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ERGODIC FORMALISM FOR TOPOLOGICAL ATTRACTORS AND

HISTORIC BEHAVIOR

V. PINHEIRO

ABSTRACT. We introduce the concepts of Baire Ergodicity and Ergodic Formalism, em-
ploying them to study topological and statistical attractors. Specifically, we establish the
existence and finiteness of such attractors and provide applications for maps of the inter-
val, Viana maps, non-uniformly expanding maps, partially hyperbolic systems, strongly
transitive dynamics, and skew-products.

In a dynamical system with an abundance of historic behavior (encompassing all sys-
tems with some hyperbolicity, particularly Axiom A systems), one can show the existence
of a residual set with zero measure for every invariant probability measure. Hence, in prin-
ciple, utilizing the classical ergodic theory to control the asymptotic topological /statistical
behavior of generic orbits is not feasible.

Nevertheless, the results presented here can also be applied to such a system, contribut-
ing to the study of generic orbits in systems with an abundance of historic behavior.
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1. INTRODUCTION

As it is wildly known, the asymptotic behavior of the forward orbit of a point z € X
with respect to map f : X O is, in general, quite complex and strongly dependent on .
To understand the behavior of the orbit of x we should focus on the w-limit of x, denoted
by wy(x) and defined as the set of accumulating points of the sequence {f"(z)},>0. The
existence of an attractor A C X can simplify dramatically the study of the w-limit sets,
as a large proportion of points z € X are attracted to this attractor and in many cases
wg(x) = A for most of the attracted points. We say that a “large proportion of points”
belongs to the basin of attraction of A, denoted by Bf(A), if B;(A) is not a zero measure
set or a meager set. A set is called meager if it is a countable union of nowhere dense
subsets of X. In this paper we focus on topological attractors, that is, when [;(A) is not
a meager set. In particular, this implies that we can consider a more general context than
the context of metrical attractors (when f;(A) has Lebesgue positive measure), as it is not
necessary to be restricted to finite-dimensional spaces.

A metric attractor, specially one that supports a physical measure, has all the tools of
Ergodic Theory to study the statistical behavior, such as Birkhoff averages, of almost all
points in its basin of attraction. In general, this is not the case for a topological attractor.
Indeed, generic points in the basin of attraction of a topological attractor exhibit historic
behavior, meaning that the convergence of the Birkhoff average is not expected, even for
continuous functions (for more details, see Section . Here, we introduce the concept
of Baire ergodicity (and variations) with two main objectives: (1) to study statistical
properties of generic points (including Birkhoff averages) even for points with historic
behavior, and (2) to study the existence and finiteness of topological attractors.

Emphasizing again the importance of attractors, it was conjectured by Palis in 1995
(see [Pa0q), [Pa05]) that, in a compact smooth manifold, there is a dense set D of differen-
tiable dynamics such that, among other properties, any element of D display finitely many
(metrical) attractors whose union of basins of attraction has total probability measure in
the ambient manifold. This conjecture, known as the “Palis Global Conjecture” was built
in such a way that, if proved to be true, one can then concentrate the attention on the
description of the properties of these finitely many attractors and their basins of attraction
to have an understanding on the whole system. In a finite-dimensional space, we observe
the existence of a strong connection between topological and metrical attractors (for in-
stance, see Theorem |G|and Section . Hence, the problem of existence and finiteness of
topological attractors is also strongly related with Palis conjecture.
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2. STATEMENT OF MAINS RESULTS

Let X be a compact metric space with distance d. In this context, a set U C X is meager
if it is contained in a countable union of compact sets with empty interior. We say that two
sets U,V C X are (meager) equivalent, denoted by U ~ V', when UAV := (U\V)U(V\U)
is a meager set @ We say that a given property P is generic on U C X, or P holds
for a residual set of points x € U, when {x € U; P is not valid for x} is a meager set.
A map f: X O is called non-singular if the pre-image of a meager set is also a meager
set.

A continuous map f : X O is called transitive if |J, -, f"(V) is dense in X for every
open set V' C X. If |, f"(V)) = X for every open set V C X, then f is called strongly
transitive. Given U C X and z € X, the frequency of visits of x to U is defined as

1 ,

7(U) =limsup—# {0 < j <n; f/(z) e U}.
n——4oo N

Theorem A. Let f: X O be a non-singular continuous map. If f is transitive then, given

a Borel measurable bounded function ¢ : X — R, there exists v € R such that

n—1

for a residual set of points x € X. As a consequence, for each Borel set U C X, there exists
0 € [0,1] such that 7,.(U) = 0 for a residual set of points x € X.

The basin of attraction of a set A C X is defined as
Br(A) = {z € X; wy(z) C A},

where wy(z) = (50 OF (f"(x)) is the omega limit of x and OF (x) = {f"(z); n > 0} is
the forward orbit of a point x € X. Following Milnor’s definition of topological attractor
[Mi], a compact set A is called a topological attractor if 5;(A) and B¢(A) \ 5f(A’) are
not meager sets for every compact set A’ ;Cé A.

A map h: X O on a topological space X is Borel bimeasurable if the image and the
pre-image of any measurable set are measurable sets. By Purves [Pui], see also [Maul,
h is bimeasurable if and only if {x € X ; h™!(x) is uncountable} is a countable set. In
particular, most of the usual dynamical systems are bimeasurable.

The support of a Borel probability measure p, supp p, is the set of all points x € X
such that u(B:(x)) > 0 for every € > 0, where B.(z) = {y € X; d(y,x) < €} is the open
ball of center x and radius €.

Theorem B. Let f : X O be a bimeasurable non-singular continuous map and p a Borel
probability measure on X with supp u = X. If

inf {,u (U interior (f”(BJm)))) ;o€ Xand e >} >0

'Knowing that AANA = (), AANA = BAA, and AAC C (AAB)U(BAC), we get that ~ is an equivalence
relation.
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then there exists a finite collection of topological attractors Ay, --- , Ay such that

Br(A;) U~ -~ U By(A)) ~ X.
Furthermore, the following statements are true for every 1 < j < /.
(1) wi(z) = A; for a residual set of points x € B(A;).
(2) If ¢ : X = R is a Borel measurable bounded function then there exists v; € R such
that

lim sup — Z o fl(x

n—+oo T

for a residual set of points x € Bf( ]).
(3) If U is a Borel subset of X then there exists 0; € [0,1] such that

72(U) = 0;
for a residual set of points x € B(A;).

The nonwandering set, Q(f), of a map f : X O is the set of all x € X such that
VN U, f7(V) # 0 for every open set V' containing x. Denote the set of all peri-
odic points of f by Per(f), i.e., Per(f) = {p € X;p € O}F(p)} C Q(f). The map f
has sensitive dependence on initial condition [Gu] if there exists » > 0 such that

sup,, diameter(f"(B:(z))) > r for every x € X and ¢ > 0. According to Ruelle [Ru] and
Takens [Ta08], a point x € X has historic behavior when

lim sup — ngofj >hm1nf—ngofJ

n—+oo
for some ¢ € C'(X,R).

Theorem C. Let f: X O be a bimeasurable non-singular continuous map. If there exists
0 > 0 such that UnZO fr(U) contains some open ball of radius &, for every nonempty open
set U C X, then there exists a finite collection of topological attractors Ay, --- , Ay such that

Br(A;)U---UBr(As) contains an open and dense subset of X.

Furthermore, the following statements are true for every 1 < j < /.

(i) The statements (1), (3) and (3) of Theorem[B remain valid.
(i3) fla; is transitive.

(111) A; = interior(A;) and it contains an open ball of radius 6.

(iwv) Q(f)\ Uf':o A; is a compact set with empty interior.
Furthermore, if |J,~q f*(U) contains some open ball of radius 6, for every nonempty open
set U C X, then the following statements are true.
(v) For each A; there is a forward invariant set A; C A;, with A; = interior(A;),
such that f|a4; is strongly transitive.
(vi) Either wg(x) = A; for every x € A; or f’Aj has sensitive dependence on initial
conditions.

(vii) If A; contains more that one periodic orbit then, generically, the points of S¢(A;)
have historic behavior.
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FIGURE 1. The picture on the left shows the graph of the double map S! > [z] —
[22] € S'. On the right side, the picture shows the graph of a C* map f : St O,
S!:= R/Z, that is conjugated to the double map and such that ws(z) = S! and
wi([z]) = {[0]} for Lebesgue almost every [z] € S L

Denote the set of all f invariant Borel probability measures of f by M!(f). Recall that
f is called uniquely ergodic when f has one and only one f invariant Borel probability
measure. The statistical omega-limit of a point x € X, denoted by w}(a:), is the set
of all points y € X such that 7,(V) > 0 for every open set V' containing y. If we are
considering a metrical attractor A supporting a SRB measure p or, more in general, a
physical measure, then one can expect that ws(r) = A and wj(x) = supp p for almost
every point in the basin of attraction of A. For instance, there are well known examples of
O circle maps such that wy(z) = S' = R/Z and wj(x) = {[0]} for Lebesgue almost every
z € S, where [0] is the fixed point of f and f’([0]) = 1 (see Figure. In this case, p := dy
is the physical measure for f. According to Ilyashenko [[ly], while S! is the attractor for
[y A* = {[0]} is its statistical attractor (see Section {.4| for precise definitions).

Theorem D. If a continuous map f : X O is strongly transitive then the following state-
ments are true.

(1) Either f is uniquely ergodic or, generically, the points of X have historic behavior.
(2) For any continuous function ¢ : X = R,

limsup%Zgoofj(fE) = max{/sodu; pe Ml(f)}

Jj=0

for a residual set of points x € X.
(8) If U C X is an open set then

sup {p1 (U) ; p€ M'(f)} = 7(U) = sup {u(U) ; p € M'(f)}

for a residual set of points x € X.
(4) If f is non-singular and V' C X is a Borel set then

sup {,u (U) P E Ml(f)} > 7,(V) > sup {M(U) NIAS Ml(f)}

for a residual set of points x € X, where U is any open set such that U ~ V.
(5) wi(@) = U, epnr(p) supp p for a residual set of points x € X.
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Although Theorem @ above can be applied to some injective maps (for instance, tran-
sitive translations of a compact metrizable topological group), most of its applications are
for endomorphisms. Because of that, we present below (Theorem a version of The-
orem |D| better adapted to injective maps. For that, given a map f : X O, define the
f-stable set of x € X as Wi(x) = {y € X; lim;, ;oo d(f/(x), f/(y)) = 0}, and the pre-
orbit of a set U C X as O (U) = J,5o f"(U). Since f being strongly transitive means

that O 07 ({z}) = M for every z € X, using stable sets we can weaken strong transitivity
in the followmg way. A continuous map f : X O is called strongly u-transitive when
Or (Wi (x)) = X for every x € X. Of course that all strongly transitive maps are strongly
u-transitive, since x € Wji(z). On the other hand, a “linear” Anosov diffeomorphism
[Ex] and a non-transitive circle homeomorphism with irrational rotation number [De| are
examples of strongly u-transitive maps that are not strongly transitive.

Theorem E. Let f : X O be a continuous map. If f strongly u-transitive (in particular,
if Wg(x) =X for all z) then all the enumerated statements of Theorem@ hold.

A growing map is a topological generalization of the non-uniformly expanding maps,
but in a very weak way. A bimeasurable non-singular continuous map f : X O is called
a growing map if there exists § > 0 such that for each nonempty open set V' C X
one can find n > 0, ¢ € X and a connected component U C V of f~"(Bs(q)) such that
f™(U) = Bs(q). We note that being a growing map does not depend on the metric, only on
the topology. That is, if d; and ds are two metrics inducing the same topology on X, then f
is a growing map with respect to d; if and only if it is a growing map with respect to do. In
particular, the property of being a growing map is preserved by topological conjugations.

Theorem F. If f : X O is a growing map then there exists a finite collection of topological
attractors Ay, --- , Ay such that

Br(A;)U---UPBr(Ar) contains an open and dense subset of X

and following statements are true for every 1 < j < /(.
(1) The statements (i), (ii),(iti) and (iv) of Theorem[(] remain valid.
(2) wi(x) = Aj for a residual set of points v € Br(A;).
(3) hiop(fla,) >0, i.e., the topological entropy of f restrict to A; is positive.

(4) There is a strongly transitive and forward invariant set A; C A; = interior(.A;).
(5) fla, has an uncountable set of ergodic invariant probability measures.
(6) If ¢ € C(X,R) then there exist constants v, and y_ € R such that

limsup — stf] =7+ Zsup{/sodu; MEMl(f\Aj)} >

n—+oo T

n—+oo 1

zinf{/sodu;ueMl(flAj)} > - = liminf — ZsoOfJ

for a residual set of points x € B(A;).
Furthermore,

(7) [ has sensitive dependence on initial conditions
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(8) Generically, the points of X have historic behavior.
(9) If X is a compact manifold (possibly with boundary) then Per(f) D |U; A4;.

Theorem [G] below relates the support of physical measures with the topological attrac-
tors. If f: M O is a homeomorphism on a Riemannian manifold M, an ergodic f-invariant
probability measure p is called a physical measure when its basin of attraction has pos-
itive Lebesgue measure. The basin of attraction of a measure u € M'(M), denoted
by Bf(p), is the set of all x € M such that %Z;:ol dfi(z) converges to u in the weak*
topology, see Section for more details and related results. Given U C M, define

Wi (U) = User Wi().

Theorem G. Let M be a compact Riemannian manifold and f : M O a homeomorphism
such that W = {W3(x)}zem is a continuous foliation of M (E[) If there exists € > 0 such
that Leb(W;(U,>o f"(U))) > € for every nonempty open set U C M, then there exists a
finite collection of topological attractors Ay, --- | Ay, with 1 < k < Leb(M)/e, such that

Bi(Aj) U U Bp(Ax) ~ M
and wy(x) = A; for a residual set of points x € Br(A;) and every 1 < j < k.

Furthermore, if i is a physical measure for f then suppp C A; for some 1 < j <k or
Bs(p) is a nowhere dense set.

We have chosen to present the main results in a less technical and more unified form.
Nevertheless, we observe that Theorem [A] is also true for a large class of non compact
spaces and unbounded function, see Theorem Moreover, Theorem [C]and Theorem [F]
above are simplified (and less technical) versions of Theorem [4.2.1| and [5.3.1, Indeed,
Theorem [4.2.1]and [5.3.1| can be applied to maps with discontinuity when the closure of the
set of all discontinuities has empty interior. Furthermore, the results of Section [5.4} used
to prove Theorem [G] show others connections between metrical and topological attractors.

2.1. Organization of the text. Section [3]is dedicated to the Ergodic Formalism, which
comprises results analogous to those valid in the context of ergodic invariant probability
measures (see, for instance, Proposition . In this section we introduce the notion of
Baire ergodicity and study its relation with transitivity and asymptotic transitivity.

In Section [4 we relate Baire and u-Baire ergodicity with topological and statistical
attractors. In this section we provide some criteria for the existence of a finite Baire (or
u-Baire) ergodic decomposition.

In the last section, Section [5] we apply the results of the previous two sections to several
examples of dynamical systems. Additionally, we prove all the theorems stated above.

3. TOPOLOGICAL X BAIRE ERGODICITY

A Baire space X is a topological space with the property that the intersection of any
given countable collection of open dense sets is a dense set. It is known that all complete
metric spaces and all locally compact Hausdorff spaces are Baire spaces. As commented
before, a countable union of nowhere dense subsets of X is said to be meager; the com-
plement of such a set is called a restdual set and it contains a countable intersection of

2 See Section in Appendix.
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open and dense sets. If a set is not meager then it is called fat @ A set V' is residual
in a set U when U \ V is a meager set.

A subset A C X of a topological space X is said to have the Baire property if there is
an open set U such that AAU is a meager set, i.e., A ~ U. A set with the Baire property
is also called an almost open set. Hence, a set A C X with the Baire property is fat if
and only if A ~ U for some nonempty open set U C X.

Proposition 3.0.1 (Prop. 8.22, pp. 47 of [Ke]). Let X be a topological space. The class
of subsets of X having the Baire property is a o-algebra on X . Indeed, it is the smallest o-
algebra containing all open sets and all meager sets. In particular, this o-algebra contains
the Borel o-algebra.

When every element of a g-algebra 2l on a topological space X has the Baire property,
we say that 2 has the Baire property.

Aset V C X is called tnvariantif f~'(V) =V and it is called almost invariant when
fYV)AV is meager. If f(V) C V, then V is called forward invariant. Analogously,
V' is called almost forward invariant if f(V)\ V is meager.

The natural way to define a topologically ergodic map f : X O is that every in-
variant set is meager or residual. A basic example of a topologically ergodic map on a
compact space is a periodic orbit. That is, a map f : X O, where X = {p1, - ,pa},
f(p1) = pay--+, f(Puo1) = pn and f(p,) = p1. Although the definition above is perfectly
consistent, it follows from Proposition below that essentially only singular maps can
be topologically ergodic, with the exception, as in the example above, of spaces that have
isolated points.

As observed in Section 2| the map f is called topologically non-singular or, for short,
non-singular, if the pre-image of a meager set is also a meager set. The concept of non-
singular maps is inspired by non-singular measure, that is, a measure on a space X is
f-non-singular when p(A) =0 = u(f~'(A)) = 0 for every measurable set A C X. Note
the all f-invariant measure are non-singular measures. A non-singular measure, even if it is
not invariant, has many ergodic properties (see Section 3 of |[Pill]). Similarly, non-singular
continuous maps have many interesting topological (see Appendix) and ergodic properties
(see, for instance, Theorem [3.0.1]).

If we are considering a metric space (Y, d), the open ball of radius r > 0 and center
p €Y is given by

By(p) ={z €Y;d(z,p) <r}.
Note that By(p) =0, VpeY.

Proposition 3.0.2. A complete separable metric space X without isolated points does not
admit a topologically ergodic non-singular map f: X O.

Proof. Let f : X O be a non-singular map defined on a complete separable metric space
X without isolated points. Given x € X let the total orbit of x be defined as

Of(z) ={y € X; f"(y) = f"(x) for some n,m > 0}.
Let U be the collection of all the total orbit of points of X. Using the Axiom of Choice
select for each O € U a single point x, € O. Let A = {x,; O € U}. Let Ag = ;50 f7(A).

3The meager and fat sets also are called, respectively, first and second category sets.
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As X = U, >0 f"(Ao) and f is non-singular, Ay, must be a fat set. Hence, there exists
m > 0 such that f™(A) is a fat set. It can be seen that f™|, is a bijection of A with
f™(A).

éet)Xo = {z € X; B.(x) N f™(A) is not a meager set for every r > 0}. As X is sepa-
rable, Xy # (. Otherwise, for each z € X there is r, > 0 such that B.(x) N f™(A) is a
meager set. Choosing any countable subcover {B,, () }nen of {B;,(2)}zex, we conclude
that f™(A) = f™(A) NU,en Br., (7n) is meager, a contradiction.

Let p € Xo. As X does not have isolated points we have that f™(A)\{p} = U,en (/™(A)\
Bi(p)) is not a meager set. Hence, there exists r > 0 (r = 1/n for some n € N) such that
fT;Ll(A) \ B.(p) is not a meager set.

Let P = Unzo f_n(szo Ff™(A)NB.(p))) and Q = Unzo f_n(szo P (ANB-(p)))-
As P and Q) are f-invariant fat sets and PNQ = @), we conclude that f is not topologically
ergodic. O

As a consequence of Proposition [3.0.2] even an irrational rotation on the circle cannot
be topologically ergodic. Therefore, we weaken the definition of ergodicity by considering
only measurable invariant sets having the Baire property.

Definition 3.0.3 (Baire ergodic maps). Let X be a Baire space and A a o-algebra on X
with the Baire property. A A-measurable map f : X O is called Baire ergodic if every
mwvariant set U € A is either meager or residual.

Ergodicity and transitivity are notions related with the idea of a dynamical system being
indecomposable. Therefore, it is not surprising that these two concepts are connected. The
parallel between transitivity and ergodicity was pointed out as early as the 1930s by J.
C. Oxtoby [Ox], a few years after the Ergodic Theorem appeared. Indeed, applying the
“Zero-one topological law” to the group ({f"},ez, ©), we can conclude that every transitive
homeomorphism f : X O on a Baire space X is Baire ergodic.

Lemma 3.0.4 (Zero-one topological law, see Prop. 8.46, pp. 55 of [Ke], see also |[GK]). Let
X be a Baire space and G a group of homeomorphism of X . Suppose that X is G-transitive,
that is, given a pair of open sets A, B C X, there is a g € G such that g(A) N B # (). Let
U C X be a G-invariant set, i.e., g(U) = U for every g € G. If U has the Baire property
then either U or X \ U is meager.

Corollary 3.0.5. If f : X O is a homeomorphism defined on a Baire space X then f is
Baire ergodic if and only if f is transitive.

In contrast with the topological ergodicity, it follows from Corollary that all irra-
tional rotation on the circle are Baire ergodic maps. As we can see below, continuity and
transitivity is enough to ensure ergodicity for non-singular maps.

Lemma 3.0.6. Let X is a Baire space and consider the Borel o-algebra on X . If a non-
singular map f : X O is continuous and transitive then f is Baire ergodic.

Proof. Let V' C X be a fat invariant Borel set. Let A C X be an open set such that V' ~ A,

that is, VAA is a meager set. Since [~ (V)Af™(A) = f(VAA) and f is non-singular,
we also get that f~"(V) ~ f~"(A) Vn > 0. As f is continuous and transitive (J;-, f~7/(A) is
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F1GURE 2. The Logistic map f; with parameter 0 < ¢ < 1.

open and dense in X, i.e., ;5o f7(A) ~ X. Thus, V = U, f 7 (V) ~ U,50 [ 7(A) ~ X,
proving that V is a residual set of X. - - O

Despite the connection given by Corollary and Lemma|3.0.6| in general, an ergodic
map can be far from being transitive and a trivial example of such a map is a constant one,
e, f: X O, with #X > 1, such that f(z) = p for some p € X. However, since constant
maps are singular maps, one might ask whether there are non-singular Baire ergodic maps
that are not transitive. The answer again is yes, as we can see in Example below.
Indeed, we need to relax the definition of transitivity to obtain a concept that is closer to
ergodicity.

Definition 3.0.7 (Asymptotically transitive maps). Let X be a topological space. A map
f X O s called asymptotically transitive if

(Ure)n (Ure) o s

j=0 j=0

for every nonempty open sets A and B C X.

Theorem 3.0.1. Let X be a Baire metric space X, consider the Borel o-algebra on X and
let f: X O be a bimeasurable map. If f continuous and non-singular then f is Baire
ergodic if and only if it is asymptotically transitive.

As some preliminary results are required, we leave the proof of Theorem above for
the end of Section [3.1] Theorem [3.0.1| can be used to provide examples of non trivial maps
that are Baire ergodic but not transitive.

Example 3.0.8 (A non-singular Baire ergodic map that is not transitive). The maps of the
Logistic family { f; }o<t<1, where fi(z) = 4tz (1—2x) (Figure @), are classical examples of non-
flat S-unimodal maps. By [Gul (see also [MS89]), a non-flat S-unimodal map does not have
wandering intervals, that is, a strongly wandering domain for interval maps (ED When f;

4An open set A C X is called a strongly wandering domain for a map f if f ™| 4 is a homeomorphism
of A with f™(A), for every n > 1, and f*(A) N f™(A) = 0 for every m > n > 0. If X is a Baire space
that is perfect and Hausdorff, then the existence of a strongly wandering domain is an obstruction for a
map to be asymptotically transitive and so, Baire ergodic. Indeed, as X is perfect and a Hausdorff space,
every open set A contains open disjoint subsets Ag and A;. Thus, if A is a strongly wandering domain,
then (U,>o/"(40)) N (Unso f"(A1)) =0, proving that f is not asymptotically transitive.
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is a co-renormalizable map (see for instance [MvS| for the definition), interior(wy, (z)) = ()
Vx €10,1] and so, f; cannot be transitive, since transitivity implies the existence of dense
orbits (ﬂ) Nevertheless being co-renormalizable implies that |, <, fi"(A) always contains
an open neighborhood of the point 1/2 for every nonempty open set A C [0,1]. Thus, one
can use this fact and Theorem[3.0.1) to conclude that f; is Baire ergodic.

The condition of f being non-singular is fundamental to the equivalence of Baire ergod-
icity and asymptotical invariance and one can easily construct an example of a continuous
singular map that is asymptotically transitive but not Baire ergodic.

Proposition below provides an example of a Ergodic Formalism result, that is,
a result that has a metric analog for ergodic maps with respect to invariant probability
measures. Indeed, one can find in most introductory books of Ergodic Theory a version,
for invariant probability measures, of Proposition below (see for instance Proposi-
tion 2.1 of [Mn], Proposition 4.1.3 of [OV] or Theorem 1.6 of [Wal). To state and prove
Proposition we need to introduce some definitions and notations.

Let X be a Baire space and 2 a o-algebra on X with the Baire property. A Baire
potential on X is a measurable map defined on X and assuming values on a complete
separable metric space, i.e., ¢ is a Baire potential on X if ¢ : (X, ) — (Y,B) is a
measurable map for some complete separable metric space Y and ‘B is the Borel o-algebra
on Y. Define the image-support of ¢ as

Imsuppy = {y € Y; ¢ }(B.(y)) is not meager for every ¢ > 0}.
Lemma 3.0.9. Imsupp ¢ # () for every Baire potential ¢ defined on a Baire space X .

Proof. If Imsupp ¢ = @ then, for every y € Y there exists r, > 0 such that ¢~'(B,,(y)) is
meager. As Y is a separable metric space and Uer B, (y) =Y, there exists a count-
able set C' = {y1,42,¥s,---} such that U,.yBr,, (yn) = Y. Thus, X = ¢ 1(Y) =
U,en @ H(Br,, (Yn)) which is a contradiction as U, .y ¢~ (Br,, (Un)) is a meager set @ O

We say that ¢ : X — Y is almost invariant (with respect to f : X ) if there exists
an invariant residual set U € 2 such that p(z) = ¢ o f(x) for every x € U. Similarly,
@ is almost constant if there exist yo € Y an invariant residual set U € 2 such that
o(x) = yo for every x € U.

Given a set A C X, let 14 be the characteristic function of A, that is,

1 ifzeA
1 = .
al@) {0 ifx g A

Proposition 3.0.10. Let X be a Baire space and A a o-algebra on X with the Baire
property. If f: X O is a measurable map then the following statements are equivalent:
(1) f is Baire ergodic.
(2) Every almost invariant Baire potential on X is almost constant.

5The equivalence between transitivity and the existence of dense forward orbits is well known (see for
instance Proposition 11.4 of [Mnl]).

6Here we are using the fact that X is a Baire space. Otherwise X itself can be a meager set. For
instance, the rational numbers Q = |J co{¢} is a meager metric space with the usual distance.
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(3) X 5z~ limsup, < 27;01 wo fI(x) is almost constant for every measurable function

¢ : X = R such that limsup, Z;:é po fi(x) €R for every v € X.

(4) X 3z limsup, . 2#{0 < j <n; fi(z) € A} is almost constant ¥ A € 2.

Proof. (1) = (2). Suppose that f is Baire ergodic, Y a complete separable metric space
and ¢ : X — Y an almost invariant measurable map. It follows from Lemma that
Im supp ¢ # 0.

As ¢ is an almost invariant potential, let U € 2 be a f invariant residual set such that
¢ o f(zx) = ¢(x) for every x € U. Choose any p € Imsupp . Set B, := ¢ (Bi/n(p)),
Ny =@ YY\ Byn(p)), B, = B,NU and Al, = A, NU, where n € N. Note that B/, and
Al are f-invariant sets and B), N A! = () for every n € N. As p € Imsupp ¢, B), is a fat
set and so, it follows from the ergodicity of f that A/ is meager for every n € N. Hence,
U\ Hp) =Une Y (Y\{p}) = U,en 2 is a meager set, proving that U N~ (p) is a
residual set. That is, p(x) = p for a residual set of points x € X.

(2) = (3) Let v : X — R be given by ¢(z) = limsupnﬁoo%z:;:olgo o fi(z). The
measurability of ¢ follows from the measurability of ¢. Thus, (3) follows from (2) and the
fact that i o f(x) = ¢(x) for every x € X. Indeed,

— limsup (i(nilgswfj(x)) - () ) = vta).

n——+oo \ ,
—1 -0

(3) = (4) Noting that 1, is a measurable map and ~#{0 < j < n; fi(z) € A} =
%Z;:& 140 fi(z), we have (4) as a direct consequence of (3).

(4) = (1) Let A € 2 be such that f~'(A) = A. Set (x) = limsup, 2#{0 < j <
n; fi(z) € A}. As A is f-invariant,

1 ifzeA
w<:v):{0 ifrd A

It follows from (4) that there exists a residual set U € 2 such that either ¢(z) = 1 for
every x € U or ¢(x) = 0 for every € U. The first case implies that U C A and so A
is residual. The second case implies that U C X \ A and so, A is meager. Thus, every
measurable invariant set A is either residual or meager, proving (1). O

3.1. Ergodicity for non-singular maps. In this section (Section , let X be a Baire
space, 2 a o-algebra on X with the Baire property.

Lemma 3.1.1. Let Y € A be a residual subset of X and f :' Y — X a non-singular
measurable map. If U C'Y is a fat almost invariant measurable set then

v | (m f‘j(U)>

n>0 §>0
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is a fat invariant measurable set with U' ~ U @

Proof. As f is non-singular, f(UAf~1(U)) is a meager set Vn > 0. This implies that
UAFH(U) € (UAFHO) U= U (fODO)AFH (W) = UZy [ (UAFTHD)) s also
a meager set. That is, U ~ f~7(U) for every j > 0 and, as a consequence, U ~ U :=
Nyso f7(U) C U. So, Uy is a fat measurable set and f~'(Up) = f~'((N;50 f/(U)) =
N»1 f7/(U) D Up. Hence, U" = ;5 [/ (V) is a fat measurable set and, as UpUf = (Up) =
Y Uy), we get that

GO ( U f‘J(Uo>> -Jrwy = rw=uv"
320 J=1 320
Since UpAU = (mjzo fHU))AU C Njso [ (U)AU C f7H(U)AU, we have that UyAU
is a meager set. Moreover, as f~7(U)Af 7/ (Uy) = f~9(UAUp) is meager, we have that
[ (Uo) ~ f7(U) ~ U for every j > 0. As a consequence, U'AU C J;5q(f 7/ (Up)AU) is
a meager set, that is, U’ ~ U. O

Corollary 3.1.2. A non-singular measurable map f : X O is Baire ergodic if and only if
every almost invariant measurable set is either meager or residual.

Proof. As an invariant set is an almost invariant one, we need only to show that if f
is Baire ergodic then every almost invariant measurable set is either meager or residual.
Suppose that U ~ f~1(U) is a fat measurable set. It follows Lemma above that
U =U,so f‘"(ﬂjzo f7(U)) is a fat invariant measurable set with U’ ~ U. Thus, by the
Baire ergodicity, U ~ U’ ~ X, proving that U is a residual set. Il

For non-singular maps, we can use Corollary below to characterize Baire ergodicity
in terms of open or closed invariant sets.

Corollary 3.1.3. If f : X O is a non-singular measurable map then the following state-
ments are equivalent.

(1) f is Baire ergodic.

(2) Every almost invariant nonempty open set is dense in X.

(8) X is the unique closed almost invariant set without empty interior.

Proof. Since (2) <= (3) and, by Corollary [3.1.2] (1) => (2), we need only to show that
(2) = (1). For that, suppose that U is a measurable invariant fat set. Let A be an
open set meager equivalent to U, i.e., A ~ U. Since f is non-singular, A ~ U —

fYA) ~ f7YU) ~ U ~ A, proving that A is an almost invariant nonempty open set.
Thus, it follows from (2) that A is and dense in X. As a consequence U ~ A ~ X | proving
that f is Baire ergodic. [l

Proof of Theorem [3.0.1l Suppose that f is Baire ergodic and consider two nonempty
open sets A, B C X. As A := (J,.; f7(A) and is an invariant subset of X and, by

If we assume that f is bimeasurable then it is easy to show that U’ := Unez [M(U) ~ U is a fat
invariant measurable set.
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Lemma in Appendix,
A~A:= U interior(f7(A)) D A,

jez
we have that A is an almost invariant open set. Indeed, as f is non-singular, A ~ Ay —>
fHA) ~ f71(A¢) and so, f~1(Ag) ~ f~1(A) = A ~ A;. Thus, by Corollary [3.1.3] Ay is
an open and dense set, proving that V' := interior(f"(A)) N B is a nonempty open set for
some n € Z.
Let m > 0 be so that m+n > 0. By Lemma in Appendix, interior (V) # () and
S0,

(U fj(A)> N (U fj(B)> D interior(f™(V)) # 0,
Jj=0 Jj=0
proving that f is asymptotically transitive.

Now, assume that f is asymptotically transitive. If f is not Baire ergodic, there is a fat
invariant Borel set V' such X \ V' is also fat. Let A, B C X be open sets such that V' ~ is
residual in A and X\ V' is residual in B.

It follows from Lemma in Appendix (and the invariance of V' and X\ V) that V is
residual in f/(A) and X\ V is residual in f7(B) for every j > 0. Since f is asymptotically
transitive, W = (U;5o f7(A)) N (U, f/(B)) is a fat Borel set and both V and X\ V are
residual in 1. This is a contradiction, as this would imply that V 1 (X \ V) # 0. O

3.2. u-Baire ergodicity. As in Section [2| in a metric space (X,d), one can define the
stable set of a point v € X with respect to a map f: X O as

Wite) = {w € X tim_dl7" (o). 1) =0}

and the stable set of a set U C X as W3 (U) = U,y Wi().

From the classical theory of Uniformly Hyperbolic Dynamical Systems, given a C!
Anosov diffeomorphism f : M O defined on a compact manifold, the tangent space at
each x € M splits into two complementary directions T, M = E®* ® E* such that the deriv-
ative contracts on the “stable” direction E® and expands on the “unstable” direction E* |
at uniform rates. Moreover, for every z € M, Wy (x) is, locally (ﬂ), a sub-manifold of M
tangent to E*. As the asymptotical behavior of the points in W} (x) are the same, we may
restrict, in the definition of ergodicity, to invariant set that are equal to its stable set. This
reduces the collection of allowed invariant sets producing a weaker definition of ergodicity
called u-ergodicity (ED The concept of u-ergodicity was introduced by Alves, Dias, Pinheiro
and Luzzatto [ADLP] for non (necessarily) invariant measures, in this section we adapted
it to Baire ergodicity.

8For every p € Wi(z) and a small enough € > 0, the connected component N of W§(x) N Be(p)
containing p is a submanifold with T, N = E*(p).

9This name comes from the fact that belonging to a stable set is an equivalence relation (z ~ y if
z € W}(y)), and from the idea that by grouping the points on stable manifolds, we are making a kind of
quotient by ~ and so (in a hyperbolic context) seeing only the unstable behavior of the dynamics.
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In the remaining of this section, X is a Baire metric space and f : X O is a measurable
map with respect to a o-algebra 2, where 2l has the Baire property.

Definition 3.2.1 (u-Baire ergodicity). We say that f is u-Baire ergodic if every set
U e A satisfying f[~H(U)=U = W3(U) is meager or residual.

Of course, every Baire ergodic map is u-Baire ergodic. A simple example of a u-Baire but
not Baire ergodic map is the contraction f : R O given by f(z) = x/2. In this case W} (z) =
R for every z, proving that f is u-Baire ergodic. Nevertheless, A = J, . f"((1/2,2/3))
and B = U,z f*((2/3,1)) are two f invariant nonempty open sets such that AN B = 0,
proving that f is not Baire ergodic.

A u-Baire potential ¢ for f : X O is a measurable map ¢ of (X,2[) to a measurable
space (Y,B), where Y is a complete separable metric space Y and B is the Borel o-algebra
on Y, and such that

o(r) = p(y) Vo € Xand y € Wi(x). (1)

That is, ¢ is a u-Baire potential if ¢ is a Baire potential satisfying .

Proposition 3.2.2. If f is u-Baire ergodic then the following statements are true.

(1) Every almost invariant u-Baire potential on X is almost constant.
(2) Every continuous and almost invariant function ¢ : X — R is constant.
(8) X3z — limsup, = 2;‘:—01 @o fI(x) is almost constant for every continuous function

¢ : X = R such that limsup,, + Z;:& po fi(z) €R for every x € X.

Proof. Proof of item (1). Let Y be a complete separable metric space and ¢ : X — Y an
almost invariant u-Baire potential. As ¢ is an almost invariant, there exists a f invariant
residual set U such that ¢ o f(z) = @(z) for every x € U. Choose any p € Imsupp ¢
(see Lemma [3.0.9). Set B, := ¢ (Biu(p)), &n = @ (Y \ Byu(p)), B, = B, NU and
A=A, NU, where n € N. As ¢ is a u-Baire potential, we get that

B, C Wi(B,) =W} (Byn(p)) NU) C Wi(e™ (Bi/u(p) = ¢ (Biu(p)) = Ba
as well as
A, CWHAL) = Wi (e (Y\Biu(p)NU) € W™ (Y\Byn(p))) = ¢~ (Y\Bin(p)) = L.

Note that B;, and A; are f-invariant sets and Wi(B,) N W3 (A)) C B, N A, = 0 for
every n € N. As p € Imsupp ¢, B/, and also W;(B;L) are fat sets and so, it follows from the
u-ergodicity of f that W7(A]) is meager. This implies that A}, is also meager for every
n € N. Hence, U\ o' (p) = UNe Y\ {p}) = U,en 2, is a meager set, proving that
UnNe!(p) is a residual in X. That is, p(x) = p for a residual set of points = € X.

Proof of item (2). Let ¢ : X — R be a continuous and invariant function. Let V be a
f-invariant residual set such that ¢ o f(x) = ¥ (x) for every x € V.

By Lemma [3.0.9, Imsupp | # @ and so, choose a point p € Imsuppt|yy C R. Given
e>01let B. .=y, ((p—¢e/4,p+e/4)) and A, = Y|, (Y\ (p—&,p+¢)). As B. and A,
are f invariant sets, we get that W7 (B.) and W7 (A.) are also f-invariant.

We claim that W3(B:) N Wi(A:) ~ 0. Indeed, if 2 € V N W(B.) N W;(A.) then,
let 6 > 0 be such that |¢(a) — ¥(b)] < €/4 for every a,b € X with d(a,b) < 6. As
d(f7(z), f7(B.)) and d(f?(z), f/(A:)) — 0 there exists ¢ > 0 such that d(f’(x), f/(B.))
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and d(f7(x), f/(A:)) < 6 for every j > £. From d(f’(x), f/(B.)) < 6, for j > {, we get
that ¥ (f/(z)) € (p —e/2,p+¢€/2) Vj > £. On the other hand, from d(f’(x), f/(A.)) < ¢
for every j > (£, we get that ¥(f?(z)) & (p — &,p + €), a contradiction.

As B. C W{(B.) and B. is a fat set, we get from the u-ergodicity of f that W3 (B.)
is a residual set and, as W7(B.) N Wi(A.) ~ (), we get that WZ(A.) is a meager set for
every ¢ > 0. Hence, V' \ W;(w_l(p)) C Ups1 Wi(A1yn) is a meager set, proving that
VN Wi~ (p)) is a residual in X. This implies that d(f/(x), f/(¥~'(p))) — 0 for a
residual set of points z € X. That is, ¢¥)(x) = p for a residual set of points x € X. As
flv(@™(p)) = ¥~ (p), we have that d(f’(z),v"'(p)) — 0 for a residual sets of points
x € V (and so, for a residual sets of points x € X). As a consequence of the continuity
of ¥, |¥(fi(x)) — p| = 0 for a residual set of points . But, as 1 is almost invariant, we
conclude that 1(z) = p residually in X and so, by continuity, )(z) = p for every z € X.

Proof of item (3). Letting ¢ (z) = lim supTHJrOO%Z?;ggo o fi(z), we get that 1 is
measurable and ¢(f(z)) = ¥(x) for every x € X. As ¢ is equicontinuous, lim, 4 ¢ ©
fr(x) —po fi(y)| = 0 for every y € W;(x) and so, ¥ (x) = (Wi (z)) for every x € X,
proving that 1 is a almost invariant u-Baire potential. Thus, item (3) follows from item

(1). O

4. TOPOLOGICAL AND STATISTICAL ATTRACTORS

In many situations (for instance, expanding/contracting Lorenz maps [Br, [GW| Me, Ra]),
we have a dynamical system generated by a map f that is continuous on the whole space X
except in a compact meager set C (Figure . In this case, we can consider the continuous
map ¢ : Xg — X where g := f|x, and Xy = X \ C is an open and dense subset of X.
Thus, due to the applications we want to obtain, we will assume for the entire Section
that X is a compact metric space, 2 is Borel o-algebra of X (2 has the Baire property by
Proposition , Xop is an open and dense subset of X and f : Xqg — X be a non-singular
continuous map.

Let 2X be the power set of X, that is, the set for all subsets of X, including the empty
set. Define f*: 2X O given by

cirm )0 ifUNXy=0
f(U>—{f(UﬂXO) if UNXo#0

We say that U C X is forward invariant if f*(U) C U and, as before, U is called
invariant if f~'(U) = U and almost invariant when f~'(U) ~ U. Let O7(U) =
Unso /7(U) be the forward orbit of U C Xand O (U) = U,,5¢ /7" (U) the backward orbit
of U. For short, write f*"(z), f~"(x), Of () and Of (x) instead of f*"({z}), f"({z}),
O ({x}) and O ({z}) respectively. The omega-limit of a point x, ws(z), is the set of
accumulating points of the forward orbit of x € X. Precisely,

wilx) = () OF (f"(x)) (2)

n>0
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1

0 0 C‘1 C-2 1

F1GURE 3. The picture above represents the graph of a map f that is not
continuous. Nevertheless the results of Section [4| can be applied to g : [0, 1]\
C — [0,1], where C = {c1,¢2} and g = f‘[O,l]\C’ since Xy := [0,1] \ C is an
open and dense subset of [0,1] and g is a non-singular continuous map. As
X == (,509 "(Xo) is a residual set of [0,1] and f|z = g|, the generic
behavior of a point = € [0,1] by f can be analyzed by g.

and the alpha limat set of x, the of all accumulation points of the pre-orbit of x, is

ap(z) = () Of (f(x)).
n>0
Adapting the definitions given in Section [2| the basin of attraction of a compact set
Ais
ﬁf(A) = {x & X; @ 7é wf(x) C A}
Thus, as in Section [2| a compact set A is called a topological attractor if f;(A) and
Br(A)\ Bg(A) are fat sets for every nonempty compact set A’ & A.

4.1. Baire ergodic components. In many situations, f may not be Baire Ergodic, but
the space can be decompose into subsets in which the restriction of f to each of these
subsets is Baire ergodic. These subsets are the Baire ergodic components of f.

Definition 4.1.1 (Baire ergodic components). A measurable almost invariant fat set U C
X is called a Baire ergodic component of [ if V ~ U or V ~ 0 for every almost
imvariant measurable set V. C U.

In Section [3| Baire ergodicity was defined using invariant sets. The connection between
the Baire ergodicity and the almost invariant sets was established there by Corollay
Here, since the definition above of Baire ergodic components use almost invariant sets,
Lemma below connects Baire ergodic components with the invariant sets.

Lemma 4.1.2. If U is a measurable almost invariant fat set then U is an Baire ergodic
component of [ if and only if V ~ U or V ~ 0 for every invariant measurable set V" C U.

Proof. Suppose that V' ~ U or V ~ () for every invariant measurable set V' C U. Let V be
an almost invariant measurable set. We may assume that V' is a fat set, otherwise there are
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nothing to prove. Thus, it follows form Lemma |3.1.1| that V' :=J, 5, f 7" (njzo f‘j(V))

is a measurable invariant fat set and V’ ~ V. Since V"’ is invariant and fat, by assumption,
V' ~ U and so, V ~ U, proving that U is a Baire ergodic component.

On the other hand, if we assume that U is a Baire ergodic component, since every
invariant set is almost invariant, we get that V ~ U or V ~ () for every measurable
invariant set V' C U. O

By Definition [£.1.1 above, if U and V are Baire ergodic components then either U ~ V'
or UNV ~ (). Thus, since we are assuming that X is compact, X has at most a countable
number of non (meager) equivalent Baire ergodic components. We say that X can be decom-
posed into Baire ergodic components when there exists a countable collection {U,, ; n € L},
L C N, of Baire ergodic components such that X ~ (J, ., Un. Proposition below gives
a criterion for a finite Baire ergodic decomposition of X.

Let J(f) C 2 be the sub o-algebra of all f invariant measurable sets. A Baire f-
function is a map m : J(f) — [0, +00) such that m(X) > 0 and

ANB~0) = m(A)+m(B) <m(AUB).

Proposition 4.1.3 (Criterium for a finite Baire ergodic decomposition). If there exist a
Baire f-function m and ¢ € N such that either m(U) = 0 or m(U) > m(X)/¢ YU € 3(f),

then X can be decomposed (up to a meager set) into at most { Baire ergodic components.

Proof. Let M C X be any fat invariant measurable set (for example, M = X) and let F (M)
be the collection of all fat invariant measurable sets contained in M. Note that F(M) is
nonempty, because M € F(M). Let us consider the inclusion (up to a meager subset) as
a partial order on F(M), i.e., A < A"if A"\ A is meager.

Claim 4.1.4. Every totally ordered subset I' C F(M) is finite. In particular, it has an
upper bound.

Proof. Otherwise there is an infinite sequence vy D 71 D 73 D -+ with 1 € F(M) and
Ay = Y, \ Vk+1 being a fat Vk. As v, is invariant V j, Ay is also a fat invariant set, that is,
Ay € F(M). Thus, by hypothesis, m(Ag) > m(X)/¢. As A;NA; = 0 whenever i # j, we
get Fm(X) < m(Ay) + -+ m(A;) <m(X) V& € N, which is a contradiction. O

From Zorn’s Lemma, there exists a maximal element U € F(M) and, by Lemma [1.1.2]
this is necessarily a Baire ergodic component. Thus, take M; = X and let U; be a maximal
element of F(M;) given by Zorn’s Lemma. As M, := X\ U; is an invariant set, either
it is meager or we can apply the argument above to M, and obtain a new Baire ergodic
component Uy inside X \ U;. Inductively, we can construct a collection of Baire ergodic
components Uy, ..., U; while X\ (U3 U ... UU;) is fat. Nevertheless, as m(U;) > m(X)/¢
Vj and U; N U, = 0 whenever j # k, this process have to stop at some k < ¢ and so,
X~UU---UU. O

Let O be the set of all open sets of X and consider the following definition.
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Definition 4.1.5 (Baire projection). The Baire projection m : A — O associates a
measurable set to the mazximal open set meager equivalent to it. That is,

U L

93L~U
Observes that 7(U) = interior(V), for every open set V ~ U, and
ANB~0 < 7w(A)nn(B)=10.

Lemma below is an improvement of Lemma as the f invariant set obtained
is a Baire subspace.

Lemma 4.1.6. If U C X, is a fat almost invariant measurable set then

7 U (o)) e x

s a fat invariant measurable set, U~ U and U is a Baire subspace of X.

Proof. As f is non—singular, and m(U) ~ U, we get that f~1(n(U)) ~ f~1(U) and so,
T(U) ~U ~ f[7HU) ~ f~H=(U)), provmg that m(U) is an almost invariant nonempty
open set. Hence, it follows from Lemma 1| that U is a measurable invariant set and
U ~ w(U) ~ U. Therefore, to conclude the proof, we need to show that U is a Baire
subspace of X.

Claim 4.1.7. f~/(x(U)) is an open and dense subset of w(U).

Proof of the claim. As f is continuous, f~/(7(U)) is an open set Vj > 0. It follows from
f(rU)) ~7(U) that 7(U) U f7(x(U)) ~ w(U) ~ U. That is, 7(U) U f~(7(U)) is an
open set meager equivalent to U and so, by the definition of 7(U), 7(U)Uf~ (7 (U)) = 7(U),
proving that = (w(U)) C 7(U). Smce [ (mx(U)) ~ wn(U), we have also that f=(x(U))
is dense in w(U). O

As 7(U) is a Baire subspace of X and every countable intersection of open and dense sub-
set of a Baire space is a Baire subspace, it follows form Claim that A := (5, [ (7(U))
is a Baire subspace of X.

Claim 4.1.8. f77/(A) is a Baire subspace of X for every j >0

Proof of the claim. Suppose that Vi, Vs, V3, - -+ is a countable collection of open and dense
subsets (in the induced topology) of f~/(A). Thus, Vi = X; N f~7(A), for some open set
X C X, k € N. Writing X := |J,, X, we have that ﬂk Vi = U, (XeNfI(A)) = XN fI(A).
Using that f is non-singular, we get that f~7(A) C f~(x(U)) ~ f77(A) and so, as X is
residual in the open set f~/(m(U)), we can conclude that X N f77(A) is dense in f~7(A).
Indeed, writing f~/(n(U)) = f7/(A) U H, where H is a meager set, and since H N X is
a meager set, we have that f~7(A) N X is a residual set of the open set f~/(7(U)). In
particular, f7(A)NX is dense in f~7(7(U)) and so, f~7(A)NX is dense in f~7(A). Since
Nk Vi being dense in f~7(A) implies that f~7(A) is a Baire subspace of X, we finished the
proof the claim. O
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As an arbitrary union of Baire subspaces is a Baire subspace (ED, it follows from

Claim above that U is a Baire subspace of X. [l
Corollary below is the version for Baire ergodic components of Proposition [3.0.10

Corollary 4.1.9. IfU is a measurable almost invariant fat set the the following statements
are equivalent.

(1) U is Baire ergodic component for f.

(2) Given an almost invariant Baire potential ¢ : X — Y, there exists y € Y such that
o(x) =y for a residual set of points x € U.

(3) Given a measurable function ¢ : X — R with lim supn%Z?;éga o fi(x) € R for
every x € X, there exists r € R such that lim supn%Z;:Olcp o fi(x) = r for a
residual set of points v € U.

(4) Given A € A, there exists 0 € [0,1] such that 7,(A) = 0 for a residual set of points
zeU.

Proof. By Lemma [4.1.6| U = Unso f77 (ﬂjzo f*j(W(U))> is an invariant fat measurable
set and also a Baire subspace of X. Therefore, we can apply Proposition [3.0.10/to f|; and
the proof follows from the fact that U ~ U. U

4.2. Topological attractors for Baire ergodic components. Since, in our context,
the omega-limit sets are compact sets, a natural tool to analyze their behavior is the
Hausdorff distance.

The distance of v € X and () # U € 2% is given by d(z,U) = inf{d(z,y); y € U}.
Defining the open ball of radius r > 0 and center on () # U € 2¥ as

B,(U) = | J Bi(x) = {x € X; d(z,U) <1},
xeU
the Hausdorff distance of two nonempty sets U and V' C X is given by

dy(U,V)=inf{r > 0; B.(U) DV and B.(V) D U}.

Let K(X) be the set of all nonempty compact subsets of X. Since X is a compact metric
space, it is well known that (K(X),dg) is also a compact metric space.

Lemma 4.2.1. The map ¢ : X — K(X) given by ¢(z) = wy(z) is a measurable map, where
X'=Nso [7(X). Moreover, ¢ is invariant Baire potential on the Baire space X,

Proof. As f is continuous, f~7(X) is an open and dense set, we get that X is a Baire subspace
of X @ Moreover, by the definition of wy(z) (see (2))), we have that wy(z) = wy(f(z))

for every x € X. In particular, ¢ (z) = ¢¥(f(z)) € K(X) for every € X. Thus, since K(X)

076t 4 = U, A¢, where L is a set of indices and, for each ¢ € L, A, is a Baire subspace of X. Let
V1,Va, V3, -+ be a countable collection of open and dense (in the induced topology) of A. We can write
Vie = AN X, for some open and dense set X, C X. Thus, (), Vi = X N A, where X = [, X;;, is a residual
subset of X. As a consequence, (), Vi = X N{J,4¢ = U, X N A,. Since A; is a Baire subspace of X,
X is residual (in particular, dense) in A, and so, (), Vi is dense in |J, A¢, proving that | J, A, is a Baire
subspace of X.

HOne can also use Lemma since (50 /" (X) = U020 I77(X)).
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is a complete separable metric space, we have that ¢ is an invariant Baire potential on X.
As a consequence, we need only to show that v is measurable.

Let . : X — K(X) be given by ¢hnm(x) = {f*(x),- -, f""™(x)}. As f is continuous,
it is easy to see that 1), ,, is a sequence of continuous maps and it is easy to show that
lim,, ¥ m(2) = O*(f"( )). Hence, the map 1, : X — K(X) given by ¥, (x) = Ojf(f”(a:))
is a measurable map, since it is the pointwise limit of measurable maps. As wy(z) =
N, O+(f"( )), one can see that lim,, 1, (x) = ws(x) = ¥(x) for every = € X, proving that
1) is a measurable map. O

Proposition 4.2.2 (The topological attractor of a Baire ergodic component). If U C X
is a Baire ergodic component of f, then there exists a unique topological attractor A C U
attracting a residual subset of U. Moreover, wy(x) = A for a residual set of points x € U.

Proof. Let X and 1 be as in Lemma {4.2.1] and set U := Unso f7" <ﬂj>0 (= (U ))) By

Lemma U is an invariant measurable fat set and a Baire subspace of X. As U C X
and 1) is an 1nvar1ant Baire potential on X we can apply Proposition [3.0.10| to f|z and
Y|z and conclude that there exists some A € K(X) such that wy(z) = A for a residual set

of points x € U. Since U ~ U we conclude the proof. O

Proposition 4.2.2| above and Lemma [3.0.6| imply, for non-singular maps, the known fact
that a transitive continuous map is also transitive for generic points. Indeed,
suppose that g : X O is a non-singular transitive continuous map. Thus, by Lemma[3.0.6] ¢
is Baire-ergodic and so, by Proposition[£.2.2] there exist a compact set A C X and a residual
set R C X such that wy(x) = A for all x € R. Let p € X be such that w,(p) = X. If A # X,

let 6 > 0 be small enough so that Bs(A) # X. Let R, = {z € R; Of(g"(x)) C Bs(A)},
n>0. As UnZO R, =R ~ X, Ry is a fat set for some ¢ > 0. Choose an open set V ~ Ry

and m € N so that ¢™(p) € V. As ¢/(¢™(p)) € ¢°(V) C Bs(A) for every j > {, we get the
X =wy(p) = wy(9™(p)) C Bs(A) # X, a contradiction.

Lemma 4.2.3 (Ball criterium for a finite Baire ergodic decomposition). If there exists
0 > 0 such that every invariant measurable set is either meager or it is residual in some
open ball of radius &, then X can be decomposed (up to a meager set) into at most a finite
number of Baire ergodic components.

Proof. Let 1 be a Borel probability measure on X with supp u = X. For instance, we may
consider a countable and dense subset {x, ; n € N} of X and take u =3 2n5 Note
that m : 3(f) — [0, 1], given by m(U) = u(w(U)), is Baire f-function, where 7 is the Baire
projection (Definition [4.1.5)).

By compactness, there exists ¢ € N such that inf{u(Bs(p)); p € X} > 1/¢. Thus, if
U € 3(f) is a fat set then, by hypothesis, 7(U) contains an open ball B of radius ¢ and so,
m(U) = pu(r(U)) > u(B) > 1/¢. On the other hand, if U € J(f) is meager then 7(U) = ()
and so, m(U) = u() = 0. Hence, the proof follows from Proposition [1.1.3] d

Lemma 4.2.4. If A is a meager compact set then given any § > 0 there is € > 0 such that
B.(A) = U,ep B:(x) does not contain any ball of radius 6. That is,

li_I)Iésup{'r’ >0; B,(p) C B-(A) and p € X} = 0.
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Proof. Otherwise, as A is compact, there exist 6 > 0 and a convergent sequence p, € A
such that Bs(p,) C Bi/n(A) Vn > 1. This implies that d(z,A) = 0 for every x € Bs(p),
where p = lim,, p,. By compactness, we get that Bs(p) C A, contradicting the hypotheses
of A being meager. O

Define the large omega limit of a point x € X as

050 = (U 750

r>0n>0 “m>n

Note that Qs(z) is a well defined nonempty compact set for every z € X, even if = ¢ X,.
Lemma 4.2.5. There exists a residual set Z C X such that Qs(f(z)) = Qs(x) Vo € Z.

Proof. Since X, is an open and dense subset of X, applying Lemma at Appendix,
there exists residual set Z C X, such that if x € Z then f(z) € interior(f*(V')) for every
open set V' C X containing x.

If x € # then, given § > 0, we can choose §; > 0 so that By, (f(x)) C f(Bs(x)). Hence,

1
we get that (Y, Uy (77" (B5(@)) D Nysg Upon 77 (Bay ((2))) D Q4(f(x)). That is,

mnzo Umzn(f*)m(B(g(x)) D Q¢(f(z)) for every § > 0. and so, Qs(z) D Qs(f(x)).
On the other hand, by the continuity of f, taking 6 > 0, one can choose d; > 0 so that

f(Bs(x)) € Bs(f(x)). Hence, (V5o Unsn ()™ (Bs(f(2))) D Nzo Upsn (F5)™(Bs, ()
D Qy(z), proving that (50 (Upsn(f*)™(Bs(f(x)))) D Qp(z) for every § > 0 and, as a
consequence, Qr(x) C Qr(f(z)). O

The nonwandering set of f, denoted by Q(f), is the set of points z € X such that
VU, £ (V) # 0 for every open neighborhood V' of x. It is easy to see that

Qf) ={z e X; z € Qs(2)},

that is Q(f) is the set of all “Q-recurrent” points of X (recall that a point is called recurrent
(or “w-recurrent”) if z € wy(x)).

A forward invariant set V' is called strongly transitive if | J,, f*"(A) = V for every
nonempty open set (in the induced topology) A C V. One can check that V is strongly
transitive if and only if af(x) D V for every z € V.

Theorem 4.2.1. Suppose that f is bimeasurable. If there exists 6 > 0 such thatJ,~, f*"(U)
contains some open ball of radius 8, for every nonempty open set U C X, then X can
be decomposed (up to a meager set) into a finite number of Baire ergodic components
Up,---,Up C X, each Uj is an open set and the attractors A; associated to U; (given by

Proposition satisfy the following properties.
(1) Each Aj contains some open ball B; of radius 6 and A; = interior(A;).
(2) (a) Each A; is transitive and wg(x) = A; for a residual set of points x € S¢(A;).
(b) If ¢ : X = R is a Borel measurable bounded function then for each A; there
ezists a; € R such that lim sup % Z;L:_Ol po fi(z) = a; for a residual set of points
T € 5]0(14])
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(¢) If U is a Borel subset of X then for each A; there exists u; € [0,1] such that

1 .
limsupﬁ#{() <j<n; fl(r) €U} =u

n—-+o0o

for a residual set of points x € B(A;).
(3) interior(B;(A;)) ~ Br(Aj) ~ U; for every 1 < j < {. In particular,

Br(A1) U---UBr(Ag) contains an open and dense subset of X.
(4) Qp(z) D A; if v € U; and Qy(x) = A;j if v € Uy, Vj. In particular

Q(f) (Q&‘) U (X\QU]),

where X'\ Uﬁ:l U; is a compact set with empty interior.

Furthermore, if Unzo f(U) contains some open ball of radius &, for every nonempty open
set U C X, then the following statements are true.

(5) For each A; there is a forward invariant set A; C A; containing an open and dense
subset of A; such that f is strongly transitive in A;. Indeed, af(z) D U; D A; DA
for every x € A,;.

(6) Either wy(x) = A;j for every x € A; with we(x) # 0 or A; has sensitive dependence
on initial conditions.

Proof. Given a forward invariant measurable fat set U and an open set V' such that U ~ V,
it follows from Proposition at Appendix that

U NV is a residual subset of interior(f*"(V')) for every n € N. (3)

In particular, U is residual in every nonempty open subset of V.

By hypothesis, |J,>qf*"(V) contains some open ball B with radius 6 and so, B N
Unso f(V) is a dense subset of B. By Proposition B N U, interior(f*"(V))
is an open and dense subset of B. Hence, it follows from (3)) that U is residual in B. That
is,

every forward invariant fat measurable set is residual in some open ball of radius . (4)

Thus, the hypothesis of Theorem implies the hypothesis of Lemma since every
invariant set is a forward invariant one. Hence, X can be decomposed (up to a meager set)
into at most ¢ > 1 Baire ergodic components Wy, ---  W,.

By Proposition , each Baire ergodic component W; has a unique topological attrac-
tor A; such that wy(z) = A; for a residual set of points x € W;.

We claim that A; is a fat set. Indeed, if A; is a meager set then it follows from
Lemma above that 3& > 0 such that

sup{r > 0; B,(p) C B:(A;) and p € X} < /2. (5)

Let ng > 1 be big enough so that W} := {x € W; ; f"(x) € B.(4;), Vn > no} is a fat set.
As f is non-singular and W is a fat set, we have that also f*"°(Wj) is fat. As W7 is forward
invariant, f*"° (W) is also a forward invariant set. Nevertheless, as f*"°(W}) C B.(4;), it
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follows from the inequation ([5) above that W/ cannot be residual in a ball of radius bigger
or equal to /2, but this is in contradiction Wlth (). Therefore A; is fat set.

As A; is compact fat set, interior(A;) # (. This implies, as A is compact forward
invariant set, that A; O (J;5, f*"(interior(A4;)). Hence, by the theorem’s hypothesis, A;
contains some open ball B; of radius .

Since wy(x) = A;j for every x in a residual set R; C Wj, for each x € R; there is some
n, > 1 such that f"*(z) € B;. As wg(x) = A;j residually on B; C Aj, we get that there
exists p € B; such that (9*( ) is a dense subset of Aj;, in particular, A; is transitive. It

follows from Proposition 6.1.3 f"(p) € f*"(B;) C interior(f*"(B;)) C A; Yn > 0. In
particular, dg({f™(p)}, mterlor(f "(B;))) =0Vn > 0. This implies that

i (4. mterton(77°(8,)) = i (07 1), iverior (575, ) = 0,

n>0 n>0

which proves that (J, -, interior(f*"(B;)) is an open and dense subset of A; and so, A; =
interior(A4;). As W; ~ U; := |, >, [ "(interior(A;)), we have that U; is a Baire ergodic
component with A; = interior(A;) being its transitive Topological attractor and wy(x) =
A; residually in Uj;, proving items (1) and (2)(a). Items (2)(b) and (2)(c) follows from
Corollary , concluding the proof of items and (@ Therefore, we can consider
the open sets Uj,--- , Uy, instead of Wy, --- Wy, as the decomposition (up to a meager
set) of X into Baire ergodic components. Furthermore, by definition, if € U; then
f"(xz) € Aj for some n > 0 and so, wy(x) C Aj, proving that U; C (y(A4;). Hence, as
Br(AH)\U; € X\ Ufz:1 U, ~ 0, we conclude the proof of item
Given p € U; and € > 0, let p. € B.(p) N R;. As wy(p-) = A, we get that

ﬂ(UﬁW&@QDW@Fﬂﬁ

n>0 “m>n

That is, (50 Upsn f*" (B:(p)) D A;j for every € > 0, proving that Q(z) D A; for every
D€ 7] and goncluaing the proof of item .

Now, assume that | J,~, f*"(A) contains some open ball of radius ¢, for every nonempty
open set A C X. Define, for 0 < r < 6, AM(z) = U,,5, [ (Br(z)). For 0 < e < r/2,
note that A?(z)\ B:(0A”(z)) is a compact set () and, as A”(z) contains an open ball of
radius 9§, A”(z) \ B (GA"(x)) # (), indeed, it contains a ball of radius 6 — . Hence,

_hmﬂ (A"(z) \ B:(0A2 (2))) € K(X)
n>0

is a well defined nonempty compact set for every x € X. Moreover, for every x € X, Q?(x)
contains an open ball B, , of radius ¢ and

B.(x)Nays(y) # 0 Yy € By, (6)
As QY (x) := limy o () = (V50 Q5 (), it follows from @ above that, for every z € X,
a ) contains an open ball B, of radius 0 an
Q9 ball B, of radius § and

12Recall that B.(OA"(z)) = UpeaAn(I) Be(p).
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(b) z € ay(y) for every y € B,.
Claim. 1 : X — K(X) given by ¢(x) = Q}(x) is a measurable map.

Proof of the claim. Let AP™(z) = ;- (B, (z)) and ¥y pm : X = K(X) be given by
Urnm () = AP™(2)\ B:(0A™(x)). AS Ve nm is & continuous map and lim,, ¥, c pm(x) =
A(2)\ B:(0A”(z)), we get that ¢, ., : X — K(X), given by ¢, ,(z) = A (z)\ B:(0A!(z)),
is a measurable map. Likewise ¥, . := lim, ¥, ,, ¥, = limo g ¥, ¥ = lim,\ %, are
measurable maps. O

Following the proof of Lemma [4.2.5] one can show that there exists a residual set Z C X
such that i o f(x) = () for every x for every z € Z, i.e., ¥ is an almost invariant
potential. Thus, it follows from Corollary that, for each 1 < 57 < /, there exists a
compact set K; € K(X) such that ¢(z) = K, for a residual set of points x € U,. Since
Y(x) = Qf(x) and every Qf(x) contains an open ball of radius d, we get that, for each
1 < j < {, there exists p; € X such that K; D Bs(p;). In particular, Q(z) D Bs(p;) for
a residual set of points x € U;. Thus, for every y € Bs(p;), ay(y) 2 « for a residual set
of z € U;. By compactness, ay(y) D U; D A; for every y € Bs(p;). As interior(A;) # 0
and A; is forward invariant, we have that A; D Bs(p;). Since a;(f7(z)) D ay(x) always,
we get that ay(x) D U; D Aj for every x € A; =, [*"(Bs(p;)), proving that f is
strongly transitive in the forward invariant set A; C A;. Furthermore, it follows from the
transitivity of A; and Proposition at Appendix that A; contains an open in dense
subset of A;, proving item

Suppose that there exists p € A; such that O # A := ws(p) # A;. By compactness,
A is not a dense subset of A; = A; and so, A; \ A # (). Choose ¢ € A; \ A and set
r=du({q},A) > 0. Let ng > 0 be such that OF (f™(p)) C B,2(A). Given z € A; and
e > 01let ny > 0 and ny > ny + ng be such that f~"(p) N B.(z) # 0 # f7"2(q) N B-(z).
As f*(p) € B,)2(A) for every n > ng, we get that f*"*(B.(z)) N B,/2(A) # 0 and ¢ €
f*"(B:(x)), proving that, sup, -, diameter(f*"(B:(x))) > r/2 for every x € A; and € > 0.
As this implies the sensitive dependence on initial conditions (item (), we conclude the
proof of the theorem. O

4.3. u-Baire ergodic components and its topological attractors. Similarly to Baire
ergodic components, we can define the u-Baire ergodic components.

Definition 4.3.1 (u-Baire ergodic components). An almost invariant measurable set U C
X is called a u-Baire ergodic component of f if U is a fat set, U =W;(U) and V ~ U
or V.~ for every measurable set V.C U such that f~'(V) ~V = W3(V).

Lemma 4.3.2. If U is a fat measurable set such that f~"(U) ~ U = W}(U) then U =

U0 f_j(mnzo [ (=(U))) C Moo f7"(X) is a fat measurable set, U~ U, f‘l(fj) =
U= w; ((7) and U is a Baire subspace of X.

Proof. Tt follows from Lemma m that U is an invariant measurable set, U~Uand U
is a Baire subspace of X. Thus, we need only to show that W32(U) = U.
Note that Uy = (1,50 f~"(U) is the set of all points x € U such that f"(z) € U Vn >0,

this implies that f(Us) C Up. Moreover, W;(Uy) = Up. Indeed, z € Uy = [f"(z) € U
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= Wi(f"(z)) C W;(U) = U Vn > 0 and, as f*(Wj(z)) C Wi(f"(x)), we get that
fr(Wi(z)) CU Vn > 0. That is, Wi(x) C[,50 f"(U) = Us and so,

Uo C Wi(Uo) = | Wi(x) C T
zeU,

Thus, since U= Unso f7"(Uo) and f7(Wi(p)) = Wi(f(p)) = Uyef Wf( ) W
get that

ﬂW@NWW)%ﬁWWWW:UTI%% =Wy =0

n>0 n>0 n>0 n>0

O
The proof of Corollary below is similar to the proof of Lemma [4.1.2]

Corollary 4.3.3. Let U be an almost invariant measurable set, U is an Baire ergodic
component of f if and only if V.~ U or V. ~ 0 for every measurable set V-.C U such that
V)=V = Wi(V).

Proof. Assume that L ~ U or V ~ ) for every measurable set V' C U such that f~1(V) =
V = W;(V). We need to show that if V ~ U or V' ~ {) for every measurable set V' C U
such that f~'(V) ~ V' = W}(V). Thus, let V be a measurable set such that f~"(V) ~ V =
W;(V). Since f is non-singular, if V'~ () then f~'(V') ~ ) ~ V. Hence, we can assume that

V is a fat set. Thus, it follows form Lemmald.3.2|above that V := Upso £ <ﬂj20 f‘j(V)>

is a measurable invariant set with f~ ( ) V =Wy (V) and V ~ V. Therefore, it follows

from our assumption that V~U. Asa consequence, V ~ U, proving that V ~ Uor V ~ ()
for every measurable set V. C U with f~1(V) ~V = W3(V).

Assuming that U is a u-Baire ergodic component, since every invariant set is almost
invariant, we get that V' ~ U or V' ~ () for every invariant measurable set V C U such that

V=Wi(V). 0

Let J%(f) C 2 be the sub g-algebra of all measurable sets f~'(U) = U = W}(U). A
u-Baire f-function is a map m: J%(f) — [0,4+00) such that m(X) > 0 and

ANB~0 = m(A)+m(B) <m(AU B).

Proposition 4.3.4 (Criterium for a finite u-Baire ergodic decomposition). If there exist
a u-Baire f-function m and £ € N such that either m(U) =0 or m(U) > m(X)/{ for every
U € 3%(f), then X can be decomposed into at most ¢ u-Baire ergodic components.

Proof. Given M C X a fat measurable set such that f~'(M) = M = W}(M), define
F (M) as the collection of all fat invariant measurable set U contained in M and such that
f7H(U) = U = W;(U). Now the proof follows exactly as the proof of Proposition
That is, take M; = X and note that F(M;) is non-empty, because M; € F(M;). We say
that A < A" if A”\ A is meager. Using the same argument of Claim in the proof of
Proposition [£.1.3] we can show that every totally ordered subset I' C F (M) is finite (in
particular, it has an upper bound), using Zorn’s Lemma, there exists a maximal element
Uy € F(M) and, by Corollary [1.3.3] U; is necessarily a u-Baire ergodic component.
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Let My, = X\U,; and note that it satisfies f~1(My) = M, = WJ‘?(MQ) Either M, is meager
or we can use the argument above to My and obtain a new u-Baire ergodic component Us
inside X\ U;. Inductively, as in the proof of Proposition , we construct a collection of
u-Baire ergodic components Uy, - - -, U; while X\ (U3 U---UU;) is a fat set. Nevertheless, as
U;NUy, = 0 when j # k and m(U;) > 1/¢ V3, we have that 2m(X) < m(U;) +- - +m(U;) <
m(X) and so, this process has to stop at some k < ¢. As a consequence X ~ U;U---UU;,. O

Lemma 4.3.5. If an almost forward invariant open set U C X is transitive, i.e., B N
Unso [ (A) # O for every nonempty open sets A, B C U, then |, o " (U) is a Baire
ergodic component.

Proof. Writing V' = {J,5o f7"(U), we have that f~'(V) = >, f"(U) C V. That is,
Y V)\ V = 0. On the other hand, as f is non-singular and f(U) \ U ~ 0, we get that

VAfH(V) = (UU U f”(U)> \Urrwoy=u\yrrw) e
n>1 n>1 n>1
CUNSHO) C FHAONNFHU) = fFHAO)NT)) ~ 0,
proving that f=Y(V)AV ~ 0, i.e., V is an almost invariant set.

Let L C V be a given almost invariant measurable fat set. Thus, T:=7(L)NV ~ L is
an almost invariant open subset of V. By the definition of V', there exists a > 0 such that
fYT)NU is a fat set. As f continuous and non-singular, it follows from Proposition
at Appendix that f**(T) ~ interior f**(T) # (. Thus W := interior(f**(T)) N U # 0.
By hypothesis, AN, <, /(W) # 0 for every nonempty open set A C U. Since, by
Proposition [6.1.3] -

interior(f*™(W)) ~ f™(W) C interior( f**(W)),
we can conclude that M := U N, interior(f*"(W)) is a dense subset of U. As a conse-
quence, [ J;5 f7/(M) is an open and dense subset of V. That is, V' ~ [, f~/(M). Now,
since f is non-singular, and 7' ~ f~(T), we get that W\ T ~ ) and so, interior(f**(W))\
T ~@V¥n>0. Thus, M\ T C (U, interior(f*"(W))) \ T ~ @ and so,

(U f‘j(M)> \T~ (U f‘j(M\T)> ~0,

proving that V ~ T, as T C V. Since L ~ T ~ V for any given almost invariant fat set
L C V, we conclude that V is a Baire ergodic component for f. O

One can use Lemmal[4.3.5]above to provide more examples of non transitive Baire ergodic
maps. A trivial example of such maps is the following. Given a continuous non-singular
transitive map h : X O, consider the continuous and non-singular map ¢ : X x {1,2} O,
defined by g(x,j) = (x,1). Note that g is not transitive and, by Lemma [4.3.5) it is Baire
ergodic.

For a nontrivial example, consider a quadratic map f : [0,1] O, f(z) = 4tx(1 — z), with
a parameter 0 < t < 1 such that f has a cycle of intervals. That is, there exists closed
interval Iy, -+, I, C [0, 1] such that f|; is transitive, where J = I;U- - -UI,. It is well known
that, given a small ¢ > 0, we can choose ¢t € (0,1) so that Leb(J) < e for some circle of
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intervals J. On the other hand, we always have that Leb (U, f™"(J)) = 1. In particular,
V =, f"(interior(.J)) is an open and dense subset of [0,1]. Since f(.J) = J, we have
f(interior(J)) C f(J) = J ~ interior J, i.e., interior J is an almost forward invariant open
set. Hence, it follows from Lemma that V' is a Baire ergodic component of f and so,
since V' ~ [0, 1], f is Baire ergodic (and it is not transitive).

Proposition 4.3.6 (The topological attractor of a u-Baire ergodic component). If U C X
is a u-Baire ergodic component of f, then there exists a unique topological attractor A C U
attracting a residual subset of U. Indeed, ws(z) = A for a residual set of points x € U.
Furthermore, if U is not a Baire ergodic component of f then A is a meager set.

Proof. The proof is similar to the proof of Proposition . Indeed, let X and 1 be as in
Lemma {4.2.1|and set U := Upso f7 (ﬂjzo f_j(ﬂ'(U))>. It follows from Lemma (4.3.2] that

U C X is a Baire subspace of X, a measurable set, U ~ U and f~}(U) = U = Wfs(ﬁ)

By Lemma , ¢ is an invariant Baire potential on X. Moreover, since wr(z) = wy(y)
for every y € W§(x), we get that 1|5 is a u-Baire potential for f|z. Thus, we can apply
Proposition to 9|5 and conclude that there exists A € K(X) such that wy(x) = A for
a residual set of points # € U. Hence, wy(x) = A for a residual set of points z € U, since
U~TU.

If A is not meager then, since A is compact, interior A # 0 and, as wy(x) = A for a
residual set of points z € U, we get that

OF (x) Ninterior A # () for a residual set of points x € U. (7)

In particular, O}“(m) N interior A # () for a residual set of points = € interior A and so,

O}L(:E) = A for a residual set of x € A. This implies that, given nonempty open sets
By, By C interior A then By N J,~q [*(B1) # 0, proving that interior A is transitive.
Furthermore, it follows from that U ~ U,.>o f " (interior A). Since, by Lemma
U,.>0 f " (interior A) is an Baire ergodic component of f, we conclude that if A is a fat set
then U is a Baire ergodic component of f. That is, if U is not a Baire ergodic component
then A is a meager set. O

4.4. Statistical attractors for Baire and u-Baire ergodic components. Milnor’s
definition of attractors deals only with the topological aspects of the asymptotical behavior
of the orbits of a fat set of points, saying little about the statistical properties of those
points. To analyze the region that is frequently visited by a big set of points, it was
introduced by Ilyashenko a variation of Milnor’s definition called statistical attractor (see
for instance [Ily]).

As defined in Section [2 the (upper) visiting frequency of x € X to V' C X is given by

(V) = 705 (V) = limsup %#{0 <j<n: @) eV) (8)

n—o0

and the statistical w-limit set of x € X as

wi(r) ={y; 7=(B:(y)) > 0 for all ¢ > 0}.
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According to Ilyashenko (see page 148 of [AAIS]), the statistical basin of attraction
of a compact set A C X is defined as

Bi(A) ={z; 0 # wj(z) C A}

If M is a compact Riemannian manifold and A : M O is a continuous map, a compact set
A C M is called a Ilyashenko’s statistical attractor for h when Leb(5;(A)) > 0 and
there is no compact set A” G A such that Leb(8;(A)\ 85(A’)) = 0. Combining Ilyashenko’s
definition of a statistical attractor with Milnor’s definition of a topological attractor, we
define the topological statistical attractor as follows (E])

Definition 4.4.1 (Topological statistical attractor). A compact set A C X is called a
topological statistical attractor for the map f : Xo — X when 83(A) and B3(A) \ B3(4A')
are fat sets for every compact set A’ ; A.

A natural approach to prove the existence of a (topological) statistical attractor for a
Baire or u-Baire ergodic component is to follow the proof of Proposition [4.2.2] that is,
showing that w} : X 3 2 — wj(z) € K(X) is a Baire potential and, as w} is f-invariant,
applying Proposition to conclude that w?(z) is almost constant. Our proof here will
be slightly different; therefore, we present the statistical spectrum of a point, which will
have other applications throughout the paper.

4.4.1. The statistical spectrum. Let M'(X) the set of all Borel probability measures on X.
Let D = {®1, pa, 3, - - } be a countable dense subset of C'(X, [0,1]) and

/QOnd/JJ—/QOHdV

It is well know that d is a metric on M!(X) compatible with the weak topology and
(M1(X),d) is a compact metric space. Let K(M?!(X)) be the set of all nonempty compact
subsets of M!(X) and consider the Hausdorff metric di on it. Note that (K(M!(X)),dg)
is also a complete metric space. N

Let X = ;50 f7(X) = f71(X) and define the map Uy : X — K(M'(X)), where
Ug(x) is the set of all accumulation points of the empirical measures generated by z,

+oo

A =Y o

n=1

: (9)

1 Z?:_ol 5fj(x)}nEN, in the weak* topology, i.e.,

ne—1

Of(x) = {u e M'(X); d<i E 5fj(x),u> — 0 for some sequence ny +oo} (10)
ng ~
Jj=0

The set Uy(x) is the statistical spectrum of x by f.

Lemma 4.4.2. Gy is a measurable map.

Proof. Given x € X, let pu,(x) = %Z;:Ol Ofi(z), Keg(w) = Ufi@{uj} € K(MY(X)), Ky(x) =

Uz} € KIMY(X)). As X 3 2 = Kpu(z) € K(M'(X)) is a continuous map, hence
measurable, and K,(z) = lim;_, K (), we get that X 3 z — K,(z) € KM (X)) is

BIn [Cal, the Ilyashenko’s statistical attractor is discussed, and an interesting variation of such a
metrical attractor is presented.
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measurable. Moreover, as Ug(z) = limy_,oo Ko(x) = (s, Ke(z) € K(M(X)), we conclude
that Uy is measurable. - O

Lemma 4.4.3. If X is a Borel subset of X and g : X O is a measurable map then

*

wy (%) = U,,c05,(x) SUPP o for every x € X.

Proof. Since g(X) C X C X and X is compact, we have that w}(z) is a nonempty compact
subset of X and U,(z) is a nonempty compact subset of M!(X) for every € X (nev-
ertheless, we may have w}(z) ¢ X and Uy(z) ¢ M*'(X)). As supppu C wj(z) for every
p € Ug(x), we get that wi(z) O U,ep, () Supp g Moreover, wy(z) O U,,er5, () SUPP 4, since
wy(x) is a compact. Conversely, if p € wi(z) and ¢ > 0 then u,(B.(p)) > 7(B:(p))/2
for infinitely many n € N. Thus, there exists pu. € Uy(z) such that p.(B.(p)). In par-

ticular, supp pu. N B-(p) # 0 for every e > 0, proving that p € Uueug(;z) supp 4. Hence,
wy(2) C U, ew, (2) SUPP K- O

Corollary 4.4.4. wi(z) = UueUf(x) supp . for every x € X.

Proof. If z ¢ X then wi(r) = wi(r) = 0 as well as Uy(z) = (). Thus, we can assume that
z € X. In this case, taking g = flx> we have that w}(z) = wi(z) and Uy(x) = Gy(z). Thus,
it follows from Lemma @.4.3 applied to g that wj(x) = Uueof(x) supp p. O

Proposition 4.4.5 (The topological statistical attractor of a u-Baire ergodic component).
If U C X is a u-Baire ergodic component of f, then there exists a unique topological
statistical attractor A C U attracting (statistically) a residual subset of U. Moreover,
wi(r) = A for a residual set of points v € U and A C A, where A is the topological

attractor of U (given by Proposition .

Proof. Note that U¢(f(x)) = Uf(z) = Us(y) for every z € X = Nyso f(X) and y €
W§(x). Thus, since Uy : X — K(MZ(X)) is measurable map (Lemma 4.4.2) and K(M*(X))
is a completed separable metric space, we get that Uy is a u-Baire potential for f|s.

Since U is a u-Baire ergodic component, U is a fat set and f~1(U) ~ U = W3(U). Thus,
it follows from Lemma [4.3.2| that U = Ujso F7(Nuso f(=(U))) C X is a fat measurable
set, U~ U, f7t ((7) =U = Wf(ﬁ) and U is a Baire subspace of X.

Hence, it follows from Proposition m, applied to f|5z and Uy |y, that there exists
U € K(M*(X)) such that

Uf(ZE) =U

for a residual set of points = € U. As, by Corollary {4.4.4} wi(x) = UueUf(z) supp j1, we get
that

wi(z) = A= U supp p
neu

for a residual set of points x € U~U. O
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5. APPLICATIONS OF THE ERGODIC FORMALISM AND PROOFS OF MAINS THEOREMS
We begin this section using Proposition [3.0.10] to prove a generalization of Theorem [A]

Theorem 5.0.1. Let X be a Baire space. If a non-singular map f : X O is continuous
and transitive then the following statements are true.

(1) Given a Borel measurable function ¢ : X — R with lim supn L Z?fol po fi(x) €R

Jor every x € X, there exists r € R such that limsup,, -~ Zj v po fi(x)=r fora
residual set of points v € X.

(2) Given a Borel set A C X, there exists 6 € [0,1] such that limsup, ~#{0 < j <
n; fi(z) € A} =0 for a residual set of points v € X.

Proof. Since X is a Baire space and f is continuous, non-singular and transitive, it follows
from Lemma |3.0.6 that f is Baire ergodic. Thus, both items above follows from items (3)
and (4) of Proposition [3.0.10] O

Proof of Theorem [Al Since a compact metric space is a Baire space, Theorem [4] is a
particular case of Theorem above. Ul

Proof of Theorem [BlL Let J(f) be the sub o-algebra of all f invariant Borel sets and
m: J(f) — [0, 1] given by

m(U) =pu (U interior(f"(w(U)))) ,
n>0

where 7 is the Baire projection (Definition [4.1.5). Given U,V € J(f), it follow from

Proposition at Appendix that U is residual in the open set interior(f™(w(U))) and V

is residual in the open set interior(f*(w(V))) for every n,¢ > 0. So, if interior(f™(x(U))) N

interior(f¢(m(V))) # 0 for some n, £ > 0, we get that U NV 4 (. That is,

UNV ~ 0 = interior(f"(x(U))) N interior(f*(x(V))) = 0, ¥n,£ > 0. (11)

Since, 7(U)Um(V) = m(UUV) always, it follows from that m(U)+m(V) = m(UUV)
VYU,V € 3(f) with U NV ~ 0, proving that m is a Baire f-function.

Taking ~ := inf { (U, -, interior (f"(B:(z)))) ; 2 € Xand e > 0} and N > £ > 1/, it
follows from the theorem hypothesis that m(U) > 1/¢ for every non meager set U € J(f).
Hence, it follows from Proposition that X can be decomposed (up to a meager set) into
a collection Uy, - - - , U, of Baire ergodic components. Using Proposition [4.2.2] each ergodic
component U; has a topological attractor A; such that S7(A;) ~ U; and wy(x) = A,
for a re81dual set of points x € [;(A4;), proving item (1). Items (2) and (3) follow from
Corollary [£.1.9) applied to each U;. O

5.1. Maps with abundance of historic behavior. Let X, be a measurable subset of
a compact metric space X and f: Xy — X a measurable map As observed in Section [2]
a point = € (5o .f "(X) has historic behavior when Zj o po f/(x) does not converge

for some continuous function ¢ : X — R. This means that 1 3 i=0 6 i(z) does not converge

in the weak* topology, or equivalently, that # Us(z) > 2. Let us denote the set of x € X
with historic behavior by HB(f).
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FIGURE 4. A planar flow with divergent time averages attributed to Bowen.

We say that a map f has abundance of historic behavior if HB(f) is a fat set. As it
was proved by Dower [Do] and Takens [Ta(8], a generic point in a basic set of an Axiom
A diffeomorphism has historic behavior (this is also true for a generic point in the basin of
attraction of a non-periodic transitive hyperbolic attractor). That is, the presence of a non-
periodic transitive hyperbolic attractor implies the abundance of historic behavior! There
exists an extensive bibliography about historic behavior (for instance, see [BKNRS, [CV],
CTV,DOT, [EKS, [FKO| [FV],Gal, KS16, [KS17, LR}, LST, LW, MY], INKS| [Ta95| Thl, T4, [Yal ),
in particular about the topological entropy and Hausdorff dimension of the set of points
with historic behavior. Pesin and Pitskel [PP] showed that, in the full shift o : 5 O, the
topological entropy of the set of with historic behavior is equal to the entropy of the whole
system, i.e., hop(0|uB(s)) = Ptop(0) = log 2. Barreira and Schmeling [BS] showed that the
full Hausdorff dimension of HB(c) in the shift space ¥ .

A well-known example of dynamics having an open set of points with historic behavior
is Bowen’s Eye (Figure [d), attributed to Bowen by Takens [Ta95]. A somehow old question
was whether it would be possible to regularize the oscillations of the averages along the orbit
of the points by taking higher order averages. Nevertheless, Jordan, Naudot and Young
[INY] showed, using a classical result from Hardy [Hal, that if time averages %Z;:Ol o
f7(x) of a bounded function ¢ : X — R do not converge, then all higher order averages
(Césaro or Hélder) do not exist either.

In [ArP], the authors used a (Caratheodory) metric measure constructed from the pre-
measured 7., the upper visiting frequency (defined by Equation, to associate an invariant
measure 7, with each point z in the phase space of a given dynamical system. If p is an
ergodic invariant probability measure then 7, = u for py-almoste every x. In the case of the
Bowen’s Eye flow, for all wandering points = (an open and dense set with full Lebesgue
measure), 1, is exactly the expected measure if we were able to regularize the Birkhoff
averages. Indeed, n, = n := (ﬁ)@; + (‘ﬁf—i‘ur
A and B are the saddle singularities of the flow and a4, S+ being the eigenvalues of A
and B (see Figure GEI) That is, in the “Caratheodory sense” one can regularize the
Bowen’s Eye. Nevertheless, it was shown in [ArP] that hyperbolicity may imply not only

)dp for every wandering point z, where

4The condition given by Takens ([Ta95]) to assure the divergence of the time averages is

la—] |81 o . la_| 18| . .
<|a—|+5+)(\/3_|+a+) > 1 and this implies that 2 > (\a—\+ﬁ+> + (\B—|+a+) > 1, showing that n is a

finite measure, but not a probability measure.
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abundance of historic behavior, but also abundance of wild historic behavior. A point x
has wild historic behavior when 1,(U) = oo for every nonempty open set U.

Theorem ([ArP]). The set of points with wild historic behavior in

(1) every strongly transitive topological one-sided Markov chain with a denumerable set
of symbols @;

(ii) every open continuous transitive and positively expansive map of a compact metric
space;

(111) each local homeomorphism defined on an open dense subset of a compact space ad-
matting an induced full branch Markov map;

() the support of a non-atomic expanding invariant probability measure u for a C'* local
diffeomorphism away from a non-flat critical/singular set on a compact manifold;

(v) the basin of attraction B¢(A) of any transitive hyperbolic attractor A, except when A
1$ an attracting periodic orbit;

is a topologically generic subset (denumerable intersection of open and dense subsets).

Although the theorem above shows a very complicated and unpredictable behavior for
the forward orbit of generic points in most of the well known dynamical systems, we can
use Baire and u-Baire ergodicity to extract statistical information about systems with
abundance of historic behavior or even with abundance of wild historic behavior. Indeed,
the maps of items (i) to (iv) above are strongly transitive, the map of item (v) is strongly u-
transitive (see the definition in Section [5.2|below) and, as one can see in the next section, we
determine the topological statistical attractors and calculate the (upper) Birkhoff averages
of any continuous function along the orbits of generic points with historic behavior for such
maps (see Theorem [D] and [E] and Corollary below).

5.2. Strongly transitive maps. Strongly transitive maps (or sets) appears profusely in
dynamics @ and Theorem @ presents a dichotomy for those maps, a strongly transitive
map is either uniquely ergodic or has abundance of historic behavior. Moreover, this
theorem shows a strong connection between the statistical behavior of generic orbits and
the set of the invariant probability measures.

Given a Baire metric space X and an open set U C X, we say that a continuous map
[ X Ois a strongly transitive on U if | J,-, f"(V) D U for every open set V' C U (this

means that (’)J?(x) D U for every x € U). In the spirit of u-Baire ergodicity, a continuous

map [ : X O is called strongly u-transitive on an open set U C X when W3(O; (z)) D U
for every x € U. Of course that all strongly transitive maps are strongly u-transitive, as
Oy (z) € Op (Wi(x)) = WOy (2)).

15The original hypothesis of item (i) at Theorem [5.1]in [ArP] is that the Markov chain is topologically
mixing, nevertheless a strongly transitive map with a periodic point can be decomposed into a finite
collection of disjoints sets such that the first return map to one of those sets are topologically exact and
so, topologically mixing.

16A1] transitive, continuous and piecewise monotone interval maps, expanding maps of a connected
compact manifold, transitive circle homeomorphisms, transitive translations of a compact metrizable topo-
logical group, the shift map o : 3} O, n > 2 and Viana’s maps are examples of strongly transitive maps.
Moreover, one can use f|4; of item (5) in Theorem to produce many examples of strongly transitive
maps. See also [PV] to more examples and properties of strongly transitive maps.
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Let us denote the set of all ergodic invariant Borel probability measures of f

by ML(f). Note that, if ji € ML(f) then By(s1) # 0, as (B () = 1

Proposition 5.2.1. Let X be a separable Baire metric space and f : X O a continuous
map. If we take Xo = {x € X; OF (Wi(x)) = X} then Ug(x) D {n € M'(f); Br(p) N Xo #
0} > {ue MLSf); u(Xo) > 0} for a reszdual set of points x € X.

Proof. Let d be a metric on M!(X) compatible with the weak* topology. Given x € X and
¢ €N, let §y, = %Zﬁé Ofiz) € M (X). Consider any p € M'(f), with B(u) N X, # 0.
Let p € Br(1) N Xo, that is, Uy(p) = {u} and O (Wi(p)) = X. As O (W(p)) = X and
Uy(y) = Oy(p) for every y € O (W3 (p)), we get that B(u) is a dense set in X,

Given r > 0 and n € N, let

V() = {z € B(1) ; d(Gar ) < 7 ¥im > ).

As V(r,1) C V(r,2) C V(r,3) C --- and UneN V(r,n) = Bf(p), given t € N there is
n(t) > t such that V(r,n(t)) is a (1/t)-dense set in ﬁf(,u) and so, sinse [f(u) is dense in X,
V(r,n(t)) is a (1/t)-dense set in X (i.e., By (V(r,n(t))) = UxGV (rn(ey Bre(@) = X). As X
is separable, V' (r,n(t)) admits a countable (1/t)-dense subset. That is, there is countable

set V'(r,n(t)) C V(r,n(t)) such that By, (V'(r,n(t))) = X. It follows from the continuity
of f that there exists e(r,n(t),y) > 0 such that

A(0p,z, i) < 1 for every x € Bernw) ) (y) and y € V'(r,n(t)).

Note that the set W,.(m) = U, Uyev(rn)) Ben(y) (v) is an open and (1/m)-dense set
for every m € N. Moreover, if x € W,(m) then d(d,,, ) < r for some n > m. Defining
W, = Nnen Wr(m), we get that W, is residual and for each x € W, there is ¢; — +o00
such that d(d, ., ) < 7. Finally, we have that W (u) = [,y Wi/n is also a residual set
and p € Uy(z) for every z € W(p). Taking a countable and dense set {1, o, pig, - - } C
{re MU(f); Br(p) N Xo # 0}, we get that W = [,y W () is a residual set and, by the
compactness of Ug(x), also that Ug(x) = {u € MI(f); Br(p) N Xy # O} for every x € W,
which completes the proof. ]

In [DGS], Denker, Grillenberger and Sigmund called the points satisfying Us(z) =
MZL(f) the points of mazimal oscillation.

Corollary 5.2.2. If X is a separable Baire metric space and f : X O is a continuous
strongly transitive map then the set of all points with mazximal oscillation is a residual
subset of X.

Proof of Theorem [Cl. We note that Theorem [C] satisfies all the hypothesis of Theo-
rem and so, all the items of Theorem [C] follow directly from Theorem [£.2.1] with the
exception of item (vii).

[tem (wii) is a consequence of Proposition . Indeed, suppose that exist p,q €
Aj 0 Per(f) such that OF (p ) NOF(q) = 0. Let

W= #(’)*() Z 0, and V—#O+() Z 0.

€0} (p) €07} (q)
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Taking g = f|a, it follows from item (5) of Theorem (C|that ay(z) D A; = A; for every
x € Aj. This implies that Oy (z) is dense in A; when x € A;. As A; is a forward
invariant set, we get that O;(x) is dense in A; for every z € A;. Finally, as we always
have that O, (z) C O, (W:(x)), we get that (A;) := {y € A;; O; (Wi(z)) = A;} D A,
and so, by Proposition , Uf(x) = Uy(z) D {u, v} for a residual set of points = € A;.
As Br(4;) ~ U,>o f"(4;), it follows that Us(xz) D {u,v} for a residual set of points
x € B(A;), proving that, generically, the points of 3(A;) have historical behavior. O

Proof of Theorem [Dl Since X is compact, f continuous and the whole X is strongly
transitive, it follows from Proposition that

Uy(z) = M'(f) # 0 for a residual set of points z € X. (12)

Thus, by (12), if f is not uniquely ergodic then # Uy(z) > 1 for a residual set of points

x € X and so, a generic point x € X has historic behavior, showing item . Moreover,

the poof of item @ follows from and Lemma , applied to X = X and g = f.
Given p € C°(X,R) and z € X, it follows from the convergence in the weak* topology

that

n—1 n—1

: 1 ; . 1

hmsupﬁ E po fl(x) :hmsup/go d(ﬁ E 5fj(z)) :sup{/godu; W E Uf(a:)}
Jj=0 Jj=0

n—oo n—o0

Moreover, by the compactness of M!(f), we have that

sup{/sodu; ueMl(f)} ZmaX{/sOdu; ueMl(f)}-

Hence, if ¢ € C°(X,R) and z is a generic point in X, we can use to conclude that

n—1
1 .
]-. - J - d . pu—
imsup jgogoof (x) Sup{/gp = Uf(x)}

- sup{/sodu; pe Ml(f)} - maX{/sOdu; pe M1<f>},

proving item (g).
To prove item (@, recall that, if u, is a sequence of probability measures converging to

p in the weak™® topology, then pu(U) > lim,, p1,,(U) > lim,, 1, (U) > p(U) for every open set
U C X. Since this implies that

max{u(U); p € Uy(2)} 2 72(U) = 7(U) = max{u(U); p € Uy()}
for every x € X and every open set U C X, it follows from item @ that
max{u(U); p € M'(f)} = 7(U) = max{u(U); p € M'(f)} (13)

for a residual set of points x € X and every open set U C X.

Suppose that f is non-singular. Given a Borel set V', let U be an open set such that
V ~ U. By item (@ there exists a residual set R C X such that holds for every
x € R. Noting that M := UAV is a meager set, f is non-singular and 7,(M) > 0 —
x €)oo f (M), we get that 7,(U) = 7,(V) for every z € R' := R\ ()50 [ " (M) ~ R,
where R’ is residual in X. And this concludes the proof of item . - O
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An interesting example of a strongly transitive map is the “Furstenberg’s Example”.

Corollary 5.2.3. If f is the Furstenberg minimal analytic diffeomorphism of the torus T?
having the Lebesque as a non-ergodic invariant measure [Fu| then, generically, the points
of T? have historic behavior. Furthermore, if ¢ : T2 — R is a continuous function then

n—+oo T

n—1
limsuplstfj(w) ZmaX{/wdu; e Ml(f)}
§=0

for a residual set of points x € T2.

Proof. As f~! is also a minimal homeomorphism, we get that af(z) = wy-1(z) = T? for
every x € T2, proving that f is a strongly transitive map. As f is not uniquely ergodic
[Eu], it follows from Theorem @ that a generic point z € T? has historic behavior. U

Proof of Theorem [El The proof follows the same argument of proof of Theorem [D] O

Knowing that periodic points are a dense subset of any transitive hyperbolic diffeomor-
phism, Corollary below follow straightforward from Theorem [E]

Corollary 5.2.4. If f : M O is a transitive C* Anosov diffeomorphism then a generic
point x € M has historic behavior, wi(x) = ws(x) = M and

limsuplZC,Oofj(ﬂc) = max{/sodu; wE Ml(f)},

n <
J=0
whenever ¢ : M — R is a continuous function.

5.3. Topologically growing maps. Let X be a compact metric space and X, an open
and dense subset of X. A bimeasurable non-singular continuous map f : Xg — X is called
d-growing, 6 > 0, if for each nonempty open set V' C X there isn > 0, ¢ € X and a
connected component U C V of f~"(Bs(q)) such that f*(U) = Bs(q). A topologically
growing map is a d-growing map for some § > 0.

An open set V,, 5(p) is called a pre-ball of order n € N, radius § > 0 for p € X if
there is ¢ € X such that

(1) V,,s(p) is the connected component of f~"(Bs(¢q)) containing p and
(2) f"(p) € Bsj2(q) € [*(Vas(p)) = Bs(q).

We say that n € N is a d-growing time to p € X when there exists a pre-ball V,, 5(p)
for p. Let us denote by G(0,p) C N the set of all j-growing time to p.

If n > 2 is §-growing time to p then n — 1 is a J-growing time to f(p). Indeed, if V,, 5(p)
is a pre-ball of order n and radius ¢ for p, with f"(V,,s5(p)) = Bs(q), then V,,_1 5(f(p)) :=
f(Va.s(p)) is a pre-ball of order n—1 and radius 6 for f(p) with "1 (V,_15(f(p))) = Bs(q).
That is, G(9, f(p)) D G(0,p) —1:={n—1;n € G(d,p)} for every p € X. As, for r > 0,

&, (n,6) :={peX;neg(dp) with diameter(V,, s(p)) <r}

is an open set, if f is a d-growing map, then

60) =) U &m0,

£eEN neN n<meN
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the set of all points with infinity many J-growing times for arbitrarily small
pre-balls, is a residual set.

Given z € &(0), the omega-limit in 0-growing time for x, denoted by ws f(z), is
the set of all y € X such that y = lim; f™ (x) with n; € G(6, ) and diameter(V,,, s(z)) — 0.
It is easy to see that ws (x) is compact, but not necessarily forward invariant, and that
ws,f(z) = ws s(f(x)) for every x € B(9).

Let us assume that f is a d-growing map. Hence, it follows from Theorem that X
can be decomposed into a finite collection of Baire ergodic components Uy, --- , U, with
U; being open sets. Let A; be the topological attractor for U;. Also by Theorem [1.2.1], A;
contains a ball B; of radius 0. In particular, interior(A;) # 0 and, as A; is transitive, we

get that A; = interior(4,).
Lemma 5.3.1. 3A; C Bs/2(Aj) C Aj s.t. wsy(x) = A; residually on U;.

Proof. Let G(r,0,x) be the set of all §-growing times to x such that diameter(V,, s(z)) <
7y 6,:(0) = MNhen Unemen Gr(m,6) and vy, :+ &,.(6) = K(X) be given by ., (z) =
{f(x);j€{n,---,n+m}NG(r,d,z)}. As ¥y, is continuous, the map v, : &,(§) —
K(X) given by y,,(x) = lim,, Yy me(x) = {j >n; j € G(r,d,x)} is a measurable map,
as it is the pointwise limit of continuous (and so, measurable) maps. Similarly, 1, is
also measurable, where 1,(x) = lim, ¥, ,(z) = (,{j >n;j € G(r,0,z)}. Finally, as
ws,f () = UMNse—oo Y1 /e(x), we get that &(0) >  — wsp(x) € K(X) is a measurable map
and so, an invariant Baire potential. Thus, it follows from Corollary that there exists
A; € K(X) such that ws ¢(x) = A; for a residual set of points x € U;. As A; = interior(4,),
ws,r(z) = A; for a residual set of points x € interior(4;). By the definition of a J-
growing time to x, if y € wss(x) and 2 € interior(A4;) we get that Bs/s(y) C A; and, as a
consequence, Bja(Aj) C A;. O

Recall that a Borel probability measure p is called ¢p-maximizing measure with respect
to f if it is f-invariant and

/s@duzsup{/sodw VGMl(f)}-

Theorem 5.3.1. Let X be a compact metric space and Xo an open and dense subset of X.
If f: Xo = X is a 6-growing map then X can be decomposed (up to a meager set) into a
finite number of Baire ergodic components Uy, --- ,Uy C X, each U; is an open set and the
attractors A; associated to U; satisfy the following properties for each 1 < j < (.

(T1) Each A;j is transitive, contains an open ball of radius § and A; = interior(A;).

(T2) Q(f)\ Uﬁ:o A; is a compact set with empty interior.

(T8) For each Aj there is a forward invariant set A; C A; containing an open and dense
subset of A; such that f is strongly transitive in Aj;.

(T4) wi(x) = ws(x) = A; for a residual set of points x € Uy ~ [y(A;).

(T5) hiop(fla,) > 0.
(T6) fl|a; has an uncountable set of ergodic invariant probability measures.
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(T7) If x is a generic point of U; and ¢ € C(X,R) then

lim sup — ZsDOf] >Sup{/sodu;M€M1(f|Aj)}~ (14)

n—-+o0o

In particular, if there is a @-mazimizing measure p; with respect to f|a, such that
pi(A;) =1 then becomes an equality.
Furthermore,

(T8) f has sensitive dependence on initial conditions.
(T9) Generically, the points of X have historic behavior.

(T10) If X is a compact manifold (possibly with boundary) then Per(f) O UJ 1A

Proof. The decomposition into a finite number of Baire ergodic components Uj, the topo-
logical attractor A;, items (71), (12), (T3) and w¢(x) = A; for a residual set of points
x € U; follow directly from Theorem

Moreover, it follows from Theorem and Proposition that Uy(z) D M'(f|a,)
for a residual set of points x € A;, where A; = {z € A;; as(x) D A,} contains an open
and dense subset of A;. Let A; C Bs/2(A;) C A; be the compact set given by Lemma
such that ws ¢(x) = A; for a residual set of points € U; and consider a point p € Bs/s(A;).

Claim 5.3.2 (Local horseshoes). Given 0 <& < ¢/4 there exist open sets Sy and Sy, with
S; C B.(p), Son Sy =0 and integers ng,ny € N such that S; is a connected component of

f7(B.(p)) and f"(S;) = B.(p).

Proof of the claim. Let ¢ € Bsja(p) N A;. As &(0) contains a residual set, let po,p1 €
B.(p) N &(0) be so that g € ws s(p;) for j =0, 1. Let

r = min{d(po, p1)/3, d(po, dB-(p)) /3, d(p1,0B-(p))/3}

and n; € G(r,0,p;), 7 = 0,1, so that f"(p;,) is close enough to g so that f"(p;) € Bs/2(p).
Hence, there are pre-balls V;, s5(p;), j = 0,1, with diameters smaller than r such that
[ (Va,5(pj)) O Be(p). Let S; be the connected component of (f"f|vnj’5(pj))*1(Ba(p))

containing p. Thus, [%(5) = Bo(p). 5, C Bu(p;) C Be(p) and S5015, C By (po) 1B, (1) =
(), proving the claim. 0

Let F. : SyUS, — B.(p) be the induced map given by F.(z) = fE®)(z) with R(z) = n;
for z € S;, where S; and n; are as in Claim [5.3.2 above. Taking I'. = = Npso I " (B:(p)),
one can use the itinerary map (i.e., I : I'. — X3 given by I(z)(n) = 1y, o F*(z)) to obtain a
semiconjugation between F.|r_ and the shift o : 33 . As this implies that hy,,(F.) > log 2,
we get that huep(fla,) > 3(no + nl)hmp(F ) > 0, proving item (75). Likewise, it follows
from the semiconjugation that M} (F, ) is an uncountable set and, as | Rdpu < max{ng, n;}
for every € MI(F), we get that M(f|4,) is also an uncountable set, proving item (76).
The items (77) and (T9) follow from item (73), (T6) and Proposition [5.2.1]

The presence of horseshoes inside each A; (claim implies that there exists z € A,
such that () # ws(z) # A; and so, by item (6) of Theorem , fla, has sensitive
dependence on initial condition, V1 < j < ¢. Since U; ~ |J,~qf '(4;) Vj and X ~
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Uy U---UUy, we get that f has sensitive dependence on initial condition, showing item
(T8).

Note that Claim implies that for every p € B;/4(A;) and every 0 < ¢ < 6/2 there
is a f invariant ergodic probability measure p such that suppp N B.(p) # (. That is,
Uue Mi(f|) SuPP i D Bs /4(A;) and, by transitivity and compactness, this implies that

elJ14;

A;D U suppp D Aj = Aj.
neMe(fla;)

Hence, as w}(:p) = Uueuf(:c) supp ¢ O UueMé(flAj) supp p for a residual set of points x € U;

(Corollary @4.4.4), we get that wi(z) = A; for a residual set of points x € Uj, completing
the proof of item (T4).

Finally, if X is a compact manifold (possibly with boundary), we can use Brouwer fixed-
point theorem to prove that F. has a fixed point on S; (and also in Sy). Thus Per(f)NB.(p)
for every € > 0 and every p € Bs/4(A;). Hence, using that f[4, is transitive, we get that

Per(f) D A;, proving item (T10) and completing the proof of the theorem. O
Proof of Theorem [Fl With the exception of item (6), all items of Theorem [F]| follows
directly from Theorem|[5.3.1l To check item (6), observe that each Baire ergodic component

U; is almost equal to the base of attraction §¢(A;), i.e., U; ~ B¢(A;). If ¢ € C(X,R), i
follows from the Baire ergodicity that exists a, € R such that

for a residual set of points x € U;. By the same reasoning, there exists b, € R such that

—hmmf—znpofj = limsup — Z —po fi(z) = by

n—+o00 1 n—+o00

for a residual set of points x € U;. By item (77) of Theorem , if x is a generic point
of B¢(A;) then,

n—1

1
a+=11m§upn2900fj )>sup{/s0du;u€M1(f!Aj)} (15)
n—-+0o0
and
n—1
by = limsup — Z —po fi(x )>sup{/—gpdu;,u€./\/ll(f\,4j)}.
n——+0o
Writing a_ = —b,, we get that
n—1
lim inf — i(a) = a_ = — i i(
ggﬁg@nwa imsup - Z —po fi(z) <

< —Sup{/—gpd,u; ueMl(ﬂAj)} :inf{/sodu; uGMl(flAj)}
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for a residual set of points z € Bf(4;). d

5.4. Regular attractors and physical measures. In this section let f : X O be a
continuous map defined on a compact metric space X. Let m be a reference Borel measure
with full support, i.e., suppm = X (]T_7D Recall that, given a compact A, the basin of
attraction of A is defined as

Br(A) ={z € X; ws(x) C A}.

In the same way as the definition of topological attractors (see Section [2|) or topological
statistical attractors (Definition [4.4.1)), we define metrical attractor (with respect to the
reference measure m) as a compact set A C X such that m(8¢(A)) > 0 and m(5s(A) \
Bt(A) > 0 for every compact set A" C A.

Definition 5.4.1 (Regular attractors). A metrical attractor A is called regular when
wr(x) = A for m almost every v € Bg(A). Likewise, a topological attractor A is regular
when wy(z) = A for a residual set of points x € B(A).

Note that if m is the Lebesgue measure then all regular metrical attractor is a metrical
attractor in Milnor sense [Mi]. Furthermore, most of the metrical attractors in the literature
are regular attractors:

(1) the attractors of C? non-flat interval maps (including the wild attractors),

(2) hyperbolic attractors for C* diffeomorphisms,

(3) non uniformly expanding attractors for C'* maps with non degenerated critical
region (including Viana’s maps [Vi]),

(4) non-uniformly hyperbolic attractors for C'* maps,

(5) Lorenz, Henon and Kan attractors [Lol [Hel [Kal.

In particular, most the attractors supporting an SRB or, more in general, a physical mea-
sure are regular metrical attractors. As mentioned in Section [2| the basin of attraction
of a measure pu € M'(X), denoted by S;(y), is the set of all 2 € X such that Z;:g 03 (a)
converges to u in the weak* topology.

Definition 5.4.2 (Physical measures). A probability measure y € M*(X) is called a phys-
ical measure, with respect to the reference measure m, if m(By(p)) > 0.

Consider the partial order < on K(X) given by the inclusion, i.e., A < B when A C B.
A map ¢ : X — K(X) is upper semicontinuous at a point p € X if limsup,,_, . o(z,) <
o(p) for every sequence x, — p. Similarly, ¢ is lower semicontinuous at p € X
if liminf, o ¢(x,) > @(p) for every sequence x, — p. It is easy to check that ¢ is
upper semicontinuous at p if and only if for every € > 0 there exist 4 > 0 such that
¢() C Be(0(p)) = Uyep Be(x) C X Vo € Bs(p), where B, (p) denotes the open ball on
X (not on K(X)) of radius » > 0 and center p € X. As the same, ¢ is lower semicontinuous
at p if and only if for every ¢ > 0 there exist § > 0 such that ¢(p) C B.(¢(x)) for every
x € B(;(p)

Consider the maps wy : X — K(X), w} : X = K(X) and Uy : X = K(M'(X)), where
wy(x) is the omega-limit of = (see the beginning of Section , wi(r) is the statistical

17Typically, one can assume that m is the Lebesgue measure when X is a Riemannian manifold.
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omega-limit of = (see the beginning of Section and Uy (z) is the statistical spectrum of
z (see Section [4.4.1]). To analyze the points of X where wy,ws and Uy are semicontinuous,
we need Fort’s Theorem below.

Theorem (M. K. Fort, [Fo]). For any Baire topological space X and compact topological
space Y, the set of continuity points of a semicontinuous map from X to K(Y') is a Baire
generic subset of X.

Let dy the Hausdorff distance on K(X) with respect to the distance d on X. Let d be a
distance on M (X) compatible with the weak* topology. For instance, we may consider

the distance given by (©) at Section . Defining d(p,v) = d(p, v) + dg(supp p, supp v),
we have that d is a distance on M'(X). Let di be the Hausdorff distance on K(M'(X))
associated to d.

Proposition 5.4.3. There erxists a residual set # C X such that wp,w} @ (X,d) —
(K(X),dy) and Uy : (X,d) — (KM (X),dy) are upper semicontinuous maps at every
point of X @

Proof. Let us consider the maps ¢ : (X, d) — (K(X),dy) and 9 : (X, ) — (KM (X)),dg)
given by ¢(z) = Of (z) = {f*(z) : n € N} and ¥(z) = {%z o Oriy; n € N

Claim 5.4.4. ¢ and v are lower semicontinuous maps.

Proof of the claim. Let p € X. Since B.(Of (p)) D (9+( ) for every € > 0, it follows from

the compactness of O (p) that there is £. € N such that szo B.js(f’(p)) D C’)?(p). On

the other hand, as X > o+ {x, -, f(x)} € K(X) is a continuous map, one can see that
there exists § > 0 such that B.(f?(x)) D B.j2(f’(p)) for every 0 < j < (. and = € Bs(p).

Thus, B.(p(x)) = B(Of (x)) D Uiy B=(f7(z)) > Uiz B:=(f7(p)) D Of (p) = (p) for
every x € Bs(p), proving the lower semi continuity of gp A similar argument show the
lower semicontinuity of ¢. Indeed, write u,(z) = + Z 6 fi(z) and let, for given € > 0,
¢. € N be such that Uﬁlo Beja(pn(p)) D {tn(p); n € N}. Taking ¢ > 0 small enough, it
follows from the continuity of (X,d) > x + {ui(x), -+, un(z)} € (K(MY(X)),dy) that
Ui B(j(x)) D Ui Beja(i(p)) Vo € Bs(p). As for o, this implies that B.(i)(x)) D
1 (p) proving the lower semi continuity of ). O

It follows from Claim and Fort’s theorem above that there exists residual set %,
and Z,; C X such that ¢ is continuous at every point of %, as well as, v is continuous at
the points of Z.

Let p € # = H, N Ry. Given ¢ > 0 let U. = Of(p) \ Bc(ws(p)), recalling that
B.(wy(x)) = Umewf(p) B.(p) C X. Note that U, is a finite set and choose an open set V' C X

containing U, and such that V' N B.(ws(p)) = 0. As V' U B.(ws(p)) contains O (p) and
lim,,, Of (z) = OF (p), there exists § > 0 such that Of (z) C VUB.(wy(p)) and OF (z)NV

18 As the induced topology generated by d is stronger than the weak* topology (induced by d), the map
Uy : (X,d) = (KY(ML(X)),dy) is also upper semicontinuous at all points of %, where dg is the Hausdorff
distance on K(M*(X)) associated to d and used at Section
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is a finite set for every x € Bjs(p). This implies that ws(z) C B.(wg(p)) for every xz € Bs(p),
proving that w; is upper semicontinuous at p. A similar argument shows that Uy is upper
semicontinuous at p.

Finally, the upper semicontinuity of w} at a point p € # follows from the upper semi-
continuity of Uf(x). Indeed, by the upper semicontinuity, given € > 0, there exists § > 0
such that B.(Us(p)) D Uys(x) for every & € Bs(p). Hence, if x € Bs(p) and u € Ug(x),
there exists v € Uy(p) such that d(u,v) < /2. That is, d(u,v) + dg(supp u,suppv) <
¢/2. Thus, by Lemma (applied to X = X and g = f), suppu C B, s(suppv) C
BE/Q(UnGUf(p) supp 1) = Beja(w}(p)) for every € Us(z) and x € Bs(p). As a consequence,

wi(r) = Uuezsf(w) supp pt C Bepa(wi(p)) C Be(wi(p)) for every @ € Bj(p), proving the
upper semicontinuity of wj at every p € Z. O

Theorem 5.4.1. Suppose that f is non-singular and U is a u-Baire ergodic component
of f. Let A and A* be, respectively, the topological attractor and the topological statistical
attractor of U.

(1) If A is a metrical attractor and {z € X; we(x) = A}y N U is a fat set then A C A.
(2) If un € MY (X) is a physical measure and B;(p)NU is a fat set then supp u C A* C A.

Proof. Let Z be the residual set given by Proposition [5.4.3] Let A be a metrical attractor
such that B;[(A) N U is a fat set, where B;{(A) ={z € X; ws(x) = A}. In this case, there
exists an nonempty open set V such that ﬁ;[ (A) and U are respectively dense and residual

inV. As B;{(A) is dense in V, given p € V. NU N Z there exists a sequence x,, € ﬁ;{(A)
such that lim, z, = p. Hence, it follows from the upper semicontinuity of w; at p that
A =lim, o wp(x,) C wy(p). That is, A C ws(p) for every p € VN U NZ. On the other
hand, by Proposition [4.3.6, w¢(x) = A for a residual set of points € U. This implies that
A C wy(x) = A for a residual set of points x € V' and so, A C A.

Now, let u € M*'(X) be a physical measure such that 8;(u) NU is a fat set. In this case,
let V := AN B # (), where A = interior(8;(;1)) and B is any open set such that B ~ U.
Thus, given p € VNUNZ there exists a sequence z,, € S¢(p) such that lim,, z,, = p. Note
that w}(z) = supp p for every x € B¢(u) Thus, by the upper semi continuity of w} we get
that supp u = lim,, w}(z,) C wj(p). That is, supp p C wi(p) for every p € VAU NZ. As,
by Proposition 4.4.5), w}(x) = A* for a residual set of points x € U and as A* C A, we get
that suppu C A* C A. O

Now we can prove the last theorem of Section[2] It can de seen in Section[6.2)at Appendix
the necessary information about continuous foliations.

Proof of Theorem [Gl The statement and the proof of Claim below are also true
for any continuous foliation.

Claim 5.4.5. W2(U) is an open set for every open set U C M.

Proof of the claim. Given p € W{(U), let u € U and ¢ > 0 be such that p € W§(u) and
B.(u) C U. By the continuity of W7, there exists § > 0 such that W3(q) N Be(u) # 0 for
every q € Bs(p). Thus, ¢ € W;(W;(q) N Bs(u)) C Wi(U) Vq € B(p), proving that W3 (U)
is an open set. O
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As W? is a continuous foliation, one can use the holonomy between local transverse

sections to prove the Claim below, see Lemma at Appendix.
Claim 5.4.6. If R is residual in an open set U then W7 (R) is residual in W (U).

Recall the definition of J“(f) in Section [3| just below Definition and consider
m : J(f) — [0,+00) given by m(Y) = Leb(W32(w(Y))) (see Definition 4.1.5), as m(Y)
is an open set, it follows from the Claim that Wi (m(Y)) also open, in particular,
measurable. So, Leb(W;(7(Y))) is well defined.

It follows from Claim above that, UNV ~ 0 = W3(x(U)) N Wi(r(V)) = 0 for
every U and V' € J%(f) and so, m is a u-Baire f-function. Furthermore, it follows from
f being a homeomorphism and from the claims above, that f~'(7(U)) = 7(U) = W}(U)
for every U € J3*(f) and so, by the hypothesis of the theorem, m(U) = Leb(W};(w(U))) =
Leb(W3(U, 50 f*(7(U)))) = Leb(M)/¢ for every fat set U € J*(f), where £ = min{n €
N; n > Leb(M)/e}.

Thus, it follows from Proposition that there exist Baire ergodic components U,
oo, Uy, with 1 <k <0 < Leb(M)/e, such that M ~ U; U---UUy. The proof of items (1)
and (2) follows straightforward from Proposition [4.3.6|applied to each U;. Finally, if 8y()

is dense in an open set V' # () then S¢(p) NUj is a fat set for some 1 < j < k. Hence, by
Theorem [5.4.1] supp 1 C A;, concluding the proof of Theorem [G] O

5.5. Interval maps. In [Pi21] a more complete set of applications of the ergodic formalism
in the study of interval maps is presented, here we give just one example (Theorem
of such applications, since it is used in the proof of Theorem [5.8.1

A C? interval map f : [0,1] O is called non-degenerated if f is non-flat and Per(f) is
a meager set. Recall that f is non-flat if for each ¢ € C; := (f')71(0) there exist £ > 0,
a > 1 and a C? diffeomorphisms ¢ : (¢ — &,¢ + &) — Im(¢) such that ¢(c) = 0 and
f(z) = f(c) + (¢(x))" for every z € (c —g,c+e).

Theorem 5.5.1. If a non-degenerated C? interval map does not admit periodic attractors,
then [0,1] can be decomposed (up to a meager set) into a finite collection Uy,--- U, of
Buaire ergodic components (1 < € < #Cy ), where each U; is an open set having a topological
attractor A; such that wy(z) = A; for a residual set of points x € U;. Moreover, each
U; C ay(c;) for some c; € Cy.

Proof. It has been proved by de Melo and van Strien that a C? non-flat map interval map
does not admit wandering intervals, see Theorem A in chapter IV of [MvS| (a previous
proof for C3 maps appeared in [MS89]). As f does not have periodic attractors and
Per(f) is a meager set, it follows from the Homterval Lemma (see Lemma 3.1 in [MvS])
that interior(lJ, -, f"(U)) N Cy # O for every open set U C [0,1]. This implies that
[0,1] = ULee, ay(e). Tt is easy to see that, if as(c) is a fat set, then it is a Baire ergodic
component (by Theorem . Let {c1,--- , ¢} C Cs be such that

(1) ay(cy) is a fat set for every 1 < j < ¢,

(2) interior(af(c;)) Ninterior(af(cy)) = 0 for j # k;

(3) Uﬁ:l interior(ay(c;)) is dense in [0, 1].
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Thus, taking U; := interior(as(c;)) for 1 < j < ¢, it follows from Proposition that
wr(z) = A; for a residual set of points x € U;, where A; is the topological attractor of
U;. O
5.6. Viana maps. Let us recall the definition of a Viana map. For that consider the
unitary circle S' = R/Z, d > 16, a > 0, 0 : S* — S given by ¢(f) = df mod Z and
ga : S* x R — S x R given by
9a(0,2) = (0(0), ag + asin(2mw0) — %),
where qq is such that the point 0 € R is pre-periodic to the quadratic map ¢(z) := ag + 2°.
In [Vi], Viana proved that there exists a > 0 small, a closed interval I C (—2,2) and C?
small neighborhood N of g, such that if g € N then
(1) g(St x I)c St x I
(2) N, 9™(S* x I) is a forward invariant compact set with nonempty interior;
(3) Lebesgue almost every point p € U,>0 6™ (S* x I) has all its Lyapunov exponents
positive (with respect to g); -
(4) the critical set of C, = {x; det Dg(x) = 0} is the graph of a C* function ¢, : S* — R
arbitrarily close to the null function. In particular, the critical set of ¢ is non-flat.
A Viana mapisamap f: J O given by f := g|;, where g € N and J = (,-,9"(S* X I).

Theorem 5.6.1. If f: J O is a Viana map then the following statements are true.

(1) Given a Borel measurable bounded function ¢ : J — R, there exist v € R and a
residual set Z C J such that

n—-+o0o

n—1
1 .
li — g ) =7, Ve e Z.
imsup -— :Ogoof (x) =7, Vx €

Moreover, if ¢ is continuous then v = max { [ odu; p € M'(f)}.
(2) Given a Borel set V' C J, there exist 6 € [0,1] and a residual set Z C J such that

.(V)=0, Ve e Z.

Moreover, sup {p (U); p€ MY (f)} > 0 > sup{pu(U); p€ M'(f)}, where U is
any open set such that V ~ U.

Proof. Note that f is continuous, bimeasurable and non-singular. Indeed, as f is continuous
(f is C?) and #f '(z) < +oo Vz € J, we get that f bimeasurable [Pur]. Because
C; = (det Df)71(0), the critical set of f, has empty interior, we get that f is a local
diffeomorphism on the open and dense set J \ Cy, showing that f is non-singular.

Since Theorem C of [AV] says that f is a strongly transitive map (in particular, f is
transitive), the proof of Theorem follows from Theorem [A] and [D] O

5.7. Non-uniformly hyperbolic dynamics. Let M be a Riemannian manifold and con-
sider a non-flat map f € C'(M, M), i.e.,C := {z € X; det Df(z) = 0} is a compact meager
set and the following conditions hold for some 3, B > 0.

(C.1)  (1/B)dist(z,C)?|v| < |Df(x)v| < B dist(z,C)?|v| for all v € T, M.
For every z,y € M \ C with dist(z, y) < dist(z,C)/2 we have

(C.2)  |log||Df(x)™"| = log [ Df(y)~'[I | < (B/ dist(,C)”) dist(x, y)-
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A set A C M has slow recurrence to the critical/singular region (or satisfies
the slow approximation condition) if for each € > 0 there is a 6 > 0 such that

n—1

lim sup — Z log dists(f?(z),C) < e (16)

n—+oo T

for every x € A, where dists(z,C) denotes the d-truncated distance from x to C defined
as dists(z,C) = dist(z,C) if dist(x,C) < ¢ and dists(z,C) = 1 otherwise.

We say that A C M is a non-uniformly expanding set, NUE for short, if A has slow
recurrence to the crittical/ singular region and

lin sup = Zlog I(Df o fi(a) 1> A >0 (17)
n——+00
for every = € A.
The main property of a point x € M satisfying and is the existence of hyperbolic
pre-balls. Given 0 < 0 < 1 and § > 0, a (0,0)-hyperbolic pre-ball of center x and
order n € N is an open set V,,(z) containing = such that

(1) f™ maps V,(z) diffeomorphically onto the ball Bs(f"(z));
(2) dist(f" I (y), [79(2)) < o? dist(f"(y), f*(2)) Vy,z € V,(z) and 1 < j < n.

Lemma 5.7.1 (Lemma 5.2 of [ABV]). If x satisfies then there exists N, C N, with
lim sup,, %#({1, - ,n}NN,) >0,0<0<1andd >0 (o and § depending only on \)
such that for every n € N, the (o,0)-hyperbolic pre-ball V,,(z) is well defined.

Hence, the existence of a dense NUE set implies that f is a topologically growing map
and so we have the following corollary of Theorem [F| (or Theorem [5.3.1)).

Corollary 5.7.2. If f has a dense NUE set A then there exists a finite collection of
topological attractors Ay, --- , Ay satisfying the following properties.

(1) Br(A1) U---UBs(As) contains an open and dense subset of M.
(2) wi(z) = wp(z) = Aj for a residual set of points x € Br(A;) for every 1 < j < (.
3) fla, has an uncountable set of invariant ergodic probability measures p with all its
; g Y [
Lyapunov exponents being positive.
(4) The set of expanding periodic points is dense in A;.
5) The set A; ={x € A;; ar(x) D A;} is a forward invariant set containing an open
( J 7o ©f J
and dense subset of A; and f|a, is strongly transitive.
(6) If x is a generic pomt of Uj and ¢ € C(M,R), then

lim sup — ZsOOf] >Sup{/s0du;u€M1(f|Aj)}-

n—-+00
Furthermore, generically, the points of M have historic behavior.

Proof. All items, with the exception of items (4) and (4), are a direct consequence of
Theorem [F] Hence, we want to comment only the two exceptions. As M is a compact
manifold, we get from Theorem [F| (or Theorem that Per(f) are dense in A;. In
the proof of Theorem [5.3.1] we use Brouwer fixed-point theorem to produce a dense set of
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periodic points. Here, as we have contraction in the hyperbolic pre-ball, we can use the
Banach fixed-point theorem and obtain a dense set of expanding periodic points. Moreover,
the “horseshoe” that appears on Claim [5.3.2| is only a topological one, here the same
argument produces a uniformly expanding horseshoe Fj; : A; O conjugated to the shift
o : X3 O, where Fj is a f-induced map and A; C A;. Thus, all the uncountable f-
invariant probability measures produced by F} are expanding probability measures (i.e.,
with all their Lyapunov exponents positive) and their support are contained in A; (so, they
are f|4,-invariant probability measures). O

Notice that the hypothesis of the existence of a NUE dense set appear with frequency
in the literature. Indeed, it is common to assume the strong hypothesis of maps having a
NUE set with full Lebesgue measure. For more information of such maps see, for instance,
[ABV] [Pi11l, [Pi06, [PV], [LPV]. We can also mention the fact that all cycle of interval for
C' interval maps with non-flat critical region has a dense NUE subset.

Using u-Baire ergodicity, one can obtain for Partially Hyperbolic Systems a result similar
to Corollary above. Given a C! diffeomorphism f : M O, we say that f is partially
hyperbolic (with a strong stable direction) if there exist a D f-invariant splitting T'M =
ECa®E®, C >0, A>1and o € (0,1) such that the following two conditions holds:

(1) IDSle-@)[|Df e ()] < o for every @ € M and
(2) |IDf™es(x)|| < CA™™ for every x € M.

An invariant set A C M is a non-uniformly hyperbolic set (NUH) for the partially

hyperbolic diffeomorphism f if the third condition below holds:

(3) limsup & Z;l:_ol log |[(Dfl|ge o f7(z))7Y|7' > A > 0 for every z € A.

Theorem 5.7.1. If a partially hyperbolic C* diffeomorphism f : M O defined on a compact
Riemannian manifold has dense NUH set A then there exists a finite collection of topological
attractors Ay, - -, Ay satisfying the following properties.
(1) Br(A1)U--- U Bs(Ag) contains an open and dense subset of M.
(2) wi(z) = A; for a residual set of points x € B(A;) for every 1 < j <k.
(3) If u is a SRB/physical measure for f then supppu C A; for some 1 < j < k or
Br(p) is a nowhere dense set.

Sketch of the proof. As limsup + 22:01 log |[(Dfleco f(z))7 |7 > A > 0 for z € A, we get
a property similar of the hyperbolic pre-balls. That is, following [ABV] (see Lemma 2.7
and 2.10 at [ABV], see also [AP]), there are 0 < o < 1 and 6 > 0 and N, C N (#N, = +00)
such that, for any n € N,, there is a “hyperbolic pre-disc” V¢(x) containing z, tangent to
E¢, and satisfying

(1) f™ maps V<(z) diffeomorphically onto the center-unstable disc BS(f7(x)) (");

(2) diste(f*(y), f*(2)) < o? dist(f"(y), ["(2)) Yy, z € Vii(a) and 1 < j < n ()
Moreover, as the angle for all z € M between the E*(z) and E°(z) is bounded from zero,
there is 7 > 0 not depending on x such that W3(B§(p)) D B,(p) for every p € M. In

Ypep) = U, er. p.5) 7((0,1]), where I'c(p, ) is the set of all C! curves v : [0,1] — M such that v(0) = p,
~/(t) € E°(y(t)) for every t € [0,1] and [, |5/(t)]dt = o.
. ol
Ddistc(p, q) = min{ [y [/ ()|dt; v € C'((0,1], M),y (t) € E°(7(1)),7(0) = p,7(1) = g}
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U
Ve(p) SN

FIGURE 5. The figure shows the ball B,(f"(p)) of radius r > 0 contained in
Wi (Vii(p)) € Wi (f*(U)).

particular, W(f"(V,i(x))) D B.(f"(z)) always. Therefore, it follows from the denseness
of A that, for every open set U C M, taking p € ANU and n € N, big enough, we
get W2(f"(U)) D> Wi(Vii(p)) D B.(f"(p)) (see Figure . Hence, to conclude the the
proof, it is enough to note that f, W} and £ satisfy the hypothesis of Theorem @, where

_ Leb(M) .
{ = min {TL 2 min{Leb(Bs(z));z€M} ’ ne N} O

5.8. Skew products. In Theorem below we give a simple condition to prove the
existence and finiteness of topological attractors for skew products with one-dimensional
fiber.

Theorem 5.8.1 (Skew products with one-dimensional fiber). Let M be a compact Rie-
mannian manifold and F : M x [0,1] O be a C* map given by F(z,t) := (g(z), f(x,t)),
where

(1) g: M O is a strongly transitive local homeomorphism and
(2) #(f2)71(0) < oo for every x € M, with f, : [0,1] O given by f.(t) = f(x,t).
Suppose that there exists p € Per(g), with period n € N, such that f," is non-degenerated

interval map (see Section . If f," does not have periodic attractors, then there exists a
finite collection of topological attractors Ay, -+, Ay C M x [0,1], such that

ﬁF(Al) U---u BF(AK) ~ M x [0, 1].

Moreover wr(x) = A; for a residual set of points v € Br(A;), £ < #{c € [0,1]; (f}})'(c) =
0} and F has historic behavior generically on M x [0,1] when g has historic behavior
generically on M.

Proof. Note that conditions (1) and (2) above imply that #F~!(z) < +oo for every = €
M x [0,1] and so, by [Pur], F is a bimeasurable map. Moreover, also by conditions (1)
and (2), we have that F is non-singular.
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As T := f," is a non-degenerated C? interval map, it follows from Theorem that
there exists {ci,---, ¢} C C, = (I")7'(0) such that U] := interior(a,(c;)) is a Baire
ergodic component to 7" and Uﬁ:o interior(c, (c;)) is dense in [0, 1].

As ay(p) = M, given an open set V' C M x [0, 1], there is n > 0 such that F™(V)N({p} x
[0,1]) # 0. Since g is a local homeomorphism and f, piecewise monotone interval map,
we get that (V) D B:(p) x (a,b) for some ¢ > 0 and 0 < a < b < 1, where B.(p) C M
is the open ball on M of radius € and center p. Thus, it follows from Theorem that
(a,b) NUY # 0 for some 0 < j < ¢ and so, T%((a, b)) 3 ¢; for some k > 0. This implies that
there exists m > 0 such that F (V') contains an open neighborhood of (p, ¢;). Therefore,
one can find {c},--- ,c} C {c1, -+ ,c} such that

e arp((p,c})) is a fat set for every 1 < j < s;
o ap((p,c))) Nar((p, ) ~ 0 for j # k;
o Uioiar((p, ) ~ M x [0,1].

Taking U; = ap((p,c})), we have that F(U;) C U; and |J,5, F"(V) contains an open
neighborhood of (p, ¢;) for every nonempty open set V' C M x [0, 1] such that V N U; # 0.
This implies that F|y, is asymptotically transitive. Since, F' is a bimeasurable non-singular
continuous map, it follows from Theorem that F|y, is Baire ergodic.

As F(U;) C U; V5, Uiy ar((p, €})) ~ M x[0,1] and ar((p, ¢j)) Nar((p, ;) ~ 0 for j #
k, we get that U; ~ F~(U;). Therefore, Uy, - - - , U, are Baire ergodic decomposition for F'.
As U U---UU; ~ M x [0, 1], the topological attractors A; for U; (given by Proposition[4.2.2]
applied to F|y,), are such that wp(x) = A; for a residual set of points # € U;. Hence,
Br(A;) D U; contains an open set (by the continuity of F), B7(A;)U- - -UBs(As) ~ M x[0, 1]
and wp(z) = A for a residual set of points = € S7(4;).

To conclude the proof is enough to use the fact that the existence of a residual subset R

of M with all x € R having historical behavior for g implies that all points of the residual
set R x [0, 1] have historic behavior for F. O

A concrete application of Theorem [5.8.1] can be the following. Take an initial logistic
map fi, () = dtox(1—2x), fi, : [0,1] — [0, 1], where ¢y € (0, 1] is such that f;, does not have
a periodic attractor. For instance, f;, may be infinitely renormalizable (Exemple [3.0.8)),
a Misiurewicz map or a map with an absolutely continuous invariant measure. Consider
g : T2 O a C* the uniformly expanding map on the torus T? induced by the linear map
L(z,y) = 3z +y,z +2y), ¢ : T> = (0,1) a continuous map such that ¢([(0,0)]) = ¢, and
F :T?x[0,1] © given by F(p,z) = (g9(p),4¢(p)x(l — x)). In this case, F' has a single
topological attractor A, Bp(A) ~ T? x [0,1], wr(p,x) = A and (p,z) € T? x [0,1] has
historic behavior for a residual set of points (p,x) € T? x [0, 1].

In Theorem below, we present a version of Theorem for skew products with
multidimensional fiber.

Theorem 5.8.2 (Skew products with multidimensional fiber). Let X and Y be compact
metric spaces and F : X x Y O a continuous map such that #F~'(p) < +oo Vp € X x
Y. Suppose that F(z,y) = (9(z), f(z,y)), where g : X O be is strongly transitive local
homeomorphism. Suppose that f, : Y O a non-singular map for every x € X, where

fo(y) = f(z,9).
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If there is p € Per(g) such that f," is a growing map, where n is the period of p, then
there exists a finite collection of topological attractors Aq,--- , Ay such that

(1) Br(A1) U---UBr(Ay) contains a residual subset of X x Y and,
(2) for every 1 < j < /{, wp(x) = A; for a residual set of points x € fr(A;).
Moreover, F' has historic behavior generically on X x Y.

Sketch of the proof. Using that g is a local homeomorphism and f, is non-singular for every
x, we get that F' is non-singular. From F' be continuous and #F~!(p) < +oo Vp, we get
that F' is bimeasurable.

Let h = f,". As we are assuming that h is a growing map, it follows from Theorem
that there is a finite collection of topological attractors Ay p, -« -, Agp such that G,(Ay ) U
-+ U Bp(Agy) contains an open and dense subset of Y. Moreover, each A;; contains a h
forward invariant set \A; j, such that a;(p) D m, where Uj, is the Baire ergodic component
associated to A;,. As Y = m u---u m, choosing any collection of points ¢y, - -+ , ¢y,

with ¢; € A;p, we get that V; := Op(p,¢;) is an F invariant set with interior(V;) D
{p} x Ajn. Moreover, it is not difficult to see that F|y, is asymptotically transitive and
so, by Theorem (3.0.1, F|y, is Baire ergodic, proving that Vj is a Baire ergodic components
of F. Thus, items (1) and (2) follows from Proposition [£.2.2]

Note that, by Theorem , # Op(x) > 2 for a residual set of z € 5,(A; ), since a generic
point of ;,(A;,5) has historical behavior. Thus, since A; j,\ Br(A4; ) ~ 0, we can choose the
points ¢; so that Up(c;) > 2 for every 1 < j < ¢. Using this, we can follow the argument
on the proof of Proposition to show that Op(z) D Up((p,c;)) for a residual set of
points x € Sr(A;), where A; is given by item (1).

As # Up(cj) > 2 and Up(c;) C Upn((p,c;)), we also have # Ur((p,¢;)) > 2 and so,
Up(z) > 2 residual set of points x € fr(A;), showing that a generic point x € fr(A;) has
historical behavior Vj. Thus, generically, the points of X x Y have historical behavior, since
BF(Al)U"'UBF(Ag)NXXY. O

6. APPENDIX

6.1. Continuous non-singular maps.

Lemma 6.1.1. Let Y and X be Baire metric spaces and h : Y — X a continuous map. If
h is non-singular then h(A) C interior(h(A)) for every open set A C Y.

Proof. Let a € A, where A C Y is an open set, and consider the following claim.

Claim. h( Bs(a)) C interior (h( Bs(a))) for every § > 0.

Proof of the claim. Otherwise, for some § > 0, there exist p € Bs(a) and € > 0 such that
B.(h(p)) N h(Bs(a)) € 9(h(Bs(a))).

This implies that B.(h(p)) Nh(Bs(a)) is a meager set and, as h is non-singular, we get also
that h~*(B.(h(p)) N h(%)) is a meager set. By continuity, h~'(B.(h(p))) is an open
set containing the point p € Bs(a) and so, h™'(B.(h(p))) N Bs(a) is a nonempty open set.
As h™Y(B.(h(p))) N Bs(a) is contained in the meager set h~' (B.(h(p)) N h(Bs(a))), we get
a contradiction. g
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Taking r > 0 such that B,.(a) C A, it follows form the claim above that

e € By = (U B@) = U wEa)

0<é<r 0<o<r

C U interior (h( Bs(a))) C interior (h(B,(a))) C interior(h(A)).

g

Lemma 6.1.2. Let Y and X be Baire metric spaces and h : Y — X a Borel bimeasurable
map. If h is a continuous non-singular map and U is a nonempty open subset of Y and A
is a Borel set that is residual subset of U then h(A) is a residual subset of h(U).

Proof. As h is non-singular, it follows from Lemma[6.1.1above that h(U) ~ interior(h(U)),
since d(interior h(U)) ~ (). Hence, if h(A) is not residual in h(U) then h(A) is not residual
in interior h(U). That is, interior(h(U)) \ h(A) is a fat set. since h is bimeasurable, h(A)
is a Borel set and so, interior(h(U)) \ h(A) is a Borel set. As every Borel set has the Baire
property, interior(h(U)) \ h(A) ~ V for some open set V' C Y. Thus, VNh(A) ~ 0 and so,
h=Y(V N h(A)) ~ 0, since h is non-singular. Therefore,

O~ h 7 (Vh(A)=h 1 (V)Nh Y (h(A) DA HU)N A, (18)

but this leads to a contradiction. Indeed, by the continuity of h, h=1(V') is an open and,
since V Ninterior h(U) # (), we have that h='(V)NU is a nonempty open set. This implies
that h=1(V) N A is a fat set, as A is residual in U. That is, A~ (V) N A « 0, contradicting

m@). 0

Proposition below summarizes the two previous results of the Appendix for the
maps that appear in Section [

Proposition 6.1.3. Let X be Baire metric space, Xq an open and dense subset of X and
f: Xo = X a continuous non-singular map.

(1) If A is an open subset of X then f*(A) C interior(f*(A)).
(2) If f is bimeasurable, U # 0 is an open subset of X and A is a residual subset of U
then f*(A) is a residual subset of f*(U).

Proof. Let Y = Xy and h = f. If A is an open subset of X, then AN X, is an open set of Y
and, by Lemma , 1*(A) = f(ANXp) = h(A) C interior h(A) C interior(f(A N Xp)) =
interior(f*(A)), proving item (1). To prove item (2), suppose that f is bimeasurable and
let U be a nonempty open subset of X and A a residual Borel subset of U. As AN X is
a residual Borel subset of U N Xy and U N Xy is an nonempty open subset of Y, it follows
from Lemma that f*(A) = h(A N Xp) is a residual subset of f*(U) = h(U N Xy),
proving. Il

Lemma 6.1.4. Let Y be a separable Baire metric space, X a Baire metric space and
h:Y — X a continuous non-singular map. There exists a residual set Y C Y such that if
p € Y then h(p) € interior(h(V')) for every open set V- C Y containing p.
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Proof. Let C be the set of all points p € Y such that h(p) ¢ interior(h(V)) for some
neighborhood V' of p. Let Q be a dense and countable subset of Y and, for each n € N,
define U(n) as the set of all points p € Y such that h(p) ¢ interior(h(Bi/,(q))) for some
q € Q.

Note that if V' is an open neighborhood of a point p € Y and h(p) ¢ interior(h(V)) then
h(p) ¢ interior(h(U)) for every open set U C V containing p. Indeed, if p € interior h(U)
then p € interior h(U) C interior h(V'), a contradiction. Hence, we can conclude that

Uy cu@ cuB)c---clJum =c
neN
As the boundary of an open set is a meager set and as h is non-singular, we get that
h~1(O(interior(h(B1/,(q)))) is a meager set for every n € N and ¢ € Q. Thus,

C = U h~'(d(interior(h(Bi/n(q))))

qeQ,neN

is a meager set. By Lemma if p € U(n) then h(p) € d(interior(h(Bi/n(q))) for some

g € Qand so,U(n) C C for every n € N, proving that U(n) is a meagre set. As this implies
that Y := Y \ C is a residual set, we conclude the proof. O

6.2. Continuous foliations. In this section, let M be a C* manifold, k > 0. A partition
F of a M is called a (f-dimensional) continuous foliation when every element of F is a
path-connected set and there exists a collection A of maps ¢ : (0,1)¢ x (0, 1)3mA)=¢ 5 pr
satisfying the following conditions.

(1) Im(¢p) is an open subset of M;
(2) ¢ is a homeomorphism between (0, 1)’ x (0, 1)3mAM)=¢ and Im(p);
(3) if ¢ € A and Im(p) N Im()) # O then v~ o ¢ : p(Im(1))) — ¥~ (Im ) can be

written as

v o p(@,y) = (hew(,1), o () € (0,1)" x (0, )mA0=E,
where 2 € (0,1)¢ and y € (0, 1)3m(®)-¢,
(4) UyeaIm(y) = M.
The collection of maps A above is called a F-atlas. For Lemma below, suppose that
F is a continuous foliation of M with a F-atlas A.

Lemma 6.2.1. If R is residual in an open set U then F(R) is residual in F(U).

Sketch of the proof. Given z € M, denote the element of F containing x by F(x). If
V C M, define F(V) = J,op F(z). Let m : RY x RImM=t _y RImM=L he the projection
on the second coordinate, i.e., mo(z,y) = y. Given ¢ € A and x € Im(p), let F,(z) =
(R x{mop~!(x)}). One can show that F,(z) is the connected component of F(z)NIm(y)
containing x.

A map v : V — M is a p-transverse section for F when V is an open subset
of (0,1)4m3)=¢ and ~(v) = ¢(h,(v),v) for some continuous map h, : V — (0,1)%. It
follows from the definition that a @-transverse section v is a continuous injective map,
Im(y) C Im(y) and #(Im(y) N Fy(z)) < 1 for every z € Im(¢)). A local transverse
section for F is a i-transverse section for some 1) € A.
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If ¢ € A and v is a p-transverse section then Vi(v) = U,epm(y) Fe(2) is an open
neighborhood of Im(7y) contained in Im(yp). Define 7, : Vi (v) = Im(y) by 7, (x) =
Im(y) N F,(z) and note that

Ty~ 1S @ continuous non-singular map.

Indeed, up to the homeomorphism ¢, 7, is the projection of an open subset of RExXV C
(0,1)* x RImAD=£ onto the graph of h,, i.e., Ty, = @ 0T, 0 ¢~ ' (z)), where m,_ (u,v) =
(hy(v),v) is a projection onto the image of the graph of a continuous map, which is non-
singular map.

If 71 and 7, are @-transverse sections and 7y, (ve) € Fy(7a(v1)) then there exist an open
neighborhood A of +;(v1) and an open neighborhood B of v,(v,) such that the map

h:ANIm(vy) = B NIm(ys)
defined by

h(z) = g0 ()

is a homeomorphism such that F(h(z)) = F(z) for every = in the domain of hA. This map
is a local holonomy. Using standard arguments given by the assumption that every F(z)
is path-connected, one can show that the following result.

Claim 6.2.2. Ifq € F(p) and v1,y2 are local transverse section for F such that p € Im(v;)
and q € Im(vz) then ezist an open neighborhood A of p, an open neighborhood B of q and a
homeomorphism h : ANIm(vy;) — BN Im(vs) such that F(h(x)) = F(x) Ve € ANTm(yy).

Finally, over the hypothesis of Claim [6.2.2 it follows from 7, ,, and 7, , being non-
singular continuous maps @ that, if U C A is an open set an R is residual in U, then
V= (Tppme) H(W(p, 4, (U))) is an open subset of M containing g and F, (h(mp, -, (R))) =
(Tpms) L (R(Tpy 4, (R))) is residual in V. Therefore, since F(R) D Fu,(h(my -, (R))), we
get that F(R) NV is residual in F(U)NV = V.

Given an open set U C M and R C U residual in U, we can use the argument above to
every p € U and g € F(p), showing that F(R) is a residual in F(U). O
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