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Abstract
We study the two-dimensional motion of an active Brownian particle of speed v0, with intermittent directional reversals in the presence
of a harmonic trap of strength µ. The presence of the trap ensures that the position of the particle eventually reaches a steady state
where it is bounded within a circular region of radius v0/µ, centered at the minimum of the trap. Due to the interplay between the
rotational diffusion constant DR, reversal rate γ, and the trap strength µ, the steady state distribution shows four different types of
shapes, which we refer to as active-I & II, and passive-I & II phases. In the active-I phase, the weight of the distribution is concentrated
along an annular region close to the circular boundary, whereas in active-II, an additional central diverging peak appears giving rise to a
Mexican hat-like shape of the distribution. The passive-I is marked by a single Boltzmann-like centrally peaked distribution in the large
DR limit. On the other hand, while the passive-II phase also shows a single central peak, it is distinguished from passive-I by a non-
Boltzmann like divergence near the origin. We characterize these phases by calculating the exact analytical forms of the distributions in
various limiting cases. In particular, we show that for DR � γ, the shape transition of the two-dimensional position distribution from
active-II to passive-II occurs at µ = γ. We compliment these analytical results with numerical simulations beyond the limiting cases and
obtain a qualitative phase diagram in the (DR, γ, µ

−1) space.

1 Introduction

Brownian motion is perhaps the simplest stochastic process that
has found diverse applications across a wide range of disciplines
including natural sciences 1,2, ecology3, computer sciences4 and
finance5. The paradigmatic example is the jittery motion of a
micron-sized colloidal particle in a fluid at a temperature T . The
dynamics of the position vector r of such a passive Brownian parti-
cle in the presence of a confining potential V (r) is described by the
overdamped Langevin equation ṙ = −α∇V (r) +

√
2αkBT η(t),

where α is the mobility, kB is the Boltzmann constant, and η(t)
is a delta-correlated Gaussian white noise. The position of the
particle eventually equilibrates to the Boltzmann distribution ∝
exp [−V (r)/(kBT )].

A bacterium, like E. coli, which has a size similar to a colloidal
particle, performs, on the other hand, a very different kind of mo-
tion6. It self-propels with a constant speed v0 along an internal
orientation vector n̂, that itself evolves stochastically. Such di-
rected/persistent motion ṙ(t) = v0n̂(t), referred to as active mo-
tion, have gained a lot of interest in recent times7–11. Active Brow-
nian particle (ABP)12–16 and run-and-tumble particle (RTP)17–20

are two widely used models to describe different kinds of active
motion. The orientation vector n̂ undergoes a rotational diffusion
for ABP21,22, while in the case of RTP, intermittent tumbling events
results in the reorientation of n̂ along a randomly chosen direc-
tion23,24.

In the presence of a confining potential, an active particle re-
laxes to a nonequilibrium stationary state, whose form depends
on the potential and the specific dynamics of n̂11 — unlike the
generic equilibrium Boltzmann distribution for the passive case.
There have been a handful of theoretical studies that find exact re-
sults for the stationary state in such scenarios15,25–27. It turns out
that the presence of activity leads to a wide range of non-trivial
behaviors. Of particular interest is the shape-transition of the po-
sition distribution from an active phase, characterized by an accu-
mulation of probability density near the boundary of the confining
region, to a Boltzmann-like passive phase15,22,27,28. Naturally, ex-
ploring the stationary-state behavior of various active motions in
confining potentials is of significant interest.

Certain bacteria like Myxococcus xanthus 29–32, Pseudomonas
putida33,34, Pseudoalteromonas haloplanktis and Shewanella putre-
faciens35,36, and Pseudomonas citronellolis37 show a unique type of

motion, not described by either ABP or RTP. They undergo ABP like
motion accompanied by intermittent reversals of the orientation
vector. Various theoretical models for such motion have been ex-
plored recently38–40. In particular, when the reversal events follow
a Poisson process with a constant rate, such a direction reversing
active Brownian particle (DRABP) shows non-trivial position dis-
tribution and persistence properties in the absence of any external
potential38. A natural direction is to investigate the steady-state
behavior of a DRABP in confining potentials.

In this paper, we study the stationary position distribution of a
DRABP in two dimensions, in the presence of a harmonic potential.
We show that the interplay between the rotational diffusion, direc-
tion reversal and the harmonic trap leads to four phases character-
ized by distinct shapes of the position distribution (see Fig. 2 and
1). Apart from the typical active and passive phases—marked by
an accumulation of probability at the boundaries and a Boltzmann-
like centrally peaked distribution respectively—we find two novel
phases where a diverging central peak appears in both active and
passive phases. We characterize the transition/crossover among
these phases.

The paper is organized as follows. We define the model and an-
nounce our main results along with a qualitative phase diagram in
Sec. 2. In Sec. 3 we provide a qualitative description of the differ-
ent phases in terms of long-time trajectories. Detailed analytical
derivations of the position distributions in the different phases are
provided in Sec. 4. Finally, we conclude in Sec. 5 with some open
questions. Exact computation of the variance and kurtosis is given
in Appendix A. We also generalize part of our results to arbitrary
dimensions in Appendix B.

2 The model and results

A direction reversing active Brownian particle moving in two di-
mensions is described by its position vector r = (x, y), orientation
angle θ ∈ [0, 2π] with respect to the x-axis, and the dichotomous
noise σ(t) = ±1. In the presence of a harmonic potential

V (x, y) =
µ

2
(x2 + y2), (1)
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2 THE MODEL AND RESULTS

(a) Passive-I (b) Active-I

(d) Active-II(c) Passive-II

Figure 1: Typical shape of the stationary position distribution P (x, y) for r0 = 1 in the four phases—(a) Passive-I [eqn (8)], (b) Active-I
[eqn (13)], (c) Passive-II [eqn (21) for ν > 1], (d) Active-II [eqn (21) for ν < 1].

the position and orientation evolve according to the Langevin
equations,

ẋ = −µx+ v0 σ(t) cos θ(t), (2a)

ẏ = −µy + v0 σ(t) sin θ(t), (2b)

θ̇ =
√

2DR η(t). (2c)

Here DR is the rotational diffusion constant and η(t) is a Gaus-
sian white noise with 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t − t′). The
dichotomous noise σ(t) flips between ±1 at a constant rate γ, trig-
gering orientation reversals. It has an exponentially decaying au-
tocorrelation 〈σ(t)σ(t′)〉 = e−2γ|t−t′|.

For γ = 0, this model reduces to the ABP in a harmonic po-
tential, for which the stationary state has been studied in22,26.
On the other hand, for DR = 0, since θ does not evolve, the
model corresponds to a one-dimensional RTP along the initial ori-
entation in a harmonic potential27. In the absence of any po-
tential, for both γ = 0 (ABP) and DR = 0 (RTP), the long-
time dynamics becomes diffusive with effective diffusion coeffi-
cient DAB = v20/(2DR) and DRT = v20/(2γ), respectively. For
DRABP, i.e., both non-zero γ and DR, the corresponding effec-
tive diffusion coefficient is DDR = v20/[2(DR + 2γ)]. In this paper,
we find that, in the presence of a harmonic potential, the inter-
play of γ, DR and µ leads to a host of interesting behaviors in the
stationary state.

The Fokker-Planck equation for the probability density function
Pσ(x, y, θ, t) corresponding to the Langevin equations (2) is given
by,

∂Pσ
∂t

=−
[
∂

∂x
(−µx+ v0σ cos θ) +

∂

∂y
(−µy + v0σ sin θ)

]
Pσ

− γ Pσ + γ P−σ +DR
∂2Pσ
∂θ2

. (3)

We are interested in the steady state position distribution

P (x, y) ≡
∫ 2π

0

dθ
∑
σ=±1

Pσ(x, y, θ), (4)

where the stationary distribution Pσ(x, y, θ) ≡ Pσ(x, y, θ, t → ∞)
is the solution of eqn (3) with ∂Pσ/∂t = 0. † The exact solution of
eqn (3) is hard to obtain in practice, for arbitrary values of µ, γ and
DR, even for the steady state. Hence we analyze the distribution
P (x, y) in the limiting cases where one of the parameters is much
smaller than the others, giving rise to distinct phases characterized
by the shape of the position distribution. It is evident from eqn (2)
that the steady state is isotropic and has a finite support on a cir-
cular region of radius r0 = v0/µ centered at the origin. We show
that, depending on the relative strength of the three parameters

†Note that, for notational simplicity, we are using the same letter P to denote all
the probability distributions.
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4 STATIONARY POSITION DISTRIBUTIONS IN THE PHASES

DR, γ, and µ, the shape of the steady state position distribution
can be very different (see Fig. 1), which we analytically character-
ize.

Before going to the detailed analysis, we introduce the different
phases and briefly summarize our main results here. We analyti-
cally find that for γ � µ or DR � µ, the system is in an active
phase, where the probability density accumulates near the circular
boundary of radius r0. On the other hand, for γ � µ or DR � µ
the system is in a passive phase where the distribution has a single
central peak. A unique feature of this DRABP in harmonic po-
tential is that for DR � γ, the distribution at the center always
diverges (algebraically for the two-dimensional position distribu-
tion and logarithmically for the marginal) irrespective of whether
the system is in the active or the passive phase. To take this into
account, we further subdivide the each of two phases into two sub-
phases based on our analytical results in the limiting cases.

• Passive-I (DR � µ, for arbitrary γ). In this case, the station-
ary distribution is Boltzmann-like which has a Gaussian form
for the harmonic potential considered here [see Fig. 1(a)].
This is similar to the typical passive phase seen for ABP
(γ = 0) in an external potential.

• Active-I (γ � DR � µ). Here the stationary distribution is
concentrated at the circular boundary |r| = r0 [see Fig. 1(b)].
This is also the active phase for ABP, where γ = 0.

• Passive-II (γ > µ � DR). In this passive phase also, the
position distribution has a single central peak. However, the
distribution diverges at the center which distinguishes it from
the passive-I phase [see Fig. 1(c)].

• Active-II (µ > γ � DR). This phase is characterized by
a Mexican hat-like shape [see Fig. 1(d)] of the distribution
that is concentrated both at the center and at the circular
boundary |r| = r0.

While we have characterized the above phases analytically only
in the limiting cases, the general qualitative features hold even
beyond these limits, which we verify using numerical simulations
for some other parameters (see Fig. 9). The phases are best repre-
sented in the γ, DR and µ−1 space and a qualitative phase diagram
is provided in Fig. 2. In order to develop a physical understanding
of the emergence of the different shapes, we look at the typical
trajectories in the different phases in the following section.

3 Typical trajectories in the different phases
To understand the stationary behavior of DRABP, it is useful to
characterize the long-time trajectories in the different phases.

• Passive-I. A typical trajectory of DRABP in this phase, shown
in Fig. 3(a), resembles that of an ordinary Brownian particle
in a harmonic trap. This is because the randomization time-
scale D−1

R of the orientation is much smaller than the relax-
ation time-scale µ−1 of the trap. Increasing γ decreases the
randomization time-scale to (DR + 2γ)−1. Consequently, the
description of DRABP at a time-scale larger than this random-
ization time-scale is given by an Ornstein-Uhlenbeck process
with an effective diffusion constant DDR.

• Active-I. Figure 3(b) shows a typical trajectory in this phase.
Except a very few detours to the interior region, the particle
mostly stays near the boundary, where the net force on the
particle is zero when its orientation vector n̂ is along r. This
is due to the fact that in this regime θ changes slowly as well
as reversal events are very rare.

• Passive-II. Figure 3(c) shows a typical trajectory in this
regime. Unlike active-I, the large number of directional re-
versals makes the persistence length ∼ v0/γ smaller than the
diameter of the confining region ∼ v0/µ. As a result, the par-
ticle is confined near the origin. However, unlike passive-I,
since DR is small here, trajectory-segments between consecu-
tive reversals are almost straight and pass through the central
region, leading to a qualitatively different distribution.

• Active-II. As seen from Figure 3(d), since DR is small, in this
regime also the particle passes through the central region al-
most in a straight line. However, unlike the passive-II, since
the persistence length ∼ v0/γ is larger than the diameter of
the confining region ∼ v0/µ, it goes all the way to the bound-
ary and spends a considerable time there leading to a concen-
tration of probabilities at the boundary as well as the center.

These four classes of different trajectories lead to four qualitatively
different shapes of the stationary distribution, which we analyze in
the following section.

4 Stationary position distributions in the phases
In this section we derive analytical expressions for the stationary
distributions in the different phases. We also support this picture
beyond the limiting cases using numerical simulations. Let us start
with the most familiar passive phase (passive-I) where the station-
ary state is Boltzmann-like.

4.1 Passive-I phase: DR � µ

In this case it is useful to rewrite Eq. (2) as,

ẋ = −µx+ ζx(t), (5a)

ẏ = −µy + ζy(t). (5b)

The auto-correlation of the effective noises ζx(t) = v0σ(t) cos θ(t)
and ζy(t) = v0σ(t) sin θ(t) become38

〈ζx(t)ζx(t′)〉 = 〈ζy(t)ζy(t′)〉 → v20
2
e−(DR+2γ)|t−t′|, (6)

for t, t′ � D−1
R and arbitrary γ, while the cross-correlation

〈ζx(t)ζy(t′)〉 → 0. Now, for large DR, we can evolve eqn (5) at
a time step D−1

R � dt � µ−1, where the effective noises emulate
two independent white noises with auto-correlations

〈ζa(t)ζb(t
′)〉 → 2DDR δa,b δ(t− t′), with {a, b} ∈ {x, y} (7)

and DDR = v20/[2(DR + 2γ)]. Thus, the Langevin equations (5) re-
duce to an Ornstein-Uhlenbeck process, where the stationary state
is given by the Boltzmann distribution,

P (x, y) =
µ

2πDDR
exp

[
−µ(x2 + y2)

2DDR

]
. (8)

This is the passive-I phase [see Fig. 1(a)] as announced in Secs. 2
and 3. The corresponding marginal distribution is evidently also a
Gaussian,

P (x) =

√
µ

2πDDR
exp

(
− µx2

2DDR

)
. (9)

which is compared with the numerical simulations in Figure 4(a).
Note that, the variance of the above distribution agrees with the

expression obtained from the exact eqn (36) by taking the limit
v0 →∞, DR →∞ keeping v20/DR constant for arbitrary γ. More-
over, the exact kurtosis given by eqn (41) tends to zero in this

3



4.1 Passive-I phase: DR � µ 4 STATIONARY POSITION DISTRIBUTIONS IN THE PHASES

μ-1

D
R

μ
-

1

γ

γ

D
R

Passive-I

Active-I

Active-I

Active-II

Active-II

Passive-II

(a)

(b) (c)

(d)

Figure 2: A simplistic schematic phase diagram for the steady state of DRABP in a harmonic trap. (a) The phase diagram in the
(γ, DR, µ

−1) space. For γ = 0, the phase diagram of DRABP becomes that of an ABP in a harmonic trap [shown separately in (b)],
where we see the active-I phase for DR � µ (light green shaded region), which crosses over to the passive-I phase for DR � µ
(dark green shaded region). Although we do not know the crossover/transition curve analytically, for simplicity, it is shown by the
schematic dotted red line. The DR → 0 plane [shown separately in (d)] shows a transition from the active-II to passive-II phase, where
the transition line, marked by a solid blue line, is known exactly (see Sec. 4.3). Numerical evidence suggests (see Sec. 4.4) that the
behaviors shown in (b) and (c) extend for γ > 0 and DR > 0 respectively, implying some kind of transition/crossover between active-I
and active-II as well as passive-I and passive-II phases. The active (I & II) region shrinks as µ−1 increases, indicating the funnel-like
shape of the surface separating the active (I & II) and the passive (I & II) phases shown in (a). However, the actual shape of this surface
may have more complex structure [see Fig. 9(b)] than the simple schematic surface shown here. For µ−1 → 0 [shown separately in
(c)], the passive region disappears (i.e., pushed to infinity) leaving only the active phases.
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4 STATIONARY POSITION DISTRIBUTIONS IN THE PHASES 4.2 Active-I phase: γ � DR � µ

(a) Passive-I (b) Active-I

(d) Active-II(c) Passive-II

Figure 3: Long-time trajectories of a DRABP in a harmonic trap
with µ = 1 in the different phases. The finite support of the po-
sition distribution, a circle of radius r0 = 1, is marked by dashed
green lines. (a) passive-I phase: γ = 0.1 DR = 10; (b) active-I
phase: γ = 0.001 DR = 0.05 (c) passive-I phase: γ = 5 DR = 0.01
(d) active-II phase: γ = 0.1 DR = 0.01. The blue and red colors
indicate the instantaneous state σ = +1 and −1 respectively.

limit, consistent with the Gaussian form of the above distribution
[see eqn (42)].

In the limit γ → 0, the above distribution reduces to that of an
ABP in a harmonic potential in the passive phase22,

P (x, y) =
µ

2πDAB
exp

[
−µ(x2 + y2)

2DAB

]
, (10)

where DAB = v20/(2DR). The corresponding marginal distribution
is also obviously a Gaussian,

P (x) =

√
µ

2πDAB
exp

(
− µx2

2DAB

)
, (11)

which we compare with numerical simulations in Fig. 4(b).
Next we discuss the most commonly seen active phase where the

stationary probability density is concentrated near the boundary.

4.2 Active-I phase: γ � DR � µ

In the limit γ/DR → 0, the Fokker-Planck equation (3) becomes,

∂Pσ
∂t

=−
[
∂

∂x
(−µx+ v0σ cos θ) +

∂

∂y
(−µy + v0σ sin θ)

]
Pσ

+DR
∂2Pσ
∂θ2

, (12)

where P± represents two non-interacting ABPs with constant ve-
locities v0 and −v0 respectively. Since the stationary state of an
ABP does not depend on the sign of the velocities (alternatively,
the initial orientation), in this limit we get the same stationary dis-
tributions as that of an ABP in a harmonic potential22,26.

Therefore, for γ � DR � µ, the probability density is concen-
trated along a ring x2+y2 = r20 thereby indicating that the particle
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Figure 4: The stationary marginal distribution P (x) in the passive-I
phase for µ = 0.01 and v0 = 1. The analytical predictions for P (x)
given by eqn (9) and (11) (solid black lines) are compared with
numerical simulations (solid symbols) for γ = 1 (a) and γ = 10−4

(b) respectively.

is in an active phase. ‡ In other words, the position distribution
takes the limiting form

P (x, y) =
1

2πr0
δ
(√

x2 + y2 − r0
)
. (13)

We refer to this ABP-like active phase of DRABP as active-I to dis-
tinguish it from a novel active phase obtained in Sec. 4.3, emerging
from the direction reversal. The marginal distribution is obtained
by integrating Eq. (13) over y as,

P (x) =
1

π
√
r20 − x2

Θ(r0 − |x|), (14)

where the Θ(z) is the Heaviside-theta function. We compare this
theoretical prediction with numerical simulations in Fig. 5 and find
an excellent agreement. Interestingly, this active-I phase even ex-
tends to γ/DR = O(1), where the shape of the distribution re-
mains qualitatively same (weighted near the boundary), as dis-
cussed later in Sec. 4.4. The variance and the kurtosis correspond-
ing to eqn (14) are r20/2 and −3/2 respectively, which are consis-
tent with the direct calculation of the same; see eqn (43).

Finally, we discuss two novel phases, where the directional re-
versal leads to a diverging central peak along with the active and
passive like features.

‡Note that, the Fokker-Planck equation (12) still holds for γ � µ � DR. The
corresponding passive phase (passive-I) is characterized by a Boltzmann distribution
as given in eqn (10).
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4.3 The novel active and passive phases: DR � (µ, γ) 4 STATIONARY POSITION DISTRIBUTIONS IN THE PHASES

Figure 5: The stationary marginal distribution P (x) in the active-
I phase. The symbols are obtained from numerical simulations
for DR = 0.05 and γ = 10−4 and solid black lines are from the
analytical prediction eqn (13).

4.3 The novel active and passive phases: DR � (µ, γ)

The directional reversal leads to two new phases which are best
seen in the DR/µ → 0 limit. It is useful to divide both sides of
eqn (3) by µ, which gives,

∂Pσ
∂(µt)

=−
[
∂

∂x
(−x+ r0σ cos θ) +

∂

∂y
(−y + r0σ sin θ)

]
Pσ

− ν [Pσ − P−σ] +
DR
µ

∂2Pσ
∂θ2

, (15)

where ν = γ/µ. In the limit DR/µ → 0 while keeping r0 and
ν finite, θ evolves very slowly. As a first approximation, θ can
be kept fixed. This is equivalent to neglecting the second order
derivative with respect to θ in eqn (15), resulting in the Fokker-
Planck equation for the conditional distribution Pσ(x, y, t|θ) for a
given θ.

Now, for a fixed θ, it is convenient to make a rotation of the
coordinate system[

x‖
x⊥

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x
y

]
, (16)

where x‖ and x⊥ are respectively the axes parallel and perpendic-
ular to the θ-direction. In the (x‖, x⊥) coordinates, the Fokker-
Planck equation for Pσ(x‖, x⊥, t|θ) becomes,

∂Pσ
∂(µt)

=− ∂

∂x‖

[(
−x‖ + r0σ

)
Pσ
]
− ν [Pσ − P−σ]− ∂

∂x⊥
[−x⊥Pσ] .

(17)

It is evident from the above equation that the dynamics of x‖ is
nothing but that of a one-dimensional RTP along θ in a harmonic
potential. On the other hand, x⊥ independently undergoes a de-
terministic overdamped motion in a harmonic potential, resulting
in x⊥ → 0 as t→∞. Therefore, the steady state position distribu-
tion P (x‖, x⊥|θ) =

∑
σ=±1 Pσ(x‖, x⊥, t → ∞|θ) can be obtained

using the steady state result of 1D RTP in a harmonic trap27,

P (x‖, x⊥|θ) =
δ(x⊥) 21−2ν

r0B(ν, ν)

[
1−

(
x‖
r0

)2
]ν−1

Θ(r0 − |x‖|), (18)

where B(ν, ν) is the beta function.

Subsequently, in terms of the original coordinates (x, y), the po-
sition distribution becomes,

P (x, y|θ) =
21−2ν

r0B(ν, ν)

[
1− x2 + y2

r20

]ν−1

× δ(−x sin θ + y cos θ) Θ
(
r0 −

√
x2 + y2

)
. (19)

The dynamics of θ is independent of that of (x, y), whose dis-
tribution evolves by the diffusion equation, leading to the uniform
steady state for θ ∈ [0, 2π] for t � D−1

R . Averaging eqn (19) with
respect to the steady state distribution θ, we get the scaling form
for the distribution,

P (x, y) =

∫ 2π

0

dθ

2π
P (x, y|θ) =

1

r20
fν

(
x

r0
,
y

r0

)
, (20)

with the scaling function,

fν(z1, z2) =
21−2ν

πB(ν, ν)

(1− z21 − z22)ν−1√
z21 + z22

Θ(1− z21 − z22). (21)

Plots of the scaling distribution fν(z1, z2) are shown in Fig. 1(c)
and (d) for ν > 1 and ν < 1 respectively. For ν < 1, the distri-
bution looks like a Mexican hat with algebraic divergences both at
the origin and at the boundary z21 + z22 = 1. On the other hand for
ν > 1, the distribution goes to zero at the boundaries, while it still
retains the algebraic divergence at the origin.

The marginal distribution can be obtained by integrating
Eq. (20) over one of the coordinates. Integrating over y yields
the scaling form,

P (x) =
1

r0
gν

(
x

r0

)
. (22)

The corresponding scaling function is given by,

gν(z) =
1

π
(1− z2)ν−

1
2 2F1

(
1

2
, ν, ν +

1

2
, 1− z2

)
Θ(1− z2), (23)

where 2F1(a, b, c, y) denote the Hypergeometric function. In fact,
one can generalize the above result for the marginal distribution to
all higher dimensions [see eqn (50)], as shown in Appendix B. In-
cidentally, the radial distribution is independent of dimensionality
and is given by eqn (47).

The moments of the above distribution can be computed by us-
ing the series representation of the hypergeometric function. The
variance 〈x2〉 = r20/[2(2ν + 1)] and the kurtosis κ = 3(2ν −
3)/[2(2ν + 3)] obtained from eqn (23) agree with the direct cal-
culations of the same (see eqn (44)).

Figure 6(a) shows a very good agreement between eqn (23) and
numerical simulations for small values of DR. As seen in Fig. 6(a),
the shape of the distribution near the boundaries shows three qual-
itatively different behaviors. Indeed, it follows from Eq. (23) that
the behavior of the tails near z = ±1 undergoes a transition as a
function of ν,

gν(z) ' 1

π
×


[
2(1− |z|)

]−(1/2−ν)
0 < ν < 1/2,

1 ν = 1/2,[
2(1− |z|)

]ν−1/2
ν > 1/2.

(24)

It is evident from the above equation that at the boundaries z =
±1, the marginal distribution diverges for ν < 1/2, while it van-
ishes for ν > 1/2. We compare this theoretical prediction with
numerical simulations in Fig. 6(b) and find excellent agreement.
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4 STATIONARY POSITION DISTRIBUTIONS IN THE PHASES 4.3 The novel active and passive phases: DR � (µ, γ)
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Figure 6: (a) Comparison of theoretical stationary state marginal distribution gν(z) given by (23) as a function of the scaled variable
z = µx/v0 in the DR → 0 limit (solid black lines) with numerical simulations (symbols) for DR = 10−4, and µ = v0 = 1, for different
values of ν = γ/µ. This plot shows the transition from the Active-II to Passive-II at γ = µ/2 as predicted by eqn (24). (b) Comparison
of eqn (24) (red dashed lines) with the simulations (symbols) for the same set of remaining parameters as in (a), which highlights the
different tail behavior in the two phases.

Figure 7: The central logarithmic divergence for the marginal sta-
tionary state distribution in the passive-II phase. The symbols de-
note the scaled distribution obtained using numerical simulations
for γ = 10, µ = v0 = 1, while the solid red line indicates the an-
alytical prediction in eqn (25). We see progressively better agree-
ment for smaller values of DR.

One distinctive feature of the scaling function in eqn (23) is that,
for all values ν, it has a logarithmic divergence at the center,

gν(z) = −
Γ
(
ν + 1

2

)
π3/2Γ(ν)

[
log

(
z2

4

)
+ E + ψ(ν)

]
+O(z2), (25)

where Γ(ν) is the gamma function, E = 0.5772 . . . is the Euler-
Mascheroni constant, and ψ(ν) = Γ′(ν)/Γ(ν) is the digamma func-
tion. We illustrate the above small z behavior of gν(z) and compare
it with numerical simulation in Fig. 7. As expected, we find pro-
gressively better agreement for smaller values of DR/µ for a fixed
value of ν.

The divergence of fν(z1, z2) in eqn (21) at the boundary z21 +
z22 = 1 for ν < 1 is a signature of activity, implying the accu-
mulation of particles near the boundary. However, this phase [see
Fig. 1 (d)] is different from the active-I phase discussed earlier [see
Fig. 1 (b)] marked by the presence of an additional central diverg-
ing peak. We refer to this phase as active-II. On the other hand,
the distribution has only a central peak for ν > 1, which is char-

acteristic of the passive phase. However, the diverging nature of
the central peak distinguishes this phase [see Fig. 1 (c)] from the
usual passive-I phase [see Fig. 1 (a)] discussed earlier. We refer
to this phase as passive-II. Note that, the transition from active-II
to passive-II occurs at ν = 1/2 for the marginal distribution [see
eqn (24)], in contrast to ν = 1 for the two-dimensional joint dis-
tribution. Moreover, in higher dimensions d ≥ 3, the marginal
distribution gd,ν(z) ∝ (1 − z2)ν+(d−3)/2 [see eqn (50)], does not
show any boundary accumulation. Therefore, in d ≥ 3, the signa-
ture of the active phase is present only in the full d-dimensional
distribution and the radial distribution eqn (47).

To further highlight the novel features of the passive-II phase
in d = 2, we analyze the position distribution (21) in the typical
diffusive scaling limit of RTP, γ → ∞ and v0 → ∞ while keeping
v20/γ = 2DRT fixed [also see Appendix A]. This is equivalent to
taking the limit ν → ∞ and z1, z2 → 0, keeping z1

√
ν and z2

√
ν

finite. This leads to the scaling form,

fν(z1, z2) = ν h
(
z1
√
ν, z2
√
ν
)
, (26)

and consequently, P (x, y) has the scaling form,

P (x, y) =
µ

2DRT
h

(
x

√
µ

2DRT
, y

√
µ

2DRT

)
. (27)

The corresponding scaling function is given by,

h(w1, w2) =
1

π3/2

exp(−w2
1 − w2

2)√
w2

1 + w2
2

, {w1, w2} ∈ (−∞,∞). (28)

The normalization
∫∞
−∞ dw1

∫∞
−∞ dw2 h(w1, w2) = 1 is easily

checked.
While P (x, y) has the Boltzmann tail∝ exp [−V (x, y)/DRT] with

the potential V (x, y) = µ(x2+y2)/2, it has a novel algebraic diver-
gence at the origin, unlike the passive-I case. By integrating (27)
over y, we get the marginal distribution,

P (x) =

√
µ

2DRT
q

(
x

√
µ

2DRT

)
, (29)

where the scaling function q(w) =
∫∞
−∞ h(w,w′) dw′ is given by,

q(w) =
1

π3/2
K0

(
w2

2

)
exp

(
−w

2

2

)
. (30)
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Figure 8: The stationary marginal distribution in the passive-II
phase in the scaling limit γ →∞, v0 →∞ keeping DRT = v20/(2γ)
finite, as a function of the scaled variable w = x

√
µ/
√

2DRT. The
symbols denote the data obtained from numerical simulations,
while the dashed red line corresponds to the scaling function given
by eqn (31). As expected, departure from the predicted scaling be-
havior occurs for larger values ofw and increases with lower values
of γ. We have used µ = 1, v0 = 10 and DR = 10−4.

Here K0(z) is the zeroth order modified Bessel function of second
kind and the normalization

∫∞
−∞ q(w) dw = 1 is easily checked.

The asymptotic behavior K0(w2/2) ∼ exp(−w2/2) as w → ∞,
leads to the Boltzmann distribution at the tails as expected. How-
ever, the small-w behaviorK0(w2/2) = −[log(w2/4)+E]+O(w4),
leads to a logarithmic divergence,

q(w) = −[log(w2/4) + E] +O(w2), (31)

near the origin. This is in agreement with eqn (25) for large ν and
taking w = z

√
ν as the scaling variable.

4.4 Crossover from active-I to active-II

As discussed in Sec. 4.1, the scenario where µ−1 is the largest
among the three time-scales yields the passive-I phase. On the
other hand, the complementary scenario where µ−1 is the small-
est time-scale, can lead to both active-I and active-II phases, as
discussed earlier in Secs. 4.2 and 4.3 respectively. It arises from
the two limits of the Fokker-Planck equation (15) in the rescaled
time (µt): it leads to the active-I phase for γ/DR → 0, while
for DR/γ → 0, it gives the active-II phase. To understand the
crossover from the active-I to the active-II, as γ/DR is varied, we
take recourse to numerical simulations and study the phase dia-
gram on the (γ, DR) planes for fixed values of µ.

We scan the (γ, DR) plane for a range of values of γ and DR
at an interval of ∆γ = ∆DR = 0.05, and obtain the marginal
stationary state distribution from simulation at these points. To
distinguish between the different phases, we numerically detect
the existence of the peaks near the origin and the boundaries. To
detect if there is a peak away from the origin, we check, whether,
for some ε� r0, the first order finite difference ρ(x0)− ρ(x0 − ε)
is positive for some x0 ∈ (0, r0) — suggesting ρ(x) increases with
x, and thus, there is an accumulation away from the origin. This is
the signature of active phase. Now, to differentiate between active-
I and active-II, we further check the existence of an additional peak
at the origin. This central peak is detected by monitoring the sign
of the second order finite difference ρ(−ε) + ρ(ε) − 2ρ(0) , where
the negative sign corresponds to a maximum at the origin.

We use this method with ε = 0.02 to obtain the phase diagram
shown in Fig. 9, which illustrates the transition (a) from active-I

to active-II for µ = 10 and (b) between active and passive phases
for µ = 2. We make two observations from our numerically ob-
tained phase diagram. First, the boundary between the active-I
and active-II phases is almost linear and passes through the ori-
gin. Secondly, the cross-sectional area corresponding to the com-
bined active regions shrinks with increasing µ−1, thus implying a
funnel-like surface. However, the shape of the boundary between
the active and passive phases suggest that the surface of the fun-
nel may have more complex structure than the simple schematic
representation shown in Fig. 2(a).

5 Conclusion

In conclusion, in this paper we have studied the stationary state of
an active Brownian particle with intermittent directional reversals,
in the presence of a harmonic trap. The interplay of the rotational
diffusion constant DR, the reversal rate γ, and the trap strength µ
leads to a complex phase diagram. We classify the different phases
by obtaining the exact analytical expressions for the position dis-
tribution in the limiting scenarios.

We find that for DR � µ, the system always relaxes to a
Boltzmann-like distribution, for any γ, which we refer to as the
passive-I phase. On the other hand, for DR � µ, depending on
the strength of γ relative to the two other parameters, we get
three different phases: For γ � DR, an ABP-like active phase
emerges where the particle is most likely to be found near the cir-
cular boundary of radius v0/µ. This is referred to as the active-I
phase. For DR � γ < µ, a new active phase (active-II) emerges
which crosses over to a new passive phase (passive-II) for γ > µ.
Both these new phases are characterized by the presence of a non-
Gaussian, diverging central peak of the position distribution. How-
ever, the active-II is distinguished from the passive-II phase by the
presence of the typical accumulation of probability density near
the circular boundary. The exact position distribution obtained an-
alytically in the DR → 0 limit yields the exact transition line in
the (γ, µ−1) plane. Finally, we complete the phase diagram by
studying the characteristic shape of the position distribution nu-
merically, beyond the analytically accessible limits.

This work gives rise to several interesting open questions. It
would be interesting to look at the first-passage properties of
DRABP in presence of a harmonic trap, as it exhibits novel persis-
tence behavior in the absence of any confinement. Another natural
question is how the phase diagram changes for a generic force of
the form F (~r) = −r̂ rp. Incidentally, the harmonic potential cor-
responds to the case p = 1. Since DRABP is a minimal model for a
certain class of bacterial motion, it would be intriguing to find out
whether the different phases predicted here can be observed in
experiments with bacteria like Myxococcus xanthus, Pseudomonas
citronellolis etc., or light activated Janus colloids 41 in harmonic
trap.

Appendix

A Variance and kurtosis of the position distribu-
tion

Here we calculate the variance and kurtosis of the DRABP in a
harmonic trap exactly. We use these to find the limiting expres-
sions in the four different phases. Starting from the origin, the
solution of the Langevin equation (2), for a given realization of
{σ(s), θ(s); 0 < s < t}, gives the location {x(t), y(t)} of the
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Figure 9: The different phases in the (γ, DR) plane for µ = 10 (a) and µ = 2 (b). (a) shows the phases active-I (green region) and
active-II (orange region) detected numerically using the procedure described in Sec. 4.4. This phase plane is schematically represented
in Fig. 2 (c). The passive phases appear for larger values of γ/µ and DR/µ, which is visible (yellow region) in (b) for µ = 2.

DRABP as,

x(t) = v0

∫ t

0

ds e−µ(t−s)σ(s) cos θ(s), (32a)

y(t) = v0

∫ t

0

ds e−µ(t−s)σ(s) sin θ(s). (32b)

We consider the initial condition σ(0) = ±1 with equal proba-
bility 1/2, which ensures that all the odd moments of the position
vanish at all times. To calculate the first nontrivial moment, the
variance, we need the two point correlations of the noises38,

〈σ(s)σ(s′)〉〈cos θ(s) cos θ(s′)〉 =
1

2

[
e−(DR+2γ)|s−s′|

+ e−2γ|s−s′|−DR(s+s′+2 min[s,s′])
]
, (33a)

〈σ(s)σ(s′)〉〈sin θ(s) sin θ(s′)〉 =
1

2

[
e−(DR+2γ)|s−s′|

+ e−2γ|s−s′|−DR(s+s′+2 min[s,s′])
]
, (33b)

for the initial condition θ(0) = 0. Using eqn (32) and (33) we
obtain,

〈x2(t)〉 =
v20

2µ (2γ +DR + µ)
− v20 (DR − µ) e−2µt

µ (2DR − µ) (2γ +DR − µ)

+
2v20 (2γ −DR + µ) e−(2γ+DR+µ)t

(2γ +DR − µ) (2γ +DR + µ) (2γ − 3DR + µ)

− v20 e
−4DRt

2 (2DR − µ) (2γ − 3DR + µ)
,

(34)

and,

〈y2(t)〉 =
v20

2µ (2γ +DR + µ)
− v20DR e

−2µt

µ (2DR − µ) (2γ +DR − µ)

− 4v20DR e
−(2γ+DR+µ)t

(2γ +DR − µ) (2γ +DR + µ) (2γ − 3DR + µ)

+
v20 e

−4DRt

2 (2DR − µ) (2γ − 3DR + µ)
.

(35)

In the limit t → ∞, both 〈x2(t)〉 and 〈y2(t)〉 relax to the same
stationary value,

〈x2(t→∞)〉 = 〈y2(t→∞)〉 =
v20

2µ (2γ +DR + µ)
+O(e−λt),

(36)

where λ = min(2µ, 4DR, 2γ + DR + µ) gives the leading order
time-scale of relaxation to the stationary value.

For a Gaussian distribution, all the higher order cumulants 〈xn〉c
with n > 2 are zero. The widely used measure to identify non-
Gaussianity is the fourth cumulant 〈x4〉c, which is also known as
kurtosis. It is often expressed in the dimensionless form,

κ(t) =
〈x4(t)〉 − 3〈x2(t)〉2

〈x2(t)〉2 . (37)

Note that, however, vanishing kurtosis is not a sufficient condi-
tion for Gaussianity. Clearly, to compute the kurtosis, we need the
fourth moment of the distribution, which can be calculated using
eqn (32) and the four-point correlations of the noises. Using the
propagators [eqn. (2) and (4) of the Supplementary Material of
Ref.38] these four-point correlations can be calculated in a straight-
forward manner. For t1 < t2 < t3 < t4,

〈σ(t1)σ(t2)σ(t3)σ(t4)〉 = e−2γ (t4−t3)e−2γ (t2−t1), (38)

and for the θ-process,

〈cos θ(t1) cos θ(t2) cos θ(t3) cos θ(t4)〉 =
1

8
e−DR(7t1+5t2+3t3+t4)

×
(
e12DRt1 + e8DR(t1+t2) + e4DR(t1+2t2)

+2e4DR(t1+t2+t3) + 2e4DR(2t1+t2+t3) + 1
)
.

(39)

The full time-dependent fourth moment has a fairly large expres-
sion which upon taking the t→∞ limit yields,

〈x4(t→∞)〉 =
3 (4DR + 3µ)

8µ2 (2DR + µ) (2γ +DR + µ) (2γ +DR + 3µ)
.

(40)

The stationary state value of the kurtosis can be readily obtained
using the second and fourth moments derived above, and comes
out to be,

κ(t→∞) =
3µ (2γ − 7DR − 3µ)

2 (2DR + µ) (2γ +DR + 3µ)
. (41)

9
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The limiting expressions of variance and kurtosis in the different
phases can be easily obtained from eqn (36) and (41) respectively:

• In the limit v0 →∞, DR →∞ with arbitrary γ and µ� DR,
keeping v20/(DR+2γ) = 2DDR constant (passive-I phase), we
get

〈x2〉 =
DDR

µ
and κ = 0. (42)

• In the limit µ� DR and γ → 0 (active-I phase), we have

〈x2〉 =
v20

2µ2
and κ = −3

2
. (43)

• In the limit DR → 0 (active-II and passive-II phases)

〈x2〉 =
v20

2µ(2γ + µ)
and κ =

3(2γ − 3µ)

2(2γ + 3µ)
. (44)

The kurtosis is always negative in the active phases. On the
other hand, in the passive-II phase the kurtosis is negative in the
region 1/2 < γ/µ < 3/2 and becomes positive for γ/µ > 3/2.
Note that, zero kurtosis for γ/µ = 3/2 in the DR → 0 limit of
the passive-II phase does not imply a Gaussian distribution, as is
evident from eqn (23). On the other hand, for the passive-I phase,
eqn (9) implies that kurtosis and all the other higher cumulants
are zero.

B DRABP in d dimensions
The DRABP in d-dimensional harmonic trap can be defined as,

ṙ(t) = −µr(t) + v0 σ(t)n̂, (45)

where the unit vector n̂ undergoes rotational diffusion on the sur-
face of a d-dimensional hypersphere.

For DR → 0, denoting x‖ as the coordinate along the initial
orientation and x⊥ as the remaining d−1 orthogonal coordinates,
we can generalize Eq. (18) to,

P (x‖,x⊥) =
21−2ν

B[ν, ν]

1

r0

[
1−

(
x‖
r0

)2
]ν−1

Θ
(
r0 − |x‖|

)
× δd−1(x⊥), (46)

where ν = γ/µ and r0 = v0/µ. Assuming the distribution of
the initial orientation to be isotropic (as in Sec. 4.3), the radial
distribution can be readily found as,

Q(r) =
41−ν

B[ν, ν]

1

r0

[
1−

(
r

r0

)2
]ν−1

Θ (r0 − r) , (47)

where
∫ r0
0
Q(r)dr = 1. Note that, at the boundary r = r0, the

distribution diverges for ν < 1 (active-II phase) while it goes to
zero for ν > 1 (passive-II phase). It is straightforward to obtain
the marginal distribution in terms of the radial distribution as (see
Appendix A of Ref.42),

p(x) =
1√
π

Γ(d/2)

Γ((d− 1)/2)

∫ ∞
|x|

dr

r

(
1− x2

r2

)(d−3)/2

Q(r).

(48)

Using Eq. (47) in Eq. (48), and performing the integral yields,

p(x) =
1

r0
gd,ν(|x|/r0), (49)

with the scaling function,

gd,ν(z) =
2Γ(2ν)√
π4νΓ(ν)

Γ

(
d

2

)
(1− z2)ν+

d−3
2

× 2F̃1

(
d− 1

2
, ν, ν +

d− 1

2
, 1− z2

)
Θ(1− z). (50)

Note that for the special case d = 2, the scaling function g2,ν(z) ≡
gν(z) is obtained in eqn (23). Thus, the marginal distribution
shows a logarithmic divergence near the origin for all dimensions
d > 1,

gd,ν(z) ∼ − log(z) +O(z2). (51)

It is interesting to note that for dimensions d ≥ 3 the scaled
marginal distribution in eqn (50) does not show any divergence
at z = ±1.
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