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Abstract

It seems that at least the deterministic or the noise part of a stochastic system must be a nonlinear function of phase
space variable(s) to observe the phenomenon, noise induced transition. But in the present paper, we have demon-
strated that the phenomenon may be observed even in a linear stochastic process where both the deterministic and the
stochastic parts are linear functions of the relevant phase space variables. The shape of the stationary distribution of
particles (which are confined in a harmonic potential) may change on increasing the strength of the applied fluctuating
magnetic field (FMF). The probability density may vary non monotonically with an increase in the coordinate of a
Brownian particle. Thus the distribution of particles may deviate strongly from the Boltzmann one and it may be a
unique signature of the FMF with a new mechanism in the field of noise induced transition. Then we are motivated
strongly to study the distribution of particles in a nonlinear stochastic system where the Brownian particles are con-
fined in a bi-stable potential energy field in the presence of the fluctuating magnetic field. With a relatively large
strength of the fluctuating field, the distribution of particles may be such that where many islands may appear which
are not expected from the given potential energy field. It may offer an explanation to describe the phenomenon, the
reduction of the current in a semiconductor in the presence of a time dependent magnetic field.
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1. Introduction

It is commonly believed that noise is a phenomenon which induces disorder. But there are situations where it plays
a constructive role such as stochastic resonance [1, 2, 3, 4], coherence resonance [5], resonant activation [1, 6, 7, 8,
9, 10, 11], Brownian ratchets [12, 13, 14, 15, 16], aggregation of Brownian particles [17, 18, 19, 20], noise-induced
pattern formation [21, 22, 23], noise induced transitions [24, 25, 26, 27, 28, 29, 30], noise induced non equilibrium
phase transitions [31, 32, 33, 34, 35], synchronization [36, 37] etc. In the present paper we address an issue related
to the noise-induced transition. It has been considered in may contexts [24, 25, 26, 27, 28, 29, 30, 38, 39]. A noise-
induced transition occurs if the stationary probability distribution (SPD) of the state variable is changed qualitatively
as the noise intensity exceeds a critical value. The genetic model [25] and Hongler’s model [26] are relevant examples
demonstrating this phenomenon. The relevant Langevin equation of motion for this kind of noise induced transition
may be read as [27]

ẋ = f (x) + g1(x)ζ1 + g2(x)ζ2 (1)

where x corresponds to the coordinate of a Brownian particle which is driven by two noises, ζ1 and ζ2, respectively.
In Refs. [27, 28], it has been shown that for a simple case where g2(x) = 1 and g1(x) is nonlinear function, g1(x) =

b x4

1+x4 , b > 0 then the correlation between the two white noises may induce transition for f (x) = −ax, a > 0 or
f (x) = −ax3. The multiplicative noise induces position dependent diffusion as well as drift terms. The potential energy
function due to f (x) may modify at the steady state with additional fixed point(s) by virtue of the multiplicative noise.
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Thus the multiplicative noise may induce transition in a nonlinear system [29]. Further modification of the potential
energy, as well as the transition, may happen due to the cross correlation induced drift term [27, 28]. Thus for
g1(x) = g2(x) = 1, noise induced transition is not possible. It is apparent in the above examples that the multiplicative
noise term (with the nonlinear function of coordinate), as well as modification of the potential energy function having
new fixed point(s), is a necessary condition for the noise induced transition. But the multiplicative noise (with a
linear function of coordinate) may induce transition in the nonlinear system without introducing new fixed points in
the effective potential energy function at the steady state [30]. This transition is controlled by diffusion. Thus the
necessary and sufficient condition to have the noise induced transition seems to us that the total system (deterministic
plus stochastic) must be a nonlinear one [24, 25, 26, 27, 28, 29, 30, 38, 39]. A similar conclusion may be drawn
for another related phenomenon, noise induced non equilibrium phase transition [31, 32, 33, 34, 35]. Then one may
put an open question. Is it possible to observe noise induced transition in a linear stochastic process where both
deterministic and stochastic parts are linear functions of the relevant phase space variables? To have the answer to
this question we have studied the dynamics of a Brownian particle which is confined in a harmonic potential in the
presence of a fluctuating magnetic field. It is an unusual type of linear stochastic process where multiplicative noises
are linear functions of coordinate and velocity, respectively. This system exhibits that the noise induced transition
is possible even for the case where both deterministic and stochastic parts are linear functions of the relevant phase
space variables. The stationary distribution of particles in the harmonic force field is a uni-modal one at a relatively
low strength of a FMF. On further increase in the strength of the field, an island may appear (having center at the
origin) which is surrounded by a shallow well. It is evident from the cross section (having tri-modal) of the particle
distribution in two dimension space. The cross section becomes bi-modal at a relatively large strength of the field.
At this condition, the island disappears. Keeping in mind the strange behavior of the particle distribution in a linear
stochastic process we have studied a stochastic nonlinear system where a Brownian particle is confined in a bi-stable
potential energy field in the presence of a fluctuating magnetic field. At low strength of the FMF the distribution of
particles in space is Boltzmann type corresponding to the bi-stable potential energy field. On further increase in the
strength of the field, an island may appear having a center at the unstable fixed point. It may be extended having
S -shape (such that it avoids the stable fixed points) as the strength grows. At the same time, two more additional
islands may appear which are located diagonally opposite to the S -shape island. This strange pattern may be more
complex at the relatively large strength of the FMF.

Before leaving this section we would mention that the study on the dynamics of a particle in the presence of
a magnetic field is always an intriguing issue in plasma physics. The field may be a stochastic one [40, 41, 42].
Here the motion may be non-Markovian and non-Brownian type[43, 44, 45]. The fluctuating field is very relevant
to give the explanation of energization of cosmic rays and stochastic heating of plasmas[43, 46]. It is to be noted
here that in recent past the magnetic field has been considered in other areas such as barrier crossing dynamics
[11, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], non Markovian dynamics of a Brwonian particle in the presence of a
magnetic field [54, 11, 56, 57, 58, 59, 60, 61, 62, 63, 64], stochastic thermodynamics [65, 66], nonlinear dynamics
[67] and others [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80]. The present work may be relevant in the context of
barrier crossing dynamics. A detailed discussion regarding this has been given in the conclusion section.

The outline of the paper is as follows: In Sec. II we have presented the model. The distribution of charged particles
in space for a linear system is demonstrated in Sec.III. In the next section, we have demonstrated the distribution of
charged particles in space for a nonlinear system. The paper is concluded in Sec. IV.

2. The model

In the present study, we have considered that a Brownian particle experiences a fluctuating magnetic field (B) along
z-direction, i.e., B = (0, 0, B(t)). Here, B(t) can be expressed as

B(t) = B0 + B f (t) . (2)

Here B f (t) is the fluctuating part of the B(t). It is often considered in plasma physics[40] as a signature of plasma
currents where fluctuations in particle velocities and positions may occur. Magnetic fluctuations have been measured
in many tokamaks [42]. The fluctuating magnetic field may appear from the current fluctuations in crcuits[81]. Even
it may be generated by the permanent magnet [82]. Making use of a gauge field model of the CuO planes of high-Tc
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superconductors one may generate a FMF in a laboratory[83]. One may generate also a fluctuating magnetic field in
a laboratory by continuous optical probing of an atomic ensemble[84].

The Langevin equations of motion with a fluctuating magnetic field can be written as [11, 56, 85]

ẋ = ux , (3)

ẏ = uy , (4)

mu̇x = −
∂V(x, y)
∂x

− γ0mux + (Ω0 + η(t))muy +
η̇my

2
+ fx(t) (5)

and

mu̇y = −
∂V(x, y)
∂y

− γ0muy − (Ω0 + η(t))mux −
η̇mx

2
+ fy(t) (6)

The above equations are corresponding to the motion in the x − y plane. Here, ux and uy are the components of
velocity of the Brownian particle with mass, m. − ∂V(x,y)

∂x and − ∂V(x,y)
∂y in the above equations are the components of

conservative force field which is derived from the potential energy, V(x, y). γ0 measures the strength of damping force
due to thermal bath. The components of random force which is originated from the thermal bath are given by fx and
fy corresponding to the motion along x and y directions, respectively. These are white Gaussian thermal noises, i.e.,

〈 fx(t)〉 = 〈 fy(t)〉 = 0 (7)

and

〈 fx(t) fx(t′)〉 = 〈 fy(t) fy(t′)〉 = 2mγ0kBTδ(t − t′) . (8)

Here kB is the Boltzmann’s constant and T is the temperature of the thermal bath. We now consider force from the
magnetic field. Ω0 and η(t) which are associated with the magnetic force correspond to the constant and random parts
of the cyclotron frequency (Ω, i.e,

Ω = Ω0 + η , (9)

where

Ω0 =
qB0

m
(10)

and

η(t) =
qB f (t)

m
. (11)

q, in Eqs.(10-11) is the charge of the relevant Brownian particle which may experience the Lorentz force due to an
applied magnetic field. Then one may identify that η̇ in the force terms is due to the induced electric field and it is the
time derivative of η(t). The time evolution of the fluctuating magnetic field is assumed to be as

η̇ = −
η

τ
+

√
D
τ
ζ(t) . (12)

D, in the above equation, measures the strength of the fluctuating magnetic field and τ is the correlation time. ζ(t)
in Eq. (12) corresponds to a white Gaussian noise having variance two. The two-time correlation function of the
fluctuating field is given by

〈η(t)η(t′)〉 =
D
τ

e
−|t−t′ |
τ , (13)

Thus η(t) is the Ornstein-Uhlenbeck noise. It is to be noted here that in plasma physics, this kind of temporal correla-
tion has been considered for the relevant fluctuating magnetic field[44]. In a very recent model study, [86] fluctuating
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magnetic field is considered by the Ornstein-Uhlenbeck process to estimate a FMF with a continuously monitored
atomic ensemble. It is to be noted here that in general the Ornstein-Uhlenbeck noise has been considered in the litera-
ture [4, 7, 8, 9, 10, 11, 20, 30, 36, 37, 56, 58, 87, 88, 89, 90, 91] to capture the essential feature of the non-Markovian
dynamics. To avoid any confusion, we would mention here the following point. The Ornstein-Uhlenbeck process is
a Markovian one as the first order stochastic differential equation of the relevant phase space variable contains delta
correlated noise. But if the first order differential equations of motion (which is the system’s phase space description)
contain the colored noise like the Ornstein-Uhlenbeck one then the description of the Brownian motion in the sys-
tem’s phase space corresponds to non-Markovian dynamics. In other words, if the phase space is extended including
the first order stochastic differential equation (with white noise) for the time evolution of the colored noise then the
stochastic process in extended phase space is a Markovian one. Thus in the extended phase space, all the Brownian
motions are Markovian dynamics. Then the classification of Markovian and non Markovian dynamics is based on the
description of the motion in terms of the system’s phase space variables. Thus the present system corresponds to the
non Markovian dynamics as the equations of motion in terms of system’s phase space variable contain the colored
noise. Therefore in the present manuscript, one may call the dynamics of the system the non Markovian one.

To describe the diffusive behavior in plasma there are different kinds of Langevin equations of motion. One may
consider the equations of motion like Eqs. (5-6) where the deterministic force corresponds to the average force field
(which may be a function of both coordinate and velocity) and the random force is due to the collisions[92]. In
some cases, the Langevin equations of motion are assumed to be with magnetic force only[44, 45] or magnetic force
plus collisional random force[93]. The relevant Langevin equation of motion may be such that it corresponds to the
Brownian motion of a free particle in the presence of a fluctuating magnetic field[41]. To explain the energization
of cosmic rays one may assume the equations of motion having forces from the fluctuating magnetic field and the
associated induced electric field[43]. Finally, to describe the motion of an electron in a semiconductor or ion in
electrolytes Eqs. (5-6) may be useful. Here the relevant Brownian particle is supposed to experience a conservative
force from the potential energy field. One may assume that the energy field is periodic in space with a finite energy
barrier between two consecutive wells. At the bottom of the well, the potential energy field seems to be a harmonic
one. Then we often say that the study on the harmonic oscillator is not a mere example. However, in the next section,
we will explore how the distribution of particles (in a harmonic potential) depends on the fluctuating magnetic field.
Then to identify the signature of a nonlinear potential energy field in this context, one may consider the energy function
with double well. It may correspond to two consecutive wells of a periodic potential energy field. At the same time,
one may get the advantage to avoid the problem of normalization which requires confining the particle in finite space.
In Sec. IV we will explore the distribution of particles in a double well potential energy field in the presence of a
FMF. Thus Eqs.(5-6) may be useful at different contexts. It is to be noted here that in the recent past, harmonic or
anharmonic oscillator in the presence of a magnetic field has been considered in different contexts [11, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80].

Before leaving this equation we would mention the following pertinent point. Eqs. (5-6) seems to be an incom-
plete description of the motion since these do not include the effect from the induced magnetic field due to the time
dependent electric field as suggested by the Maxwell’s equation. One may easily check here that the induced electric
field which appears in the equation of the motion is related to the applied magnetic field by

∇ × Eind = −
∂

∂t
B = −η̇(t) , (14)

where Eind(=
(
η̇(t)y

2 ,− η̇(t)x
2 , 0

)
) is the induced electric field. The Maxwell’s equation with this electric field for the

present system can be read as

∇ × Bind = µε
∂

∂t
Eind . (15)

Here Bind is the induced magnetic field due to the time dependent induced electric field. The applied magnetic field
does not appear in the above equation since its curl is zero. ε and µ correspond to the permittivity and the permeability
of the electrolytic medium. Taking curl in both sides of the above equation and then using Eq.(14) and ∇·Bind = 0
into this we have
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Figure 1: Demonstration of distribution of charged particles in space for a linear system for the parameter set, ω2 = 2,Ω0 = 7.0, τ = 0.2, γ = 0.1
and kBT = 0.025. (a) Plot of reduce distribution function (P(x, y) vs coordinate for D = 0.04. (b) Its cross section along x = 0. (c) Plot of reduce
distribution function (P(x, y) vs coordinate for D = 0.057(d) Its cross section along x = 0. (e) Plot of reduce distribution function (P(x, y) vs
coordinate D = 0.0575 (f) Its cross section along x = 0. (Units are arbitrary)

∂2

∂2z
Bindz = µεη̈(t) , (16)

where Bindz is the z-component of the induced magnetic field. The solution of the above equation can be read as

Bindz = µεη̈(t)z2 . (17)

Here we have used ∂
∂z Bindz = 0 at t = 0 and z = 0. It is to be noted here that the magnitude of the product of µ and

ε may be of the order of 10−17(m/sec)−2. Then above equation certainly implies that the induced magnetic field is
negligible compared to the applied magnetic field. This might be the reason to exclude the effect from the induced
magnetic field in the equation of motion in the earlier studies[55, 11, 56, 44, 43, 94].

3. Noise induced transition in a fluctuating magnetic field driven harmonic oscillator: a special signature of
the field with a new mechanism

In this section, we consider that the Brownian motion is confined in the two dimensional harmonic potentials with
the angular frequency ω and it can be read as
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Figure 2: (a) Demonstration of distribution of particles for the linear system with equations of motion (23-24) in space for the parameter set,
ω2 = 2.0, τ = 0.2, γ = 0.1, D = 0.1 and kBT = 0.1. (b) Demonstration of distribution of particles for the linear system with equation of motion
(25) in space for the same parameter set. (Units are arbitrary)

V(x, y) = ω2m(x2 + y2)/2 . (18)

Using Eq. (18) into the Eqs. (5-6) we have

u̇x = −ω2x − γ0ux + (Ω0 + η(t))uy +
η̇y
2

+ fx(t) (19)

and

u̇y = −ω2y − γ0uy − (Ω0 + η(t))ux −
η̇x
2

+ fy(t) . (20)

In the Eqs.(19-20) we have used m = 1. We will follow this in the rest of the part also. However, the fluctuating
magnetic field induces an unusual type of multiplicative noise. It is multiplied by velocity and coordinate, respectively.
In the usual multiplicative noise driven process [27, 28, 29, 30], the noise is multiplied with the coordinate along which
the Brownian particle experiences a random force. However, the above equations can be decoupled as

u̇x = −

[
ω2 + (Ω0 + η(t))

d
dt

(
L−1 η̇

2

)
+
η̇

2
L−1

(
η̇

2

)]
x

−

[
γ0 + (Ω0 + η(t))

d
dt

(
L−1 {Ω0 + η(t)}

)
+
η̇

2
L−1 {Ω0 + η(t)}

]
ux

+ (Ω0 + η(t))
[

d
dt

(
e−Ktα1(t)

)
+

d
dt

(
L−1

{
fy (t)

})]
+
η̇

2

[
e−Ktα1(t) + L−1

{
fy (t)

}]
+ fx(t)

(21)

and
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u̇y = −

[
ω2 + (Ω0 + η(t))

d
dt

(
L−1 η̇

2

)
+
η̇

2
L−1

(
η̇

2

)]
y

−

[
γ0 + (Ω0 + η(t))

d
dt

(
L−1 {Ω0 + η(t)}

)
+
η̇

2
L−1 {Ω0 + η(t)}

]
uy

− (Ω0 + η(t))
[

d
dt

(
e−Ktα1(t)

)
+

d
dt

(
L−1 { fx(t)}

)]
−
η̇

2

[
e−Ktα1(t) + L−1 { fx (t)}

]
+ fy(t) .

(22)

Derivation of these equations has been given in Appendix. Then it is to be noted here that Eq.(29) in Ref.[11] is not
an exact one. But the results in this reference are not affected as the equation was not used in the calculation.

It is difficult to solve both the coupled and the decoupled equations of motion even for the linear system. It is also
difficult to write the Fokker-Planck equation in the phase space. Therefore we are restricted to studying the present
problem numerically. We have solved the Eqs.(19-20) using the Heun’s method [95]. It is a stochastic version of
the Euler method which reduces to the second order Runge-Kutta method in the absence of noise. Details as well
reliability of the method are described in Refs. [56], and [11], respectively. Based on this method we have calculated
stationary reduced distribution function, P(x, y) for different cases and demonstrated in Fig. 1. It shows that with an
increase in strength of the fluctuating magnetic field the probability distribution function may be folded in space even
(as shown in panel (c)) for the linear system. The cross section at x = 0 of the distribution of particles in space is
plotted in panel (d) which explicitly demonstrates the non monotonic change in the distribution of particles in space.
The panel (e) is also an interesting one where the distribution function is exhibited at a relatively large strength of
the fluctuating magnetic field. Here a shallow basin with a minimum at the origin appears which is surrounded by an
island. This is explicit in panel (f) which is the cross section of the panel (e) at x = 0. Of course one may expect a
transition from panel (c) to (e) on further increase in strength of the fluctuating magnetic field. If the noise strength is
appreciably large then the distribution function seems to be not a smooth and continuous one which may correspond
to a composed of bound and unbound motions. However, to check whether the panels like (c) and (e) are the special
signatures of the fluctuating field or not we consider dynamics with the following equations of motion,

u̇x = −ω2x − γ0ux + ηy + fx(t) (23)

and

u̇y = −ω2y − γ0uy + ηx + fy(t) . (24)

For this dynamics, the distribution of particles in space has been shown in panel (a) of Fig. 2. It shows that the
probability of finding the Brownian particle decreases monotonically with an increase in distance from the origin. We
have checked that this pattern does not change even at a relatively high strength of the noise. In other words, for this
system noise induced transition is not possible. We now consider another case with the following equation of motion

u̇x = −ω2x − γ0ux + ηx + fx(t) (25)

The probability of particle for this case also decreases monotonically with an increase in distance from the origin as
shown in panel (b) of Fig. 2. We have checked that this pattern does not change even at a relatively high strength
of the noise. In other words, for this system noise induced transition is not possible. Thus Fig. 1 and Fig. 2 clearly
suggest that the non monotonic change of distribution of charged particles in space for the linear stochastic system
(where both the deterministic and the stochastic parts are linear functions of the system’s phase space variables) may
be a special signature of the fluctuating magnetic field.

3.1. Understanding about the non monotonic change of distribution of particles in a harmonic potential well

Panels (c) and (e) in Fig. 1 clearly imply that the distribution of particles at the steady state in the presence of a
fluctuating magnetic field may be drastically different from the Boltzmann type. Then one may think that the FMF
induced transition is due to a change of potential energy field with additional fixed point(s) as happens in the case
of noise induced transition. But it is very difficult to determine the effective potential energy field at the stationary
state for the present system as mentioned above. Then one may invoke a recent Ref. [30] to have an idea of whether
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Figure 3: (a) Plot of the reduced distribution function (ρ(x)) vs coordinate for the parameter set a = 0.25; b = 0.5; and (1) kBT = 0.01, γ = 1.0,D =

2.5, τ = 10.0 (2) kBT = 0.01, γ = 0.5,D = 2.5, τ = 1.5. (3) kBT = 0.01, γ = 1.0,D = 2.5, τ = 1.0 (4) kBT = 0.01, γ = 1.0,D = 1.0, τ = 1.0 (5)
kBT = 0.01, γ = 1.0,D = 2.5, τ = 1.5 (6) kBT = 0.1, γ = 1.0,D = 2.5, τ = 1.5. (b) Plot of ρ vs coordinate corresponding to panel (a). (c,d) Plot of
the renormalized potential energy function (Vx(x)) vs coordinate corresponding to panel (a). (Units are arbitrary)

the modification of the potential energy function with new fixed point(s) is possible or not in the presence of the
fluctuating magnetic field. The relevant equation of motion in Ref. [30] is

ẋ = f (x) + xη1(t)/γ + xη2(t)/γ + fx(t)/γ (26)

with
f (x) = −

1
γ

dV(x)
dx

. (27)

It is a description of over damped Brownian motion in the presence of external two multiplicative noises , η1(t) and
η2(t), respectively. Their statistical properties are defined as

〈η1(t)〉 = 〈η1(t)〉 = 0 , (28)

〈η1(t)η1(t′)〉 =
D1

τ1
e
−|t−t′ |
τ1 , (29)

〈η2(t)η2(t′)〉 =
D2

τ2
e
−|t−t′ |
τ2 , (30)
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and

〈η1(t)η2(t′)〉 = 〈η2(t)η1(t′)〉 =
λ
√

D1D2

τc
e
−|t−t′ |
τc . (31)

Here λ measures the strength of cross correlation between the noises , η1(t) and η2(t) with the correlation time τc.
Then the Langevin Eq.(26) can be expressed effectively as

ẋ = f (x) + xηe(t) + fx(t)/γ . (32)

with
ηe(t) = (η1 + η2)/γ , (33)

and
〈ηe(t)ηe(t′)〉 =

De

τe
e
−|t−t′ |
τe . (34)

Here De and τe are defined as

De =

∫ ∞

0
〈ηe(t)ηe(0)〉dt (35)

and

τe =

∫ ∞

0
t〈ηe(t)ηe(0)〉dt (36)

Then using Eq.(33) into Eqs. (35-36) one can write that

De =
D1 + 2λ

√
D1D2 + D2

γ2 (37)

and

τe =
D1τ1 + 2λ

√
D1D2τc + D2τ2

Deγ2 (38)

Thus ηe(t) in Eq.(32) is an Ornstein-Uhlenbeck noise like η(t).
The stationary distribution function for the equation (32) of motion can be read as [30]

ρ(x) = Nφ(x) exp[−
Vx(x)
DT

] , (39)

where

φ(x) =
A(x)2

(Dex2 + DT )
, (40)

and

Vx(x) = −

∫ x

0

( f (x′)A(x′) + Dex′)A(x′) − A′(x′)(Deq′2 + DT )

A(x′)( De x′2
DT

+ 1)
dx′ . (41)

with
A(x) = 1 − τ[ f ′(x) − f (x)/x] (42)

and

DT = kBT/γ . (43)

φ(x) and Vx(x) are interpreted in Ref. [30] as the inverse of position dependent diffusion coefficient and the re-
normalized potential energy function, respectively. Making use of the equation, dρ(x)

dx = 0 which defines the location
of the extrema of ρ(x), in the form
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A′(x)[Dex2 + DT ] − xDeA(x) + f (x)A(x)2 = 0 . (44)

where A′(x) =
dA(x)

dx . Similarly one may define the location of the extrema of the re-normalized potential energy field,
Vx(x), in the form

A(x)[Dex + f (x)A(x)] − A′(x)[Dex2 + DT ] = 0 . (45)

Now, one may check easily that for a harmonic potential energy field, V(x) = ω2x2/2, ρ(x) is a uni-modal one with
a maximum at x = 0 and the re-normalized potential energy field (RNPEF) mimics V(x). Thus in the presence of a
harmonic force field, the multiplicative noise which is a linear function of coordinate can not introduce an additional
fixed point into the RNPEF. Since the noise induced drift term is a linear one, it may modulate the harmonic frequency
of the renormalized potential energy field but can not create a new fixed point. Thus the noise induced transition is
not possible for the linear systems (23-24) and (25), respectively. Similarly this phenomenon may not appear for the
equation (1) of motion if f (x), g1(x) and g2(x) are linear functions of x.

For further check one may consider a bistable potential energy field, V(x) = ax4 − bx2. a, b are constants that
determine the location of the extrema of the field. Then from Eqs.(44-45) we have

128
a3τ2

γ2 x7 + 32
aτ
γ

(a − 2
abτ
γ

)x5 + +2a(a − 8
bτ
γ

+ 6τDe)x3 + (8aτDT − b + De)x = 0 . (46)

and

128
a3τ2

γ2 x7 + 32
aτ
γ

(a − 2
abτ
γ

)x5 + +2a(a − 8
bτ
γ

+ 4τDe)x3 + (8aτDT − b)x = 0 . (47)

x = 0 is a common root for both cases. It is difficult to determine other roots of the above equations. Then to make the
presentation self-sufficient we demonstrate the distribution function and the related quantities in Fig. 3. Thus five real
roots may be possible corresponding to locations of extrema of the distribution function for a given parameter set. But
for the same parameter set three extrema to appear for the re-normalized potential energy field as like as V(x). Thus
again it is proved that the multiplicative noise which is a linear function of coordinate can not introduce additional
fixed points into the RNPEF. It is to be noted here that the locations of extrema which are nearby to the origin for
the distribution function (with the potential energy, V(x) = ax4 − bx2) have no correspondence with the renormalized
potential energy field. In other words, the locations of extrema that are far away from the origin of the distribution
function have correspondence with the RNPEF. These can be read approximately from Eqs. (46-47) as

x± ' ±

√
b

2a
−

γ

4aτ
. (48)

Thus the noise induced transition is controlled by the position dependent diffusion. The unexpected maximum at
the origin for the distribution function may be due to the very weak diffusion at this region. The apparent unstable
motion in between stable and unstable fixed points of the potential energy field is a balance like situation where the
force from the potential energy favors to find the particle but the position dependent diffusion opposes it.

Then from the above discussion, it is apparent that the fluctuating magnetic field induced transition in a linear
stochastic system seems to be due to implicit dynamics. Since the terms in equations of motion with multiplicative
noises are a linear function of phase space variables then the drift terms which are introduced by these can not create
new fixed points in the re-normalized potential energy field. It may be irrespective of the nature of the multiplicative
noises. For further details, one may go through Ref. [30].

We are now in a position to explore the relevant implicit dynamics (if any). Fig. 2 implies that the time independent
part of the applied magnetic field has an important role in the manifestation of the unique signature. Then we demon-
strate the fate of panels (c) and (e) in Fig. 1 at a relatively low value of Ω0 in Fig. 4. On the other hand, If the strength
of the time independent magnetic field is appreciably large then the distribution function seems to be not a smooth
and continuous one as happens in the case of fluctuating magnetic field. However, to know the probable reason which
is related to the present context we consider the following equations of motion
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Figure 4: Demonstration of distribution of charged particles in space for a linear system for the parameter set, τ = 0.2, γ = 0.1 and kBT = 0.025.
(a, b) Plot of reduce distribution function (P(x, y) vs coordinate for ω2 = 2. (c,d) Plot of reduce distribution function (P(x, y) vs coordinate for
Ω0 = 7.0. (Units are arbitrary)

u̇x = −ω2x + Ω0uy (49)

and

u̇y = −ω2y −Ω0ux . (50)

The above coupled equations of motion can be solved using the transformation, ξ = x + iy[96, 97]. Then we have

ξ̈ = −ω2ξ − 2βξ̇ , (51)

where β = iΩ0/2. This leads to having the solution of the above equation as

ξ(t) = ξ(0)e−βtcos(
√
ω2 − β2t) . (52)

Decomposing it time dependence of x(t) and y(t) can be read as
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Figure 5: Demonstration of distribution of charged particles in space for a linear system for the parameter set, ω2 = 2,Ω0 = 7.0 and kBT = 0.025.
(a,b) Plot of reduce distribution function (P(x, y) vs coordinate for τ = 0.2. (c,d) Plot of reduce distribution function (P(x, y) vs coordinate for
γ = 0.1. (Units are arbitrary)

x(t) =
x(0)

2
[cos(

√
ω2 + Ω2

0/4 + Ω0/2)t + cos(
√
ω2 + Ω2

0/4 −Ω0/2)t]

+
y(0)

2
[sin(

√
ω2 + Ω2

0/4 + Ω0/2)t − sin(
√
ω2 + Ω2

0/4 −Ω0/2)t] (53)

and

y(t) =
y(0)

2
[cos(

√
ω2 + Ω2

0/4 + Ω0/2)t + cos(
√
ω2 + Ω2

0/4 −Ω0/2)t]

−
x(0)

2
[sin(

√
ω2 + Ω2

0/4 + Ω0/2)t − sin(
√
ω2 + Ω2

0/4 −Ω0)/2)t] . (54)

Now one can check easily that the above relations reduce to the expected results i.e., the simple harmonic motion at the
limit Ω0 = 0.0. But in the presence of a magnetic field x(t) as well as y(t) are composed of two vibrational modes with

angular frequencies, ω1 =

√
ω2 + Ω2

0/4 + Ω0/2 and ω2 =

√
ω2 + Ω2

0/4−Ω0/2 respectively. Thus if the field strength
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Figure 6: Plot of reduce distribution function (P(x, y) vs coordinate for the linear system for the parameter set, ω2 = 2,Ω0 = 5.0, γ = 0.1, C = 0.42,
and kBT = 0.025. (Units are arbitrary)

is sufficiently large such that the harmonic force seems to be very weak then the high frequency mode approaches a
cyclotron motion and the other one may behave as like a free particle one. Both the modes may be important to appear
the noise induced transition in a linear stochastic system. The low frequency mode makes the induced electric field
significant at a relatively large strength of the fluctuating magnetic field. Then the motion at a steady state seems to be
like a cyclotron one as implied by the high frequency mode. It might be apparent in panel (e) of Fig. 1. In other words,
if the fluctuating magnetic, as well as induced electric fields, are weak then the stationary distribution of particles may
be close to the equilibrium one with a maximum at the origin (as shown in panel (a) of Fig. 1) corresponding to a stable
fixed point. An interim situation may be like panel (c) in the same figure. This explanation implies that at relatively
low strength of the time independent magnetic field or high frequency of the harmonic oscillator, the distribution of
particles may be like the Boltzmann type. Thus Fig. 4 might be the justification of the explanation. At the same
time, one may not expect the noise induced transition for dynamics which are described by Eqs. (23-24) and (25),
respectively. Thus the noise induced transition in a linear stochastic system (where both the deterministic and the
stochastic parts are linear functions of system’s phase space variables) may be a unique signature of the magnetic field
with a new mechanism.

Another point is to be noted here that if the magnetic field is a time independent one (η(t) = 0) then the stationary
distribution of particles is a Boltzmann one[65, 53, 54] i.e. ρ(x, y, ux, uy) = Ne−

E
kBT . Here N is the normalization

constant and E(=
mu2

x+mu2
y+mu2

x+mω2(x2+y2)
2 ) corresponds to the total mechanical energy. E is a constant of motion for the

equations (49) and (50) since the magnetic force due to the time independent magnetic field does not work. If this
system is coupled with the thermal bath then the stationary state is an equilibrium one with Boltzmann distribution
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Figure 7: (a) Plot of S (ω′, τ) vs τ. (b) Plot coordinate vs time for equation of motion (60). (Units are arbitrary)

function. In other words, the thermal noise induced transition is not possible in the presence of a time independent
Magnetic field. We now consider the other case. Based on the equation of motion (19-20) the rate of change of energy
(E) of the system with time in the absence of thermal bath can be read as

Ė =
η̇m
2

(yẋ − xẏ) (55)

Thus the energy of this system is not a constant of motion due to the induced electric field. Therefore on coupling this
system with the thermal bath, the stationary state may be a steady state one with the non Boltzmann type distribution
function. In other words, the random force due to the fluctuating magnetic field is not related to the damping strength
and therefore the stationary state must be a steady state. As a signature of that, the stationary distribution function
may depend on the strength of both the time independent and the dependent parts of the magnetic field as implied in
Figs. 1 and 4. Thus both the parts are important to appear the noise induced transition where the cyclotron like motion
is sustained in the presence of dissipation by virtue of the induced electric field.

3.2. The damping strength and the noise correlation time induced transition
Since the stationary state in the presence of a fluctuating magnetic field is a steady state one then the distribution

of particles may depend on the damping strength and the correlation time of the fluctuating magnetic field. The fate
of the panels (c) and (e) in Fig. 1 at a relatively higher damping strength or correlation time has been demonstrated
in Fig. 5. It implies that if the energy dissipation dominates over the work done by the induced electric field then the
cyclotron like motion may not sustain at the steady state and the distribution may be close to an equilibrium one. A
similar situation may appear even for a low damping strength provided the variance of the fluctuating magnetic field
becomes small at a relatively large correlation of the noise. Thus Fig. 5 corroborates the explanation as given in the
previous subsection.

From Figs. 1 and 5 it is apparent that both the damping strength and the noise correlation time can induce transition.
We have checked that it is not possible for the systems like (23-24) and (25), respectively. Then the damping strength
and the noise correlation time induced transition in the fluctuating magnetic field driven harmonic oscillator seems to
be a unique signature of the field.

3.3. The autonomous stochastic resonance induced transition
The autonomous stochastic resonance(ASR) may appear for the present system due to the presence of the colored

fluctuating magnetic field. In a recent study[11] it has been shown that the field may induce resonant activation. Then
one may be interested to examine the signature of the ASR on the distribution of particles. In this context, we have
calculated the reduced distribution for different noise correlation times keeping fixed the noise variance. Following
two time correlation of η(t) we have fixed the variance by changing the noise strength as
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Figure 8: Demonstration of distribution of charged particles in space for a linear system for the parameter set, τ = 0.2, γ = 0.1, ω2 = 2 and
Ω0 = 7.0. (Units are arbitrary)

D(τ) = Cτ (56)

where C is a constant. It is to be noted here that the above relation is used in general[11, 4] to study the Ornstein-
Uhlenbeck noise induced autonomous stochastic resonance. We have calculated the distribution for different noise
strengths corresponding to this relation and plotted it in Fig. 6. Panels (d), (e), and (f) imply the clear signature of the
stochastic resonance. It appears around the noise correlation time, τ = 0.186. Following Ref.[4] one may estimate
approximately the critical noise correlation time (τc) at which the ASR may be significant. Using Eq.(4) in Ref.[4] we
would get two values of τc corresponding to ω1 and ω2 as

τc1 =
1
ω1

(57)

τc2 =
1
ω2

(58)

Here we have used n = 1. For the parameter set corresponding to Fig. 6 we have τc1 = 0.186 and τc1 = 2.68. It is
apparent in Fig. 6 that for the low frequency mode the autonomous stochastic resonance may not be significant for the
given damping strength. To understand this we have calculated the spectrum S (ω′, τ) (which is the Fourier transform
of the two time correlation of η(t)) [4] by the following relation
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Figure 9: Demonstration of distribution of charged particles in space for the nonlinear system for the parameter set, a = 0.25, b = 0.5, τ = 0.2, γ =

0.1, ω2 = 2, kBT = 0.025 and Ω0 = 7.0. (Units are arbitrary)

S (ω′, τ) =
2D(τ)

1 + ω′2τ2
(59)

and plotted in panel (a) of Fig. 7. It implies that at τc2 = 2.68 the ASR would be more significant compared to
τc2 = 0.186. Then we one may be interested to know the nature of the damped oscillation of the two vibrational
modes. To demonstrate the nature we have used the equations of motion,

mẍ = −ω′2x − γẋ . (60)

The solutions of this for ω′ = ω1 = and ω′ = ω2 have been demonstrated in panel (b) of Fig. 7. It is apparent in this
panel that the low frequency mode almost loses the oscillating behavior which is necessary to exhibit the dynamical
resonance. Thus Ref.[4] finds application to a colored noise driven complex system.

Before leaving this subsection we would mention the pertinent point. We have checked that the autonomous
stochastic resonance induced transition is not possible for the systems like (23-24) and (25), respectively. Thus the
autonomous stochastic resonance induced transition for the fluctuating magnetic field driven harmonic oscillator may
be a noticeable signature of the field.
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Figure 10: Demonstration of distribution of charged particles in space for the nonlinear system for the parameter set, a = 0.25, b = 0.5, τ =

0.2, ω2 = 2,D = 0.04, kBT = 0.025 and γ = 0.1. (Units are arbitrary)

3.4. Temperature induced transition
In Fig. 8 we have demonstrated how the distribution of particles may depend on the temperature in the presence of

a fluctuating magnetic field. At relatively low temperatures, panels (c) and (e) in Fig. 1 maybe like panels (a) and (b)
in Fig. 8, respectively. Then it is apparent that under this circumstance the induced electric field may not be significant
to survive cyclotron like motion at steady state and the distribution of particles may be close to Boltzmann type. A
similar situation may appear as shown in panels (c) and (d) of Fig. 8 even at relatively high temperatures provided the
fluctuating magnetic field is very weak. Thus the magnetic field plays an important role in the noise induced transition
in a linear stochastic system where both the deterministic and the stochastic parts are linear functions of the system’s
phase space variables. In other words, the temperature can induce transition for the fluctuating magnetic field driven
harmonic oscillator. Again it is to be noted here the following point. We have checked that the temperature induced
tarnsition is not possible for the systems like (23-24) and (25), respectively. Thus the temperature induced transition
for the fluctuating magnetic field driven harmonic oscillator seems to be a special signature of the field.

4. Fluctuating magnetic field induced islands formation in a nonlinear system

The noise induced transition in a linear stochastic system (where both the deterministic and the stochastic parts are
linear functions of the system’s phase space variables) strongly motivates us to consider a nonlinear system such as
the Brownian motion in two dimensional bi-stable potential energy field. The potential energy field is given by
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Figure 11: Demonstration of distribution of charged particles in space for the nonlinear system for the parameter set, a = 0.25, b = 0.5, ω2 = 2,
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V(x, y) = ax4 − bx2 + ω2y2/2 , (61)

Then the equation for the x component of the motion can be read as

u̇x = −4ax3 + 2bx − γux + (Ω0 + η(t))uy −
ηy
2τ

+

√
Dy

2τ
ζ(t) + fx(t) . (62)

Solving the above equation along with Eqs.(12, 20) we have determined the reduced distribution functions, P(x, y)
at the stationary state and plotted in Fig. 9. Panel (a) in this figure shows that the distribution of particles in space
is closed to the Boltzmann like if the strength of the time dependent magnetic field is relatively very weak. At this
condition the system is near to the equilibrium condition (η(t) = 0). However, panel (b) is an interesting one which
shows that on further increase in strength of the field, a maximum may appear at the unstable fixed point (x = 0,
y = 0). It has a similarity with the curves (3, 5, and 6) in panel (a) of Fig. 3. Thus panel (a) in Fig. 9 is an example of
diffusion controlled noise induced transition. On further increase in strength of the fluctuating field, the distribution
of particles may become more complex as shown in other panels of Fig. 9. It is to be noted that one may find a similar
kind of distribution of particles (as shown in Fig. 10) on changing the strength of the time independent magnetic
field in the presence of fluctuating field at a given strength. From these figures, one may notice the following points.
First, islands may be formed nearby the fixed points. The probability at the stable fixed points may be less compared
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Figure 12: Demonstration of distribution of charged particles in space for the nonlinear system for the parameter set, a = 0.25, b = 0.5, ω2 = 2,
γ = 0.1,C = 0.43,kBT = 0.025 and Ω0 = 5.0. (Units are arbitrary)

to the lands as like as the harmonic oscillator. Second, the shape of the islands may be different for the nonlinear
system. In this context, the formation of S-shape islands around the unstable fixed point (as shown in panel (c) of both
figs.9 and 10) seem to be noticeable. Its deviation from the circular shape may be due to an inequivalency between
the components of motion even in the absence of a magnetic field. Along the y-direction motion is bounded by the
harmonic force. But the second derivative of the potential energy with respect to x is negative around the unstable
fixed point. It may help to stretch the cyclotron like motion along x-direction more compared to another direction.
The motion becomes curved at nearby the stable fixed points where both the directions are equivalent in the absence
of magnetic field. Thus for the S-shaped cyclotron like motion around the unstable fixed point, the stable fixed points
may have an important role. However, the S-shaped island is confined in 2nd and 4-th quadrants, respectively. This
preference may be due to the following fact. In the presence of time dependent magnetic field, the equations of motion
may not remain invariant for changing the phase space variables x, y, ux, uy and η to −x,−y,−ux,−uy and −η. Then it is
apparent that this property may offer the preference to the S-shaped island in the presence of the significant difference
between the components of motion. But as the cyclotron like motion around the stable fixed points becomes strong
(with an increase in contribution from induced electric field) then this preference may reduce as shown by the rest of
the panels in Figs.9 and 10. Thus in the presence of a nonlinear potential energy field with unstable fixed point(s), the
shape and the number of islands may depend on the interplay among the cyclotron like motions around the stable and
unstable fixed points as the signature of the fluctuating magnetic field induced transition with a new mechanism. In
other words, an unstable fixed point in a nonlinear system may be an important one to offer the S-shape island (with
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the preferred orientation ) as well as symmetry reduction.
We now consider the influence of the correlation time of the fluctuating magnetic field on the distribution of

charged particles in space. In this context, we demonstrate the distribution function for different τ in panels (a), (b),
and (c) of Fig. 11. It shows that new islands are formed with a decrease in the correlation time. The variance of the
fluctuating magnetic field is enhanced for the decrease of τ and as a result of that, the induced electric field becomes
more significant to introduce new islands as explained above. Thus these panels are consistent with Fig. 9. Similarly,
the noise induced transition may depend on the damping strength as shown in panels (d), (e), and (f) of Fig. 11. Here
it is apparent that the effectiveness of the induced electric field may be more significant (for a given strength of the
fluctuating magnetic field) as the energy dissipation becomes weak. Another important point is to be noted here that
even for a small change in correlation time of the fluctuating magnetic field or damping strength new islands may be
formed. It may be around the unstable fixed point or near the stable fixed point. These observations imply that the
change in the structure of the distribution is not due to modification of the potential energy field. In other words, the
noise induced transition is due to the interplay between the potential energy field and the cyclotron like motion.

We are now in a position to demonstrate the autonomous stochastic resonance induced transition for the nonlinear
system. Fig. 12 is a relevant one. It is apparent in this figure that the resonance is significant at the critical noise
correlation time, τc2 = 0.186 which is suggested by the harmonic motion around the bottom of the well as noted in
the previous section. Thus the study on the fluctuating magnetic field driven harmonic may not be a mere example as
it finds application to understand a nonlinear system which may mimic a relevant experimental situation.

5. Conclusion

We have studied the distribution of particles in space in the presence of a fluctuating magnetic field. The field intro-
duces an unusual type of multiplicative noise terms which are linear functions of coordinate and velocity, respectively.
The dynamics with these terms offer a versatile structure of the distribution function. Our investigation includes the
following major points.

(i) In the presence of a harmonic force field, the distribution function may be folded around the origin with either a
maximum or minimum at the origin at a relatively high strength of both time dependent and independent fields. These
sharp contrast behaviors of a linear stochastic system (where both the deterministic and the stochastic parts are linear
functions of system’s phase space variables) are due to the noticeable signature of the fluctuating magnetic field.
(ii) If the potential energy field is a nonlinear one then new islands like regions are formed in the distribution of charged
particles in space with an increase in the strength of the fluctuating magnetic field. The land may be formed near the
stable fixed points instead of folding the distribution function in space around the stable fixed points as happens in the
linear system.
(iii) The appearance of islands at nearby fixed points seems not to be obvious from the given potential energy field.
Even the shape and the number of islands depend on the noise strength. These are also not obvious from the equations
of motion. The formation of islands may offer an explanation to describe the phenomenon, the reduction of the current
in a semiconductor in the presence of a time dependent magnetic field.
(iv) An unstable fixed point in a nonlinear system may be an important one to offer the S-shape island (with the
preferred orientation ) as well as symmetry reduction.
(v) The damping strength and the noise correlation time induced transition in the fluctuating magnetic field driven
harmonic oscillator seems to be a unique signature of the field. Similarly, the field driven autonomous stochastic
resonance induced transition may be a special one for a linear system where both the deterministic and the stochastic
parts are linear functions of the system’s phase space variables.
(vi) The temperature may induce transition for the fluctuating magnetic field driven harmonic oscillator.
(Vii)Finally, based on the present study one may anticipate that the noise induced tarnsition may be possible for an
additive noise driven harmonic oscillator in the presence of a time independent magnetic field. But we have checked
that the distribution of particle is a uni-modal one even at reletively large strength of the noise. In other words, at
the steady state, the cyclotron like motion may not be sustanable against the dissipative force and the noise induced
tarnsition is not possible for this system. Then our preliminary observation with a multiplicative noise (which is a
linear function of system’s coordinate) instead of the additive noise implies that the noise induced transition may be
possible for this case. The detail investigation regarding this issue may appear shortly elsewhere.
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Before leaving this section we would mention that the present study may be helpful to understand as well as control
the conductivity of electrolytic materials. In the recent past, the study on ion conducting electrolytic materials is a very
important area in physics and chemistry being driven by an ever-increasing demand for portable electronic devices.
The materials have potential applications in a diverse range of all-solid-state devices, such as rechargeable lithium
batteries, flexible electrochromic displays, and smart windows [98, 99, 100, 101]. The properties of the electrolytes
are tuned by varying chemical composition to a large extent and hence are adapted to the specific needs [102, 103].
High ionic conductivity is needed for optimizing the glassy electrolytes in various applications. It would be very
interesting if one can tune the ionic conductivity according to the specific need by a physical method. One may
investigate the issue in the presence of the Lorentz force. Although a time independent magnetic field can not activate
the particle to cross the barrier it may modulate the frequency of the dynamics. It is to be noted here that a time
dependent magnetic field may introduce an induced electric field to activate the particle. Another way is the direct
application of an electric field which may be helpful in the case when a very high rate of barrier crossing is necessary.
In the very recent Refs. [47, 48, 49, 50, 51, 52, 53, 54, 55, 11, 56] it has been shown that the conductivity of an
electrolytic material can be tuned by an applied magnetic field. Electron tunneling in quantum wire in the presence
of a magnetic field has been studied in Ref. [47]. Tunneling ionization of impurity centers in semiconductors was
investigated [48, 49, 50] in the presence of a magnetic field. The effect of a magnetic field on the electron transport
of GaAs quantum wire was studied very recently [51] in the presence of an electric field. Based on the magneto-
tunneling spectroscopy a noninvasive and nondestructive probe has been used to produce two-dimensional spatial
images of the probability density of an electron confined in a self-assembled semiconductor quantum dot [52]. The
technique exploits the effect of the classical Lorentz force on the motion of a tunneling electron. In this experiment,
extremum behavior is observed in the variation of the tunneling current with the magnetic field strength. A similar kind
of behavior also has been reported in Refs. [53, 55] in the variation of the barrier crossing rate constant as a function
of the strength of the time independent magnetic field (TIMF). This optimum behavior has been observed at a low
damping regime [53, 55]. However, in Refs. [54, 56] it has been shown that one may tune the barrier crossing rate by
virtue of fluctuating magnetic field. It is to be noted here that the current in the semiconductor may become small for
a given amplitude of the oscillating magnetic field. This observation has been explained based on the phenomenon,
dynamical localization. This phenomenon has been of growing interest [104, 105, 106, 107, 108] because of its very
relevance in the response of the electron transport in mesoscopic systems to external fields [109, 110, 111]. In this
context, the present study may be a very relevant one. Based on it one can account for the reduction of the current
in the semiconductor. The formation of islands may reduce the conductivity of electrolytes in the presence of a time
dependent magnetic field.

Appendix A. Decoupling of equations (19-20) of motion

One may formally decouple Eqs.(19-20) considering homogenous and particular solutions of the respective equa-
tions. General solution of these equations can be read as

x = e−Ktα(t) + xp. (A.1)

y = e−Ktα(t) + yp. (A.2)

where K =
γ0
2 and e−Ktα(t) is the solution of the equations at the limit, η(t) = 0, fx(t) = 0, fy(t) = 0,D = 0 and Ω0 = 0.

α(t) has three forms[11] for the conditions (i) ω > K, (ii) ω < K and (iii) ω = K, respectively. Then the respective
particular solutions xp and yp are defined as

Lxp = − (Ω0 + η(t)) uy +
η̇y
2

+ fx(t) (A.3)

Lyp = − (Ω0 + η(t)) ux −
η̇x
2

+ fy(t) (A.4)

xp = L−1
[
− (Ω0 + η(t)) uy +

η̇y
2

+ fx(t)
]

(A.5)
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yp = L−1
[
− (Ω0 + η(t)) ux −

η̇x
2

+ fy(t)
]

(A.6)

where

L =
d2

dt2 + γ0
d
dt

+ ω2 . (A.7)

Then using Eq.(A.2) with the defination of yp in Eq.(19) for uy =
dy
dt

we have

u̇x = −ω2x − γ0ux + (Ω0 + η(t))
[

d
dt

(
e−Ktα1(t)

)
+

d
dt

(
L−1

{
− (Ω0 + η(t)) ux −

η̇x
2

+ fy(t)
})]

+
η̇

2

[
e−Ktα1(t) + L−1

{
− (Ω0 + η(t)) ux −

η̇x
2

+ fy(t)
}]

+ fx(t)
. (A.8)

Similarly one may read that

u̇y = −ω2y − γ0uy − (Ω0 + η(t))
[

d
dt

(
e−Ktα1(t)

)
+

d
dt

(
L−1

{
(Ω0 + η(t)) uy +

η̇y
2

+ fx(t)
})]

−
η̇

2

[
e−Ktα1(t) + L−1

{
(Ω0 + η(t)) uy +

η̇y
2

+ fx(t)
}]

+ fy(t)
. (A.9)

To rearrange these equations one may look into the operator, L. Then Eq.(A.7) can be rearranged as

L = 1 + M (A.10)

with

M =
d2

dt2 + γ0
d
dt

+ ω2 − 1 (A.11)

Thus L, as well as M, are linear operators. The operator, L−1 can be expressed as

L−1 =

∞∑
k=0

(−1)k Mk (A.12)

The above equation implies that L−1 is also a linear operator. Then using this property in Eqs.(A.8-A.9) we have

u̇x = −

[
ω2 + (Ω0 + η(t))

d
dt

(
L−1 η̇

2

)
+
η̇

2
L−1

(
η̇

2

)]
x

−

[
γ0 + (Ω0 + η(t))

d
dt

(
L−1 {Ω0 + η(t)}

)
+
η̇

2
L−1 {Ω0 + η(t)}

]
ux

+ (Ω0 + η(t))
[

d
dt

(
e−Ktα1(t)

)
+

d
dt

(
L−1

{
fy (t)

})]
+
η̇

2

[
e−Ktα1(t) + L−1

{
fy (t)

}]
+ fx(t)

(A.13)

and

u̇y = −

[
ω2 + (Ω0 + η(t))

d
dt

(
L−1 η̇

2

)
+
η̇

2
L−1

(
η̇

2

)]
y

−

[
γ0 + (Ω0 + η(t))

d
dt

(
L−1 {Ω0 + η(t)}

)
+
η̇

2
L−1 {Ω0 + η(t)}

]
uy

− (Ω0 + η(t))
[

d
dt

(
e−Ktα1(t)

)
+

d
dt

(
L−1 { fx(t)}

)]
−
η̇

2

[
e−Ktα1(t) + L−1 { fx (t)}

]
+ fy(t) .

(A.14)
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