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HIGHER-RANK POINTWISE DISCREPANCY BOUNDS AND LOGARITHM LAWS

FOR GENERIC LATTICES

SEUNGKI KIM AND MISHEL SKENDERI

Abstract. We prove a higher-rank analogue of a well-known result of W.M. Schmidt concerning almost ev-
erywhere pointwise discrepancy bounds for lattices in Euclidean space (see Theorem 1 [Trans. Amer. Math. Soc. 95
(1960), 516–529]). We also establish volume estimates pertaining to higher minima of lattices and then use
the work of Kleinbock–Margulis and Kelmer–Yu to prove dynamical Borel–Cantelli lemmata and logarithm
laws for higher minima and various related functions.
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1. Introduction and Summary of Results

Notation 1.1. We regard elements of Euclidean space of any dimension as row vectors. We let n denote an
arbitrary element of Z≥2. We write G := SLn(R) and Γ := SLn(Z). We write X := Γ\G; we then identify X
with the space of all covolume one full-rank lattices in Rn via the correspondence Γg ←→ Zng. We let µG

denote the Haar measure on the unimodular group G that is normalized in such a way that the covolume of
Γ in G is equal to 1. We let µX denote the unique G-invariant Radon probability measure on X. We note
that the space of all full-rank lattices in Rn may be identified with GLn(Z)\GLn(R) ∼= X×R>0, where R>0

is equipped with its usual Haar measure t−1 dt. We write m to denote the Lebesgue measure on Euclidean
space of any dimension; the dimension will be clear from the context. For any r ∈ R≥0, we let Br ⊂ Rn

denote the closed Euclidean ball that is centered at origin and has radius equal to r. For any t ∈ R≥0, we
let ρt denote the indicator function of the closed Euclidean ball in Rn that is centered at the origin and has
Lebesgue measure equal to t. We let ζ denote the Riemann zeta function.

Let 〈−,−〉1 denote the Euclidean inner product on Rn. Let k be any integer with 1 ≤ k ≤ n. We define

〈−,−〉k to be the inner product on
∧k

(Rn) given by 〈v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk〉k := det (〈vi, wj〉1) ; we

then let ‖ · ‖k denote the corresponding norm on
∧k

(Rn). We shall often omit the subscripts of these norms
when they are clear from the context. For any Λ ∈ X, we define Xk(Λ) to be the set of all subgroups of Λ
that have Z-rank equal to k. For any Λ ∈ X and any Θ ∈ Xk(Λ), we define det(Θ) := ‖w1 ∧ · · · ∧wk‖, where
(w1, . . . , wk) is any Z-basis of Θ. (This definition is independent of the choice of Z-basis.) We then define
σk : X → R>0 by σk(Λ) := inf {det(Θ) : Θ ∈ Xk(Λ)}; note that this infimum is a minimum.

Throughout this paper, we use the Vinogradov notation ≪ and use ≍ to denote that both “≪” and “≫”
hold; we attach subscripts to the symbols ≪ and ≍ to indicate the parameters, if any, on which the implicit
constants depend.
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2 SEUNGKI KIM AND MISHEL SKENDERI

The purpose of this paper is to establish higher-dimensional generalizations of certain well-known results
of a probabilistic flavor in the geometry of numbers. The first of these is a classical result of W.M. Schmidt
concerning almost everywhere pointwise discrepancy bounds.1

Theorem. [23, Theorem 1] Suppose n ≥ 3. Let ψ : R≥0 → R>0 be any nondecreasing function with∫ +∞

0

(ψ(t))−1 dt < +∞. Let Φ be a totally ordered collection of finite-volume Borel subsets of Rn with

sup {m(S) : S ∈ Φ} = +∞. Then for almost every Λ ∈ GLn(Z)\GLn(R), there exist constants c1(Λ), c2(Λ) ∈
R>0 such that for any S ∈ Φ with m(S) ≥ c2(Λ), we have∣∣∣∣

det(Λ) · card(S ∩ Λ)

m(S)
− 1

∣∣∣∣ ≤ c1(Λ) · log(m(S)) · (m(S))−1/2 · (ψ(log(m(S))))1/2.

The first aim of this paper is to generalize Schmidt’s theorem to the case of counting ℓ-tuples of lattice
points. We start by defining the main object of our study, originally introduced by Siegel [28] and Rogers
[20, 21].

Definition 1.2. Let k be any integer with 1 ≤ k ≤ n− 1. Let F : (Rn)
k
→ R≥0 be a function. We define

kF̂ , kF̃ : X → [0,+∞] by

(1.1) kF̂ (Λ) :=
∑

(v1,...,vk)∈(Λr{0})k

F (v1, . . . , vk)

and

(1.2) kF̃ (Λ) :=
∑

F (v1, . . . , vk),

where the second sum ranges over all (v1, . . . , vk) ∈ Λk for which dimR (spanR ({v1, . . . , vk})) = k.

Often in the literature, 1F̂ is referred to as the Siegel transform of F . In this paper, we shall call any of
its natural extensions, such as (1.1) and (1.2), a Siegel transform as well.

Remark 1.3. Let k be any integer with 1 ≤ k ≤ n − 1. Let each of A1, . . . , Ak be a subset of Rn; set

A :=
∏k

j=1 Aj . For any Λ ∈ X , we have k
1̂A(Λ) = card

(
(Λr {0})

k
∩ A

)
. An analogous statement holds

for k
1̃A.

We now state our first result.

Theorem 1.4. Suppose n ≥ 3. Let ℓ be any integer with 2 ≤ 2ℓ ≤ n − 1. Let ψ : R>0 → R>0 be a

nondecreasing function for which

∫ +∞

1

(ψ(t))−1 dt < +∞. Let {EM}M∈R≥0
be a collection of Borel subsets

of Rn for which the following hold: first, we havem (EM ) =M for eachM ∈ R≥0; second, for anyM1,M2 ∈ R

with 0 ≤ M1 ≤ M2 < +∞, we have EM1 ⊆ EM2 . Then for µX -almost every Λ ∈ X and for each M ∈ R≥1,
we have

(1.3) D(ℓ)
(
Λ, Eℓ

M

)
:=

∣∣∣∣∣
ℓ
1̂Eℓ

M
(Λ)

m
(
Eℓ

M

) − 1

∣∣∣∣∣≪n,ℓ,Λ (logM)M−1/2(ψ(logM))1/2

and

(1.4) D
(ℓ)
indep

(
Λ, Eℓ

M

)
:=

∣∣∣∣∣
ℓ
1̃Eℓ

M
(Λ)

m
(
Eℓ

M

) − 1

∣∣∣∣∣≪n,ℓ,Λ (logM)M−1/2(ψ(logM))1/2.

Let us mention that a much weaker version of Theorem 1.4 was proved by the second-named author: see
[29, Corollary 1.12 and Remark 2.22].

Remark 1.5. We shall give the proof of the bound (1.3); we shall omit the proof of the bound (1.4), which
is almost identical to that of the bound (1.3). We also mention that our proof of Theorem 1.4 can be
easily modified to prove a more general result. One can replace the collection {EM}M∈R≥0

by a collection
{Ej,M : j ∈ {1, . . . , ℓ} and M ∈ R≥0} of Borel subsets of R

n that satisfies the following conditions:

1It is a simple porism of Schmidt’s proofs that the following theorem also holds when GLn(Z)\GLn(R) is replaced by
SLn(Z)\ SLn(R).
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• There exists c = (c1, . . . , cℓ) ∈ (R>0)
ℓ
such that

∏ℓ
j=1 cj = 1 and for each j ∈ {1, . . . , ℓ} and each

M ∈ R≥0, we have m (Ej,M ) = cjM.

• For each j ∈ {1, . . . , ℓ} and any M1,M2 ∈ R with 0 ≤M1 ≤M2 < +∞, we have Ej,M1 ⊆ Ej,M2 .

Then the conclusion of Theorem 1.4 holds when each instance of Eℓ
M in (1.3) and (1.4) is replaced by∏ℓ

j=1 Ej,M and each instance of ≪n,ℓ,Λ is replaced by ≪n,ℓ,c,Λ .

One can define an analogue of the Siegel transform (1.2) in which the defining sum ranges over all
primitive k-tuples (v1, . . . , vk) ∈ Λk, that is, those that can be completed to a Z-basis of Λ. One can then
prove a correspondingly analogous version of Theorem 1.4, together with the strengthening discussed earlier
in Remark 1.5. The proof proceeds in essentially the same fashion: the only key difference is that one utilizes
the expectation formula [25, Satz 14] instead of Proposition 2.1. (It might be helpful to consult [29, Theorem
1.10] and its proof and [29, Remark 2.22].) One can also consider other variations of the definition (1.2) and
Theorem 1.4: for instance, one can sum over all k-tuples (v1, . . . , vk) ∈ Λk of R-rank equal to k and each
of whose entries is a primitive vector in Λ. It may be interesting to compare this particular analogue with
[1, Theorem 1], which investigates the case k = n but is quantitatively weaker than Theorem 1.4.

Remark 1.6. Suppose n ≥ 3, and let ℓ ∈ Z≥1 be given. Let A be a Borel subset of Rn with 0 < m(A) < +∞.

For every p ∈ [1, n) ⊂ R, we have 1
1̂A ∈ L

p(X), as we shall see in the proof of Proposition 2.2. For every

p ∈ R≥n, it follows from [25, §2.2] that 1
1̂A /∈ Lp(X). If 2ℓ ≤ n− 1 (respectively, 2ℓ > n− 1), then it follows

that ℓ
1̂Aℓ ∈ L2(X) (respectively, ℓ

1̂Aℓ /∈ L2(X)). Since the proof of Theorem 1.4 requires working with the

second moment of ℓ
1̂Aℓ , this explains the assumption 2ℓ ≤ n− 1 in the hypotheses of that theorem. Using

the present methods, this assumption appears to be unavoidable. The authors explored the possibility of
using fractional moments (strictly between the first and the second) to weaken the assumption 2ℓ ≤ n− 1;
however, such an approach quickly proved to be fruitless.

Our second result concerns dynamical Borel–Cantelli lemmata and logarithm laws for flows on the space
X. The study of logarithm laws was initiated by D. P. Sullivan in [30], in the context of the geodesic flow on
the unit tangent bundle of certain finite-volume, noncompact hyperbolic manifolds. Sullivan seems to have
coined the term “logarithm law” by analogy with Khintchine’s law of the iterated logarithm [12]: see the
discussion between Theorems 1 and 2 of [30]. In [14], Kleinbock–Margulis proved a vast generalization of
Sullivan’s logarithm law as a consequence of their dynamical Borel–Cantelli lemma [14, Theorem 1.9], which
is a very general converse to the classical Borel–Cantelli lemma. A special case of the Kleinbock–Margulis
logarithm law that is particularly important in our setting is the following theorem, in which β1(Λ) denotes
the Euclidean length of any shortest nonzero vector of a given lattice Λ.

Theorem. [14, Theorem 1.7 and Proposition 7.1] Let {gt}t∈R be an unbounded R-diagonalizable one-

parameter subgroup of G. Then for almost every Λ ∈ X, we have

lim sup
t→+∞

− log (β1 (Λgt))

log t
=

1

n
.

Athreya–Margulis in [2] then proved the unipotent analogue of the preceding theorem.

Theorem. [2, Theorem 2.1] Let {gt}t∈R be an unbounded unipotent one-parameter subgroup of G. Let β1
be as above. Then for almost every Λ ∈ X, we have

lim sup
t→+∞

− log (β1 (Λgt))

log t
=

1

n
.

The approach of Kleinbock–Margulis used a representation-theoretic result to ensure exponential decay
of correlation coefficients for R-diagonalizable flows (see [14, Theorems 1.12 and 3.4 and Corollary 3.5]),
together with the n-DL (“distance like”) property of −(log ◦β1) (see [14, Definition 1.6] or Definition 1.7).
The approach of Athreya–Margulis, on the other hand, was comparatively elementary: their main technical
tool was a probabilistic analogue of the Minkowski Convex Body Theorem [2, Theorem 2.2] that was proved
for n ≥ 3 using classical first and second moment formulae for the rank 1 Siegel transform.2 The logarithm
laws of Kleinbock–Margulis and Athreya–Margulis were then further generalized, at least in the spherical

2Athreya–Margulis handled separately the more difficult case n = 2.
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setting, in the work of Kelmer–Yu: see [11, Theorem 1.1 and Corollary 1.2] for their logarithm laws and
[11, Theorem 1.3] for the representation-theoretic result on decay of correlation coefficients that undergirds
their logarithm laws in the higher-rank case.

In this paper, we apply the results of Kleinbock–Margulis and Kelmer–Yu to derive Borel–Cantelli lemmata
and logarithm laws for the higher Euclidean minima and the Koecher zeta functions; in doing so, we establish
various volume estimates that are of independent interest. Let us now proceed by recalling the definition of
the aforementioned DL (“distance-like”) property.

Definition 1.7. [14, Definition 1.6] Assume that X is equipped with the uniform structure induced by any
norm on Matn×n(R), and let ∆ : X → R be a uniformly continuous function. Given any α ∈ R>0, we then
say that ∆ is α-DL if there exists C ∈ R>1 and there exists M ∈ R≥0 such that for each z ∈ R≥M , we have

C−1 exp(−αz) ≤ µX ({Λ ∈ X : ∆(Λ) ≥ z}) ≤ C exp(−αz).

We now introduce our functions of interest.

Definition 1.8. Let k be any integer with 1 ≤ k ≤ n. Define βk : X → R>0 by

βk(Λ) := inf {r ∈ R>0 : dimR (spanR (Br ∩ Λ)) ≥ k} ;

note that this infimum is a minimum. For any Λ ∈ X , the quantity βk(Λ) is then the kth successive minimum

of Λ with respect to the Euclidean norm.

Definition 1.9. Let k be any integer with 1 ≤ k ≤ n. For any Λ ∈ X and any s ∈ C with Re(s) > n/2,
define the absolutely convergent series

(1.5) ζk(Λ, s) = ζn,k(Λ, s) :=
∑

Θ∈Xk(Λ)

(det(Θ))
−2s

.

For each Λ ∈ X, the analytic continuation of the Dirichlet series ζk(Λ, ·) is known as a Koecher zeta function.
These functions were introduced and studied by M. Koecher in [15]. When k = 1, these functions are usually
known as the Epstein zeta functions ; they are named after P. Epstein, who introduced them in [8] and

studied them further in [7]. When k = n, the right-hand side of (1.5) is equal to
∏n−1

j=0 ζ (2s− j) . A good

reference regarding the Koecher zeta functions is the book by A.A. Terras [31].

In §3, we prove various volume estimates that allow us to establish that the functions in Definitions 1.8
and 1.9 satisfy the following DL conditions.

Proposition 1.10. The following statements hold.

(i) For every integer ℓ with 1 ≤ ℓ ≤ n− 1, the function − (log ◦βℓ) is nℓ-DL and the function

−
(
log ◦

(∏ℓ
j=1 βj

))
= −

∑ℓ
j=1 (log ◦βj) is n-DL.

(ii) For every integer ℓ with 2 ≤ ℓ ≤ n, the function log ◦βℓ is n(n − ℓ + 1)-DL and the function(
log ◦

(∏n
j=ℓ βj

))
=
∑n

j=ℓ (log ◦βj) is n-DL.

(iii) For every integer ℓ with 1 ≤ ℓ ≤ n − 1 and every s ∈ (n/2,+∞) ⊂ R, the function log ◦ζℓ(·, s) is

n/(2s)-DL.

We then apply [11, Theorem 1.1] to obtain the following logarithm laws.

Theorem 1.11. Let {gt}t∈R be an unbounded one-parameter subgroup of G.

(i) For every integer ℓ with 1 ≤ ℓ ≤ n− 1 and almost every Λ ∈ X, we have

lim sup
t→+∞

− log (βℓ (Λgt))

log t
=

1

nℓ

and

lim sup
t→+∞

− log
(∏ℓ

j=1 βj (Λgt)
)

log t
=

1

n
.
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(ii) For every integer ℓ with 2 ≤ ℓ ≤ n and almost every Λ ∈ X, we have

lim sup
t→+∞

log (βℓ (Λgt))

log t
=

1

n(n− ℓ+ 1)

and

lim sup
t→+∞

log
(∏n

j=ℓ βj (Λgt)
)

log t
=

1

n
.

(iii) For every integer ℓ with 1 ≤ ℓ ≤ n− 1, every s ∈ (n/2,+∞) ⊂ R, and almost every Λ ∈ X, we have

lim sup
t→+∞

log (ζℓ (Λgt, s))

log t
=

2s

n
.

In the event that the one-parameter subgroup of G in Theorem 1.11 is R-diagonalizable, one can apply
[14, Theorem 1.9] to obtain dynamical Borel–Cantelli lemmata, and not only logarithm laws. We recall from
[14] the following definition.

Definition 1.12. [14, Definition 1.5] Let g := {gt}t∈R be a one-parameter subgroup of G. Let D be an
arbitrary collection of Borel subsets of X. We say that D is a Borel–Cantelli family for g if the following is
true: for every mapping D : Z≥1 → D, we have

µX ({Λ ∈ X : for each M ∈ Z≥1 there exists k = kΛ ∈ Z≥M with Λgk ∈ D(k)})

=

{
0 if

∑+∞
k=1 µX(D(k)) < +∞,

1 if
∑+∞

k=1 µX(D(k)) = +∞.

The following result is then an immediate consequence of Proposition 1.10 and [14, Theorem 1.9].

Theorem 1.13. Let g := {gt}t∈R be an unbounded R-diagonalizable one-parameter subgroup of G, and let

∆ : X → R be any of the functions in Proposition 1.10. Then the collectionD := {{Λ ∈ X : ∆(Λ) ≥ z} : z ∈ R}
is a Borel–Cantelli family for g.

2. Proof of Theorem 1.4

Our proof of Theorem 1.4 is a modification of Schmidt’s proof of [23, Theorem 1]: our proof relies crucially
on the expectation formulae of Siegel [28] and Rogers [21, (8) and Theorem 4] for the Siegel transforms that
were introduced in Definition 1.2. Discrepancy results in the spirit of [23, Theorem 1] and the so-called
dyadic chaining method that is used to prove them have a long history: see, for instance, the pioneering
papers [10, 17, 18].

We begin by introducing two preliminary propositions; we shall use the first proposition in §3 as well.

Proposition 2.1. Let k be any integer with 1 ≤ k ≤ n − 1. Let F : (Rn)k → R≥0 be a Borel measurable

function. Then ∫

X

kF̃ dµX =

∫

Rn

· · ·

∫

Rn︸ ︷︷ ︸
k times

F (x1, . . . , xk) dm(x1) · · · dm(xk).

Proof. This result was initially stated without proof by Siegel (see [28, page 347, 2)]) and was then proved
by Rogers (see [21, (8)]). The special case k = 1 is due to Siegel ([28]). �

Proposition 2.2. Let k be any integer with 1 ≤ k ≤ n− 1. Let c := (c1, . . . , ck) ∈ (R>0)
k
be arbitrary. Let

V ∈ R>0 be arbitrary. Let A1, . . . , Ak be any Borel subsets of Rn such that for each j ∈ {1, . . . , k}, we have

m (Aj) = cjV. Then

∫

X

k ̂
1

∏
k
j=1 Aj

dµX −

∫

X

k ˜
1

∏
k
j=1 Aj

dµX =

∫

X

k ̂
1

∏
k
j=1 Aj

dµX −m




k∏

j=1

Aj


≪n,k,c V k−1.



6 SEUNGKI KIM AND MISHEL SKENDERI

Proof. The desired result is obvious when n = 2; we therefore assume n ≥ 3. It follows from Proposition 2.1

that

∫

X

k ˜
1

∏
k
j=1 Aj

dµX = m




k∏

j=1

Aj


 . Since the desired result is clear for k = 1, we now suppose k ≥ 2.

For each t ∈ R>0, define Ft : (R
n)

k
→ R≥0 by Ft(x1, . . . , xk) :=

k∏

j=1

ρcjt(xj), where the functions ρ are as

in Notation 1.1. For each t ∈ R>0, we have

∫

X

kF̂t dµX < +∞ by [24, Theorem 2]. The finitude of this

integral can also be proved in a different manner. Set c := max{c1, . . . , ck}. It follows from [9, Lemmata 3.1
and 3.10] that3 for each t ∈ R>0 and each p ∈ [1, n) ⊂ R, we have 1ρ̂ct ∈ L

p(X). This clearly implies that

for each t ∈ R>0, we have

∫

X

kF̂t dµX < +∞.

Let r ∈ {1, . . . , k − 1} be given, and let (bij)1≤i≤r,1≤j≤k be an arbitrary element of Matr×k(R). It is easy

to see that for each t ∈ R>0, we have

∫

Rn

· · ·

∫

Rn︸ ︷︷ ︸
r times

k∏

j=1

ρcjt

(
r∑

i=1

bijxi

)
dm(x1) . . . dm(xr) =



∫

Rn

· · ·

∫

Rn︸ ︷︷ ︸
r times

k∏

j=1

ρcj

(
r∑

i=1

bijxi

)
dm(x1) . . . dm(xr)


 tr.

It now follows from Rogers’s formula [21, Theorem 4] and the finitude of

∫

X

kF̂t dµX that there exists

(a1, . . . , ak−1) ∈ (R>0)
k−1

such that for each t ∈ R>0, we have

(2.1)

∫

X

kF̂t dµX =




k∏

j=1

cj


 tk +

k−1∑

j=1

ajt
j .

In light of (2.1) and the equation

∫

X

k ˜
1

∏k
j=1 Aj

dµX = m




k∏

j=1

Aj


, it remains only to establish

(2.2)

∫

X

k ̂
1

∏k
j=1 Aj

dµX ≤

∫

X

kF̂V dµX .

The Brascamp–Lieb–Luttinger rearrangement inequality [3, Theorem 3.4] yields

∫

Rn

· · ·

∫

Rn︸ ︷︷ ︸
r times

k∏

j=1

1Aj

(
r∑

i=1

bijxi

)
dm(x1) . . . dm(xr)

≤

∫

Rn

· · ·

∫

Rn︸ ︷︷ ︸
r times

k∏

j=1

ρcjV

(
r∑

i=1

bijxi

)
dm(x1) . . . dm(xr).

The desired inequality (2.2) now follows from Rogers’s formula [21, Theorem 4]. This completes the proof. �

Remark 2.3.

(i) It was recently noticed that Rogers’s proof of [21, Theorem 4] contains an error: see [13, §2] for
details. Nevertheless, it is known that Rogers’s formula [21, Theorem 4] is correct because Schmidt
gave a different proof of it: see [26, 27].

(ii) In the 1957 paper [19], Rogers claimed to prove an inequality that is essentially equivalent to the
Brascamp–Lieb–Luttinger rearrangement inequality [3, Theorem 3.4]. That being said, Rogers’s
proof is not entirely rigorous: see [6, Footnote 1] for a more detailed explanation.

3We remark that [9, Lemma 3.1] was proved by appealing to [22, Lemma 2].
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Standing Assumptions. Now and throughout the remainder of §2, we suppose n ≥ 3, we let ℓ be any
integer with 2 ≤ 2ℓ ≤ n− 1 (as in Theorem 1.4), and we let {EM}M∈R≥0

be a collection of Borel subsets of
Rn as in Theorem 1.4.

For each M ∈ R≥0, we have Eℓ
M ⊂ (Rn)

ℓ
; for each M ∈ R≥0, we define RM : X → R by RM :=

ℓ
1̂Eℓ

M
−M ℓ

1X . For any M1,M2 ∈ R≥0 with M1 ≤M2, we define M1RM2 := RM2 −RM1 . For each T ∈ Z≥1,

we define

KT :=
{(
u2t, (u+ 1)2t

)
∈ Z2 : (u, t) ∈ (Z≥0)

2
and (u+ 1)2t ≤ 2T

}
.

Lemma 2.4. For each T ∈ Z≥1 and each (u, t) ∈ (Z≥0)
2
for which (u2t, (u+ 1)2t) ∈ KT , we have

∫

X

(
u2tR(u+1)2t

)2
dµX ≪n,ℓ 2

T (2ℓ−2)+t.

For each T ∈ Z≥1, we have

∑

(N,M)∈KT

∫

X

(NRM )
2
dµX ≪n,ℓ T 2

T (2ℓ−1).

We defer the proof of this technical lemma to the end of §2. We shall also need the following lemma.

Lemma 2.5. For each T ∈ Z≥1, there exists a Borel subset CT of X that satisfies µX (CT )≪n,ℓ (ψ(T ))
−1

and for which the following holds: for each Λ ∈ (X r CT ) and each M ∈ Z with 1 ≤M ≤ 2T , we have

R2
M (Λ) ≤ T 22T (2ℓ−1)ψ(T ).

Proof. Let T ∈ Z≥1, and let M be any integer with 1 ≤M ≤ 2T . For any Λ ∈ X, we then have

(2.3) RM (Λ) =
∑

NRM (Λ),

where the sum ranges over at most T pairs (N,M) ∈ KT . Now define CT to be the set of all Λ ∈ X for
which ∑

(N,M)∈KT

NR
2
M (Λ) > T 2T (2ℓ−1)ψ(T ).

Markov’s inequality and Lemma 2.4 then imply µX (CT ) ≪n,ℓ (ψ(T ))
−1
. Applying the Cauchy-Schwarz

inequality to the sum on the right-hand side of (2.3) implies that for each Λ ∈ (X r CT ) , we have

R2
M (Λ) ≤ T · T 2T (2ℓ−1)ψ(T ) = T 22T (2ℓ−1)ψ(T ).

�

We now prove Theorem 1.4.

Proof of Theorem 1.4. Since

+∞∑

T=1

(ψ(T ))
−1

< +∞, the Borel–Cantelli lemma and Lemma 2.5 imply the

following: for µX -almost every Λ ∈ X , there exists some T0(Λ) ∈ Z≥1 such that for any T ∈ Z≥T0(Λ) and

any M ∈ Z with 1 ≤ M ≤ 2T , we have R2
M (Λ) ≤ T 22T (2ℓ−1)ψ(T ). Since R≥1 =

+∞⋃

k=1

[
2k−1, 2k

)
, we deduce

the following: for µX -almost every Λ ∈ X, there exists M0(Λ) ∈ Z≥1 such that for each M ∈ Z≥M0(Λ), we
have

RM (Λ)≪n,ℓ,Λ (logM)M ℓ−(1/2)(ψ(logM))1/2.

For each M ∈ Z≥1 and µX -almost every Λ ∈ X, we thus have

D(ℓ) (Λ, EM )≪n,ℓ,Λ (logM)M−1/2(ψ(logM))1/2.

Now letM ′ ∈ R≥1 be given. LetM ′′ be an element of Z≥1 for whichM ′′ ≤M ′ ≤M ′′+1. For any Λ ∈ X,
we clearly have
∣∣∣card

(
Λℓ ∩ Eℓ

M ′

)
− (M ′)

ℓ
∣∣∣ ≤ max

{∣∣card
(
Λℓ ∩Eℓ

M ′′

)
− (M ′′ + 1)ℓ

∣∣ ,
∣∣∣card

(
Λℓ ∩ Eℓ

(M ′′+1)

)
− (M ′′)

ℓ
∣∣∣
}
.
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For each Λ ∈ X, it follows that D(ℓ) (Λ, EM ′) is less than or equal to

max

{
(M ′′)

ℓ

(M ′)
ℓ

∣∣∣∣∣D
(ℓ) (Λ, EM ′′)−

(M ′′ + 1)
ℓ
− (M ′′)

ℓ

(M ′′)
ℓ

∣∣∣∣∣ ,
(M ′′ + 1)

ℓ

(M ′)
ℓ

∣∣∣∣∣D
(ℓ)
(
Λ, E(M ′′+1)

)
+

(M ′′ + 1)
ℓ
− (M ′′)

ℓ

(M ′′ + 1)
ℓ

∣∣∣∣∣

}
.

It now follows that for µX -almost every Λ ∈ X, we have

D(ℓ) (Λ, EM ′)≪n,ℓ,Λ (logM ′)(M ′)−1/2(ψ(logM ′))1/2.

�

Proof of Lemma 2.4. The second statement is an immediate consequence of the first one: if the first state-
ment is true, then for each T ∈ Z≥1, we have

∑

(N,M)∈KT

∫

X

(NRM )
2
dµX ≪n,ℓ

T∑

t=0

(
2T−t · 2T (2ℓ−2)+t

)
= (T + 1)2T (2ℓ−1).

We now prove the first statement. Let T ∈ Z≥1 be given. Fix any (u, t) ∈ (Z≥0)
2
for which (u2t, (u+ 1)2t) ∈

KT . Set N := u2t and M := (u+ 1)2t. Then M −N = 2t. Let J (M,N) denote the set of all

((N1,M1), . . . , (Nℓ,Mℓ)) ∈ K
ℓ
T

for which the following hold: for each j ∈ {1, . . . , ℓ}, we haveMj−Nj = 2t and there exists some i ∈ {1, . . . , ℓ}
for which Mi =M. Then card (J (M,N)) = (u+ 1)ℓ − uℓ ≪ℓ u

ℓ−1 and

Eℓ
M r Eℓ

N =
⊔

((N1,M1),...,(Nℓ,Mℓ))∈J (M,N)

ℓ∏

j=1

(
EMj r ENj

)
.

Notice that the above union is disjoint and that M ℓ −N ℓ =
[
(u+ 1)ℓ − uℓ

]
2tℓ ≪ℓ u

ℓ−12tℓ. We then have

NRM =
∑

((N1,M1),...,(Nℓ,Mℓ))∈J (M,N)

(
ℓf̂ − 2tℓ 1X

)
,

where

(2.4) f := 1

∏ℓ
j=1(EMj

rENj)
.

It then follows that

(2.5) (NRM )2 =
∑[

ℓf̂ · ℓf̂∗ − 2tℓ
(

ℓf̂ + ℓf̂∗

)
+ 22tℓ 1X

]
,

where the sum ranges over all ((N1,M1), . . . , (Nℓ,Mℓ), (N1,∗,M1,∗), . . . , (Nℓ,∗,Mℓ,∗)) ∈ (J (M,N))2 , f is as
in (2.4), and

(2.6) f∗ := 1

∏
ℓ
j=1(EMj,∗

rENj,∗)
.

Note that card
(
(J (M,N))2

)
=
[
(u+ 1)ℓ − uℓ

]2
≪ℓ u

2ℓ−2. To prove the desired result, it suffices to show

that the integral over X with respect to µX of each summand on the right-hand side of (2.5) is≪n,ℓ 2t(2ℓ−1),
as this would then imply∫

X

(NRM )
2
dµX ≪n,ℓ u

2ℓ−2 · 2t(2ℓ−1) ≪n,ℓ

(
2T−t

)2ℓ−2
· 2t(2ℓ−1) = 2T (2ℓ−2)+t.

Now let ((N1,M1), . . . , (Nℓ,Mℓ), (N1,∗,M1,∗), . . . , (Nℓ,∗,Mℓ,∗)) ∈ (J (M,N))2 be given; let f and f∗ be as

in (2.4) and (2.6), respectively. Note that ℓf̂ · ℓf̂∗ is equal to the 2ℓ(̂·) transform of the indicator function

of
∏ℓ

i=1 (EMi r ENi)×
∏ℓ

j=1

(
EMj,∗ r ENj,∗

)
, which is a subset of (Rn)2ℓ . It now follows from Proposition

2.2 that we have

∫

X

(
ℓf̂ · ℓf̂∗

)
dµX − 2t(2ℓ) ≪n,ℓ

(
2t
)2ℓ−1

= 2t(2ℓ−1)

and ∫

X

(
ℓf̂ + ℓf̂∗

)
dµX −

(
2 · 2tℓ

)
≪n,ℓ

(
2 · 2t(ℓ−1)

)
≪n,ℓ 2t(ℓ−1).
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Since 2t(2ℓ)−2tℓ
(
2 · 2tℓ

)
+22tℓ = 0 and 2t(2ℓ−1)+

(
2tℓ · 2t(ℓ−1)

)
= 2t(2ℓ−1)+2t(2ℓ−1) ≪ 2t(2ℓ−1), it follows that

the integral over X with respect to µX of each summand on the right-hand side of (2.5) is≪n,ℓ 2t(2ℓ−1). �

3. Volume Estimates and Logarithm Laws

We begin by stating the volume estimates to which we alluded in §1.

Proposition 3.1. Let ℓ be any integer with 1 ≤ ℓ ≤ n− 1. For any r ∈ R>0, we have

µX ({Λ ∈ X : βℓ(Λ) ≤ r})≪n,ℓ r
nℓ

and

µX





Λ ∈ X :




ℓ∏

j=1

βj(Λ)


 ≤ r






≪n,ℓ r

n.

Furthermore, there exists ε0,n,ℓ ∈ R>0 such that for any ε ∈ (0, ε0,n,ℓ) ⊂ R, we have

εnℓ ≪n,ℓ µX ({Λ ∈ X : βℓ(Λ) ≤ ε})

and

εn ≪n,ℓ µX





Λ ∈ X :




ℓ∏

j=1

βj(Λ)


 ≤ ε






 .

Let us mention that the ℓ = 1 case of the first statement of Proposition 3.1 has already been proved by
Kleinbock–Margulis with a sharper lower bound than the one stated here: see [14, Proposition 7.1]. Let us
also mention that the upper bounds in this proposition are well-known, as they are immediate consequences
of well-known expectation formulae in the geometry of numbers.

Proposition 3.2. Let ℓ be any integer with 2 ≤ ℓ ≤ n. For any R ∈ R>0, we have

µX ({Λ ∈ X : βℓ(Λ) ≥ R})≪n,ℓ R
−n(n−ℓ+1)

and

µX





Λ ∈ X :




n∏

j=ℓ

βj(Λ)


 ≥ R






≪n,ℓ R

−n.

Furthermore, there exists Mn,ℓ ∈ R>0 such that for any M ∈ (Mn,ℓ,+∞) ⊂ R, we have

M−n(n−ℓ+1) ≪n,ℓ µX ({Λ ∈ X : βℓ(Λ) ≥M})

and

M−n ≪n,ℓ µX





Λ ∈ X :




n∏

j=ℓ

βj(Λ)


 ≥M






 .

Proposition 3.3. Let ℓ be any integer with 1 ≤ ℓ ≤ n− 1, and let s ∈ (n/2,+∞) ⊂ R be given. For any

R ∈ R>0, we have

µX ({Λ ∈ X : ζℓ(Λ, s) ≥ R})≪n,ℓ,s R
−n/(2s).

There exists Mn,s ∈ R>0 such that for any M ∈ (Mn,s,+∞) ⊂ R, we have

M−n/(2s) ≪n,ℓ µX ({Λ ∈ X : ζℓ(Λ, s) ≥M}) .

Before we prove the preceding propositions, let us recall the following elementary generalization of
Minkowski’s Second Theorem (Minkowski’s theorem on successive minima). (Recall from Notation 1.1 the
relevant notation.)

Lemma 3.4. For any integer k with 1 ≤ k ≤ n and any Λ ∈ X, we have σk(Λ) ≍n,k

k∏

j=1

βj(Λ).

We now begin to prove the volume estimates.
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Proof of the upper bounds in Proposition 3.1. Let t ∈ R>0. Let W denote the closed Euclidean ball in Rn

of volume t with center at the origin. Define F : (Rn)ℓ → R≥0 by F (x1, . . . , xℓ) :=
∏ℓ

i=1 ρt(xi). Proposition

2.1 then yields

∫

X

ℓF̃ µX = tℓ. We then have

µX ({Λ ∈ X : dimR (spanR (Λ ∩W )) ≥ ℓ}) = µX

({
Λ ∈ X : ℓF̃ (Λ) ≥ ℓ! 2ℓ

})
≤
(
ℓ! 2ℓ

)−1
· tℓ.

We may thus take the implicit constant in the first upper bound to be
(
ℓ! 2ℓ

)−1
· V ℓ

n , where Vn denotes the
volume of the closed Euclidean ball in Rn of radius 1 with center at the origin.

We now establish the second upper bound. Let H ∈ R>0. Define ϕ : X → R≥0 by

ϕ(Λ) := card ({Θ ∈ Xℓ(Λ) : det(Θ) ≤ H}) .

By [32, Lemma 5], we have4
∫

X

ϕ dµX ≪n,ℓ H
n. Therefore,

µX ({Λ ∈ X : σℓ(Λ) ≤ H}) = µX ({Λ ∈ X : ϕ(Λ) ≥ 1}) ≤

∫

X

ϕ dµX ≪n,ℓ H
n.

An application of Lemma 3.4 then completes the proof. �

We now proceed by recalling the Iwasawa decomposition ofG and related matters concerning the reduction
theory of G. A good reference for this material is the book by A. Borel [4].

Notation 3.5. Define K := SO(n). Let A denote the set of all diagonal matrices in G. Let U denote the set
of all elements of G that are upper-triangular and have each diagonal entry equal to 1. Each of K, A, and U
is a closed subgroup of G; the Iwasawa decomposition of G then asserts that the mapping K ×A× U → G
given by (k, a, u) 7→ kau is a C ∞-diffeomorphism.

We denote by µK the Haar probability measure on the compact group K.

We denote by µA the Haar measure on A that is given by

dµA(a) = dµA (diag (a1, . . . , an)) =

n−1∏

i=1

a−1
i dai.

Notice that U may be identified with Rn(n−1)/2; we then define the Haar measure µU on Un by

dµU (u) :=
∏

1≤i<j≤n

duij .

In the coordinates afforded by the Iwasawa decomposition, the Haar measure µG on G is then given by

dµG(g) = dµG(kau) = ωn

∏

1≤i<j≤n

ai
aj
dµA(a) dµU (u) dµK(k),

where ωn is a constant that depends only on n.

Now let A2 denote the set of all a = diag (a1, . . . , an) ∈ A such that for each i ∈ Z with 1 ≤ i ≤ n− 1, we

have
ai
ai+1

≤ 2.

Let U1 denote the set of all matrices in U each of whose entries has absolute value less than or equal to
1. We evidently have µU (U1) = 2n(n−1)/2.

Now let S be the so-called Siegel set given by S := KA2 U1 ⊂ G. Let pX : G→ X denote the quotient
map. It is well known that µG (S) is finite and that p(S) = X. In fact, much more is true. The set S

contains a fundamental domain for the left action of Γ on G; moreover, S is contained in the union of
finitely many fundamental domains for the left action of Γ on G. These properties of S are very important;
they ensure that there exists some λn,S ∈ Z≥2 such that for any Borel subset E of X, we have

(3.1) µX(E) ≤ µG

(
S ∩ p−1(E)

)
≤ λn,S · µX(E).

4The result [32, Lemma 5] is formulated in the adèlic language; one can equally well appeal to [13, Theorem 3], which is
formulated in the classical language.
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Thus, while S is not a fundamental domain, it is almost as good as one for many measure-theoretic purposes.
Finally, let us mention the property of S that will be of greatest importance to us. For any integer ℓ with
1 ≤ ℓ ≤ n, define πℓ : G→ R>0 to be the map given by

G K ×A× U A R>0,

where the first map is given by the Iwasawa decomposition, the second map is the obvious projection, and
the third map is the projection onto the (ℓ, ℓ) diagonal entry. We then have the following important result,
which we record as a lemma.

Lemma 3.6. For any g ∈ S and any integer ℓ with 1 ≤ ℓ ≤ n, we have πℓ(g) ≍n βℓ (Γg) .

Proof. For a proof, see the Remark that immediately follows the proof of [16, Proposition 1.12]. �

Definition 3.7. For any ε ∈ (0, 1) ⊂ R and any integer ℓ with 1 ≤ ℓ ≤ n− 1, define Sℓ,ε := S∩π−1
ℓ ((0, ε]) .

We then have the following result, which will easily yield the lower bounds in Proposition 3.1.

Lemma 3.8. For every ε ∈ (0, 1) ⊂ R and any integer ℓ with 1 ≤ ℓ ≤ n− 1, we have εnℓ ≪n,ℓ µG (Sℓ,ε) .

Proof. Let ε ∈ (0, 1) ⊂ R be given. Let ℓ be any integer with 1 ≤ ℓ ≤ n − 1. Let Aℓ,ε denote the image of
Sℓ,ε under the map G→ A given by composing the Iwasawa decomposition map G→ K ×A× U with the
projection map K ×A× U → A. Then

µG (Sℓ,ε) = ωn · 2
[n(n−1)]/2 ·

∫

Aℓ,ε

∏

1≤i<j≤n

ai
aj
dµA(a).

In order to estimate this integral, we perform a change of coordinates.

For each i ∈ {1, . . . , n − 1}, define bi :=
ai
ai+1

. Then b := (b1, . . . , bn−1) constitutes a coordinate system

on A. One easily verifies that the Jacobian determinant of the change-of-coordinates from a to b is
1

2a1
.

Another easy calculation yields
∏

1≤i<j≤n

ai
aj

=

n−1∏

i=1

b
i(n−i)
i . It follows

∫

Aℓ,ε

∏

1≤i<j≤n

ai
aj
dµAn(a) =

∫

Aℓ,ε

n−1∏

i=1

b
i(n−i)
i dµAn(a) =

∫

Aℓ,ε

n−1∏

i=1

(
b
i(n−i)
i a−1

i dai

)

=

∫

Aℓ,ε

1

2a1

n−1∏

i=1

(
b
i(n−i)
i a−1

i dbi

)

=

∫

Aℓ,ε

1

2a1

n−1∏

i=1

(
b
i(n−i)
i b−1

i a−1
i+1 dbi

)

=

∫

Aℓ,ε

1

2




n∏

j=1

1

aj




n−1∏

i=1

(
b
−1+i(n−i)
i dbi

)

=
1

2

∫

Aℓ,ε

n−1∏

i=1

b
−1+i(n−i)
i dbi.

We now wish to express the domain of integration Aℓ,ε in terms of the coordinates b = (b1, . . . , bn−1) . For
the sake of notational convenience, define b0 := 1 and bn := 1. It is easy to see that for each j ∈ {1, . . . , n},

we have a1 = aj

j−1∏

i=0

bi. It follows

an1 =

n∏

j=1

aj

j−1∏

i=0

bi = (a1 · · · an) ·

n−1∏

i=1

b
(n−i)
i =

n−1∏

i=1

b
(n−i)
i =

(
1−1∏

i=0

b−i
i

)(
n∏

i=1

b
(n−i)
i

)
.
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For each i ∈ {1, . . . , n− 1}, we have ai+1 =
ai
bi

and thus have ani+1 =
ani
bni
.

It is now easy to see that for each j ∈ {1, . . . , n}, we have

anj =

(
j−1∏

i=0

b−i
i

)


n∏

i=j

b
(n−i)
i


 .

We consider three distinct cases.

Suppose first 1 < ℓ < n− 1. Let Aℓ,ε,∗ denote the set of all a = (a1, . . . , an) ∈ A for which the following
hold:

(i) For each i ∈ Z with 1 ≤ i ≤ ℓ− 1, we have 1 ≤ bi ≤ 2.
(ii) For each i ∈ Z with ℓ+ 1 ≤ i ≤ n− 1, we have bi ≤ 1.

(iii) We have bℓ ≤ ε
n

(n−ℓ) .

We clearly have Aℓ,ε,∗ ⊆ Aℓ,ε. It follows

∫

Aℓ,ε

n−1∏

i=1

b
−1+i(n−i)
i dbi ≥

∫

Aℓ,ε,∗

n−1∏

i=1

b
−1+i(n−i)
i dbi

=




ℓ−1∏

i=1

[
b
i(n−i)
i

i(n− i)

]2

1


 ·




n−1∏

i=ℓ+1

[
b
i(n−i)
i

i(n− i)

]1

0


 ·

[
b
ℓ(n−ℓ)
ℓ

ℓ(n− ℓ)

]ε n
(n−ℓ)

0

≍n,ℓ ε
n

(n−ℓ)
·ℓ(n−ℓ)

= εnℓ.

This yields the desired result in the case 1 < ℓ < n− 1.

Suppose now ℓ = 1. Let A1,ε,∗ denote the set of all a = (a1, . . . , an) ∈ A such that b1 ≤ ε
n

(n−1) and for
each i ∈ Z with 2 ≤ i ≤ n− 1, we have bi ≤ 1. We have A1,ε,∗ ⊆ A1,ε, whence

∫

A1,ε

n−1∏

i=1

b
−1+i(n−i)
i dbi ≥

∫

A1,ε,∗

n−1∏

i=1

b
−1+i(n−i)
i dbi =

[
b
1(n−1)
1

1(n− 1)

]ε n
(n−1)

0

·




n−1∏

i=2

[
b
i(n−i)
i

i(n− i)

]1

0




≍n ε
n

(n−1)
·1(n−1)

= εn.

This implies the desired result in the case ℓ = 1.

Finally, suppose ℓ = n − 1. Let An−1,ε,∗ denote the set of all a = (a1, . . . , an) ∈ A such that bn−1 ≤ εn

and for each i ∈ Z with 1 ≤ i ≤ n− 2, we have 1 ≤ bi ≤ 2. Since An−1,ε,∗ ⊆ An−1,ε, we have

∫

An−1,ε

n−1∏

i=1

b
−1+i(n−i)
i dbi ≥

∫

An−1,ε,∗

n−1∏

i=1

b
−1+i(n−i)
i dbi =




n−2∏

i=1

[
b
i(n−i)
i

i(n− i)

]2

1


 ·

[
bn−1
n−1

(n− 1)

]εn

0

≍n εn(n−1).

This completes the proof. �

We may now complete the proof of Proposition 3.1.

Proof of the lower bounds in Proposition 3.1. The first lower bound is an immediate consequence of Lem-
mata 3.6 and 3.8 and the property in (3.1). For every sufficiently small γ ∈ (0, 1) ⊂ R, we have γnℓ ≪n,ℓ
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µX ({Λ ∈ X : βℓ(Λ) ≤ γ}) . It follows that for every sufficiently small ε ∈ (0, 1) ⊂ R, we have

εn =
(
ε1/ℓ

)nℓ
≪n,ℓ µX

({
Λ ∈ X : βℓ(Λ) ≤ ε

1/ℓ
})
≤ µX





Λ ∈ X :




ℓ∏

j=1

βj(Λ)


 ≤ ε






 .

�

Remark 3.9. Define δ : X → X by δ(Λ) = Λ∗, where Λ∗ denotes the lattice dual to Λ: if Λ = Zng, then

Λ∗ := Zn
(
g−1

)†
. We note that δ is a homeomorphism that is equal to its own inverse. Since the Haar

measure µG is bi-invariant, the inversion map G → G preserves µG; clearly, the transposition map G → G
preserves µG. We conclude that δ preserves µX .

Let us now record as a lemma the following important transference theorem.

Lemma 3.10. [5, VIII.5, Theorem VI] There exists θn ∈ R>1 such that for any integer j with 1 ≤ j ≤ n
and any Λ ∈ X , we have 1 ≤ βj (Λ)βn−j+1 (Λ

∗) ≤ θn.

Proof of Proposition 3.2. Let θn ∈ R>1 be as in Lemma 3.10. Let R ∈ R>0. We then have

µX ({Λ ∈ X : βℓ(Λ) ≥ R}) ≤ µX

({
Λ ∈ X : βn−ℓ+1 (Λ

∗) ≤ θnR
−1
})

= µX

({
Λ ∈ X : βn−ℓ+1 (Λ) ≤ θnR

−1
})

≪n,ℓ

(
θnR

−1
)n(n−ℓ+1)

≪n,ℓ R
−n(n−ℓ+1).

The first inequality follows from the upper bound in Lemma 3.10, the equality follows from the fact that δ
preserves µX , and the second inequality follows from the upper bound in Proposition 3.1.

Similarly, we also have

µX





Λ ∈ X :




n∏

j=ℓ

βj(Λ)


 ≥ R






 ≤ µX





Λ ∈ X :




n∏

j=ℓ

βn−j+1 (Λ
∗)


 ≤ θ(n−ℓ+1)

n R−1








= µX





Λ ∈ X :




n−ℓ+1∏

j=1

βj (Λ
∗)


 ≤ θ(n−ℓ+1)

n R−1








= µX





Λ ∈ X :




n−ℓ+1∏

j=1

βj(Λ)


 ≤ θ(n−ℓ+1)

n R−1








≪n,ℓ

(
θ(n−ℓ+1)
n R−1

)n

≪n,ℓ R
−n.

Let ε0,n,n−ℓ+1 ∈ R>0 be as in Proposition 3.1. SetMn,ℓ := (ε0,n,n−ℓ+1)
−1
. For anyM ∈ (Mn,ℓ,+∞) ⊂ R,

we have

M−n(n−ℓ+1) =
(
M−1

)n(n−ℓ+1)
≪n,ℓ µX

({
Λ ∈ X : βn−ℓ+1(Λ) ≤M

−1
})

≪n,ℓ µX ({Λ ∈ X : βℓ (Λ
∗) ≥M})

= µX ({Λ ∈ X : βℓ(Λ) ≥M}) .



14 SEUNGKI KIM AND MISHEL SKENDERI

Similarly, we also have

M−n =
(
M−1

)n
≪n,ℓ µX





Λ ∈ X :




n−ℓ+1∏

j=1

βj(Λ)


 ≤M−1








≪n,ℓ µX





Λ ∈ X :




n−ℓ+1∏

j=1

βn−j+1 (Λ
∗)


 ≥M








= µX





Λ ∈ X :




n−ℓ+1∏

j=1

βn−j+1(Λ)


 ≥M








= µX





Λ ∈ X :




n∏

j=ℓ

βj(Λ)


 ≥M






 .

�

Proof of Proposition 3.3. Let R ∈ R>0. We have
{
Λ ∈ X : σℓ(Λ) ≤ R

−1/(2s)
}
⊆ {Λ ∈ X : ζℓ(Λ, s) ≥ R} .

The desired lower bound is now an immediate consequence of Lemma 3.4 and Proposition 3.1.
Let us now establish the upper bound. Using Lemma 3.4 and Proposition 3.1, we have

µX ({Λ ∈ X : ζℓ(Λ, s) ≥ R})

≤ µX

({
Λ ∈ X : σℓ(Λ) ≤ R

−1/(2s)
})

+ µX

({
Λ ∈ X : σℓ(Λ) ≥ R

−1/(2s) and ζℓ(Λ, s) ≥ R
})

≪n,ℓ R
−n/(2s) + µX

({
Λ ∈ X : σℓ(Λ) ≥ R

−1/(2s) and ζℓ(Λ, s) ≥ R
})

.

For each Λ ∈ X, define U(Λ) :=
{
Θ ∈ Xk(Λ) : det(Θ) ≥ R−1/(2s)

}
. Markov’s inequality then implies

µX

({
Λ ∈ X : σℓ(Λ) ≥ R

−1/(2s) and ζℓ(Λ, s) ≥ R
})
≤ R−1

∫

X

∑

Θ∈U(Λ)

(det(Θ))−2s dµX(Λ).

It then follows from [32, Lemma 5] that5

R−1

∫

X

∑

Θ∈U(Λ)

(det(Θ))
−2s

dµX(Λ)≪n,ℓ R
−1

∫ +∞

R−1/(2s)

t−2s tn−1 dt.

Since

R−1

∫ +∞

R−1/(2s)

t−2s tn−1 dt = (2s− n)−1 · R−n/(2s),

the desired upper bound now follows. �

We now prove Proposition 1.10.

Proof of Proposition 1.10. The necessary inequalities concerning the µX -measures of various sets are imme-
diate consequences of Propositions 3.1, 3.2, and 3.3; it thus suffices to prove the uniform continuity of the
functions in question. Let ℓ be any integer with 1 ≤ ℓ ≤ n. Let ε ∈ R>0 be given. Set C := exp(ε) > 1.

Recall from Notation 1.1 that for any r ∈ R≥0, we let Br ⊂ Rn denote the closed Euclidean ball that
is centered at the origin and has radius equal to r. For any g ∈ G, let η(g) denote the operator norm of
g when both its domain and codomain are equipped with the Euclidean norm on Rn ‖ · ‖ = ‖ · ‖1. Set
U :=

{
g ∈ G : max

{
η(g), η

(
g−1

)}
< C

}
. Then U is an open subset of G, idG ∈ U , and U = U−1. For any

g ∈ U and any v ∈ Rn, we have

C−1‖v‖ ≤ ‖vg‖ ≤ C‖v‖.

5The remark in Footnote 4 applies here as well.
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Let Λ0 ∈ X and g0 ∈ U be arbitrary. Write β := βℓ (Λ0) ∈ R>0. We then have (Λ0 ∩ Bβ)g0 ⊆ Λ0g0 ∩ BCβ

and thus have βℓ (Λ0g0) ≤ Cβ. For any β′ ∈ (0, β) ⊂ R, we have Λ0g0 ∩ BC−1β′ ⊆ (Λ0 ∩ Bβ′)g0. We then
have βℓ (Λ0g0) ≥ C

−1β′ and thus have βℓ (Λ0g0) ≥ C
−1β. It thus follows

−ε = − logC ≤ (log ◦βℓ) (Λ0g0)− (log ◦βℓ) (Λ0) ≤ logC = ε.

This establishes the uniform continuity of log ◦βℓ : X → R. If S is any nonempty subset of {1, . . . , n}, then it

follows immediately that the function ξS : X → R given by ξS(Λ) := log
(∏

j∈S βj(Λ)
)
=
∑

j∈S log (βj(Λ))

is uniformly continuous.

Given any g ∈ G, we define 〈−,−〉ℓ,g to be the inner product on
∧ℓ

(Rn) given by

〈v1 ∧ · · · ∧ vℓ, w1 ∧ · · · ∧ wℓ〉ℓ,g := 〈v1g ∧ · · · ∧ vℓg, w1g ∧ · · · ∧ wℓg〉ℓ;

we then let ‖ · ‖ℓ,g denote the corresponding norm on
∧ℓ

(Rn) . Define κ : G→ R>0 by

(3.2) κ(g) := inf {E ∈ R>0 : ‖ · ‖ℓ,g ≤ E ‖ · ‖ℓ} .

Observe that the infimum in (3.2) is finite because all norms on
∧ℓ

(Rn) are equivalent; moreover, this
infimum is clearly a minimum. We thus conclude that κ is well-defined. Let s ∈ (n/2,+∞) ⊂ R be given.

Set V :=
{
g ∈ G : max

{
κ(g), κ

(
g−1

)}
< C1/2s

}
. Then V is an open subset of G, idG ∈ V , and V = V −1.

It now follows that for any Λ ∈ X and any g ∈ U, we have

C−1ζℓ(Λ, s) ≤ ζℓ(Λg, s) ≤ C ζℓ(Λ, s)

and thus have

−ε ≤ log (ζℓ(Λg, s))− log (ζℓ(Λ, s)) ≤ ε.

We conclude that log ◦ζℓ(·, s) : X → R is uniformly continuous. �

Proof of Theorem 1.11. Let α ∈ R>0 be given, and let ∆ : X → R be a function that is α-DL; suppose
further that for each g ∈ SO(n) ⊂ G and each Λ ∈ X, we have ∆(Λ) = ∆(Λg). Let C ∈ R>1 correspond to
∆ as in Definition 1.7. To prove Theorem 1.11, it suffices to establish

lim sup
t→+∞

∆(Λgt)

log t
= α−1.

We now proceed to do so.

Let γ ∈ R>0 be given. For each k ∈ Z≥2, define rk :=
(
α−1 + γ

)
log k. Since the natural action of G on

X preserves the measure µX , it follows that for each k ∈ Z≥2, we have

µX ({Λ ∈ X : ∆ (Λgk) ≥ rk}) = µX ({Λ ∈ X : ∆ (Λ) ≥ rk}) ≤ C exp (−αrk) = C k−(1+αγ).

Since
+∞∑

k=2

C k−(1+αγ) < +∞, the Borel–Cantelli Lemma implies the following: for µX -almost every Λ ∈ X,

there exists some kΛ ∈ Z≥2 such that for each k ∈ Z with k ≥ kΛ, we have
∆ (Λgk)

log k
< α−1 + γ. It follows

that for µX -almost every Λ ∈ X, we have

lim sup
k→+∞

∆(Λgk)

log k
≤ α−1.

A standard continuity argument now implies that for µX -almost every Λ ∈ X, we have

lim sup
t→+∞

∆(Λgt)

log t
≤ α−1.

For each z ∈ R, define τz : X → (Z≥2 ∪ {+∞}) by

τz(Λ) := inf {k ∈ Z≥2 : ∆ (Λgk) ≥ z} ,

using the convention inf ∅ = +∞. By the Moore Ergodicity Theorem, the natural action of {gk}k∈Z
on

X is ergodic. In particular, for each z ∈ R and µX -almost every Λ ∈ X, we have τz(Λ) < +∞. For each
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g ∈ SO(n) ⊂ G and each z ∈ R, we note that the image of ∆−1 ([z,+∞)) under the natural action of g is
equal to ∆−1 ([z,+∞)) itself; furthermore, we have

(3.3) lim
t→+∞

− log
(
µX

(
∆−1 ([t,+∞))

))

t
= α.

It now follows from [11, Theorem 1.1] that for µX -almost every Λ ∈ X, we have

(3.4) lim
t→+∞

log (τt(Λ))

− log (µX (∆−1 ([t,+∞))))
= 1.

Now and for the remainder of the proof, fix any Λ ∈ X that satisfies (3.4). Let ε ∈ R>0 be given. Then
there exists T = TΛ ∈ R>0 such that for each t ∈ R≥T , we have

− log
(
µX

(
∆−1 ([t,+∞))

))

t
≤ α+ ε

and
log (τt(Λ))

− log (µX (∆−1 ([t,+∞))))
≤ 1 + ε.

For each t ∈ R≥T , we then have

0 < log 2 ≤ log (τt(Λ)) ≤ (α+ ε) (1 + ε) t ≤ (α+ ε) (1 + ε)∆
(
Λgτt(Λ)

)
< +∞

and thus have

(3.5)
∆
(
Λgτt(Λ)

)

log (τt(Λ))
≥

1

(α+ ε) (1 + ε)
.

It follows from (3.3) and (3.4) that lim
t→+∞

log (τt(Λ))

t
= α ∈ R>0; in particular, the sequence (τk(Λ))k∈Z≥1

is unbounded. For each k ∈ Z≥1, set wk := τk(Λ). Let
(
wkj

)
j∈Z≥1

be a subsequence of (wk)k∈Z≥1
that is

strictly increasing and that satisfies lim
j→+∞

wkj = +∞. It then follows from (3.5) that

lim sup
t→+∞

∆(Λgt)

log t
≥ lim sup

j→+∞

∆
(
Λgwkj

)

log
(
wkj

) ≥ 1

(α+ ε) (1 + ε)
.

Since ε ∈ R>0 is arbitrary, it follows that lim sup
t→+∞

∆(Λgt)

log t
≥ α−1. �

Remark 3.11. Let ℓ be any integer with 1 ≤ ℓ ≤ n − 1. It is an immediate consequence of Lemma 3.4

that Proposition 3.1 holds when
∏ℓ

j=1 βj is replaced by σℓ. Arguing as in the proof of Proposition 1.10 to

establish uniform continuity, it is then easy to see that the function − (log ◦ σℓ) is n-DL. It follows that

Theorem 1.11 (i) holds when
∏ℓ

j=1 βj is replaced by σℓ. It likewise follows that one may take the function
∆ in Theorem 1.13 to be σℓ. The reader who is interested in sublattices is encouraged to see the previously
cited paper by J. L. Thunder [32] and a related paper by the first-named author [13].
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