
Heating Rates under Fast Periodic Driving beyond Linear Response

Takashi Mori1
1RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan

Heating under periodic driving is a generic nonequilibrium phenomenon, and it is a challenging problem in
nonequilibrium statistical physics to derive a quantitatively accurate heating rate. In this work, we provide a
simple formula on the heating rate under fast and strong periodic driving in classical and quantum many-body
systems. The key idea behind the formula is constructing a time-dependent dressed Hamiltonian by moving to
a rotating frame, which is found by a truncation of the high-frequency expansion of the micromotion operator,
and applying the linear-response theory. It is confirmed for specific classical and quantum models that the
second-order truncation of the high-frequency expansion yields quantitatively accurate heating rates beyond the
linear-response regime. Our result implies that the information on heating dynamics is encoded in the first few
terms of the high-frequency expansion, although heating is often associated with an asymptotically divergent
behavior of the high-frequency expansion.

Introduction.— Fast periodic driving in thermally isolated
many-body systems can stabilize interesting many-body states.
Theoretically, by using the high-frequency expansion of the
Floquet operator, we can obtain a static effective Hamilto-
nian that describes the property of such a stabilized state, and
interesting phases have been theoretically predicted [1–3]. Re-
cent experimental developments allow us to realize some of
those nonequilibrium phases [4–9] and have triggered active
research on the Floquet engineering (see Ref. [3] for a recent
review).

Stability of such nonequilibrium phases is limited by heat-
ing due to periodic driving. It is therefore practically im-
portant to evaluate the heating rate. The rigorous approach
has made significant progress in this field. It is rigorously
proved that the heating is exponentially suppressed at high fre-
quencies [10–14]. This phenomenon is known as the Floquet
prethermalization [15], which has also been experimentally
observed [16, 17]. However, the rigorous approach so far is
limited to quantum systems with a bounded energy spectrum
(i.e. quantum spin systems) and classical spin systems [18].
Moreover, those rigorous results just give relatively loose up-
per bounds on the heating rate.

It is a theoretical challenge in nonequilibrium statistical
physics to give a quantitatively accurate estimation of the heat-
ing rate for a wider class of many-body systems. For this
purpose, the statistical approach is promising, in which the
heating rate is evaluated by investigating the statistical prob-
ability of many-body resonances [19–21]. This approach is
not rigorous, but instead, it gives approximate heating rates
for generic systems including unbounded quantum and clas-
sical systems. Indeed, Floquet prethermalization in classical
systems has been first established along this approach [19].
The evaluation of the heating rate using Fermi’s golden rule
for quantum systems [22, 23] and the energy diffusion theory
for classical systems [24] can be categorized to this approach.
However, such treatments have successfully given accurate
heating rates only for weak driving. For modest or strong driv-
ing, which is needed for Floquet engineering, we need a new
theoretical idea to achieve the goal.

In this Letter, we develop the statistical approach to the heat-
ing dynamics under strong driving, and obtain a simple ana-

lytical formula on the heating rate. The formula is obtained by
finding a rotating frame in which driving looks weak enough.
Such a rotating frame is found by using the technique of the
high-frequency expansion [1, 2, 25]. The Hamiltonian in the
rotating frame is called the dressed Hamiltonian, which is still
time-periodic but has much weaker driving amplitude. Con-
sequently, the linear response argument is valid for the dressed
Hamiltonian rather than for the bare Hamiltonian, even when
the original driving field is strong enough to being out of the
linear response regime.

In a recent work [26], Fermi’s golden rule is extended
to strong driving by utilizing the high-frequency expansion,
which is conceptually close to the present work. However,
our formulation importantly differs from the one in Ref. [26].
The heating-rate formula obtained in Ref. [26] requires the
exact Floquet operator (i.e. the time evolution operator over
a cycle), which is not desirable feature. As a practical prob-
lem, this fact prevents us from applying the theory to classical
systems, in which the Floquet operator is not accessible even
numerically [18]. On the other hand, the formula given in
this Letter does not refer to the exact Floquet operator: the
formula is completely written in terms of a truncated high-
frequency expansion, which is accessible even for classical
systems [18, 27]. This fact tells us that information on heat-
ing under fast and strong driving is encoded in the first few
terms of the high-frequency expansion, which is an important
theoretical observation not found in the previous studies.

In the following, we first describe how to get a dressed
Hamiltonian via the high-frequency expansion. We then give
linear response formulae on the heating rate in terms of the
dressed Hamiltonian. Next, we numerically evaluate heat-
ing rates in specific classical and quantum spin systems and
compare them with our theoretical predictions. Finally, we
conclude our work with some remarks and future prospects.

Dressed Hamiltonian.— For notational simplicity, we first
focus on quantum systems, and later discuss classical systems.
Suppose a quantum system with a time-periodic Hamiltonian
𝐻 (𝑡) = 𝐻0 + 𝑉 (𝑡) with 𝑉 (𝑡) = ∑∞

𝑚=−∞𝑉𝑚𝑒−𝑖𝑚𝜔𝑡 with 𝑉0 = 0
and 𝑉−𝑚 = 𝑉†

𝑚 (in classical systems † should be interpreted as
the complex conjugate), where the frequency is denoted by 𝜔
and the period is given by 𝑇 = 2𝜋/𝜔. The Floquet theorem
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states that the time evolution operator 𝑈𝑡 ,𝑡0 from time 𝑡0 to
𝑡 is expressed as 𝑈𝑡 ,𝑡0 = 𝑒−𝑖𝐾 (𝑡)𝑒−𝑖𝐻𝐹 (𝑡−𝑡0)/ℏ𝑒𝑖𝐾 (𝑡0) , where a
time-periodic Hermitian operator 𝐾 (𝑡) = 𝐾 (𝑡 + 𝑇) is called
the micromotion operator or the kick operator, and 𝐻𝐹 is
called the Floquet Hamiltonian [1]. It is noted that the choice
of 𝐾 (𝑡) and 𝐻𝐹 is not unique: Defining 𝑒𝑖𝐾 ′ (𝑡) = 𝑈†𝑒𝑖𝐾 (𝑡)

and 𝐻 ′
𝐹 = 𝑈†𝐻𝐹𝑈 for any time-independent unitary operator

𝑈, we find 𝑈𝑡 ,𝑡0 = 𝑒−𝑖𝐾
′ (𝑡)𝑒−𝑖𝐻

′
𝐹 (𝑡−𝑡0)𝑒𝑖𝐾

′ (𝑡0) . In the high-
frequency limit 𝜔 → ∞, 𝐾 (𝑡) becomes constant, and hence
we require lim𝜔→∞ 𝐾 (𝑡) = 0 for convenience.

Since 𝑈𝑡 ,𝑡0 satisfies 𝑖ℏ𝑑𝑈𝑡 ,𝑡0/𝑑𝑡 = 𝐻 (𝑡)𝑈𝑡 ,𝑡0 , the micromo-
tion operator and the Floquet operator are related with each
other via the equality

𝐻𝐹 = 𝑒𝑖𝐾 (𝑡)
[
𝐻 (𝑡) − 𝑖ℏ 𝑑

𝑑𝑡

]
𝑒−𝑖𝐾 (𝑡) . (1)

This equation is interpreted as follows. Let us move to the
“rotating frame” associated with the unitary transformation
𝑒𝑖𝐾 (𝑡) . The Schrödinger equation 𝑖ℏ𝑑 |𝜓(𝑡)〉 /𝑑𝑡 = 𝐻 (𝑡) |𝜓(𝑡)〉
is transformed to

𝑖ℏ
𝑑 |𝜓 ′(𝑡)〉
𝑑𝑡

= 𝐻𝐹 |𝜓 ′(𝑡)〉 , (2)

where |𝜓 ′(𝑡)〉 = 𝑒𝑖𝐾 (𝑡) |𝜓(𝑡)〉 is the quantum state in the ro-
tating frame. That is, the Hamiltonian in the rotating frame is
given by 𝐻𝐹 , and the time dependence of the Hamiltonian is
completely removed.

Although 𝐻𝐹 contains full information on the long-time
evolution including the heating rate, 𝐻𝐹 is highly nonlocal
and quite complicated in many-body systems [28, 29] and it is
difficult to extract dynamical properties from 𝐻𝐹 . It is also a
hard task to numerically obtain 𝐾 (𝑡) and 𝐻𝐹 exactly.

For fast driving, we can construct high-frequency expan-
sions of 𝐾 (𝑡) and 𝐻𝐹 , which are accessible analytically and
numerically. Because of the non-uniqueness of 𝐾 (𝑡) and 𝐻𝐹 ,
there are various high-frequency expansions [25]. In this
work, we focus on the van Vleck expansion [1, 30] because
of its analytical simplicity. The formulation given below is
also applicable to other high-frequency expansions such as the
Floquet-Magnus expansion [11, 12].

The van Vleck high-frequency expansion is formally written
in the following form:

𝐾 (𝑡) =
∞∑︁
𝑘=1

Λ𝑘 (𝑡)
𝜔𝑘

, 𝐻𝐹 = 𝐻0 +
∞∑︁
𝑘=1

Ω𝑘
𝜔𝑘

. (3)

The first two terms of the expansions are explicitly given by

𝑖ℏΛ1 (𝑡) = −
∑︁
𝑚≠0

𝑉𝑚
𝑚
𝑒−𝑖𝑚𝜔𝑡 , Ω1 =

∑︁
𝑚≠0

[𝑉−𝑚, 𝑉𝑚]
2𝑚ℏ

(4)

and



𝑖ℏ2Λ2 (𝑡) =
∑︁
𝑚≠0

(
[𝑉𝑚, 𝐻0]
𝑚2 +

∑︁
𝑛≠0,𝑚

[𝑉𝑛, 𝑉𝑚−𝑛]
𝑚𝑛

)
𝑒−𝑖𝑚𝜔𝑡 ,

Ω2 =
∑︁
𝑚≠0

(
[[𝑉−𝑚, 𝐻0], 𝑉𝑚]

2ℏ2𝑚2 +
∑︁
𝑛≠0,𝑚

[[𝑉−𝑚, 𝑉𝑚−𝑛], 𝑉𝑛]
3ℏ2𝑚𝑛

)
.

(5)
Additional details on the van Vleck expansion as well as an
explicit form of Λ3 (𝑡) are given in Supplementary Material
(SM) [? ] (also see Ref. [25]).

It should be noted that this expansion is an asymptotic ex-
pansion in the thermodynamic limit [11], and hence we should
truncate the expansion to obtain a meaningful result. We de-
fine the 𝑛th order truncation of the expansion of 𝐾 (𝑡) and 𝐻𝐹
as 𝐾 (𝑛) (𝑡) = ∑𝑛

𝑘=1 Λ𝑘/𝜔𝑘 and 𝐻 (𝑛)
𝐹 =

∑𝑛
𝑘=0 Ω𝑘/𝜔𝑘 , respec-

tively.
Let us move to the rotating frame associated with 𝐾 (𝑛) (𝑡)

rather than 𝐾 (𝑡). The Hamiltonian in this rotating frame is
given by

𝑒−𝑖𝐾
(𝑛) (𝑡)

[
𝐻 (𝑡) − 𝑖ℏ 𝑑

𝑑𝑡

]
𝑒𝑖𝐾

(𝑛) 𝑡 ' 𝐻̃ (𝑛) (𝑡) (6)

up to 𝑂 (𝜔−𝑛), where the 𝑛th order dressed Hamiltonian 𝐻̃ (𝑛)

is given by

𝐻̃ (𝑛) (𝑡) = 𝐻 (𝑛)
𝐹 +𝑉 (𝑛) (𝑡). (7)

Its static part is nothing but the 𝑛th order truncation of the
Floquet Hamiltonian. In SM [? ], it is shown that the dressed
driving 𝑉 (𝑛) (𝑡) is expressed as

𝑉 (𝑛) (𝑡) = ℏ

𝜔𝑛+1
𝑑Λ𝑛+1 (𝑡)

𝑑𝑡
. (8)

We find that𝑉 (𝑛) (𝑡) satisfies the desirable property of periodic
driving: 𝑉 (𝑛) (𝑡) = 𝑉 (𝑛) (𝑡 + 𝑇) and

∫ 𝑇
0 𝑑𝑡 𝑉 (𝑛) (𝑡) = 0. More-

over, the dressed driving field is strongly weakened at high
frequencies: the amplitude of 𝑉 (𝑛) (𝑡) is smaller by a factor of
(𝑔/ℏ𝜔)𝑛 compared with the bare driving field 𝑉 (𝑡), where 𝑔
denotes a characteristic local energy scale of the Hamiltonian
𝐻 (𝑡) [31]. It is therefore expected that even if the driving
is strong in the original frame, it looks weak in the rotating
frame, and we can carry out the linear response calculation in
the latter.

We remark that higher-order terms omitted in Eq. (6) are
smaller by a factor of (𝑔/ℏ𝜔)𝑛+1, and hence Eq. (6) is justified
when (𝑔/ℏ𝜔)𝑛+1 � 1. On the other hand, our approximation
breaks down when 𝑔 & ℏ𝜔 (e.g. when the amplitude 𝜉 of
periodic driving is greater than ℏ𝜔).

The dressed Hamiltonian can also be constructed in classical
systems. Analytical expressions of Λ𝑘 (𝑡) and Ω𝑘 in quantum
systems contain commutators of operators, and their classical
counterparts are just obtained by replacing the commutator by
the Poisson bracket, (1/𝑖ℏ) [·, ·] → {·, ·}PB. This procedure is
justified by formally applying Floquet theory to the classical
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Liouville equation 𝑑𝜌(𝑧𝑡 )/𝑑𝑡 = {𝐻 (𝑡; 𝑧𝑡 ), 𝜌(𝑧𝑡 )}PB, where 𝑧𝑡
represents the set of all the coordinates and all the momenta
of the classical system at time 𝑡, 𝜌(𝑧𝑡 ) is the probability dis-
tribution in the classical phase space, and 𝐻 (𝑡; 𝑧𝑡 ) denotes the
classical Hamiltonian. See Ref. [18] for more details.

Heating-rate formula.— We now give the heating rate by
using the linear response theory for the dressed Hamiltonian
𝐻̃ (𝑛) (𝑡) = 𝐻 (𝑛)

𝐹 +𝑉 (𝑛) (𝑡). Now we interpret the static part𝐻 (𝑛)
𝐹

of 𝐻̃ (𝑛) (𝑡) as the energy of the system, and the heating rate is
given by 𝜅 = 𝑑 (𝐸/𝑁)/𝑑𝑡, where 𝑁 denotes the system size
(the number of particles/spins). Here, 𝑉 (𝑛) (𝑡) is decomposed
as 𝑉 (𝑛) (𝑡) = ∑∞

𝑚=−∞𝑉
(𝑛)
𝑚 𝑒−𝑖𝑚𝜔𝑡 .

According to the linear response theory [32, 33], the heating
rate 𝜅 at the energy 𝐸 under the external field 𝑉 (𝑛) (𝑡) is eval-
uated in terms of auto-correlation functions of { ¤𝑉 (𝑛)

𝑚 }, where
for classical systems ¤𝑉 (𝑛)

𝑚 = {𝑉 (𝑛)
𝑚 , 𝐻 (𝑛)

𝐹 }PB and for quantum
systems ¤𝑉 (𝑛)

𝑚 = (1/𝑖ℏ) [𝑉 (𝑛)
𝑚 , 𝐻 (𝑛)

𝐹 ]. The formula is given by

𝜅 =
𝛽

2𝑁

∑︁
𝑚≠0

𝐶𝑚 (𝜔), (9)

where 𝛽 = 𝜕𝑆(𝐸)/𝜕𝐸 denotes the microcanonical temperature
[𝑆(𝐸) is the microcanonical entropy]. For classical systems,
the function 𝐶𝑚 (𝜔) is defined as

𝐶𝑚 (𝜔) =
∫ ∞

−∞
𝑑𝑡 〈 ¤𝑉 (𝑛)†

𝑚 (𝑧𝑡 ) ¤𝑉 (𝑛)
𝑚 (𝑧0)〉 𝑒𝑖𝑚𝜔𝑡 , (10)

where 〈·〉 denotes the microcanonical average and the trajec-
tory {𝑧𝑡 }𝑡 is generated by the static Hamiltonian 𝐻 (𝑛)

𝐹 , i.e.,
𝑑𝑧𝑡/𝑑𝑡 = {𝑧𝑡 , 𝐻 (𝑛)

𝐹 (𝑧𝑡 )}PB. For quantum systems,

𝐶𝑚 (𝜔) =
∫ ∞

−∞
𝑑𝑡

1
𝛽

∫ 𝛽

0
𝑑𝜆 〈 ¤𝑉 (𝑛)†

𝑚 (𝑡 − 𝑖ℏ𝜆) ¤𝑉 (𝑛)
𝑚 (0)〉 𝑒𝑖𝑚𝜔𝑡

=
1 − 𝑒−𝛽𝑚𝜔
𝛽𝑚𝜔

∫ ∞

−∞
𝑑𝑡 〈 ¤𝑉 (𝑛)†

𝑚 (𝑡) ¤𝑉 (𝑛)
𝑚 (0)〉 𝑒𝑖𝑚𝜔𝑡 , (11)

where ¤𝑉 (𝑛)†
𝑚 (𝑡) = 𝑒 (𝑖/ℏ)𝐻

(𝑛)
𝐹 𝑡 ¤𝑉 (𝑛)

𝑚 𝑒−(𝑖/ℏ)𝐻
(𝑛)
𝐹 𝑡 . The derivation

of Eqs. (9), (10) and (11) is given in SM [? ].
The Wiener-Khinchin theorem states that𝐶𝑚 (𝜔) is identical

to the power spectrum of ¤𝑉 (𝑛)
𝑚 (𝑧𝑡 ) for classical systems [32]. It

is also extended to quantum systems; see Ref. [34] for the cal-
culation of the Fourier transform of auto-correlation functions
via a Wiener-Khinchin-like theorem for quantum systems.

When the frequency is large enough, 𝐶𝑚 (𝜔) decays expo-
nentially in |𝑚𝜔| [10, 24]. Therefore, the contribution from
𝑚 = ±1 is dominant, and the heating rate is approximated by

𝜅 ' 𝛽

2
[𝐶1 (𝜔) + 𝐶−1 (𝜔)] . (12)

Equations (9) and (12) are our main result.
It should be noted that when 𝑛 = 0, our formula is reduced

to the conventional linear response result. For 𝑛 ≥ 1, our
result is regarded as its extension to fast and strong driving. It
is expected that increasing 𝑛 improves accuracy up to a certain

order 𝑛0 ∝ ℏ𝜔/𝑔, but increasing 𝑛 further for 𝑛 > 𝑛0 will be
rather harmful because of the divergence of the high-frequency
expansion [11, 12].

Before going on to numerical results, it should be empha-
sized that it is crucial in our formulation to consider the high-
frequency expansion of the micromotion operator. Since the
micromotion operator describes fast oscillations rather than
long-time slow dynamics, it is often neglected. However, in
our formulation, a truncation of the high-frequency expan-
sion of the micromotion operator yields a dressed driving field
𝑉 (𝑛) (𝑡), which contributes to a finite heating rate.

Classical model.— We now present numerical results for
classical spin systems. The classical spin at 𝑖th site is de-
noted by s𝑖 = (𝑠𝑥𝑖 , 𝑠𝑦𝑖 , 𝑠𝑧𝑖 ) satisfying |s𝑖 |2 = 1, and 𝑧 =
(s1, s2, . . . , s𝑁 ) represents the set of all the classical spin
variables. The Hamiltonian 𝐻 (𝑡; 𝑧) = 𝐻0 (𝑧) +𝑉 (𝑡; 𝑧) is given
by

𝐻0 (𝑧) = −
𝑁∑︁
𝑖=1

[
𝐽𝑠𝑧𝑖 𝑠

𝑧
𝑖+1 + ℎ𝑥𝑠𝑥𝑖 + ℎ𝑧𝑠𝑧𝑖

]
(13)

and

𝑉 (𝑡; 𝑧) = −𝜉
[
cos(𝜔𝑡)

𝑁∑︁
𝑖=1

𝑠𝑧𝑖 𝑠
𝑧
𝑖+1 + sin(𝜔𝑡)

𝑁∑︁
𝑖=1

𝑠𝑥𝑖

]
. (14)

By defining the local effective field h̃𝑖 (𝑡) = −𝜕𝐻 (𝑡)/𝜕s𝑖 , the
classical equations of motion are given by

𝑑s𝑖
𝑑𝑡

= 2s𝑖 × h̃𝑖 (𝑡), (15)

which is the classical limit of the Heisenberg equations of
motion for Pauli matrices. In this work, we fix 𝐽 = 1, ℎ𝑥 =
0.77, ℎ𝑧 = 0.49, 𝑇 = 0.5 (𝜔 = 2𝜋/𝑇 ' 12.6), and the system
size 𝑁 = 100.

The heating rate is calculated as follows. First 𝑠𝑦𝑖 and
𝑠𝑧𝑖 for 𝑖 = 1, 2, . . . , 𝑁 are sampled independently from the
uniform distribution between 0 and 0.1, and 𝑠𝑥𝑖 is fixed

as 𝑠𝑥𝑖 =
√︃

1 − 𝑠𝑦𝑖 (0)2 − 𝑠𝑧𝑖 (0)2. We then randomly choose
𝜏 ∈ [1000, 2000] and the spin variables evolve over the time
𝜏 without driving, 𝜉 = 0. This is our initial state {s𝑖 (0)}𝑁𝑖=1.
Next, we solve Eq. (15). We measure two times 𝑡1 and 𝑡2,
which are defined as 𝑡𝑖 = min𝑛∈N{𝑡 = 𝑛𝑇 : 𝐻0 (𝑧𝑡 ) ≥ 𝑁𝜀𝑖} for
𝑖 = 1, 2. We fix 𝜀1 = −0.6 and 𝜀2 = −0.5 (the corresponding
inverse temperature is 𝛽 ' 1.1). The heating rate is then given
by 𝜅 = (𝜀2−𝜀1)/(𝑡2− 𝑡1). We repeat this procedure 500 times,
and compute the average heating rate.

We compare it with the heating rate calculated by our for-
mula. We perform the van Vleck high-frequency expansion
and analytically obtain 𝐻̃ (𝑛) (𝑡) up to 𝑛 = 2. We then evaluate
the heating rate by using Eq. (12) with the help of the Wiener-
Khinchin theorem. The technical detail of the calculation is
explained in SM [? ].

Our numerical results are displayed in Fig. 1. The heat-
ing rate calculated by solving Eq. (15) shows non-monotonic
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FIG. 1. Heating rate in the classical spin system against the driving
amplitude 𝜉. The system size is set to be 𝑁 = 100. Blue triangles
show the heating rate estimated by exactly solving the equations of
motion (15). The solid line, the dotted line, and the dashed line show
the heating rates calculated by our formula (12) for 𝑛 = 0, 1, and 2,
respectively. Error bars are smaller than the symbols.

behavior: the heating is suppressed for strong driving [26].
On the other hand, for 𝑛 = 0 and 1, our formula (12) does
not reproduce non-monotonicity. When 𝑛 = 0, our formula
is reduced to the linear response expression, and hence the
heating rate is proportional to 𝜉2. When 𝑛 = 1, our formula
agrees with the exact heating rate at weak and strong driving,
but does not show non-monotonicity. We clearly see that our
formula for 𝑛 = 2 well reproduces a curve of the exact heating
rate, including characteristic non-monotonic behavior.

Frequency dependences of the heating rate are given in
SM [? ], in which we find that the non-monotonicity occurs
at 𝜉 which is large but independent of 𝜔. Therefore, this non-
monotonicity should be distinguished from dynamical freezing
phenomena [35–37], in which heating is suppressed due to an
emergent symmetry at ultra-strong driving with 𝜉 ∝ 𝜔.

Quantum model.— We also verify our formula in quan-
tum systems. We consider a quantum spin-1/2 chain with the
Hamiltonian




𝐻0 = −
𝑁∑︁
𝑖=1

[𝐽𝑧𝜎𝑧𝑖 𝜎𝑧𝑖+1 + 𝐽𝑥𝜎𝑥𝑖 𝜎𝑥𝑖+1 + ℎ𝜎𝑧𝑖 ],

𝑉 (𝑡) = −𝜉 sgn[cos(𝜔𝑡)]
𝑁∑︁
𝑖=1

𝜎𝑥𝑖 ,

(16)

where𝜎𝛼 (𝛼 = 𝑥, 𝑦, 𝑧) denotes the Pauli matrix. We fix 𝐽𝑧 = 1,
𝐽𝑥 = 0.77, ℎ = 0.6, and 𝑇 = 0.5 (𝜔 ' 12.6).

We prepare an initial state as a canonical thermal pure
quantum state [38]: we generate a random vector |𝑟〉 whose
elements are i.i.d. Gaussian of mean 0 and unit variance,
and construct a state |𝛽〉 = 𝑒−𝛽𝐻/2 |𝑟〉 /〈𝑟 |𝑒−𝛽𝐻 |𝑟〉. We then
solve the Schrödinger equation 𝑖ℏ𝑑 |𝜓(𝑡)〉 /𝑑𝑡 = 𝐻 (𝑡) |𝜓(𝑡)〉
with |𝜓(0)〉 = |𝛽〉, where we set ℏ = 1 in numerical cal-
culations. The heating rate is calculated in the same way
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g 
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FIG. 2. Heating rate in the quantum spin system against the driving
amplitude 𝜉. Blue triangles show the heating rate estimated by exactly
solving the Scrödinger equation for 𝑁 = 16. The solid line and the
dashed line show the heating rates calculated by our formula (12) for
𝑁 = 14 with 𝑛 = 0 and 2, respectively (in the present model, 𝑛 = 1
gives an identical result to 𝑛 = 0). Error bars are smaller than the
symbols.

as in classical systems: we measure 𝑡1 and 𝑡2 satisfying
𝑡𝑖 = min𝑛∈N{𝑡 = 𝑛𝑇 : 〈𝜓(𝑡) |𝐻0 |𝜓(𝑡)〉 ≥ 𝑁𝜀𝑖} with 𝜀1 = −0.5
and 𝜀2 = −0.48 (the corresponding inverse temperature is
𝛽 ' 0.23). The heating rate is given by (𝜀2−𝜀1)/(𝑡2− 𝑡1). For
the system size 𝑁 = 16, we repeat the above procedure (the
generation of an initial state, solving the Schrödinger equa-
tion, and measuring the heating rate) 10 times, and compute
the average heating rate.

The heating rate is also evaluated for 𝑁 = 14 by using our
formula with 𝑛 = 0 and 2 (in the present model, it is shown that
𝑛 = 1 gives the identical result to 𝑛 = 0). Details are explained
in SM [? ].

Numerical results are shown in Fig. 2. We can see that
the heating rate again shows non-monotonic behavior, which
implies that the system is not in the linear response regime.
Our formula with 𝑛 = 2 reproduces this behavior.

Conclusion and Outlook.— We have derived a formula
on the heating rate under fast driving with arbitrary driving
strength. Our idea is based on considering the problem in a
rotating frame in which driving looks weak. Such a rotat-
ing frame is found by using the high-frequency expansion of
the micromotion operator. Our formulation is valid for both
classical and quantum systems.

It is often argued that a truncation of the high-frequency
expansion of the Floquet Hamiltonian describes dynamics in
a prethermal regime before the heating takes place [11, 12,
26], whereas an asymptotic divergent behavior of the high-
frequency expansion is related to heating. Contrary to this
argument, our formulation tells us that the information on
heating under fast and strong periodic driving is encoded in
a truncation of the high-frequency expansions of the Floquet
Hamiltonian and the micromotion operator. Considering the
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micromotion operator is crucial in our formulation, although it
is often neglected in investigating heating dynamics because of
the fact that the micromotion describes fast oscillations rather
than long-time slow dynamics.

Both in classical and quantum systems, we have found non-
monotonic heating rates as a function of the driving amplitude.
Such non-monotonicity has also been found in the previous
study [26], and it looks universal in some extent. It is a
future problem to understand universal features of the heating
dynamics by using our formulation.

Some recent studies have also attempted to use aperiodic
driving (random or quasiperiodic one) for controlling quantum
many-body systems [39–43], and some rigorous results have
begun to appear [44, 45]. It will be a fascinating open problem
to give a simple and accurate heating-rate formula for fast and
strong quasiperiodic driving.

Fruitful discussions with Wade Hodson, Tatsuhiko N. Ikeda,
and Christopher Jarzynski are gratefully acknowledged. This
work was supported by JSPS KAKENHI Grant Numbers
JP19K14622, JP21H05185.
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A. DERIVATION OF THE LINEAR RESPONSE FORMULA ON THE HEATING RATE

In this section, we give linear response formulae on the heating rate. The material in this section is rather standard and not
new, but we provide it for convenience.

Quantum systems

Let us consider the Hamiltonian 𝐻 (𝑡) = 𝐻0 +𝑉 (𝑡) with 𝑉 (𝑡) = ∑
𝑚≠0𝑉𝑚𝑒

−𝑖𝑚𝜔𝑡 . We consider a quantum system below, but it
is straightforward to extend the analysis to a classical system.

Let us define Φ𝑚𝑛 (𝑡) as the response function of the quantity 𝑉𝑚 to the external field proportional to 𝑉𝑛. That is, when 𝑉 (𝑡) is
small, the expectation value of 𝑉𝑚 at time 𝑡 is written as

〈𝑉𝑚〉𝑡 − 〈𝑉𝑚〉eq =
∑︁
𝑛≠0

∫ ∞

0
𝑑𝑠Φ𝑚𝑛 (𝑠)𝑒−𝑖𝑛𝜔 (𝑡−𝑠) =

∑︁
𝑛≠0

𝑒−𝑖𝑛𝜔𝑡
∫ ∞

0
𝑑𝑠Φ𝑚𝑛 (𝑠)𝑒𝑖𝑛𝜔𝑠 =:

∑︁
𝑛≠0

𝑒−𝑖𝑛𝜔𝑡 𝜒𝑚𝑛 (𝑛𝜔), (S1)

where 〈·〉eq denotes the equilibrium average without perturbation 𝑉 (𝑡).
The energy absorption rate 𝜅 is given by

𝜅 =
1
𝑁

∑︁
𝑚≠0

𝑒−𝑖𝑚𝜔𝑡
𝑑 〈𝑉𝑚〉𝑡
𝑑𝑡

=
1
𝑁

∑︁
𝑚≠0

𝑖𝑚𝜔𝜒𝑚,−𝑚 (−𝑚𝜔) = − 𝑖

𝑁

∑︁
𝑚≠0

𝑚𝜔𝜒−𝑚,𝑚 (𝑚𝜔), (S2)

where 𝑓 (𝑡) = (1/𝑇)
∫ 𝑇
0 𝑑𝑡 𝑓 (𝑡) denotes the time average.

According to the linear response theory [S1], Φ𝑛𝑚 (𝑡) is given by

Φ𝑚𝑛 (𝑡) =
∫ 𝛽

0
𝑑𝜆 〈 ¤𝑉𝑛 (−𝑖ℏ𝜆)𝑉𝑚 (𝑡)〉 . (S3)

Therefore, we have

𝜅 = − 1
𝑁

∑︁
𝑚≠0

𝑖𝑚𝜔

∫ ∞

0
𝑑𝑡

∫ 𝛽

0
𝑑𝜆 〈 ¤𝑉𝑚 (−𝑖ℏ𝜆)𝑉†

𝑚 (𝑡)〉 𝑒𝑖𝑚𝜔𝑡 . (S4)

By integrating by part, we obtain

𝜅 =
1
𝑁

∑︁
𝑚≠0

∫ ∞

0
𝑑𝑡

∫ 𝛽

0
𝑑𝜆 〈 ¤𝑉𝑚 (−𝑖ℏ𝜆) ¤𝑉†

𝑚 (𝑡)〉 𝑒𝑖𝑚𝜔𝑡 . (S5)

By taking the complex conjugate and changing the integration variable 𝑡 → −𝑡, we have∫ ∞

0
𝑑𝑡

∫ 𝛽

0
𝑑𝜆 〈 ¤𝑉𝑚 (−𝑖ℏ𝜆) ¤𝑉†

𝑚 (𝑡)〉 𝑒𝑖𝑚𝜔𝑡 =
∫ 0

−∞
𝑑𝑡

∫ 𝛽

0
𝑑𝜆 〈 ¤𝑉𝑚 (−𝑡) ¤𝑉†

𝑚 (𝑖ℏ𝜆)〉 𝑒𝑖𝑚𝜔𝑡 =
∫ 0

−∞
𝑑𝑡

∫ 𝛽

0
𝑑𝜆 〈 ¤𝑉𝑚 (−𝑖ℏ𝜆) ¤𝑉†

𝑚 (𝑡)〉 𝑒𝑖𝑚𝜔𝑡 .
(S6)

We thus obtain

𝜅 =
1

2𝑁

∑︁
𝑛≠0

∫ ∞

−∞
𝑑𝑡

∫ 𝛽

0
𝑑𝜆 〈 ¤𝑉𝑚 (−𝑖ℏ𝜆) ¤𝑉†

𝑚 (𝑡)〉 𝑒𝑖𝑚𝜔𝑡 . (S7)

By changing 𝑡 → −𝑡 and 𝑚 → −𝑚, 𝜅 is also written as

𝜅 =
1

2𝑁

∑︁
𝑚≠0

∫ ∞

−∞
𝑑𝑡

∫ 𝛽

0
𝑑𝜆 〈 ¤𝑉†

𝑚 (𝑡 − 𝑖ℏ𝜆) ¤𝑉𝑚 (0)〉 𝑒𝑖𝑚𝜔𝑡 . (S8)
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This is identical to the formula given in the main text.
Let us write 𝐻0 =

∑
𝑎 𝐸𝑎 |𝑎〉 〈𝑎 |, and the equilibrium density matrix 𝜌eq =

∑
𝑎 𝑝𝑎 |𝑎〉 〈𝑎 | with 𝑝𝑎 ≥ 0 and

∑
𝑎 𝑝𝑎 = 1. 𝜅 is

then written as

𝜅 =
1

2𝑁

∑︁
𝑚≠0

∫ ∞

−∞
𝑑𝑡

∫ 𝛽

0
𝑑𝜆

∑︁
𝑎,𝑏

𝑒𝜆(𝐸𝑎−𝐸𝑏)𝑒 (𝑖/ℏ) (𝐸𝑎−𝐸𝑏+𝑚ℏ𝜔)𝑡 |〈𝑏 | ¤𝑉𝑚 |𝑎〉|2𝑝𝑎

=
1

2𝑁

∑︁
𝑚≠0

∑︁
𝑎,𝑏

1 − 𝑒−𝛽 (𝐸𝑏−𝐸𝑎)

𝐸𝑏 − 𝐸𝑎 2𝜋ℏ𝛿(𝐸𝑏 − 𝐸𝑎 − 𝑚ℏ𝜔) |〈𝑏 | ¤𝑉𝑚 |𝑎〉|2𝑝𝑎

=
1

2𝑁

∑︁
𝑚≠0

∑︁
𝑎,𝑏

1 − 𝑒−𝛽𝑚ℏ𝜔

𝑚ℏ𝜔
2𝜋ℏ𝛿(𝐸𝑏 − 𝐸𝑎 − 𝑛ℏ𝜔) |〈𝑏 | ¤𝑉𝑚 |𝑎〉|2𝑝𝑎

=
1

2𝑁

∑︁
𝑚≠0

1 − 𝑒−𝛽𝑚ℏ𝜔

𝑚ℏ𝜔

∫ ∞

−∞
𝑑𝑡 〈 ¤𝑉†

𝑚 (𝑡) ¤𝑉𝑚 (0)〉 𝑒𝑖𝑚𝜔𝑡 . (S9)

By using 〈𝑏 | ¤𝑉𝑚 |𝑎〉 = 𝐸𝑏−𝐸𝑎

𝑖ℏ 〈𝑏 |𝑉𝑚 |𝑎〉, we can also express 𝜅 as

𝜅 =
1
𝑁

𝜋

ℏ

∑︁
𝑚≠0

∑︁
𝑎,𝑏

(1 − 𝑒−𝛽𝑚ℏ𝜔)𝑚ℏ𝜔𝛿(𝐸𝑏 − 𝐸𝑎 − 𝑚ℏ𝜔) |〈𝑏 |𝑉𝑚 |𝑎〉|2𝑝𝑎 . (S10)

When 𝑝𝑎 is the canonical distribution 𝑝𝑎 = 𝑒−𝛽𝐸𝑎/𝑍 , we have

𝜅 =
1
𝑁

𝜋

ℏ

∑︁
𝑚≠0

∑︁
𝑎,𝑏

(𝑝𝑎 − 𝑝𝑏)𝑚ℏ𝜔𝛿(𝐸𝑏 − 𝐸𝑎 − 𝑚ℏ𝜔) |〈𝑏 |𝑉𝑚 |𝑎〉|2, (S11)

which is identical to the heating rate for the canonical ensemble calculated by Fermi’s golden rule.

Classical systems

In a classical system, by taking the limit of ℏ → 0, we obtain

𝜅 =
𝛽

2𝑁

∑︁
𝑚≠0

∫ ∞

−∞
𝑑𝑡 〈 ¤𝑉∗

𝑚 (𝑧𝑡 ) ¤𝑉𝑚 (𝑧0)〉 𝑒𝑖𝑚𝜔𝑡 , (S12)

where 𝑧𝑡 is the set of all the canonical variables describing the classical system at time 𝑡.
By using Wiener-Khinchin theorem [S2], the Fourier transform of the auto-correlation function

𝐶𝑚 (𝜔) =
∫ ∞

−∞
𝑑𝑡 〈 ¤𝑉†

𝑚 (𝑧𝑡 ) ¤𝑉𝑚 (𝑧0)〉 𝑒𝑖𝑚𝜔𝑡 (S13)

is evaluated by computing the power spectrum of ¤𝑉𝑛 (𝑧𝑡 ). Let us define

𝑎𝑘 =
1
𝜏

∫ 𝜏

0
𝑑𝑡 𝐴(𝑧𝑡 )𝑒−𝑖𝜔𝑘 𝑡 , 𝜔𝑘 =

2𝜋𝑘
𝜏

(S14)

with 𝑘 an integer. The Wiener-Khinchin theorem states that∫ ∞

−∞
𝑑𝑡 〈𝐴∗ (𝑧𝑡 )𝐴(𝑧0)〉 𝑒𝑖𝜔𝑡 = lim

𝜏→∞,𝜔𝑘→𝜔
𝜏 〈|𝑎𝑘 |2〉 . (S15)

By using this relation, we can compute 𝐶𝑚 (𝜔) through the power spectrum of ¤𝑉𝑚 (𝑧𝑡 ).

B. VAN VLECK HIGH-FREQUENCY EXPANSION

In this section, we review the van Vleck high-frequency expansion [S3, S4]. As is explained in the main text, the Floquet
Hamiltonian and the micromotion operator satisfy the equality

𝐻𝐹 = 𝑒𝑖𝐾 (𝑡)
[
𝐻 (𝑡) − 𝑖ℏ 𝑑

𝑑𝑡

]
𝑒−𝑖𝐾 (𝑡) . (S16)
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Here, we rewrite 𝑒𝑖𝐾 (𝑡)𝐻 (𝑡)𝑒−𝑖𝐾 (𝑡) and 𝑒𝑖𝐾 (𝑡) 𝑖ℏ(𝑑/𝑑𝑡)𝑒−𝑖𝐾 (𝑡) as follows:

𝑒𝑖𝐾 (𝑡)𝐻 (𝑡)𝑒−𝑖𝐾 (𝑡) =
∞∑︁
𝑛=0

1
𝑛!

ad𝑛𝑖𝐾 (𝑡)𝐻 (𝑡), (S17)

where ad𝐴 := [𝐴, ·], and

𝑒𝑖𝐾 (𝑡) 𝑖ℏ(𝑑/𝑑𝑡)𝑒−𝑖𝐾 (𝑡) = 𝑒𝑖𝐾 (𝑡) 𝑖ℏ
∫ 1

0
𝑑𝑥 𝑒−𝑖𝐾 (𝑡) (1−𝑥)

(
−𝑖 𝑑𝐾 (𝑡)

𝑑𝑡

)
𝑒−𝑖𝐾 (𝑡)𝑥

= ℏ
∫ 1

0
𝑑𝑥 𝑒𝑖𝐾 (𝑡)𝑥 𝑑𝐾 (𝑡)

𝑑𝑡
𝑒−𝑖𝐾 (𝑡)𝑥

= ℏ
∫ 1

0
𝑑𝑥

∞∑︁
𝑛=0

𝑥𝑛

𝑛!
ad𝑛𝑖𝐾 (𝑡)

𝑑𝐾 (𝑡)
𝑑𝑡

= ℏ
∞∑︁
𝑛=0

1
(𝑛 + 1)! ad𝑛𝑖𝐾 (𝑡)

𝑑𝐾 (𝑡)
𝑑𝑡

. (S18)

Equation (S16) is thus rewritten as

𝐻𝐹 =
∞∑︁
𝑛=0

ad𝑛𝑖𝐾 (𝑡)

[
1
𝑛!
𝐻 (𝑡) − ℏ

(𝑛 + 1)!
𝑑𝐾 (𝑡)
𝑑𝑡

]
. (S19)

The van Vleck high-frequency expansion corresponds to the expansion

𝐾 (𝑡) =
∞∑︁
𝑘=1

Λ𝑘 (𝑡)
𝜔𝑘

, 𝐻𝐹 = 𝐻0 +
∞∑︁
𝑘=1

Ω𝑘
𝜔𝑘

(S20)

with the boundary condition
∫ 𝑇

0
𝑑𝑡 𝐾 (𝑡) = 0. (S21)

By substituting Eq. (S20) into Eq. (S19) and compare the left-hand side and the right-hand side order by order, we obtain an
explicit expression of {Λ𝑘 (𝑡)} and {Ω𝑘 }. Here, Λ𝑘 (𝑡) is periodic in time, Λ𝑘 (𝑡) = Λ𝑘 (𝑡 + 𝑇), and hence the time derivative in
Eq. (S19) should be treated as the order 𝜔−1.

At the lowest order, we have

𝐻0 = 𝐻0 +𝑉 (𝑡) − 𝑖 ℏ
𝜔

𝑑

𝑑𝑡
[−𝑖Λ1 (𝑡)] , (S22)

which yields

ℏ
𝜔

𝑑

𝑑𝑡
Λ1 (𝑡) = 𝑉 (𝑡). (S23)

From Eq. (S21) and the periodicity Λ1 (𝑡) = Λ1 (𝑡 + 𝑇) with 𝑇 = 2𝜋/𝜔, Λ1 (𝑡) is expressed as

Λ1 (𝑡) =
∑︁
𝑚≠0

Λ1,𝑚𝑒
−𝑖𝑚𝜔𝑡 . (S24)

By substituting it into Eq. (S23), we have Λ1,𝑚 = 𝑖𝑉𝑚/(𝑚ℏ) and thus

𝑖ℏΛ1 (𝑡) = −
∑︁
𝑚≠0

𝑉𝑚
𝑚
𝑒−𝑖𝑚𝜔𝑡 . (S25)

At the next order 𝑂 (𝜔), we have

Ω1 = [𝑖Λ1 (𝑡), 𝐻0 +𝑉 (𝑡)] − ℏ
𝜔

𝑑Λ2 (𝑡)
𝑑𝑡

− ℏ
2𝜔

[
𝑖Λ1 (𝑡), 𝑑Λ1 (𝑡)

𝑑𝑡

]
=

[
𝑖Λ1 (𝑡), 𝐻0 + 1

2
𝑉 (𝑡)

]
− ℏ
𝜔

𝑑Λ2 (𝑡)
𝑑𝑡

, (S26)



4

where Eq. (S23) is used in the last equality. Now we take the time average of the both sides of Eq. (S26), which yields

Ω1 =
1
𝑇

∫ 𝑇

0
𝑑𝑡

[
𝑖Λ1 (𝑡), 𝑉 (𝑡)2

]
=

∑︁
𝑚≠0

[𝑉−𝑚, 𝑉𝑚]
2𝑚ℏ

. (S27)

We can also determine 𝑑Λ2 (𝑡)/𝑑𝑡 as
ℏ
𝜔

𝑑Λ2 (𝑡)
𝑑𝑡

= [𝑖Λ1 (𝑡), 𝐻0] + 1
2
[𝑖Λ1 (𝑡), 𝑉 (𝑡)] −Ω1

= −
∑︁
𝑚≠0

[𝑉𝑚, 𝐻0]
𝑚ℏ

𝑒−𝑖𝑚𝜔𝑡 − 1
2

∑︁
𝑚≠0

∑︁
𝑛≠0,𝑚

[𝑉𝑛, 𝑉𝑚−𝑛]
𝑛ℏ

𝑒−𝑖𝑚𝜔𝑡 . (S28)

By using the boundary condition
∫ 𝑇
0 𝑑𝑡 Λ2 (𝑡) = 0, we have

𝑖ℏ2Λ2 (𝑡) =
∑︁
𝑚≠0

[𝑉𝑚, 𝐻0]
𝑚2 𝑒−𝑖𝑚𝜔𝑡 +

∑︁
𝑚≠0

∑︁
𝑛≠0,𝑚

[𝑉𝑛, 𝑉𝑚−𝑛]
𝑚𝑛

𝑒−𝑖𝑚𝜔𝑡 . (S29)

By repeating the above procedure to higher order terms, we can recursively determine {Ω𝑘 } and {Λ𝑘 }. For Ω2 and Λ3 (𝑡), we
only give the final result [S5]:

ℏ2Ω2 =
∑︁
𝑚≠0

[[𝑉−𝑚, 𝐻0], 𝑉𝑚]
2𝑚2 +

∑︁
𝑚≠0

∑︁
𝑛≠0,𝑚

[[𝑉−𝑚, 𝑉𝑚−𝑛], 𝑉𝑛]
3𝑚𝑛

, (S30)

and

𝑖ℏ3Λ3 (𝑡) = −
∑︁
𝑚≠0

[[𝑉𝑚, 𝐻0], 𝐻0]
𝑚3 𝑒−𝑖𝑚𝜔𝑡 +

∑︁
𝑚≠0

∑︁
𝑛≠0

[𝑉𝑚, [𝑉−𝑛, 𝑉𝑛]]
4𝑚2𝑛

𝑒−𝑖𝑚𝜔𝑡

−
∑︁
𝑚≠0

∑︁
𝑛≠0,𝑚

[[𝑉𝑛, 𝐻0], 𝑉𝑚−𝑛]
2𝑚𝑛2 𝑒−𝑖𝑚𝜔𝑡 −

∑︁
𝑚≠0

∑︁
𝑛≠0,𝑚

[[𝑉𝑛, 𝑉𝑚−𝑛], 𝐻0]
2𝑚2𝑛

𝑒−𝑖𝑚𝜔𝑡

−
∑︁
𝑚≠0

∑︁
𝑛≠0

∑︁
𝑙≠0,𝑛,𝑚

[[𝑉𝑛, 𝑉𝑙−𝑛], 𝑉𝑚−𝑙]
4𝑚𝑛𝑙

𝑒−𝑖𝑚𝜔𝑡 −
∑︁
𝑚≠0

∑︁
𝑛≠0

∑︁
𝑙≠0,𝑚−𝑛

[𝑉𝑛, [𝑉𝑙 , 𝑉𝑚−𝑛−𝑙]]
12𝑚𝑛𝑙

𝑒−𝑖𝑚𝜔𝑡 . (S31)

C. DRESSED HAMILTONIAN

In the main text, we define the dressed Hamiltonian

𝐻̃ (𝑛) (𝑡) = 𝑒𝑖𝐾 (𝑛) (𝑡)
[
𝐻 (𝑡) − 𝑖ℏ 𝑑

𝑑𝑡

]
𝑒−𝑖𝐾

(𝑛) (𝑡) = 𝐻 (𝑛)
0 +𝑉 (𝑛) (𝑡) +𝑂 (𝜔−(𝑛+1) ), (S32)

where 𝐾 (𝑛) (𝑡) =
∑𝑛
𝑘=1 Λ𝑘/𝜔𝑘 is the 𝑘th order truncation of the van Vleck expansion of 𝐾 (𝑡), and 𝑉 (𝑛) (𝑡) satisfies 𝑉 (𝑛) (𝑡) =

𝑉 (𝑛) (𝑡 + 𝑇) and
∫ 𝑇
0 𝑑𝑡 𝑉 (𝑛) (𝑡) = 0.

We now prove

𝐻 (𝑛)
0 = 𝐻 (𝑛)

𝐹 :=
𝑛∑︁
𝑘=0

Ω𝑘
𝜔𝑘

, (S33)

i.e. the static part of the dressed Hamiltonian is nothing but the 𝑛th order truncation of the high-frequency expansion of 𝐻𝐹 , and

𝑉 (𝑛) (𝑡) = ℏ

𝜔𝑛+1
𝑑Λ𝑛+1 (𝑡)

𝑑𝑡
. (S34)

For the proof, we use the following expression corresponding to Eq. (S19):

𝐻̃ (𝑛) (𝑡) =
∞∑︁
𝑚=0

ad𝑚
𝑖𝐾 (𝑛) (𝑡)

[
1
𝑚!
𝐻 (𝑡) − ℏ

(𝑚 + 1)!
𝑑𝐾 (𝑛) (𝑡)
𝑑𝑡

]
. (S35)

By comparing it with Eq. (S19), 𝐻̃ (𝑛) (𝑡) and𝐻𝐹 are identical up to𝑂 (𝜔−𝑛) except for the term−(ℏ/𝜔𝑛+1)𝑑Λ𝑛+1 (𝑡)/𝑑𝑡 (remember
that the time derivative should be regarded as 𝑂 (𝜔)). Therefore, we have

𝐻̃ (𝑛) (𝑡) = 𝐻 (𝑛)
𝐹 + ℏ

𝜔𝑛+1
𝑑Λ𝑛+1 (𝑡)

𝑑𝑡
, (S36)

which implies Eq. (S34).
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D. EXPLICIT EXPRESSION OF THE DRESSED HAMILTONIAN

We give an explicit expression of the dressed Hamiltonian for the models discussed in the main text.
For the classical model




𝐻0 (𝑧) = −
𝑁∑︁
𝑖=1

[
𝐽𝑠𝑧𝑖 𝑠

𝑧
𝑖+1 + ℎ𝑥𝑠𝑥𝑖 + ℎ𝑧𝑠𝑧𝑖

]
,

𝑉 (𝑡; 𝑧) = −𝜉
[
cos(𝜔𝑡)

𝑁∑︁
𝑖=1

𝑠𝑧𝑖 𝑠
𝑧
𝑖+1 + sin(𝜔𝑡)

𝑁∑︁
𝑖=1

𝑠𝑥𝑖

]
,

(S37)

the high-frequency expansion of the Floquet Hamiltonian is given by 𝐻𝐹 = 𝐻0 +Ω1/𝜔 +Ω2/𝜔2 + . . . with

1
𝜔
Ω1 = −𝜉

2

𝜔

𝑁∑︁
𝑖=1

(
𝑠
𝑦
𝑖 𝑠
𝑧
𝑖+1 + 𝑠𝑧𝑖 𝑠

𝑦
𝑖+1

)
, (S38)

1
𝜔2Ω2 =

𝜉2

𝜔2

𝑁∑︁
𝑖=1

[
ℎ𝑥

(
𝑠𝑥𝑖 (𝑠𝑧𝑖+1)2 + (𝑠𝑧𝑖 )2𝑠𝑥𝑖+1 + 2𝑠𝑧𝑖−1𝑠

𝑥
𝑖 𝑠
𝑧
𝑖+1

)
+ 2𝐽 (𝑠𝑧𝑖 𝑠𝑧𝑖+1 − 𝑠

𝑦
𝑖 𝑠
𝑦
𝑖+1) + ℎ𝑧𝑠𝑧𝑖

]
. (S39)

The driving field in the dressed Hamiltonian is expressed as 𝑉 (𝑛) (𝑡) = ∑
𝑚𝑉

(𝑛)
𝑚 𝑒−𝑖𝑚𝜔𝑡 . Since only the terms of 𝑚 = ±1 give

dominant contributions to the heating rate, we approximate 𝑉 (𝑛) (𝑡) ≈ 𝑉 (𝑛)
1 𝑒−𝑖𝜔𝑡 +𝑉 (𝑛)

−1 𝑒
𝑖𝜔𝑡 with 𝑉 (𝑛)

−1 = 𝑉 (𝑛)∗
1 . It is given by

𝑉 (1) (𝑡) ≈ 𝑖𝜉

𝜔

𝑁∑︁
𝑖=1

[(ℎ𝑥 + 𝑖𝐽) (𝑠𝑦𝑖 𝑠𝑧𝑖+1 + 𝑠𝑧𝑖 𝑠
𝑦
𝑖+1) + 𝑖ℎ𝑧𝑠

𝑦
𝑖

]
𝑒𝑖𝜔𝑡 + (c.c), (S40)

𝑉 (2) (𝑡) ≈ 2𝜉
𝜔2

𝑁∑︁
𝑖=1

[
(ℎ𝑥 + 𝑖𝐽)𝐽

(
𝑠𝑥𝑖 (𝑠𝑧𝑖+1)2 + (𝑠𝑧𝑖 )2𝑠𝑥𝑖+1 + 2𝑠𝑧𝑖−1𝑠

𝑥
𝑖 𝑠
𝑧
𝑖+1

)
+ 2(ℎ𝑥 + 𝑖𝐽)ℎ𝑥 (𝑠𝑦𝑖 𝑠

𝑦
𝑖+1 − 𝑠𝑧𝑖 𝑠𝑧𝑖+1)

+ (ℎ𝑥 + 2𝑖𝐽)ℎ𝑧 (𝑠𝑥𝑖 𝑠𝑧𝑖+1 + 𝑠𝑧𝑖 𝑠𝑥𝑖+1) − 𝑖ℎ𝑥ℎ𝑧𝑠𝑧𝑖 + 𝑖ℎ2
𝑧𝑠
𝑥
𝑖

]
𝑒𝑖𝜔𝑡

− 7𝑖𝜉3

12𝜔2

𝑁∑︁
𝑖=1

[
𝑠𝑥𝑖 (𝑠𝑧𝑖+1)2 + (𝑠𝑧𝑖 )2𝑠𝑥𝑖+1 + 2𝑠𝑧𝑖−1𝑠

𝑥
𝑖 𝑠
𝑧
𝑖+1 − 2𝑖(𝑠𝑦𝑖 𝑠

𝑦
𝑖+1 − 𝑠𝑧𝑖 𝑠𝑧𝑖+1)

]
𝑒𝑖𝜔𝑡 + (c.c.). (S41)

Next, we consider the quantum model




𝐻0 = −
𝑁∑︁
𝑖=1

[𝐽𝑧𝜎𝑧𝑖 𝜎𝑧𝑖+1 + 𝐽𝑥𝜎𝑥𝑖 𝜎𝑥𝑖+1 + ℎ𝜎𝑧𝑖 ],

𝑉 (𝑡) = −𝜉 sgn[cos(𝜔𝑡)]
𝑁∑︁
𝑖=1

𝜎𝑥𝑖 .

(S42)

The high-frequency expansion of 𝐻𝐹 = 𝐻0 +Ω1/𝜔 +Ω2/𝜔2 + . . . is given by

1
𝜔
Ω1 = 0, (S43)

1
𝜔2Ω2 =

𝜋2𝜉2

6𝜔2

𝑁∑︁
𝑖=1

[
2𝐽𝑧 (𝜎𝑧𝑖 𝜎𝑧𝑖+1 − 𝜎

𝑦
𝑖 𝜎

𝑦
𝑖+1) + ℎ𝜎𝑧𝑖

]
. (S44)

The driving field in the dressed Hamiltonian, 𝑉 (𝑛) (𝑡) ≈ 𝑉 (𝑛)
1 𝑒−𝑖𝜔𝑡 +𝑉 (𝑛)

−1 𝑒
𝑖𝜔𝑡 is given by

𝑉 (1) (𝑡) =
∑︁
𝑚≠0

[𝐻0, 𝑉𝑚]
𝑚ℏ𝜔

𝑒−𝑖𝑚𝜔𝑡 (S45)

𝑉 (2) (𝑡) ≈ 8𝑖𝜉
𝜋𝜔2

𝑁∑︁
𝑖=1

[
2𝐽2
𝑧𝜎

𝑧
𝑖−1𝜎

𝑥
𝑖 𝜎

𝑧
𝑖+1 + 𝐽𝑧𝐽𝑥 (𝜎

𝑦
𝑖−1𝜎

𝑦
𝑖 𝜎

𝑥
𝑖+1 + 𝜎𝑥𝑖−1𝜎

𝑦
𝑖 𝜎

𝑦
𝑖+1 − 𝜎𝑧𝑖−1𝜎

𝑧
𝑖 𝜎

𝑥
𝑖+1 − 𝜎𝑥𝑖−1𝜎

𝑧
𝑖 𝜎

𝑧
𝑖+1)

+ℎ𝑧 (2𝐽𝑧 − 𝐽𝑥) (𝜎𝑥𝑖 𝜎𝑧𝑖+1 + 𝜎𝑧𝑖 𝜎𝑥𝑖+1) + (2𝐽2
𝑧 + ℎ2

𝑧)𝜎𝑥𝑖
]
𝑒𝑖𝜔𝑡 + (c.c). (S46)
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It should be noted that the heating rate for 𝑛 = 1 evaluated by using the formula (S10) is exactly identical to that for 𝑛 = 0.
It is shown as follows. The first-order dressed Hamiltonian is given by 𝐻̃ (1) (𝑡) = 𝐻0 + 𝑉 (1) (𝑡) with Eq. (S45). In Eq. (S10),
matrix elements 〈𝑏 | [𝐻0, 𝑉𝑚] |𝑎〉 appear, which gives 𝑚ℏ𝜔 〈𝑏 |𝑉𝑚 |𝑎〉 because of the condition 𝐸𝑏 − 𝐸𝑎 = 𝑚ℏ𝜔. The factor 𝑚ℏ𝜔
cancels by the denominator of Eq. (S45), and hence [𝐻0, 𝑉𝑚]/𝑚ℏ𝜔 in Eq. (S45) can be replaced by 𝑉𝑚. Consequently, as for the
calculation of the heating rate, the first-order dressed Hamiltonian 𝐻̃ (1) (𝑡) = 𝐻0 + 𝑉 (1) (𝑡) is equivalent to the bare Hamiltonian
𝐻 (𝑡) = 𝐻0 +𝑉 (𝑡), and hence the heating-rate formula for 𝑛 = 1 is exactly identical to that for 𝑛 = 0 in the present model.

E. DETAILS ON NUMERICAL CALCULATIONS

Our formula on the heating rate presented in the main text corresponds to the linear response formula [Eq. (S8) for a quantum
system and Eq. (S12) for a classical system] with the replacement of 𝐻0 → 𝐻 (𝑛)

𝐹 and 𝑉 (𝑡) → 𝑉 (𝑛) (𝑡).

Quantum systems

For numerical calculations, we used Eq. (S10) with the microcanonical distribution

𝑝𝑎 =




1
Σ(𝐸) when 𝐸𝑎 ∈ [𝐸 − Δ𝐸, 𝐸],
0 otherwise,

(S47)

where 𝐸𝑎 and |𝑎〉 are an eigenvalue and the corresponding eigenstate of 𝐻 (𝑛)
𝐹 , and Σ(𝐸) is the number of eigenstates of 𝐻 (𝑛)

𝐹
with an eigenvalue between 𝐸 − Δ𝐸 and 𝐸 .

We fix the inverse temperature 𝛽 (𝛽 = 0.23 in our numerical calculation presented in the main text) and calculate 𝐸 =∑
𝑎 𝐸𝑎𝑒

−𝛽𝐸𝑎/𝑍 , where 𝑍 =
∑
𝑎 𝑒

−𝛽𝐸𝑎 . This energy 𝐸 is used for the microcanonical distribution. The energy width Δ𝐸 is fixed
as Δ𝐸 = 0.1𝑁 in numerical calculations.

In Eq. (S10), the delta function appears. In numerics, the delta function is approximated as

𝛿(𝑥) ≈



1
𝛿𝐸

if |𝑥 | ≤ 𝛿𝐸

2
,

0 otherwise.
(S48)

Classical systems

Since the Fourier transform of the auto-correlation function of ¤𝑉 (𝑛) (𝑧𝑡 ) equals that of 𝑉 (𝑛) (𝑧𝑡 ) multiplied by 𝜔2, we used the
following formula to calculate the heating rate:

𝜅 =
𝛽

2𝑁

∑︁
𝑚≠0

(𝑚𝜔)2
∫ ∞

−∞
𝑑𝑡 〈𝑉 (𝑛)∗

𝑚 (𝑧𝑡 )𝑉 (𝑛)
𝑚 (𝑧0)〉 𝑒𝑖𝑚𝜔𝑡 . (S49)

By using the Wiener-Khinchin theorem, the auto-correlation function in the above equation is evaluated through the power
spectrum of 𝑉 (𝑛) (𝑧𝑡 ). The inverse temperature 𝛽 is fixed to be 0.9.

Frequency dependences

We show numerical results on the heating rate for different frequencies. In Fig. S1 (a), for the same classical model discussed
in the main text, we compare the heating rate calculated by solving the equations of motion and that evaluated by our formula
with 𝑛 = 2. We see that our formula reproduces the actual heating rate. For lower frequencies, we see larger deviations, which is
consistent with the fact that our formula is based on the high-frequency expansion.

In Fig. S1 (b), we show the frequency dependence of the heating rate. We see that heating is exponentially suppressed at high
frequencies. It is noted that exponential suppression of the heating is rigorously established in quantum lattice systems [S6–S8].
In Ref. [S9], it is argued that it also occurs in classical systems. The present numerical result is consistent with those previous
studies.

The heating rate at high frequencies thus behaves as 𝜅 ∼ 𝑒−𝑐𝜔 with 𝑐 > 0. From Fig. S1, we see that the coefficient 𝑐 depends
on the driving amplitude 𝜉.
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FIG. S1. (a) Heating rates calculated by exactly solving the equations of motion (symbols) and those estimated by our formula with 𝑛 = 2
(dashed lines). Different colors imply different period (frequency) of the driving. (b) Frequency dependence of the heating rate for weak
(𝜉 = 0.5) and strong (𝜉 = 2.5) driving. Dashed lines correspond to the heating rate estimated by our formula with 𝑛 = 2.
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