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ABSTRACT

We consider an Erdős-Rényi random graph consisting of N vertices connected by randomly
and independently drawing an edge between every pair of them with probability c/N so
that at N → ∞ one obtains a graph of finite mean degree c. In this regime, we study
the distribution of resistance distances between the vertices of this graph and develop an
auxiliary field representation for this quantity in the spirit of statistical field theory. Using
this representation, a saddle point evaluation of the resistance distance distribution is possible
at N → ∞ in terms of an 1/c expansion. The leading order of this expansion captures the
results of numerical simulations very well down to rather small values of c; for example, it
recovers the empirical distribution at c = 4 or 6 with an overlap of around 90%. At large
values of c, the distribution tends to a Gaussian of mean 2/c and standard deviation

√
2/c3.

At small values of c, the distribution is skewed toward larger values, as captured by our
saddle point analysis, and many fine features appear in addition to the main peak, including
subleading peaks that can be traced back to resistance distances between vertices of specific
low degrees and the rest of the graph. We develop a more refined saddle point scheme that
extracts the corresponding degree-differentiated resistance distance distributions. We then
use this approach to recover analytically the most apparent of the subleading peaks that
originates from vertices of degree 1. Rather intuitively, this subleading peak turns out to be
a copy of the main peak, shifted by one unit of resistance distance and scaled down by the
probability for a vertex to have degree 1. We comment on a possible lack of smoothness in
the true N →∞ distribution suggested by the numerics.
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1 Introduction

Of all the notions of distance that may be defined on graphs [1,2], perhaps the most evident
one is given by the shortest path, or geodesic [3], distance: the minimal number of edges one
must traverse in order to transit from vertex i to vertex j. While intuitive and visual, this
notion of distance is limited in that it does not fully capture the ease or difficulty of reaching
point j from point i by navigating the graph edges. It does not say whether there is only one
path of minimal length or many such paths, whether these paths can be straightforwardly
located, or whether alternative paths are considerably or only slightly longer.

A complementary viewpoint is provided by the resistance distance [4–8] defined by assign-
ing resistances of 1 ohm to the graph edges and measuring the ordinary electric resistance
between vertices i and j. This quantity is naturally expressed through the inverse of the graph
Laplacian and is therefore closely related [9] to diffusion and random walks on graphs [10],
measuring the time a random walker starting at point i typically needs to reach point j,
which leads to the alternative name commute distance. Resistance distances thus in prin-
ciple capture properties of all possible paths, though there are important qualifications to
this statement [11], see below. In view of these appealing properties, resistance distances
have surfaced in research on subjects as diverse as theoretical physics [12, 13], chemistry
and bioinformatics [14–19], mathematical graph theory [20–22], data analysis and computer
science [23–35]. Studying resistance distance can also be useful for understanding nutrient
transport in leaf vascular networks, as hydraulic conductance of laminar flows in this setting
can be equivalently studied in terms of electrical conductance in resistor networks [36–39].

One important characterization of graph distances is given by how they behave in ran-
dom graphs. For the shortest path distance, this question has been studied rather exten-
sively [40–45]. By contrast, studies of the distribution of resistance distances have mostly
been limited to concentration phenomena, as in [11, 46, 47]. Indeed, under the assumption
that the mean degree grows with the number of vertices (this growth may be very modest,
for example, logarithmic), in the large graph limit, the resistance distance between vertices
i and j of degrees di and dj almost surely equals 1/di + 1/dj, the relevance of this number
pointed out already in [10]. These concentration phenomena inspired the critique of resis-
tance distance developed in [11], as the simple number 1/di + 1/dj cannot possibly hold any
refined information on the path properties of graphs, and some modifications of the usual
resistance distance definition have been proposed [48] to address these shortcomings.1 At the
same time, concentration phenomena do not occur if the mean degree stays finite at N →∞
and the resistance distributions are not only nontrivial, but also ornately shaped. This is
straightforwardly verified by simulating a finite mean degree Erdős-Rényi graph obtained by
randomly and independently connecting N points with probability c/N per edge, where N
is large and the mean vertex degree c is fixed.

Our goal in this paper is precisely to develop an analytic picture of resistance distance
distributions in finite-mean-degree Erdős-Rényi graphs. (In other words, our focus is on
large, sparse graphs with c � N .) While the motivations for studying resistance distances

1We mention additionally that studies have been undertaken of systems where the resistance values
assigned to the edges, rather than the underlying graph structure, are random [49]. The problem of choosing
the edge resistance values on a given graph to minimize the overall average resistance has been considered
in [50].
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are broad and interdisciplinary, the methodology we employ is decidedly that of theoreti-
cal physics, and more specifically statistical field theory [51, 52]. We shall first develop an
auxiliary field representation for the resistance distance distribution in the spirit of the field-
theoretic Hubbard-Stratonovich transformation, which will convert the resistance distance
computation to the analysis of a statistical field theory on a complete graph with N vertices.
Then, in a manner common for large N limits [53] in statistical and quantum field theory,
and as a particular realization of the ‘mean field’ principles, we shall identify a saddle point
that dominates the auxiliary field theory computation, recovering an estimate for the resis-
tance distance distribution. Similar techniques have been applied to a variety of random
graph problems in [54–57]. (Earlier work applying more conventional probabilistic and com-
binatiorial methods to related spectral problems for random graphs can be found in [58].)
The level of rigor in our treatment will likewise be typical of statistical field theory, and our
approach is of empirical and heuristic nature: we shall identify saddle points that plausibly
dominate the quantity of interest and develop estimates based on these saddle points, with-
out attempting to rigorously control the accuracy of these estimates by analytic methods.
The true judge of our endeavors is their agreement with numerical simulations that we shall
systematically report.

Our study is organized as follows: first, in section 2, we shall provide the basic setup
for the resistance distance distribution of Erdős-Rényi graphs and develop our auxiliary
field representation. Then, in section 3, we shall describe a saddle point treatment of this
auxiliary field representation at leading order in 1/c in a simplified setup that ignores the
fluctuations of the graph Laplacian determinant, and in section 4, give a full justification
for the simplified analysis of section 3. In section 5, we shall focus on minor features of the
resistance distance distribution not captured by our saddle point analysis and develop an
analytic description of the simplest of these features. We shall conclude with a discussion
and some tentative remarks on the roughness of the true resistance distance distribution at
N →∞.

2 Resistance distance distribution and its auxiliary field
representation

As customary in random graph theory, we shall characterize graphs with N vertices by their
N ×N adjacency matrices Aij, which are taken to be symmetric with a vanishing diagonal.
One assigns 1 to Aij if there is an edge connecting vertices i and j, and 0 otherwise.

To describe a large sparse Erdős-Rényi random graph in this language, we treat Aij with
i < j as independent random variables taking value 1 with probability c/N and 0 with
probability 1− c/N . The expectation values of the vertex degrees

di ≡
N∑
j=1

Aij (1)

are then c(N − 1)/N ≈ c in the large N limit. It is convenient for our purposes to re-
cast this ensemble in the exponential random graph language [59] better adapted for sta-
tistical physics considerations. To each configuration Aij one assigns a Boltzmann weight
exp[ln

(
c
N

)∑
i<j Aij] = (c/N)

∑
i<j Aij , so that ln(N/c) plays the role of inverse temperature
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conjugate to the total number of graph edges. Then, the expectation value of any observable
F (A) is given by

〈F 〉 =
1

Z

∑
{A}

F (A)
( c
N

)∑
i<j Aij

, (2)

with the partition function Z ≡
∑
{A}
(
c
N

)∑
i<j Aij ≈ ec(N−1)/2, and

∑
{A} defined as summing

over Aij ∈ {0, 1} for each i < j.
For any graph, we can define its degree matrix D which is diagonal with its diagonal

entries Dii ≡ di as given by (1), and the graph Laplacian matrix

L = D−A. (3)

The graph Laplacian controls diffusion and random walks on graphs. Resistance distance
Ωij between vertices i and j can be obtained as [8]

Ωij = Linv
ii + Linv

jj − 2Linv
ij , (4)

where Linv is the Moore-Penrose (pseudo)inverse of L, defined so that LinvL is the projector
on the subspace spanned by all non-null eigenvectors of L. If the graph is connected, L has
only one null eigenvector proportional to (1, 1, . . . , 1)T and hence LinvL = I−1/N , where I is
the identity matrix and 1 is the matrix all of whose entries equal 1. We provide a derivation
of (4) in Appendix A.

Our main object of study is the probability density for the resistance measured between
vertices 1 and 2 to be equal ρ:

P (Ω12 = ρ) ≡ 〈δ(Linv
11 +Linv

22 −2Linv
12 −ρ)〉 =

1

Z

∑
{A}

δ(Linv
11 +Linv

22 −2Linv
12 −ρ)

( c
N

)∑
i<j Aij

. (5)

The corresponding distribution for any other pair of vertices would evidently be the same as
the Erdős-Rényi ensemble enjoys complete vertex permutation symmetry. This function can
be straightforwardly sampled numerically, and such numerical experiments suggest that the
distribution tends to a definite curve at large N and displays rather sophisticated shapes.
Our purpose is to develop some analytic theory for this distribution.

One can start by expressing the δ-function in (5) in terms of its Fourier representation:

P (ρ) ∝
∫ ∞
−∞

dξ
∑
{A}

eiξ(L
inv
11 +Linv

22 −2Linv
12 −ρ)

( c
N

)∑
i<j Aij

. (6)

From this point on, we shall be ignoring the overall prefactor of P (ρ) keeping in mind that
it can always be recovered at the end by normalizing P as a probability density,∫ ∞

0

dρP (ρ) = 1. (7)

Summation over A still cannot be performed directly in (6), but it will become possible
after we introduce a set of auxiliary fields. We start with an N -dimensional real-valued
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vector φφφ whose components are φi and write, using the standard multidimensional Gaussian
integration,

eiξ(L
inv
11 +Linv

22 −2Linv
12 ) =

(
iξ

π

)N−1
2 √

det′L

∫
dφφφ δ (

∑
iφi) e

−iξ
∑
kl Lklφkφl+2iξ(φ1−φ2). (8)

Such Gaussian inversion formulas are frequently employed in random matrix literature rely-
ing on statistical physics methods [55,60–62]; some brief pedagogical comments clarifying the
structure of (8) are provided in Appendix B. We have inserted δ(

∑
i φi) inside the integral

in (8) to control the null direction of L corresponding to the eigenvector (1, 1, . . . , 1)T , and
det′ L denotes the pseudodeterminant of L, that is the product of its nonzero eigenvalues.
Then, using

∑
ij Lijφiφj = 1

2

∑
ij Aij(φi − φj)2 =

∑
i<j Aij(φi − φj)2, we arrive at

P (ρ) ∝
∫
dξ ξ

N−1
2 e−iξρ

∫
dφφφ δ (

∑
iφi) e

2iξ(φ1−φ2)
∑
{A}

√
det′L e

∑
k<l Akl[ln(c/N)−iξ(φk−φl)2]. (9)

A few comments are in order before we proceed. First, (8) is only literally correct if the
graph is connected and (1, 1, . . . , 1)T is the only null eigenvector of its Laplacian, which is,
strictly speaking, not true in our case. Nonetheless, this inaccuracy will not impede our
subsequent derivations in terms of 1/c expansions at N → ∞, as we shall now explain. At
N → ∞, an Erdős-Rényi graph with a fixed c > 1 consists almost surely [59] of a single
giant connected component whose size is of order N and further small components whose
size is at most logarithmic in N . The probability u for a given vertex not to belong to the
giant component satisfies [59] the equation

u = e−c(1−u). (10)

At large c, this implies u ≈ e−c. Therefore, the number of vertices outside the giant connected
component of the Erdős-Rényi graph, and certainly the number of disconnected components,
and hence the number of distinct null eigenvectors of the Laplacian are all suppressed by
e−c. Thus, one may legitimately expect that their effect will be simply invisible within
an 1/c expansion. Our derivations will indeed show no pathologies due to these neglected
null eigenvectors, while the results will be in agreement with numerical simulations, which
validates the intuition given above.

Second, the summation over A still cannot be performed directly in (9) because of the

presence of
√

det′L. The determinant of the graph Laplacian is known to equal the number
of spanning trees of the graph, and it has been studied for random graphs in [63,64]. There
are two possible approaches to handling that determinant, both of which we shall explore.
At the most naive level, one may expect some concentration behavior for this determinant
at N → ∞ and large c, which would turn it into an irrelevant numerical factor that can
be taken outside the sum. The sum over A can then be immediately evaluated, leaving
behind an integral over ξ and φφφ accessible to statistical field theory methods. At a more
refined level, one may simply write an exact representation for

√
det′L by introducing a

few further Gaussian integrals over extra auxiliary fields, a technique often employed in
the physics of disordered systems [65–67]. After that, the summation over A can again be

performed, but now without any approximations or guesses for
√

det′L, and the result is still
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tractable by statistical field theory methods. As an outcome of implementing the more refined
approach, one in fact observes that the naive approach of discarding the determinant had
been completely justified at leading order in 1/c, and receives explicit computable corrections
at subleading orders, where the determinant should not be neglected.

Whether working with the naive approach, as we shall do in section 3, or with the exact
approach, as we shall do in section 4, evaluating the sum over A leaves behind an integral
over variables defined on the graph vertices and interacting in a pair-wise manner. This
integral may be viewed as a rather peculiar statistical field theory on a complete graph.
Such field-theoretic representations have been successfully applied in the past to a variety
of random graph problems, as in [54], see also [55–57]. The essence of these constructions
is that the resulting field-theoretic integral admits a saddle-point evaluation, in our case, as
an expansion in powers of 1/c.

In view of our subsequent comparisons of the asymptotic evaluation of (5) with numerical
simulations, we conclude this section with a remark on how such comparisons are made.
One can easily generate an adjacency matrix of an Erdős-Rényi graph and then invert it
to obtain the resistance distance matrix according to (4). It may be additionally wise to
restrict the adjacency matrix to the giant component of the Erdős-Rényi graph, though it is
not essential, at least at large c, since all the other components contain a small number of
vertices and cannot significantly affect the statistics. Once the resistance distance matrix has
been obtained from (4), it would be wasteful to only use its Ω12 entry for constructing the
distribution of the resistance distance between vertices 1 and 2 and discard the rest. Indeed,
resistance distances between different pairs of vertices must be identically distributed due
to the permutation symmetry of the Erdős-Rényi ensemble, and one also expects them
to be rather weakly correlated since the entries of the adjacency matrix are completely
uncorrelated. It is then natural to sample the whole set of values of Ωij corresponding to
all pairs of vertices, and plot histograms of this sample. It is such samples that we use for
testing our analytics, and find convincing agreement, normally for N = 25000 (this provides
a giant number of entries, given by N(N − 1)/2, for constructing the histograms).

3 Saddle point analysis

We shall now proceed with a basic saddle point analysis of (9), assuming that
√

det′L concen-
trates in an appropriate sense and can be treated as A-independent within the Erdős-Rényi
ensemble. An accurate justification will be given to this assumption in the next section.
The saddle point analysis we present gives a concrete mathematical realization to the ‘mean
field’ principles common in statistical physics, and the idea that a large number of nearest
neighbors given by c simplifies the behavior of the system due to ‘averaging over neighbors’
is very much in line with these principles.

3.1 Summation over A

Assuming that
√

det′L in (9) is approximately constant, it can be taken outside the A-sum
and merged with the other normalization factors. Thereafter, the sum over A is immediately
evaluated in a manner that closely parallels [54], since the summand turns into a product of
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factors each of which depends only on a single entry of the matrix A:

∑
{A}

∏
k<l

eAkl[ln(c/N)−iξ(φk−φl)2] =
∏
k<l

(
1 +

c

N
e−iξ(φk−φl)

2
)

= exp

[∑
k<l

ln
(

1 +
c

N
e−iξ(φk−φl)

2
)]

.

(11)
This formula follows from the tautological summation identity

∑1
α=0 e

αβ = 1 + eβ.
At N →∞ and a fixed c, we can furthermore approximate the logarithm as

ln
(

1 +
c

N
e−iξ(φk−φl)

2
)
≈ c

N
e−iξ(φk−φl)

2

. (12)

Hence, (9) turns into

P (ρ) ∝
∫
dξ ξ

N−1
2 e−iξρ

∫
dφφφ δ (

∑
iφi) e

H , (13)

where H is defined as

H ≡ c

N

∑
k<l

e−iξ(φk−φl)
2

+ 2iξ(φ1 − φ2) =
c

2N

∑
k 6=l

e−iξ(φk−φl)
2

+ 2iξ(φ1 − φ2). (14)

One aspect of (13) that will play a crucial role hereafter is that H appears in the exponent
and features a term proportional to c. Hence, assuming that c is large makes (13) amenable
to conventional saddle point techniques, resulting in a viable approach to evaluating P (ρ) in
terms of an 1/c expansion. As we shall see below, the leading term of this expansion does a
convincing job at capturing the behavior of P (ρ) even at values of c that are not nominally
‘large,’ such as c = 4.

3.2 The saddle point equation

Given the apparent saddle point structure of (13) at large c, we must identify the stationary
points of H, given by solutions of2

0 =
∂H

∂φk
= −2icξ

N

∑
l 6=k

[
e−iξ(φk−φl)

2

(φk − φl)
]

+ 2iξ(δ1,k − δ2,k). (15)

2It may appear odd at the first sight that we are including the ξ-term in the saddle point equation, while
it comes with no explicit dependence on the saddle point parameter c. It is important to keep in mind,
however, that ξ is an integration variable and all possible values enter the game. The relevant scaling of the
resistance distance is ρ ∼ 1/c (one can immediately see this numerically, and it will also come out of our
analysis) and the corresponding scaling of the Fourier-conjugate variable ξ is ∼ c, making the ξ-term in (14)
relevant for the saddle point equation. The test of this approach to generating the saddle point expansion
is that a well-formed asymptotic series in 1/c will be produced. Namely, if (14) is expanded in Taylor series
around the saddle point defined as we have specified, the leading contribution will arise from the Gaussian
part of (13), and higher order terms in (14) will generate 1/c corrections, as evident from our treatment
below and considerations of Appendix C. By contrast, if we had omitted the ξ-term from the saddle point
equation, the saddle point solution would have been φφφ = 0, resulting in a trivial estimate of the resistance
distance distribution P (ρ) = δ(ρ) that conveys no meaningful message beyond the smallness of ρ at large c
and cannot be straightforwardly corrected in terms of a perturbative expansion in 1/c.
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Once φφφ0 that satisfies this equation has been found, it can be used to obtain a saddle point
approximation of (13) by applying∫

dφφφ δ (
∑

iφi) e
H(φφφ) ≈ eH(φφφ0)

∫
dφ̃φφ δ

(∑
i φ̃i

)
e−

1
2

∑
ij(−Mij)φ̃iφ̃j =

(−2π)
N−1

2

√
det′M

eH(φφφ0), (16)

where φ̃φφ ≡ φφφ−φφφ0, det′ once again denotes the pseudodeterminant, and we have used
∑

i φ0i =
0, as all configurations integrated over in (13) satisfy this relation. The Hessian M is given
by

Mij =
∂2H

∂φi∂φj

∣∣∣
φφφ=φφφ0

. (17)

Note that the δ-function in (16) simply controls the null direction (1, 1, . . . , 1)T of the Hes-
sian M (some further details on Gaussian integrals with null directions can be found in
Appendix B).

We must then identify the solutions of (15). It is natural to start by examining the saddle
points that respect the symmetries ofH. (An alternative is families of saddle points converted
into each other by the symmetries. It is more exotic, though certainly not impossible,
and the ultimate validation of our approach, here and in general, comes from comparisons
with numerical simulations.) As one can see from (14), H is invariant under arbitrary
permutations of φ3, φ4, . . . , φN as well as the symmetry (φ1, φ2) → (−φ2,−φ1). Since only
configurations with

∑
iφi = 0 contribute to (13), the only saddle candidate that respects the

symmetries of H is φφφ0 = (φ0,−φ0, 0, 0, . . . ) with a yet-unknown φ0. For configurations of
this form, (15) is rewritten as

0 =



−2iξ

N
ce−4iξφ20(2φ0)− 2iξ

N − 2

N
ce−iξφ

2
0φ0 + 2iξ for k = 1,

2iξ

N
ce−4iξφ20(2φ0) + 2iξ

N − 2

N
ce−iξφ

2
0φ0 − 2iξ for k = 2,

2iξ

N

(
ce−iξφ

2
0φ0 + ce−iξφ

2
0(−φ0)

)
for k ≥ 3.

(18)

The last equation is identically satisfied, while the equations for k = 1 and k = 2 are
equivalent to each other, and reduce at N →∞ to

cφ0 = eiξφ
2
0 . (19)

The saddle point equation (19) is closely related to the equation W (x)eW (x) = x defining
the Lambert W function [68]. The solution can correspondingly be expressed through the
Lambert W function as

φ0(ξ) =

√
W (−2iξ/c2)

−2iξ
. (20)

In practice, it may often be convenient to construct φ0 by solving the ODE

dφ0

dξ
= − φ3

0

i+ 2ξφ2
0

(21)
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that can be readily derived from (19), with the initial condition φ0(0) = 1/c. We quote the
series expansion for φ0 to give an impression of its behavior near the origin:

φ0(ξ) =
1

c
+
iξ

c3
− 5ξ2

2c5
− 49iξ3

6c7
+

243ξ4

8c9
+ · · · . (22)

Evidently cφ0 only depends on ξ/c2.
Finally, the value of H at the saddle point is evaluated as

H(φφφ0) =
Nc

2
+

2

φ0

+ 4iξφ0 →
2

φ0

+ 4iξφ0, (23)

where the saddle point equation (19) has been used to simplify this expression, and the
last ‘arrow’ operation indicates that the ξ-independent term Nc/2 can be merged into the
normalization of P (ρ) and hence ignored. What remains for completing the saddle point
estimate (16) is to evaluate the Hessian determinant det′M.

3.3 The Hessian determinant

The second derivatives of H can be expressed as

∂2H

∂φl∂φk
=


2iξc

N

∑
i 6=k

e−iξ(φk−φi)
2 [

2iξ(φk − φi)2 − 1
]

for l = k,

−2iξc

N
e−iξ(φk−φl)

2 [
2iξ(φk − φl)2 − 1

]
for l 6= k.

(24)

At the saddle point (19), this becomes

Mlk =
∂2H

∂φl∂φk

∣∣∣∣
φφφ0

=



−2ξ

N

[
1

φ4
0c

3
(i+ 8ξφ2

0) + (N − 3)
1

φ0

(i+ 2ξφ2
0)

]
≡ a for l = k ≤ 2,

−2ξ

N

[
2

φ0

(i+ 2ξφ2
0) + (N − 3)c

]
≡ b for l = k > 2,

2

Nξ2φ4
0

(i+ 8ξφ2) ≡ g for l = 1, k = 2,

2ξ

Nφ0

(i+ 2ξφ2) ≡ f for l = 1, 2; k > 2,

2icξ

N
≡ d for l 6= k , l, k > 2,

(25)
where we have specified the values for l ≤ k, and the remaining values can be recovered
using the symmetry of M . The structure of this matrix can be visualized as follows:

M =



a g f f f . . .

g a f f f . . .

f f b d d . . .

f f d b d . . .

f f d d b
...

...
...

...
... . . .

. . .


(26)
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where a, b, d, f and g are defined in (25). Note that each row (and column) sums to 0 since
H is not affected by a simultaneous common shift of all φk. In other words,

a+ g + (N − 2)f = 0, 2f + b+ (N − 3)d = 0. (27)

The eigenvectors of M can be worked out explicitly. The vector (1, 1, . . . )T is annihilated
by M, as follows from (27). This null eigenvector and its zero eigenvalue will evidently
not contribute to the computation of the pseudodeterminant det′M. The second obvious
eigenvector is (1,−1, 0, 0, . . .)T and its eigenvalue is a−g. Finally, there are N−3 eigenvectors
of the form (0, . . . , 0, 1,−1, 0, 0 . . .)T where the first “1” must occur in position 3 or higher.
Their eigenvalues are b − d. We have explicitly recovered N − 1 eigenvectors, and since
M is a Hermitian N × N matrix, the unique remaining eigenvector must be orthogonal to
all of them and hence proportional to (−1,−1, 2

N−2
, 2
N−2

, 2
N−2

. . . )T . Its eigenvalue can be
computed by direct application of M and then simplified using (27) to give −Nf . With all
the eigenvalues at hand, we can write down the desired pseudodeterminant explicitly as

det′M = −Nf(a− g)(b− d)N−3. (28)

Now, we can substitute (25) back in (28) and take the N → ∞ limit. This requires some
care in the last factor since (1+x/N)N → ex; elsewhere, we can simply discard all subleading
contributions in 1/N . Altogether,

det′M ∝ ξN−1

(
1

φ0

− 2iξφ0

)2

e
2
cφ0
− 4iξφ0

c , (29)

where we have omitted all the irrelevant ξ-independent factors.

3.4 The leading saddle point estimate

Putting together (13), (16), (23) and (29), we obtain the leading order saddle point evaluation
of (5) in the form

P (ρ) ∝
∫
dξ

(
1

φ0

− 2iξφ0

)−1

e−iξρe
2
φ0

(1− 1
2c)+4iξφ0(1+ 1

2c), (30)

with φ0 defined by (19) and conveniently reconstructed by solving (21). Normalization (7)
should be applied. This expression for P (ρ) is the main result of this paper. We shall now
recast it in a few alternative forms, and provide further simplified formulas valid at large c.

A useful observation is that the pre-exponential factor in (30) can be expressed in terms
of dφ0/dξ using (21), which gives

P (ρ) ∝
∫ ∞
−∞

dξ
dφ0

dξ

1

φ2
0

e
2
φ0

(1− 1
2c)+4iξφ0(1+ 1

2c). (31)

As a result, one can choose φ0 to be the new integration variable, which is convenient since,
while φ0(ξ) is expressed through the Lambert W function, its inverse ξ(φ0) = −i ln (cφ0) /φ2

0
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Figure 1: The real part of the saddle point function 2z + (ρcz2 − 4z) ln z of (32), evaluated
at z = x+ iy. The orange dots represent the saddle at z = 2/cρ, and the red dots represent
the saddle at z = 1/

√
e. The green curves visualize the integration contour in (32). The two

plots demonstrate how the two saddle point locations change as cρ varies from cρ = 1 (a) to
cρ = 11 (b).

is an elementary function. A particularly convenient choice for the integration variable is
z = 1/(cφ0), which gives

P (ρ) ∝
∫ 1/cφ0(∞)

1/cφ0(−∞)

dz e2cz(1− 1
2c)zρc

2z2−(4c+2)z. (32)

The integration contour, as inherited from (31), comes from infinity within the first quadrant
(Re z > 0, Im z > 0), passes through z = 1 and exists to infinity via the fourth quadrant
(Re z > 0, Im z < 0). The contour can evidently be deformed freely, as with any complex
plane integral, as long as it does not touch the singular branching point at z = 0.

As the integrand features c in the exponent, and we are treating c as a large parameter,
it is natural to apply further saddle point evaluation to (32). To this end, we note that the
logarithm of the integrand is −2z ln z − z + c[2z + (ρcz2 − 4z) ln z]. Demanding that the
leading part of this expression (given in the square brackets) is stationary at z0 yields the
saddle point equation for the z-integral:

(cρz0 − 2)(1 + 2 ln z0) = 0. (33)

This equation evidently has two solutions, z0 = 2/cρ and z0 = 1/
√
e. The topography of the

integrand is such that the contour can always be deformed to pass through max(2/cρ, 1/
√
e),

while the second saddle lies between the contour and the singularity at z = 0 and is thus
irrelevant for the saddle point evaluation. The location of the contour relatively to the saddles
is depicted in Fig. 1. Extracting the leading saddle point estimate due to the appropriate
saddles thus yields
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Figure 2: Resistance distance distribution of the largest connected component of an Erdős-
Rényi graph with 25000 vertices at mean degree 20 (a) and 200 (b). Numerical simulation
results are plotted as blue histograms, while the saddle point estimate (34) for (a) and the
large c Gaussian approximation (35) for (b) are plotted as orange curves.

P (ρ) ∝


(cρ

2

) 4
cρ
e−

2
cρ

(ecρ
2

) 4
ρ

for ρ ≤ 2
√
e/c,

exp
(

4c√
e
− ρc2

2e

)
for ρ > 2

√
e/c.

(34)

We have not attempted recovering the pre-exponential factors in this saddle point estimate,
which is slightly subtle due to the coalescing saddles [69] at ρ = 2

√
e/c, and would not have

improved the accuracy significantly in the regime of interest. We compare this curve to
the actual numerical simulations at the moderate value c = 20 in Fig. 2a, showing a good
agreement.

Finally, when c is very large, it makes sense to expand (34) around its maximum at
ρ ≈ 2/c which yields a Gaussian approximation of the form

P (ρ) ∝ exp

[
− c3

4 (1− 4/c)

(
ρ− 2

c
− 3

c2

)2
]
. (35)

This distribution is again in an excellent agreement with the numerics at large c, see Fig. 2b.
Asymptotically, the distribution tends to a Gaussian of mean 2/c and standard deviation√

2/c3.
The agreement between our saddle point estimate and numerical simulations continues

to hold even for such low values of c as 6 or 4. In this case, (30) gives a slightly better match
than (34), and that is what we plot in Fig. 3. To quantify the agreement of the analytic
and empirical distributions, we use the overlapping coefficient [70], which is defined, for
any two normalized probability distributions p1(x) and p2(x), as

∫
min(p1(x), p2(x)) dx. By

definition, the overlapping coefficient is a number between 0 and 1 that equals 1 if and only
if the two distributions are identical. For our analytic curve as compared to the numerics,
this gives approximately 92% for c = 6 and approximately 90% for c = 4. We emphasize
that the saddle point estimate (30) only captures the main peak of the distribution without
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Figure 3: Resistance distance distribution of the largest connected component of an Erdős-
Rényi graph with 25000 vertices at mean degree 6 (a) and 4 (b). Numerical simulation
results are plotted as blue histograms, while the saddle point estimate (30) is plotted as
orange curves. We have used the log-linear scale to emphasize that, while the main peak
is captured adequately, there is excess probability in the right tail compared to our saddle
point estimate. We shall revisit the contributions at larger values of ρ in section 5.

reproducing accurately its right tail. We shall return to the excess probability observed to
the right of the main peak in section 5.

4 Fluctuations of
√

det′L in (9)

This section can be comfortably skipped by practically-minded readers that are interested
in obtaining useful approximations to the resistance distance distribution, rather than in
justifying the corresponding derivations. Our purpose here is to close an essential gap in the
reasoning of the previous section, though after this has been accomplished, the result of the
previous section will remain unchanged.

We would like to return to (9) and provide an accurate treatment of the
√

det′L factor
that has been neglected in the previous section. This is done by introducing a few more
auxiliary fields and produces a more elaborate structure similar to (13-14). As a result of
these considerations, we shall see that (a) the analysis of the previous section is justified at
leading order in 1/c, (b) the determinant does contribute to subleading corrections in 1/c
(though such contributions are not crucial for the practical purposes of this paper). More
precisely, when the determinant contribution and other higher order corrections are taken
into account, after an appropriate ‘linked cluster’ resummation (the technical details are
given in Appendix C), the exponent of the last factor in (30) turns into a series in powers
of 1/c. However, the powers of 1/c already written in (30) remain unchanged by these
contributions, which only supply higher (and hence more strongly suppressed) powers of
1/c.

To proceed with our derivations, we shall represent the determinant factor
√

det′L in
terms of Gaussian integrals involving both ordinary (commuting) and Grassmanian (anti-
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commuting) variables. This approach has often been taken up in statistical physics consid-
erations related to disordered systems [65–67]. To implement this approach, we rewrite

√
det′L =

1√
det′L

det′L. (36)

The first factor can be represented as an ordinary Gaussian integral

1√
det′L

= π−
N−1

2

∫
dχχχ δ (

∑
i χi) e

−
∑
ij Lijχiχj . (37)

For the second factor, a convenient representation is given in terms of anticommuting (Grass-
manian) fields [65] denoted θθθ and ηηη that satisfy

θiθj = −θjθi (so that θ2
i = 0),

∫
dθi θj = δij,

∫
dθi = 0, (38)

and similar relations for the components of ηηη, while the componenents of θθθ and ηηη anti-
commute with each other. With the Berezin integration rules given above (a more detailed
explanation can be found in [65]), we express the determinant det′L in terms of these new
fields as

det′L =

∫
dθθθdηηη δ (

∑
i θi) δ (

∑
i ηi) e

−
∑
ij Lijθiηj . (39)

Observing that
∑

ij Lijχiχj =
∑

i<j Aij(χi − χj)2 and Lijθiηj =
∑

i<j Aij(θi − θj)(ηi − ηj),
and inserting (36) represented using (37) and (39) into (9), one can perform the summation
over A in a manner identical to (11). We then arrive at the following representation of (9),
with the determinant factor now fully taken into account:

P (ρ) ∝
∫
dξ ξ(N−1)/2e−iξρ

∫
dφφφdχχχdθθθdηηη δ (

∑
iφi) δ (

∑
i χi) δ (

∑
i θi) δ (

∑
i ηi) e

H′ . (40)

Here, H ′ is defined by

H ′ =
c

N

∑
i<j

exp
[
−iξ(φi − φj)2 − (χi − χj)2 − (θi − θj)(ηi − ηj)

]
+ 2iξ(φ1 − φ2). (41)

We have applied the N →∞ limit, as in (12), to simplify the above expression.
The new representation (40-41) can be treated by saddle point methods in direct parallel

to our previous treatment of (13-14). The saddle point configuration for φφφ is exactly the
same as in section 3.2 and is still defined by the saddle point equation (19). All the remaining
fields in (41) vanish in the saddle point configuration. As a result, the different fields involved
completely decouple from each other in the expansion of (41) up to quadratic order in the
fields about the saddle point:

H ′ = H(φφφ0) +
1

2

∑
ij

Mijφ̃iφ̃j −
c

N

∑
i<j

[(χi − χj)2 + (θi − θj)(ηi − ηj)], (42)

where the first two terms are defined by (23) and (25). Since the quadratic forms of χχχ, θθθ
and ηηη in the above expression decouple from the quadratic form of φ̃φφ, and are furthermore
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ξ-independent, the leading order saddle point estimate remains completely identical to sec-
tion 3. Thus, our neglect of the

√
det′L factor in the derivations of section 3 is a posteriori

justified.
At the same time, the different fields involved no longer decouple if one expands (41)

beyond the quadratic order in the fields, and thus extra corrections at higher orders in 1/c

will be produced by the additional fields in (41) that capture the fluctuations of
√

det′L. We
provide an analysis of these corrections in Appendix C, though they do not play a significant
practical role in the considerations of this paper.

5 Subleading corrections and subleading peaks

One can systematically compute the higher order corrections to (30) within the 1/c expan-
sion using the language of Feynman diagrams. We give a technical demonstration of such
computations at first subleading order in Appendix C. In practice, however, these corrections
are numerically insignificant at large c, while at small c, as in Fig. 3, they do not improve the
agreement with the numerics. In fact, they slightly shift the peak to the right away from the
excellent match in Fig. 3, without inducing any other significant changes. A skeptic might
then say that the agreement we observe when the leading order estimate is extended to small
values of c is coincidental. We, however, feel that it must be systematic as it is observed
for different small values of c and there must be an underlying mathematical reason for it,
beyond the scope of our current comprehension. Be it as it may, at this stage, we simply
report the agreement of the leading order saddle point estimate with the numerical data at
low c as an empirical fact.

Figs. 2 and 3 show that the leading order saddle point estimate does a great job at re-
producing the main outline of the resistance distance probability distribution P (ρ). Closer
examination, however, reveals more detailed features of the empirical probability distribu-
tions, in particular, at low values of c. To demonstrate this aspect, we have given in Fig. 4a
a more detailed version of the empirical resistance distance histogram at c = 6 that we have
previously displayed in a more coarse-grained presentation in Fig. 3a, this time switching to
a linear rather than log-linear plot. (We ask the reader to ignore the colors in Fig. 4a at this
point.) First, there are sharp narrow sub-peaks that decorate the main peak and, in fact,
may suggest a lack of smoothness in the true distribution. We do not have a theoretical
understanding of these sharp peaks and will briefly comment on them further in the con-
clusions. Second, there are ‘bumps’ that are seen on top of the tail of the distribution that
extends to higher values of ρ. In the rest of this section, we aim to improve our understanding
of these ‘bumps.’

To demonstrate the nature of the subleading peaks at large ρ to the right of the main
peak, we have made a further refinement in Fig. 4a. Namely, when plotting the empirical
histogram of resistance distances Ωij between vertices i and j in a computer-generated Erdős-
Rényi graph, we have colored the contributions according to the minimal degree of the two
vertices involved, min(di, dj). This coloring reveals that the rightmost visible peak around
ρ ∈ (1.25, 1.75) in fact entirely consists of resistance distances between vertices of degree
1 and the rest of the graph. For other peaks at lower values of ρ, the picture is more
complicated, but it is still clear that these peaks are made from contributions involving
vertices of low degrees. (Qualitatively similar peaks due to vertices of specific low degrees

14



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0

0.5

1.0

1.5

2.0

2.5

3.0
P

ρ

(a)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 2P1

ρ

(b)

Figure 4: Refined representations for the resistance distance distribution of the largest con-
nected component of an Erdős-Rényi graph with 25000 vertices at mean degree 6: (a) the
contributions of the different pairs of vertices to the resistance distance histogram obtained
from numerical simulations, colored according to the smaller value of the vertex degrees
within each pair; the colors, appearing in sequence from right to left, correspond to the
smaller degree values of 1, 2, 3, 4, 5, and all the remaining values lumped together; (b) the
(rightmost) contribution to the histogram in (a) involving vertices of degree 1, isolated and
compared to the analytic prediction 2P1(ρ) extracted as described under (53) and plotted
as a black curve.

have been seen in the analysis of a different characteristic of random graphs in [71].)
The above empirical observations suggest that it is natural to approach the analysis of

the subleading peaks by introducing degree-differentiated resistance distance distributions
that not only specify the resistance distance between vertices 1 and 2, but also require that
the degree of vertex 1 equals d, namely

Pd(Ω12 = ρ) =
1

Z

∑
{A}

δ
(
Linv

11 + Linv
22 − 2Linv

12 − ρ
)
δ
(
d,
∑

jA1j

) ( c
N

)∑
i<j Aij

. (43)

Evidently,
∞∑
d=1

Pd(ρ) = P (ρ), (44)

thus one can think of Pd as controlling the different contributions to P (ρ) in a more discerning
manner. By writing a Fourier representation for the δ-function involving ρ, as in (6), and a
complex plane representation for the Kronecker symbol involving d,

δ
(
d,
∑

jA1j

)
=

1

2πi

∮
dz

zd+1

∏
j

zA1j , (45)

one obtains

Pd(ρ) ∝
∮

dz

zd+1

∫
dξ
∑
{A}

eiξ(L
inv
11 +Linv

22 −2Linv
12 −ρ)

∏
j

zA1j

∏
i<j

( c
N

)Aij
. (46)
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Then, as in section 2, we can write

Pd(ρ) ∝
∮

dz

zd+1

∫
dξ e−iξρξ

N−1
2

∫
dφφφ δ (

∑
iφi) e

2iξ(φ1−φ2) (47)

×
∑
{A}

√
det′L e−iξ

∑
k<l Akl(φk−φl)2

∏
j

zA1j

∏
i<j

( c
N

)Aij
.

We could have given an accurate treatment of the
√

det′L factor, as in section 4, by in-
troducing extra auxiliary fields, but just like in section 4, the result (at leading order in

1/c) would be exactly the same as what one gets by treating
√

det′L as constant. We shall
therefore simply omit this factor to keep the formulas more compact, without affecting the
result. Then, performing the summation over A as in section 3.1, we get

Pd(ρ) ∝
∮

dz

zd+1

∫
dξ e−iξρξ

N−1
2

∫
dφφφ δ (

∑
iφi) e

2iξ(φ1−φ2) (48)

×
∏
j≥2

(
1 +

cz

N
e−iξ(φ1−φj)

2
) ∏

2≤k<l

(
1 +

c

N
e−iξ(φk−φl)

2
)
.

We now focus on d = 1. The contour integral featuring dz/z2 simply extracts the first
z-derivative of the integrand at z = 0. This produces a factor of c

N

∑
j≥2 e

−iξ(φ1−φj)2 . The
contribution from j = 2 can be ignored as it is suppressed by 1/N and vanishes at N →∞.
The remaining N−2 contributions from j ≥ 3 will all equal each other upon integration since
all the other factors in the integrand are invariant under all permutations of (φ3, φ4, . . . , φN).
As a result, c

N

∑
j≥2 e

−iξ(φ1−φj)2 can be effectively replaced by c e−iξ(φ1−φ3)2 at N → ∞,
leaving

P1(ρ) ∝
∫
dξ e−iξρξ

N−1
2

∫
dφφφ δ (

∑
iφi) e

2iξ(φ1−φ2)−iξ(φ1−φ3)2
∏

2≤k<l

(
1 +

c

N
e−iξ(φk−φl)

2
)
. (49)

We now introduce an (N − 1)-dimensional vector φφφ′ whose components are φ′j = φj+1 +

φ1/(N − 1) so that
∑N

j=1 φj =
∑N−1

j=1 φ′j. Then,

P1(ρ) ∝
∫
dξ e−iξρξ

N−1
2

∫
dφφφ′ δ (

∑
iφ
′
i) exp

[∑
k<l

ln
(

1 + c
N
e−iξ(φ

′
k−φ

′
l)

2
)]

×
∫
dφ1e

−2iξ[φ′1−Nφ1/(N−1)]e−iξ[φ
′
2−Nφ1/(N−1)]2 . (50)

The integral over φ1 is Gaussian and can be straightforwardly evaluated to yield a result
proportional to eiξe−2iξ(φ′1−φ′2)/

√
ξ, so that

P1(ρ) ∝
∫
dξ e−iξ(ρ−1)ξ

N−2
2

∫
dφφφ′ δ (

∑
iφ
′
i) exp

[∑
k<l

ln
(

1 + c
N
e−iξ(φ

′
k−φ

′
l)

2
)
− 2iξ(φ′1 − φ′2)

]
.

(51)
But after interchanging φ′1 and φ′2 one notices that, with c� N , this is the same expression
as (13-14), except that ρ got replaced by ρ− 1 and N got replaced by N − 1. Hence, in the
N →∞ limit,

P1(ρ) ∝ P (ρ− 1). (52)
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To identify the numerical coefficient in this relation, we notice that while P (ρ) is normalized
to 1 by (7), the integral of P1(ρ) over ρ is simply the probability for vertex 1 to have degree
1, as one can see by directly integrating the definition (43). The degree distribution of sparse
Erdős-Rényi graphs is known to be Poissonian [59] and hence the probability for vertex 1 to
have degree 1 is ce−c. Hence,

P1(ρ) = ce−cP (ρ− 1). (53)

In Fig. 4b, we have plotted (53) against the distribution of resistance distances involving
vertices of degree 1 from a numerical simulation of an Erdős-Rényi graph at c = 6. The
saddle point estimate (30), shifted to the right by one unit has been used to approximate
P (ρ− 1) on the right-hand side of (53). To get the normalization right, one must remember
that in P1 defined according to (43) the degree of vertex 1 is required to be 1, while in
our histogram, either of the two vertices involved in a particular resistance distance value
can have degree 1. For that reason, one should compare the histogram to 2P1(ρ). With
these specifications, we find convincing agreement between the two curves (remembering the
rather low value of c and the asymptotic nature of our saddle point approach).

The result (53) is rather intuitive in the following sense. To reach the rest of the graph
from a degree 1 vertex, the electric current must traverse the edge that connects this vertex
to its unique nearest neighbor, which adds 1 ohm to the resistance distance, and then reach
the target vertex starting from this unique nearest neighbor. It is natural to imagine that
the resistance distance contributed by this second stage is distributed in the same way as
the resistance distance between two generic vertices. This intuitive picture suggests that the
distribution of resistance distances involving vertices of degree 1 should mimic the general
distribution of resistance distances, but is shifted by 1 ohm, as in (53). Our analysis provides
a mathematical foundation for this intuitive picture.

It is evident due to the suppression by e−c that P1(ρ), which contributes to P (ρ) according
to (44), could not possibly be recovered by computing 1/c corrections to the saddle point
estimate for P (ρ) developed in section 3. It remains an open question whether subleading
saddles exist in (13-14) that would make it possible to recover the ‘bump’ in P (ρ) arising
from P1(ρ) directly from (13-14), without resorting to the decomposition (44).

It should be possible to repeat our derivations for Pd with d ≥ 2. The construction will
still involve applying the Cauchy formula to (48) and then evaluating a Gaussian integral
over φ1. However, the source term in the resulting formula (the term linear in φφφ appearing
in the exponent) will no longer exactly match (13-14). So one can still attempt a saddle
point analysis at large c as in section 3, but the technical details will change. Intuitively,
this complication corresponds to the fact that, at higher d, the current can exit the source
vertex toward any of its d nearest neighbors and then has to reach the target vertex from
any of these neighbors, which is a more complicated picture than for d = 1. We believe it is
very likely that an analytic representation can be developed for Pd with d ≥ 2, but prefer to
limit ourselves here to the relatively straightforward case d = 1 treated above.

6 Discussion

We have proposed an auxiliary field representation in the spirit of statistical field theory
for the resistance distance distribution in large Erdős-Rényi graphs of fixed mean degree c.
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Using this representation, a saddle point estimation of this distribution becomes possible
at large c in terms of the saddle point equation (19), producing the analytic curve (30),
which at progressively larger values of c can be further simplified to (34) or even to the
Gaussian form (35). We have furthermore identified the subleading peaks observed at large
resistance distances in numerical simulations with contributions of vertices of low degrees,
and developed an analytic estimate (53) for the rightmost prominent peak of this sort, coming
from vertices of degree 1.

A few asymptotic approximations have been employed in our analysis, and it may be wise
to summarize them here. First, starting from (12), we only retained the leading term in c/N ,
thus focusing on the sparse graph regime c � N . We have furthermore resorted to an 1/c
expansion in our analysis of (13-14), making our derivations geared toward the asymptotic
regime 1 � c � N , where they are validated by Fig. 2. It is a practical observation of
Fig. 3 that our asymptotic analysis qualitatively captures the main peak of the distribution
even for smaller values of c, strictly speaking, outside the intended validity domain of our
approximations.

Our derivations have been heuristic in nature, in the sense that our plausible (but not
rigorously justified) assumptions about the saddle point that dominates the quantity of
interest have produced results that are convincing in terms of how they compare to the
corresponding numerical simulations, even for low values of c such as 6 or 4. One may
hope that further mathematical work will provide error bounds for our approximate results,
though this would likely require methods beyond what we have used to derive the formulas
presented here. Even at a more basic level, within the context of the effective field-theoretic
description (13-14) or (40-41), one could hope to obtain a more thorough picture of the
full set of saddle points and the explicit integration contour deformation that leads to our
estimate, in particular in relation to the multiple branches of the Lambert W function in (20).
Our derivation has simply assumed that the relevant saddle point respects the symmetries of
the integrand, and that one must use the main branch [68] of the Lambert W function, and
the test of this assumption has been in successful comparisons of its outcome with numerical
experiments.

Another relevant subtlety is that we have essentially treated the Erdős-Rényi graphs as
if they were connected, which gives a negligible mistake in an 1/c treatment at large c since
the fraction of vertices outside the giant connected component is suppressed as e−c [59].
However, the issue becomes more and more pressing as one decreases c. In particular, if one
is interested in the critical (c ≈ 1) or subcritical (c < 1) regime of the Erdős-Rényi graphs
(as in related considerations of [44] for shortest path distances), it is certain that the issue
can no longer be ignored. It may still be possible to develop an auxiliary field representation
along the lines of section 2, but a technical obstruction is that a Gaussian representation is
needed for the pseudoinverse of a general matrix, without any prior assumptions about its
null eigenvectors.

It must be possible, with relative ease, to adapt our considerations to more sophisticated
random graph models that can themselves be effectively treated by statistical field theory
methods. One natural starting point is the two-star model [54,56] and its relatives [57]. Note
that, for the Erdős-Rényi case, the averaging over the graphs is very simple and could be
performed directly, but we had to employ a statistical field representation for the resistance
distance δ-function necessary to obtain the corresponding probability distribution. For more
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complicated random graph ensembles, statistical field theory methods may be necessary to
effectively handle the average over the graphs as well.

We conclude with some tentative comments on the intriguing small-scale features seen
in the numerical simulations, such as the sharp narrow sub-peaks visible in Fig. 4a. These
features are not statistical noise (as one might imagine at the first sight) and neither go away
with averaging over a large number of runs nor change their positions between different runs.
Our analytic results say nothing about these sharp sub-peaks, though they do a great job at
capturing the shape of the large-scale peak upon which these small features are superposed.
One natural thought is that, since resistance distance values 1/di+1/dj in terms of the vertex
degrees di and dj play a significant role in many considerations of resistance distances [10,11],
there could be sharp peaks in the distribution around the rational values 1/n+ 1/m coming
from vertices of degrees n and m. We have not, however, been able to straightforwardly
trace the locations of sharp sub-peaks in Fig. 4a back to such simple rational numbers. Be it
as it may, the ornate structure of Fig. 4a, which is also replicated in the degree-differentiated
resistance distance distributions presented in color in the same figure, makes it very tempting
to conjecture that the true resistance distance distribution of an infinitely large Erdős-Rényi
graph is not, in fact, a smooth curve. Refuting or supporting this conjecture would evidently
require methodology considerably beyond the scope of this article.

Acknowledgments

We thank Eytan Katzav for inciting our interest in properties of resistance distances, and
for comments on the manuscript. Research of O.E. has been supported by the CUniverse
project (CUAASC) at Chulalongkorn University. Research of T.C. has been supported
by the Program Management Unit for Human Resources and Institutional Development,
Research and Innovation (grant number B05F630108), and by Thailand Science Research
and Innovation Fund Chulalongkorn University [CU FRB65 ind (5) 110 23 40].

A Pedagogical account of the resistance distance

Consider a graph defined by an adjacency matrix A. Imagine that each edge is made of a
conducting wire with resistance 1 ohm, and a current of 1 amp is injected into vertex i and
ejected from vertex j. This process induces voltage readings uk as measured at vertex k.
Since 1 amp of current flows between vertices i and j, the resistance measured between these
two vertices, which is by definition the resistance distance, is

Ωij = uj − ui. (54)

Our purpose in this appendix is to derive the expression (4) for this quantity.
The total current flowing out of vertex k is 1 if k = i, −1 if k = j and 0 otherwise. Let

l be a nearest neighbor of k (so that Akl = 1). Since the edge between k and l is a wire of
resistance 1 ohm, this edge is traversed by the current ul−uk. Summing this expression over
all the edges originating from vertex k, we get the total current exiting vertex k, that is∑

l:Akl=1

(ul − uk) ≡
N∑
l=1

Akl(ul − uk) = xk, (55)
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where

xk ≡


1 if k = i,

−1 if k = j,

0 otherwise.

(56)

Since
∑

lAkl = dk by (1), we can rewrite this formula in matrix notation as

Lu = −x, (57)

where L is the Laplacian (3), u is the vector with components uk, and x is a vector with
components xk.

Assume first that the graph described by A is connected. In that case, L has one null
eigenvector (1, 1, . . . , 1)T . This vector represents a common shift of the voltages uk by a
constant, which evidently does not affect the physics. Because of this null vector, L is not
invertible. We can, however, modify it so as to be invertible by introducing the matrix 1 all
of whose entries equal 1, and replacing (57) by

(L + λ1)u = x, (58)

where λ is an arbitrary real number. Since L1 = 1L = 0 and 1x = 0, the above equation is
equivalent to (57) together with the extra condition 1u = 0, which is the same as

∑
k uk = 0,

thus fixing the voltage shift ambiguity. Then, (58) is immediately solved by

u = −(L + λ1)−1x, (59)

where (L + λ1)−1 is the ordinary matrix inverse of L + λ1. Equivalently, in components,

uk = −(L + λ1)−1
ki + (L + λ1)−1

kj , (60)

which is also a solution of (57), for any λ. Finally, from (54),

Ωij = (L + λ1)−1
ii + (L + λ1)−1

jj − 2(L + λ1)−1
ij . (61)

As emphasized already, the inverses are defined for any nonzero λ and the above expression
cannot depend on λ due to the relation L1 = 1L = 0. In particular, taking λ to ∞ converts
(L + λ1)−1 to the Moore-Penrose pseudoinverse of L, yielding (4) as desired. Note that, for
practical computations, (61) with an arbitrarily specified λ is often more convenient [8] than
the Moore-Penrose pseudoinverse.

If the graph corresponding to A is disconnected, it is a matter of convention which
value of resistance distance to assign to two vertices that belong to two different connected
components, since no current may flow between two such vertices. Furthermore, A and L
are block-diagonal with different blocks corresponding to different connected components.
In this situation, there are more than one null vector (one null vector for each connected
component) and the ordinary matrix inverses used in (61) no longer exist. Nonetheless, the
definition (4) based on the Moore-Penrose pseudoinverse still works, and it assigns resistance
distance zero to any two vertices belonging to two different connected components, while
resistance distances within the same connected component are the same as what one would
get with (61) by treating this particular component as an isolated connected graph. Thus,
(4) provides a convenient prescription for defining resistance distances in disconnected graphs
as well, which is commonly adopted in the literature.
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B Gaussian integration formulas for matrix inversion

We start with the well-known Gaussian integration formula

ei
∑
klM

−1
kl xkxl =

(
i

π

)N/2√
det M

∫
dφφφ e−i

∑
klMklφkφl+2i

∑
k φkxk , (62)

and would like to use it to justify (8). An easy way to verify (62) is by introducing the or-
thonormal eigenbasis of M denoted ek and the corresponding eigenvalues µk. After changing
the integration variables from φφφ to yk ≡ (φφφ, ek) (an orthogonal change of variables with a unit
Jacobian), the N integrations decouple into one-dimensional Gaussian (more precisely, Fres-
nel) integrals, and then (62) is recovered due to det M =

∏
k µk and M−1

kl =
∑

n(en)k(en)l/µn.
We cannot apply (62) for cases when M is proportional to the graph Laplacian L defined

by (3), since in that case M possesses a null eigenvector e1 = (1, 1, . . . , 1)T with µ1 = 0.
As a result, neither is the ordinary matrix inverse well-defined, nor is the Gaussian integral
on the right-hand side of (62) convergent. This complication can be remedied, however, by
considering the following modified formula:

ei
∑
klM

inv
kl xkxl =

(
i

π

)N−1
2 √

det′M

∫
dφφφ δ (

∑
iφi) e

−i
∑
klMklφkφl+2i

∑
k φkxk , (63)

where det′M =
∏N

k=2 µk is the pseudodeterminant and M inv
kl =

∑N
n=2(en)k(en)l/µn is the

pseudoinverse. Indeed, changing to the eigenbasis yk ≡ (φφφ, ek) as before, one obtains∫
dy1δ(y1)e2iy1(xxx,e1) = 1 for the y1-integration, while the remaining integrations work in

exactly the same way as in the derivation of (62).
Finally, substituting M = ξL and x = (ξ,−ξ, 0, . . . , 0)T into (63), we arrive at (8).

C Subleading corrections in the 1/c expansion

We present here computations for the 1/c corrections to the leading order saddle point
estimate (30). While this material is of only peripheral importance for the main claim of the
paper that the leading saddle point estimate provides a good approximation to the empirical
data, it may be useful for future work to have these subleading computations collected here.

To analyze the 1/c corrections, we introduce ϕ1 = φ1− φ0 and ϕ2 = φ2− φ0 and expand
(41) around the saddle point configuration φφφ0 = (φ0,−φ0, 0, 0, . . . ), χχχ = θθθ = ηηη = 0 up to
quartic order in the deviations, with φ̃φφ ≡ φφφ− φφφ0 = (ϕ1, ϕ2, φ3, . . . , φN):

H ′ = H(φφφ0) +
1

2

∑
ij

Mijφ̃iφ̃j −
c

2N

∑
ij

[(χi−χj)2 + (θi−θj)(ηi−ηj)] + ∆H + ∆H ′, (64)

∆H = −c ξ
2

2N

∑
3≤i<j

(φi − φj)4 (65)

+
ξ2

Nφ0

∑
j≥3

(
−2

3
φ0(3− 2iξφ2

0)(ϕ1 − φj)3 +
1

6
(−3 + 12iξφ2

0 + 4ξ2φ4
0)(ϕ1 − φj)4

)
+

ξ2

Nφ0

∑
j≥3

(
2

3
φ0(3− 2iξφ2

0)(ϕ2 − φj)3 +
1

6
(−3 + 12iξφ2

0 + 4ξ2φ4
0)(ϕ2 − φj)4

)
,
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∆H ′ =
iξ

N

1− 2iξφ2
0

φ0

{∑
j≥3

(ϕ1 − φj)2[(χ1 − χj)2 + (θ1 − θj)(η1 − ηj)] (66)

+
∑
j≥3

(ϕ2 − φj)2[(χ2 − χj)2 + (θ2 − θj)(η2 − ηj)]

}
+

+
iξc

N

∑
3≤i<j

(φi − φj)2[(χi−χj)2 + (θi−θj)(ηi−ηj)] +
1

2

∑
i<j

(
(χi−χj)4 − (θi−θj)2(ηi−ηj)2

)
.

Here, H(φφφ0) is given by (23), Mij is given by (25), and the saddle point equation (19) has

been used to eliminate the terms linear in φ̃φφ and to simplify the other terms. To organize the
expressions above, we have separated the summation over k and l in (41) into four regions,
which we demonstrate as follows for the case of of (65):

• k = 1, l = 2 – this term can be discarded at N → ∞ as it is explicitly suppressed by
1/N ; it is not included in (65),

• k = 1, l ≥ 3 – these terms give rise to the second line in (65),

• k = 2, l ≥ 3 – these terms give rise to the third line in (65),

• k, l ≥ 3 – these terms give rise to the first line in (65).

A similar treatment has been applied in (66). One should keep in mind that M is of order
c, and hence M−1 is of order 1/c, and φ0 is of order 1/c according to (22). In all the
computations, two kind of terms should be systematically ignored: the terms that vanish
at N → ∞ and the terms that are ξ-independent (the latter can only contribute to the
irrelevant normalization factor of P (ρ) as will become apparent below). For example, the
last sum in the last line of (66) can only produce ξ-independent contributions in the first
order corrections.

In (65), one can see terms cubic in φ̃φφ. These terms, however, come with an extra sup-
pression in 1/c and cannot possibly contribute to the leading order corrections. Indeed, one
can convince oneself that all even order terms in (65) come with coefficients O(c), while all
odd order terms are O(1); it should be kept in mind that φ0 is O(1/c). This suppression is
easily understood because (65) arises from expanding a function even under reflections of φφφ
around a small value of φφφ defined by φ0. As a result, contributions of the cubic terms are
suppressed and irrelevant at leading order. The first nonvanishing correction comes from
the square of the cubic terms in (65), and it can be seen to contribute at order 1/c3. There
are similar cubic terms in (66), but they similarly cannot contribute and have already been
omitted in (66) in order not to clutter the formulas.

With all of these preliminaries, the relevant corrections can be defined as F4,φ and F4,χθη

given by∫
dφφφdχχχdθθθdηηη δ (

∑
iφi) δ (

∑
i χi) δ (

∑
i θi) δ (

∑
i ηi) (67)

× e
1
2

∑
Mij φ̃iφ̃j− c

2N

∑
[(χi−χj)2+(θi−θj)(ηi−ηj)](1 + ∆H + ∆H ′) ∝ (−2π)

N−1
2

√
det′M

(1 + F4,φ + F4,χθη) ,
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where F4,φ collects all the terms coming from ∆H, and F4,χθη, those from ∆H ′. We have
ignored the determinant and numerical prefactor arising from the Gaussian integration over
χ, θ and η, as they are ξ-independent and common to all contributions.

Another relevant point comes from what is known as the ‘linked cluster theorem’ in
statistical field theory; for an exposition aimed at a broad audience see chapter 5 of [52].
The essence is that higher powers of the leading order contributions will arise at higher
orders (due to disconnected Feynman diagrams consisting of multiple copies of lower-order
diagrams). It is possible to resum all of these corrections in a compact form, which amounts
to replacing 1 + F4,φ + F4,χθη in (67) by eF4,φ+F4,χθη . Thus, once F4,φ and F4,χθη have been
computed, a wise way to incorporate them into the estimation of (40-41) is by writing

P (ρ) ∝
∫
dξ

(
1

φ0

− 2iξφ0

)−1

e−iξρe
2
φ0

(1− 1
2c)+4iξφ0(1+ 1

2c)+F4,φ+F4,χθη . (68)

This formula provides the 1/c-corrected version of the resistance distance distribution. The
rest of this appendix simply reports the computation of F4,φ and F4,χθη.

Computation of F4,φ

We now proceed with evaluating F4,φ, whose Feynman diagram representation is

(69)

We emphasize again that, because of the structure of (68), we can safely ignore any ξ-
independent terms in F4,φ, as they can be merged into the normalization of (13). The
quartic terms coming from (65) can be further simplified for the purposes of computing
(67). It is important to keep in mind that the Gaussian measure in (67) is invariant under
interchange of ϕ1 and ϕ2, and under arbitrary permutations of φ3, . . . , φN . Hence, integrating
(ϕ1− φj)4 or (ϕ2− φj)4 with any j ≥ 3 gives the same result as integrating (ϕ1−ϕ3), while
integrating (φi − φj)4 with 3 ≤ i < j gives the same result as integrating (φ3 − φ4)4. Thus,
all the sums in (65) can be eliminated at the cost of appending explicit N -dependent factors
that count the number of terms, since all the terms in each sum equal each other upon the
integration in (67). Once this simplification has been implemented, one can further discard
any contributions that vanish at N →∞. This leads to the following equivalent replacement
for (∆H)4, the quartic part of ∆H:

(∆H)4 →
ξ2

3φ0

(4ξ2φ4
0 + 12iξφ2

0 − 3)(ϕ1 − φ3)4 − (N − 5)

4
c ξ2(φ3 − φ4)4. (70)

In general, expanding (φi − φj)4 = φ4
i − 4φ3

iφj + 6φ2
iφ

2
j − 4φiφ

3
j + φ4

j and applying the
standard Gaussian integration leads to∫

dφφφ

(∑
i

φi

)
e−

1
2

(−Mij)φiφj(φ4
i − 4φ3

iφj + 6φ2
iφ

2
j − 4φiφ

3
j + φ4

j)

=
(−2π)

N−1
2

√
det′M

[
3(M−1

ii )2 − 4M−1
ii M

−1
ij + 6M−1

ii M
−1
jj − 4M−1

ij M
−1
jj + 3(M−1

jj )2
]
,

(71)
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where M−1 evidently means the inverse of M in the subspace orthogonal to the null vector
(1, 1, 1, . . .)T such that M−1M = I − 1/N . Evaluating F4,φ amounts to applying this inte-
gration formula to (70), and subsequently omitting all terms that are either ξ-independent
or vanish at N → ∞. While integrating the last term in (70), it is useful to remember
that M−1

33 = M−1
44 while M−1

34 is of order 1/N and furthermore its leading 1/N part is ξ-
independent. As a result, one obtains

F4,φ =
ξ2

φ0

(4ξ2φ4
0 + 12iξφ2

0 − 3)(M−1
11 +M−1

33 )2 + 3(N − 5)cξ2(M−1
33 )2. (72)

Given the complete description of the eigenvectors and eigenvalues of M under (27), one
can straightforwardly construct M−1 as

M−1
ij =

1

a− g
e1
i e

1
j −

1

Nf
e2
i e

2
j +

1

b− d
(
δij − e0

i e
0
j − e1

i e
1
j − e2

i e
2
j

)
(73)

with e0 = (1, 1, 1, . . .)T/
√
N , e1 = (1,−1, 0, 0, . . .)T/

√
2, e2 =

√
N−2
2N

(1, 1,− 2
N−2

,− 2
N−2

, . . .)T .

From this expression, one directly recovers

M−1
11 =

1

a− g
+O(1/N), M−1

33 =
1− 1/N

b− d
+O(1/N2). (74)

Furthermore, a = a0 +O(1/N) and b = b0 + b1/N +O(1/N2) with

a0 = −4ξ2φ0 −
2iξ

φ0

, b0 = −2iξc, b1 = −8ξ2φ0 −
4iξ

φ0

, (75)

while d and g are O(1/N). We can keep only the contributions of order 1 in the first term of
(72), meaning that M−1

11 ≈ 1/a0 and M−1
33 ≈ 1/b0 for the purposes of evaluating this term,

while the last term contains an explicit factor of N and we must be careful to retain the
contributions of order 1/N . Note that the contribution of order N in the last term of (72) is
ξ-independent and can thus be ignored in the context of (68), while the remaining subleading
contribution is of order 1 and ξ-dependent. Explicitly,

(M−1
33 )2 =

1

b2
0

− 2

Nb2
0

− 2

N

b1 − dN
b3

0

+O(1/N2). (76)

Putting everything together and discarding all terms that vanish at N → ∞ or are ξ-
independent results in the following evaluation:

F4,φ →
ξ2

φ0

(4ξ2φ4
0 + 12iξφ2

0 − 3)

(
1

a0

+
1

b0

)2

+ 3cξ2

(
−2b1

b3
0

)
, (77)

or explicitly:

F4,φ = − 1

φ0c2

{
3− 6iξφ2

0 −
1

4

(
3− 12iξφ2

0 − 4ξ2φ4
0

)(
1 +

cφ0

1− 2iξφ2
0

)2
}
. (78)
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Computation of F4,χθη

As explained above, only terms in ∆H ′ quadratic in φ̃φφ and either quadratic in χ or bilinear
in θ and η contribute nontrivially to F4,χθη at order 1/c. In terms of Feynman diagrams,
these terms are visualized as

(79)

where the dashed line denotes the χ-propagator, and the line with arrows, the θη-propagator.
In a manner similar to the treatment of F4,φ, permutation symmetries of the Gaussian

measure and the N →∞ limit let one simplify ∆H ′ to obtain

∆H ′ → 2iξ

φ0

(1− 2iξφ2
0)(ϕ1 − φ3)2[(χ1 − χ3)2 + (θ1 − θ3)(η1 − η3)] (80)

+ iξc(N − 5)(φ3 − φ4)2[(χ3 − χ4)2 + (θ3 − θ4)(η3 − η4)].

Furthermore, the integration measure of χχχ, θθθ and ηηη is fully symmetric under all permutations
and decoupled from φφφ. Hence, another equivalent replacement is

∆H ′ →
(

2iξ

φ0

(1− 2iξφ2
0)(ϕ1 − φ3)2 + iξc(N − 5)(φ3 − φ4)2

)
[(χ1−χ2)2 + (θ1−θ2)(η1−η2)].

(81)
Since the Gaussian measure in (68) factorizes, the content of the square brackets in the above
expression can be treated separately. We first write∫

dχχχ δ (
∑

i χi) e
− 1

2

∑
ij Πijχiχj(χ1 − χ2)2∫

dχχχ δ (
∑

i χi) e
− 1

2

∑
ij Πijχkχl

= Π−1
11 + Π−1

22 +O(1/N), (82)

where Π ≡ 2c(I− 1/N) is read off (64). Similarly,∫
dθθθdηηη δ(

∑
i θi)δ(

∑
i ηi) e

− 1
2

∑
ij Πijθiηj(θ1−θ2)(η1−η2)∫

dθθθdηηη δ(
∑

i θi)δ(
∑

i ηi) e
− 1

2

∑
ij Πijθiηj

= −2
(
Π−1

11 + Π−1
22 +O(1/N)

)
. (83)

Then, computing the Gaussian average over φ̃φφ in a manner directly analogous to the evalu-
ation of F4,φ, we get:

F4,ξθη = −
(
Π−1

11 + Π−1
22

)(2iξ

φ0

(1− 2iξφ2
0)
(
M−1

11 +M−1
33

)
+ iNcξ

(
M−1

33 +M−1
44

))
. (84)

We then recall (74-75) and approximate M−1
11 ≈ 1/a0 and M−1

33 ≈ 1/b0 while being careful
about contributions of order 1/N in the term that explicitly involves N . We thus arrive at

F4,ξθη = −1

c

(
2iξ

φ0

(1− 2iξφ2
0)

(
1

a0

+
1

b0

)
+ icξ

(
−2b1

b2
0

))
, (85)

which can be simplified to

F4,ξθη =
2iφ2

0ξ + cφ0 − 1

c2φ0

. (86)
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[36] E. Katifori, G. J. Szöllősi and M. O. Magnasco, Damage and fluctuations induce loops
in optimal transport networks, Phys. Rev. Lett. 104 (2010) 048704 arXiv:0906.0006
[physics.bio-ph]

[37] T. Gavrilchenko and E. Katifori, Distribution networks achieve uniform perfusion
through geometric self-organization, arXiv:2009.04375 [physics.bio-ph].

[38] S. Fancher and E. Katifori, Tradeoffs between energy efficiency and mechanical response
in fluid flow networks, arXiv:2102.13197 [physics.bio-ph].

[39] Y. Luo, Ch.-L. Ho, B. R. Helliker and E. Katifori, Leaf water storage and robust-
ness to intermittent drought: a spatially explicit capacitive model for leaf hydraulics,
arXiv:2106.08939 [physics.bio-ph].

[40] T.  Luczak, Random trees and random graphs, Rand. Struct. Alg. 13 (1998) 485.
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in subcritical Erdős-Rényi networks, Phys. Rev. E 98 (2018) 012301 arXiv:1806.05743
[cond-mat.dis-nn].

[45] A. D. Jackson and S. P. Patil, Phases of small worlds: a mean field formulation,
arXiv:2103.14001 [cond-mat.stat-mech].

[46] N. Boumal and X. Cheng, Concentration of the Kirchhoff index for Erdős-Rényi graphs,
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[51] E. Brézin, Introduction to statistical field theory (Cambridge, 2010).

[52] M. Helias and D. Dahmen, Statistical field theory for neural networks (Springer, 2020).

[53] M. Moshe and J. Zinn-Justin, Quantum field theory in the large N limit: a review, Phys.
Rept. 385 (2003) 69 arXiv:hep-th/0306133.

[54] J. Park and M. E. J. Newman, Solution of the two-star model of a network, Phys. Rev.
E 70 (2004) 066146 arXiv:cond-mat/0405457.

[55] F. L. Metz, G. Parisi and L. Leuzzi, Finite size correction to the spectrum of regular
random graphs: an analytical solution, Phys. Rev. E 90 (2014) 052109 arXiv:1403.2582
[cond-mat.dis-nn].

[56] A. Annibale and O. T. Courtney, The two-star model: exact solution in the sparse
regime and condensation transition, J. Phys. A 48 (2015) 365001 arXiv:1504.06458
[cond-mat.dis-nn].

[57] M. Bolfe, F. L. Metz, E. Guzmán-González and I. Pérez Castillo, Analytic solu-
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