Comparison between the autocorrelation

related to the Toda modes k = 1 and k = 60, at high and low energies. The plots are for a single initial condition at a given

energy density ǫ.

B. Scaling of λ(ǫ)

Next, we use our model to obtain the scaling of λ as a function of the energy density ǫ. The Lyapunov exponent

of Eq. (12) can be found by extending the result for one degree of freedom in Eq. (10) to the case of many-degrees of

freedom. This was done in Ref. [10]. In general, we shall have

λ ∼
∣

∣

∣

∣

∂Ω

∂J1

∣

∣

∣

∣

2/3
(

〈f2〉Ψσ
)1/3

. (15)

Below we extract numerically the two factors on the right-hand-side of Eq. (15) and find their dependence on the

energy density ǫ. The first factor is a property of the integrable Toda chain, whereas the second one depends on the

integrability breaking by the FPUT model. We focus on a chain of size N = 1023.

We start with σ̃ ≡ 〈f2〉Ψσ, which is essentially the variance of the apparent random drive acting on the Toda soliton

J1. One way to obtain this quantity is to examine how the mean-square-displacement of J1 in the FPUT dynamics

grows in time: The idea is to fit the deterministic time evolution of J1 to a dynamics generated by a series of kicks,

whose magnitude scales as the square-root of the time between kicks. Given the evolution of J1(t) at time-interval

[0, Tf ], we can coarse-grain its temporal changes over time windows of size ∆T ≫ τc,

J̄∆T
1 (n) ≡ J1 (n∆T )− J1 (n∆T −∆T ) , n = 1, . . .

Tf

∆T
. (16)

If we claim that the first Toda mode is effectively driven by a white noise, then the variance of J̄∆T , over Tf/∆T

points, shall scale linearly with ∆T— the slope being σ̃. Note that for this procedure the specific form of the function

f(J,Ψ) is irrelevant, as long as Tf is larger than the unperturbed period on the tori.

In the inset of Fig. 2(a) we show that indeed the variance of J̄∆T has a clear linear growth at large enough ∆T ,

where we average over initial conditions. Therefore, for each energy density we can fit a linear line to the averaged
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FIG. 2. Scaling of the quantities which govern the Lyapunov exponent according to the theoretical prediction in Eq. (15).

(a) The magnitude of the effective random drive acting on J1. Each point in the main plot is obtained by fitting the linear

growth of the coarse-grained evolution of J1 under the FPUT dynamics, an example given in the inset. (b) The angular velocity

of the integrable Toda chain, associated with J1 and affecting the Lyapunov exponent value. Each point in the plot is obtained

by examining the linear separation between two initial conditions which are initially separated along the J1 direction, and

evolve with the Toda Hamiltonian. An example of this linear separation is given in the inset. The curves in both insets are

averaged over 100 initial conditions.

〈Var
(

J̄∆T
1

)

〉, whose slope gives us σ̃(ǫ). One can see from Fig. 2(a) that σ̃(ǫ) follows a power-law σ̃(ǫ) ∼ ǫγ1 , and we

find γ1 = 3.6± 0.15.

Next, we need to extract the power-law for
∣

∣

∣

∂Ω
∂J1

∣

∣

∣, which refers to the relative velocity between points on two adjacent

tori, J1 and J1+∆J1 within the integrable Toda dynamics. To this end, we take two initial conditions in phase space,

which differ only by their first Toda mode, (∆J(0),∆Ω(0)) = (∆J1, 0, . . . , 0) (see discussion in Sec. IVC below on how

such a configuration can be obtained). When integrated with the Toda dynamics we get, on average, two trajectories

that get further away from each other linearly in time, with a constant velocity given by ∆1Ω ≡ | ∂Ω∂J1
dJ1| [11]. In the

inset of Fig. 2(b) we provide an example of this linear separation. The profile and the power-law fit of ∆1Ω(ǫ) ∼ ǫγ2

is plotted in Fig. 2(b), where we find γ2 = 1.16±0.03. The last ingredient we need for evaluating λ(ǫ) is the scaling of

J1(ǫ), which can be computed directly by averaging the values of the first Toda mode for different initial conditions,

for a given ǫ. We find (the result not shown here) J1(ǫ) ∼ ǫγ3 , with γ3 = 0.63 (the certainty for the fitted exponent

γ3 is smaller than 0.01).

We can now collect all the different scaling laws and estimate

λ ∼
(

∆1Ω(ǫ)

J1(ǫ)

)2/3

σ̃(ǫ)1/3 ∼ ǫ
2(γ2−γ3)+γ1

3 ∼ ǫ1.55±0.07. (17)

This result is in excellent agreement with the one reported by Benettin et. al. [29], where it was found, by calculating

the Lyapunov exponent in the standard way, that λ ∼ ǫ1.57 for N = 1023.
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1. Other FPUT-like chains

Following Ref. [29] we can study other quasi-Toda models, the βT and the γT chains, whose potentials are:

VβT
(r) =

1

2
r2 +

α

3
r3 +

2α2

3

1

4
r4, and VγT

(r) = VβT
(r) +

α3

3

1

5
r5,

respectively. These models are closer to the Toda chain than the usual α + β FPUT, |VToda − VβT
| ∼ ǫ5/2 and

|VToda − VγT
| ∼ ǫ3. According to the theory presented here, the Lyapunov exponent of these systems is dictated by

the apparent random drive induced on the Toda soliton mode, σ̃(ǫ).

We simulate the βT and γT models for short timescales, up to Tf = 50−100, and repeat the numerical procedure to

find σ̃(ǫ) (as given in Fig. 2(a) for the α+β model). We find the exponents σ̃βT
(ǫ) ∼ ǫ4.53±0.25 and σ̃γT

(ǫ) ∼ ǫ5.53±0.09.

Plugging these exponents to the expression in Eq. (15), we find λβT
∼ ǫ1.86±0.10 and λγT

∼ ǫ2.19±0.05. These scaling

laws are with an excellent agreement with Ref. [29], who found the exponents 1.9 and 2.2 for the βT and γT models

respectively (these reported values are the typical ones for different chain sizes N , and not for the specific N = 1023).

The results for the quasi-Toda models indicate the following hierarchy: decreasing the perturbation magnitude of

the Toda Hamiltonian as ǫ2 → ǫ5/2 → ǫ3 for the (α + β) → βT → γT models respectively, corresponds to perturbing

the Toda first soliton mode with the decreasing strength ǫa → ǫa+1 → ǫa+2, with a ∼ 3.5 for N = 1023. This

interesting result means that the apparent random force on J1 must depend on J1 itself. This fact is crucial for the

longer relaxation time of the system; See discussion in Sec. V below.

We now move to a direct numerical simulation of the effective stochastic model.

C. Weakly, and randomly kicked Toda chain

The random model in Eqs. (12)–(13) cannot be directly simulated since the function f(J,Ψ), which defines inte-

grability breaking interactions in the Toda space, is unattainable due to the complex transformation (p,q) → (J,Ψ).

However, the Lyapunov exponent of the stochastic model is insensitive to the specific form of this function, since:

(a) any dependence on the angle variables Ψk is averaged out, as the Lyapunov time is assumed to be larger than

the unperturbed period on the tori, and (b) any dependence on the Toda modes Jk enters as a constant factor since

the diffusion time for J1 is larger than the Lyapunov time. Namely, an equivalent model, which shall yield the same

Lyapunov exponent as the model in Eqs. (12)–(13), reads

J̇k = δk,1f̃(Ψ)η̃(t),

Ψ̇k = Ωk(J),
(18)

where η̃(t) is a Gaussian white noise with variance σ̃ ≡ 〈f2〉Ψσ and f̃ is only a Ψ−dependent function which averages

to 1 over the invariant Toda tori, 〈f̃2〉Ψ = 1. Hereafter we take the function

f̃ ≡ 1

N

N
∑

k=1

cosφk, (19)

where φk are the angles of the normal modes (see Sec. II), and N is a normalization factor such that 〈f̃2〉Ψ = 1. Again,

although the specific relation between φk and Ψk is unknown, the normalization factor can be evaluated numerically,

by averaging
∑N

k=1 cosφk over the Toda dynamics.
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We now describe how Eq. (18) can be numerically integrated. The way to simulate this random model is to treat

the noise as a series of random kicks, whose magnitude are taken from a Gaussian distribution of zero mean

η̃(t) =

∞
∑

i=1

ri
√
τkickδ(t− iτkick), ri ∼ N (0, σ̃). (20)

Therefore, the dynamics of the effective system involves free Toda evolution and instantaneous random kicks. Con-

sidering the state of the system just before the i-th kick results in the following map

J
(i+1)
k = δk,1f̃(x

(i))ri
√
τkick,

Ψ
(i+1)
k = Ψ

(i)
k +Ωk(J

(i+1))τkick,
(21)

where the function f̃ is given in Eq. (19).

As emphasized in Sec. III, the random effective model is relevant for timescales which are of order of the Lyapunov

time tLyp = λ−1. In particular, the model prescribes a random motion with zero mean to J1, which is a positive

variable. In theory, J1 shall stay positive since we know it does not vary significantly during the Lyapunov regime.

However, this point might be crucial for the numerical simulations, where the white noise is represented by random

kicks of finite size. One way to overcome this problem is to add a drift term to the equation of J̇1 which is large

enough to guarantee that the value of J1 will not become negative, but small enough not to affect the Lyapunov

exponent. This technical issue, which becomes irrelevant as ǫ and τkicks (and thus the kicks’ magnitude) decreases, is

described in detail in Appendix A.

The variance of the random kicks, σ̃, is chosen according to the effective random drive acting on J1 in the non-

stochastic, deterministic FPUT dynamics. This is taken from the curve of σ̃(ǫ) obtained in the previous Sec. IVB, see

Eq. (16). For the rate of kicking we choose 200-600 kicks per Lyapunov time, this guarantees the time-scale separation

between noise and Lyapunov times, see discussion after Eq. (10). We have checked that taking different kicking rates,

200τkicks = tLyp or 600τkicks = tLyp, does not change the result.

The free Toda evolution between kicks is preformed numerically in the usual phase-space x. The kicks are also

done in this space, by finding a translation dx which results in (dJ,dΩ) = (dJ1, 0, 0, . . . , 0). We solve this inverse

problem by using projection matrices: consider a matrix B whose columns are given by a set of ℓ vectors of size 2N ,

B = (v1, . . . ,vℓ), then the matrix

P⊥
{vk}

≡ I2N×2N −B
(

BTB
)−1

BT , (22)

projects vectors of size 2N into the space perpendicular to all vk. The matrix I2N×2N is the identity matrix.

To induce a motion along the J1 direction we first compute vectors normal to the surface of constant Jk, n̂k ≡
∂xJk/|∂xJk|. The spatial derivatives of Jk can be obtained numerically by computing the eigenvectors of the L±

matrices [12]. Since Jk are not the canonical action variables of the Toda chain we have that the unit vectors

n̂k are not orthogonal to each other; but, they are orthogonal to the direction of the angles Ψk. We can thus

find the dΨ direction using the projection matrix P⊥
{n̂k}

and multiplying it with N random vectors uk to define

m̂k ≡ P⊥
{n̂k}

uk/|P⊥
{n̂k}

uk|. The set of N unit vectors m̂k spans the space of small variations in the direction of the

angles Ψ. As a final step, we use the projection matrix for the space perpendicular to all {n̂k, m̂k}, except n̂1— this

gives us a direction in phase-space along which small translation dx results in changing J1 alone.
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The usage of projection matrices works well for small enough dx, i.e., small enough kicks. For the parameters we

use here, the random drive is weak enough to get a sufficiently accurate integration of the random map in Eq. (21).

The inset of Fig. 3 demonstrates a single integration of our stochastic model. Clearly, J1 undergoes a diffusive like

motion, whereas for k > 1 all Jk do not vary in time.

We can now present the results obtained using our numerical scheme, showing how the random model gives the

Lyapunov exponent of the FPUT chain. In Fig. 3 we compare between the (quenched) average separation between

trajectories in the stochastic map and in the deterministic model. The former is obtained by simulating the random

map for different pairs of trajectories, which start close to each other and subjected the same realization of the noise

{ri}. The Lyapunov separation for the FPUT model is calculated in the standard way, using variational equations [32].

We find a good agreement between the models, as is evident in the two examples presented in Fig. 3, for N = 63 with

ǫ = 10−3 and ǫ = 2.6× 10−4.

In all of our examples we kept the initial separation between trajectories fixed, ∆x0 = 10−8. One can observe in

Fig. 3 a discrepancy at short times, where the effective model shows a fast increase. This increase can be attributed to

an initial ballistic separation between the trajectories [11]. A similar, but weaker effect appears in the deterministic

dynamics. The difference between the models at short times could be expected, as before the Lyapunov regime other

modes than J1 might affect the dynamics. We note that the deterministic Lyapunov separation is computed in the

tangent space, using variational equation, therefore, it grows indefinitely. This is opposed to the stochastic examples

which are computed in phase space and saturate at long, but finite times.

Finally, we study the configuration space of the chain and the Lyapunov vector within the Lyapunov regime. In

Fig. 4 we plot the evolution of chain configurations for the two models, the deterministic FPUT and the randomly

kicked Toda. In addition, we project the Lyapunov vector on the configuration space, namely, we look at ∆q(t) ≡
q(1)(t) − q(2)(t), the difference between two trajectories which start at close proximity. All trajectories in the figure

show the presence of solitons. In particular, one can clearly see that soliton excitations continue to exist in the tangent

space dynamics, panels (c) and (d), where for the effective model the Lyapunov vector concentrates along one solitary

wave.

V. CONCLUSION AND DISCUSSION

We have shown how a simple model— a randomly perturbed Toda chain— can explain the chaotic dynamics of

the nonlinear FPUT chain at low energies: The model provides an estimate for the largest Lyapunov exponent in

quasi-Toda chains, and is consistent with the observation that the Lyapunov vector is roughly confined to the invariant

Toda tori. Surprisingly, the ”most integrable” element of the system, a Toda soliton mode, determines the chaotic

behavior of the FPUT chain. Let us emphasize that the random component in the stochastic model is not arbitrary;

its magnitude is given by stochastic averaging of the deterministic, multi-resonance interaction induced by all other

degrees of freedom.

Integrability breaking in the FPUT chain decreases with its energy density ǫ. Previous works have shown how

different stages of the near-integrable dynamics, e.g., developing a long-lived metastable state or equipartition in
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FIG. 3. Comparison between Lyapunov separation in the FPUT dynamics (solid lines) and in the effective stochastic model

(dashed lines) for chain size N = 63. We show examples for two different energy densities, ǫ = 10−3 (red/dark line) and

ǫ = 2.6 × 10−4 (green/bright line). The quenched average for both models is over ∼ 100 initial conditions, where for the

stochastic model we also average over noise realizations. The time axis is rescaled with the Lyapunov exponent for each of the

two examples such that the slope of the solid lines is set to 1. Inset: The variation of the Toda modes in the stochastic model,

for a single noise realization (for ǫ = 10−3).

the space of normal modes, happen on different time-scales, each of which vanishes as a power law ǫν (see Ref. [33]

and references therein). Resolving the origin of these power laws is crucial for understanding the phenomenon of

integrability breaking in many-body systems, e.g., by identifying finite-size effects. Our model provides a simple

method to obtain the behavior of λ(ǫ) at large quasi-Toda chains. We note that the Lyapunov exponent of models

whose only (known) integrable approximation is the linear chain, but not the Toda model, was already addressed

in previous works: For example, a scaling of λβ(ǫ) ∼ ǫ2 for the β-FPUT chain, can be explained by fluctuations of

curvature in the tangent space dynamics [29, 34–36].

In summary, the current Paper clearly demonstrates the idea that a weak, random perturbation to integrable models

is a useful tool to treat and describe the dynamics of near-integrable systems. In addition, it highlights the different

roles played by localized excitations and radiative ones, and the fact that for resolving various physical processes in

the FPUT chain one must go beyond the framework of linear normal modes. In that sense, our results fit well with

the understanding that ”quasi-linear” and ”quasi-Toda” models behave differently, e.g., as was shown recently for the

energy transport in such systems [37]. Hence, our findings can stand as a building block to explore further problems

in nonlinear, quasi-Toda models. Below we discuss limitations and generalizations of the stochastic model.

A. Initial Conditions

We have focused on the Lyapunov exponents for random initial conditions which are close to equilibrium. These

initial conditions are drawn in the space of the normal modes of the linear chain, where the averaged energy of each

normal mode Ek is ǫ. This choice is taken to follow previous works on Lyapunov exponents of FPUT chains, e.g.,

Refs. [29, 34, 38, 39] to name a few. Although we do not expect the results to change for different choice of initial

conditions, this should be verified carefully. In particular, our numerical procedure for testing the effective model
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FIG. 4. Chain configurations as a function of time for the FPUT dynamics (panel a) and the effective model (panel b). In

panels (c) and (d) we plot the projection of the Lyapunov vector on the configuration space for the FPUT and effective model

respectively. In all figures the position of the beads are equally shifted with the shift parameter r. The chain size is N = 63,

with an energy density of ǫ = 10−3.

might be unstable for specific choice of initial conditions. If, for example, only E1 is excited, then only the first few

Jk are excited, which means that there is a degeneracy in the spectrum of the Lax matrices L± (recall that Jk are

defined via gaps between eigenvalues, see Eq. (8)). This can affect the numerical stability of translation in the space

of Jk, since it depends on finding the corresponding normal vectors n̂k.

The example mentioned above, taking initial conditions were only one, or few normal modes are excited, e.g.,

E1 = ǫ, Ek 6=1 = 0, is actually an interesting direction for future consideration. In this example not all Toda radiative

modes are excited [12], and thus the properties of the randomly perturbed Toda model might show different behavior

than the one presented in the current study. For example, the autocorrelation curves presented in Sec. IVA, or the

scaling of noise magnitude σ̃(ǫ) discussed in Sec. IVB can depend on the energy distribution among the Toda radiative

modes.
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B. Thermodynamic Limit

The maximal Lyapunov exponent of the FPUT chain depends on its size N [29]. It is an interesting question

whether this dependence vanishes in the thermodynamic limit N → ∞. The effective model presented here becomes

closer to the real FPUT dynamics with increasing N and decreasing ǫ. This is because for larger chains we expect the

integrability breaking interaction to better resemble a white noise, as coupling to more and more incoherent degrees

of freedom approaches coupling to a bath. In addition, at lower energies there is a clearer separation between few

soliton modes and an almost continuous spectrum of radiative modes. Hence, we claim that our approach can attack

the thermodynamic limit of λ(ǫ).

Let us remark that the two limits of N → ∞ and ǫ → 0 do not commute. For a fixed range of ǫ and increasing

N , there is a question (posed in Ref. [29]) whether the power law exponent ν, where λ(ǫ) ∼ ǫν , reaches a value

independent of N . Concerning the opposite limit, i.e., fixing N and decreasing the energy ǫ, one can ask whether

there is a critical value ǫc, below which the difference between the Toda and the linear chains is negligible [40], such

that the decrease of λ(ǫ) follows according to previous analytical estimates for quasi-linear models (e.g., for the β-

FPUT chain in Refs. [29, 34–36]). We have not seen any evidence of such behavior in our simulations, as well as in

the results presented by Benettin et. al. [29], which show no change in the profile of λ(ǫ) at very low energies.

Using our approach for large system sizes N involves some computational effort, as the definition of Jk depends on

large matrices. However, we note that these matrices are sparse, and the quantity J1 is defined only by the two largest

eigenvalues. Therefore, calculating the factors that give the scaling of λ(ǫ) in Eq. (15) is feasible, even for very large

chains N and small energy densities ǫ. In more detail, the standard way to obtain the largest Lyapunov exponent

involves integration of the real dynamics for ∼ 10 Lyapunov times. On the other hand, the method presented in

Sec. IVB allows to predict λ at a given energy ǫ by evaluating: σ̃, ∆Ω1, and J1. Thus, the time window for which we

need to integrate the system is smaller that 1 Lyapunov time, since σ̃ corresponds to the uncorrelated apparent drive

acting on J1, and ∆Ω1 refers to the integrable Toda part of the dynamics. Therefore, the only computational effort

in our method is in the computation of J1.

Finally, let us emphasize that we have shown how a simple equation for only the first Toda mode can capture

features of the FPUT chain. While it is difficult to analyze the whole Toda spectrum, it is plausible that some

analytical results can be drawn in the thermodynamic limit, in particular for J1. For example, it is already known

how the number density of solitons scales with the temperature of the system [41].

C. Beyond Lyapunov times

The stochastic coarse-grained model we have treated in the current manuscript captures the dynamics of the

FPUT on short time-scales, which are relevant for the chaotic separation of trajectories. However, the fact that

time-dependent random perturbation can faithfully describe integrability breaking interactions in many-body systems

should hold true for longer timescales. Therefore, models similar to Eq. (12) can explain other non-equilibrium

processes in quasi-integrable systems. In particular, any process which is dictated by one or more solitons, in the

apparent random background of the radiative modes, can be captured by an effective stochastic model.

One example of such process is the equilibration of the FPUT chain. In a previous work [12] we showed how
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the FPUT dynamics drifts slowly between ergodized Toda tori, well characterized by {Jk}, towards equipartition.

Starting with an ensemble of atypical initial conditions the average values 〈Jk〉 saturate as the system approaches

equilibration of the normal modes Ek, where the last Toda modes to saturate are the soliton ones. Hence, we expect

that a simple model of the form J̇1 ∼ v1 + g(Ω, J1)η(t) can capture this very last stage of equilibration. Note that

now we cannot assume anymore that the multiplicative part of the noise is independent of J1, as we are interested in

timescales which are much larger than the Lyapunov times. In addition, the effective perturbation might be a random

variable with a nonzero mean, or include a drift term v1.
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Appendix A: Adding a drift term

In Sec. IVC we mention that for the numerical integration of the stochastic model it might be useful to add a drift

term to the dynamics:

J̇1 = v1(J) + f(J,Ψ)η(t). (A1)

The idea is to choose v1 which is small enough such that it does not effect the Lyapunov exponent, yet, large enough

to guarantee that J1 does not approach zero during the simulation (recall that J1 ≥ 0). We now discuss this point in

detail.

For simplicity we consider the one-dimensional problem in Eq. (9) with an additional drift term for the action

variable I. The tangent space equations dictating the Lyapunov separation is given by

ḋI =
∂v(I)

∂I
dI +

(

∂g(I, θ)

∂θ
dθ +

∂g(I, θ)

∂I
dI

)

η(t),

θ̇ =
ω(I)

∂I
dI.

(A2)

Under the assumption that I is constant we can eliminate the drift term by moving to a new variable d̃I = dIe−
∂v(I)
∂I

t.

Thus, the Lyapunov exponent of the system in Eq. (A2) is given by adding ∂v1(J1)
∂J1

to the expression in Eq. (10).

Therefore, a drift term which satisfies v1(J1)λ
−1 ≪ J1 and ∂v1(J1)

∂J1
≪ λ does not effect the Lyapunov exponent of the

effective model without a drift in Eq. (12).

For the numerical simulations in Sec. IVC we add a drift term to J1, choosing v = a/J1 with a ∼ σ̃, which

guarantees that J1 does not approach zero during the simulation. We have verified that the Lyapunov exponent, as

well as the typical variation in J1, are not affected by v.
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Appendix B: Verifying the numerical methods

The different numerical methods applied in the current work include different computational errors, and extra care

shall be taken when dealing with the analysis of quantities which are, theoretically, conserved by the dynamics. We

now discuss several aspects that were tested for the numerical simulations.

Let us first treat the most natural question: We try to evaluate the small breaking of integrability in the FPUT

dynamics, characterized by the variance σ̃; Can it be that the measured values shown in Fig. 2(a) simply originate

from the inaccuracy of the numerical integration, and not from the FPUT dynamics? Indeed the values of σ̃ presented

in that figure are rather small. To answer this question we repeat the same procedure for obtaining σ̃(ǫ), as outlined

in Sec. IVB, but for the integrable Toda evolution. The values found for σ̃Toda(ǫ) are of order 10−22, much smaller

than the ones presented in Fig. 2(a). The only place where the ”numerical error breaking of integrability” found to

be comparable to the one attributed to the FPUT is when we treat the γT model at very low energies of ǫ ∼ 10−5.

Apart from the essential check for the computation of σ̃, we have verified all the other elements of the numerical

analysis: (I) As already mentioned above, we have checked that the symplectic integration conserves energy and the

Toda modes with a sufficient accuracy. (II) The calculation of Jk is based on finding eigenvalues of big, although sparse,

matrices. Numerical errors can affect the computations of J̇k = (Jk(t)− Jk(t+ h))/h, due to the FPUT evolution in

small time-interval h. We have tested different values of h to verify that our choice of h ∼ 10−4 − 10−6 is suitable.

(III) The motion in the space of Toda modes, e.g., kicking the system in the J1 direction alone, involves computation

of eigenvectors (which gives n̂k and projection matrices). It is hard to evaluate the error of this operation, as it

depends on many parameters such as the magnitude of the kick itself. However, this computational issue is irrelevant

for our results: whenever the changes in Jk>1 are 1-2 orders of magnitude smaller than changes in J1, which undergoes

a random motion, we have found a Lyapunov growth rate similar to the one of the deterministic FPUT.

Let us remark that we did encounter several examples were we could not kick the system along J1 alone. This

instability of the algorithm is not due to the magnitude of the kicks, but comes from the projection matrices themselves,

and thus, it is probably related to singularities in the calculation of n̂k.
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