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We study the SIR (“susceptible, infected, removed/recovered”) model on directed graphs with
heterogeneous transmission probabilities within the message-passing approximation. We character-
ize the percolation transition, predict cluster size distributions and suggest vaccination strategies.
All predictions are compared to numerical simulations on real networks. The percolation threshold
which we predict is a rigorous lower bound to the threshold on real networks. For large, locally
tree-like networks, our predictions agree very well with the numerical data.

I. INTRODUCTION

To model the spread of a disease across a population,
in principle, one needs to solve the corresponding mas-
ter equation. However, this is possible only for popula-
tions with a very simple connectivity pattern, which is
hardly ever given in nature. Therefore researchers usu-
ally resort to compartment models, such as e.g. the SIR
(“susceptible, infected, removed/recovered”) model and
its numerous variations [1–10].

The population of humans across the globe forms a so-
cial network in which individuals are connected locally
in highly correlated clusters, which are then connected
to each other in higher layers. This complex structure
needs to be taken into account when one analyzes an epi-
demic model. Combinations of methods from the theory
of random graphs and of epidemic modeling have there-
fore gained in popularity over past 20 years[2, 9, 10].

One aspect of infectious diseases, which is of particu-
lar interest, is the probability of encountering an out-
break across the entire population. In terms of sta-
tistical physics, such outbreaks are percolation events,
i.e. events in which an infinitely large sub-network forms
across which the disease is “transported” (in analogy to
the transport of masses or charges across physical net-
works). Percolation has been a topic of research in sta-
tistical physics and mathematics for about 50 years [17].
However, there the interest lay to a large extend on per-
colation on lattices or in continuous space and, in partic-
ular, on universal critical properties rather than on net-
works. In the context of epidemic modeling, percolation
needs to be studied on structured and directed networks.

In recent years much progress has been made by mod-
eling effects of non-trivial properties such as degree cor-
relations [4, 18–20], clustering [14, 15, 21–25] and mul-
tiplexity [15, 25–29] on percolation. In some cases an-
alytical solutions can be obtained while more complex
networks are often treated as locally tree-like in order to
derive estimates and bounds. In particular, the formal-
ism of generating functions [2, 5, 15, 18, 22, 24, 25, 30–32]
and the message-passing technique [7, 16, 29, 33–35] are
powerful tools to tackle percolation problems on random
and real networks. Further, numerical simulations are
used to explore critical phenomena on complex networks

[13, 14, 27], and beyond the SIR model, some general-
ized contagion processes [11, 12] as well as the spread of
multiple pathogens [13–16] have been investigated.

Related research examines the significant effect of
edge-weights on disease spreading [9, 36–47] mainly via
mean field and pairwise approximations on configuration
model networks which in particular lead to highly effi-
cient immunization strategies [48–50].

Here, we present an analysis of percolation on directed
graphs with heterogeneous occupation probabilities and
its application to the late-time behavior of SIR epidemics
by means of the message passing approach. Our work
generalizes the work by Karrer and co-workers for undi-
rected networks [8] as well as the work by Timár and
co-workers for directed networks with equal occupation
probabilities [33].

II. GENERATING FUNCTIONS

As we will follow the strategy introduced by Newman
and co-workers[2, 30] and use generating functions to
tackle the percolation problem on random graphs, we
briefly recall some properties of generating functions. Let
a ∈ NN0 be a random variable with distribution p(a). The
probability generating function (PGF) F : RN → R is
defined by

F (x) :=
∑
a≥0

p(a) · xa , (1)

where multi-index notation is used. This definition natu-
rally includes PGFs for joint distributions, e.g. the PGF
F : RN × RM → R for the distribution of two random
variables a ∈ NN0 ,b ∈ NM0 is defined by

F (x,y) :=
∑

(a,b)≥0

p(a,b) · xa · yb .

The PGFs for the random variables a and b are given by
F (x,1) and F (1,y), respectively. If N = M , the PGF
for the sum c = a + b is given by F (x,x).

In order to derive the message-passing equations, two
properties of PGFs are necessary.
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First, let a,b ∈ NN0 be independent random variables
with PGFs F,G. The PGF H for the sum c := a + b is
given by

H(x) :=
∑
c

p(c) · xc

=
∑
c

∑
a,b

δ(c− a− b)p(a)p(b) · xaxb

= F (x) ·G(x) . (2)

Secondly, consider the following random experiment.
Draw a random sequence a ∈ NN0 from the distribution
p(a) with PGF F . Then, for each i = 1, . . . , N draw a
random variable b ∈ NM0 from the distribution pi(b) with
PGF Gi. All random variables be independent. Now,
equ. (2) yields the PGF H for the random variable c :=

(a,B), where B :=
∑|a|
k=1 bk:

H(x,y) :=
∑
(a,B)

p(a,B) · xa · yB

=
∑
a

p(a) · xa
∑
B

p(B) · yB

=
∑
a

p(a) · xa
N∏
i=1

[Gi(y)]
ai

= F (x ∗G(y)) , (3)

where ∗ denotes element-wise multiplication.

III. MESSAGE-PASSING THEORY

In this section we interpret message-passing approxi-
mations as solutions on infinite trees. To ensure a well de-
fined phase transition, we must restrict ourselves to net-
works with sufficiently many long loops, such that large
clusters above the percolation threshold almost surely
form infinite clusters on these trees. A detailed discus-
sion on this issue can be found in [34].
Let G := {V,E} be a large directed network, where
V := {1, . . . , N} is the set of nodes and E ⊆ V × V
is the set of M directed edges. For each edge i→ j ∈ E,
the edge weight equals the occupation probability which
is denoted by pi→j . The goal is to approximate the PGFs
for the distribution of finite clusters a ∈ {0, 1}N for each
node in a large network, where aj = 1, if node j is part
of the cluster and aj = 0, otherwise. The cluster a rep-
resents the set of nodes, which can be reached from the
initial node by a path of occupied edges. The PGF for
the cluster distribution of node i takes the form

H0i(x) =
∑
a

pi(a) · xa .

The actual approximation of the message-passing ap-
proach is to allow for multiple counts of the same node
within the cluster. Hence, each finite cluster a ∈ NN0
is described by the number of occurrences of each node

within the cluster, which in terms of spreading processes
means that a node can be traversed multiple times re-
gardless of whether the node has been visited in the
past. This reduces the complexity significantly and al-
lows for exact solutions, since the distributions for the
partial clusters obtained by following each edge become
uncorrelated and independent of past events.

In order to formalize the message-passing approxima-
tion, let us consider infinite trees G(i) obtained by re-
cursively following all outgoing edges without returning
to the previously visited node. G(i) contains an infinite
number of copies of edges and nodes from the underlying
network G. The occupation probabilities be the same as
for the corresponding edges in G and independent for each
copy. The PGF for the cluster configurations of node i
within the tree G(i) can be calculated exactly and yields
the message-passing approximation for the network G.

Imagine the formation of a cluster of outgoing occupied
edges starting from node i within the tree G(i). First, in-
stead of nodes, we count recursively all edges within the
cluster by adding up the unit vectors ei→j ∈ {0, 1}M
for each occupied edge. For each edge i→ j which is en-
countered, the summand b ∈ NM0 is drawn independently
from the distribution

fi→j(b) =

 pi→j b = ei→j
1− pi→j b = 0
0 else

with generating function

(1− pi→j) + pi→j · yi→j ,

which represents a Bernoulli experiment for the edge oc-
cupation. According to equ. (2), the PGF for the occu-
pied edges in the first step is

G0i(y;p) =
∏

j∈N+(i)

(1− pi→j) + pi→j · yi→j , (4)

where N+(i) denotes the set of successors of node i. Sim-
ilar, the PGF for the occupied outgoing edges of node j,
which do not lead back to node i, is given by

Gi→j(y;p) =
∏

k∈N+(j)\i

(1− pj→k) + pj→k · yj→k . (5)

For simplicity, the parameter p is dropped, where possi-
ble. Equ. (3) yields the joint PGF for the occupied edges
for the first and second step

G0i(y1 ∗G(y2)) .

By recursively applying equ. (3) n− 1 times, one obtains
the PGF for the edges within the cluster for each of the
first n steps

G0i ◦ [y1 ∗G] ◦ · · · ◦ [yn−1 ∗G](yn) .
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Hence, the PGF for the sum of all edges within the cluster
up to the n-th nearest neighbors of node i is given by:

G0i(H
(n)(y))

H(n) = y ∗G(H(n−1)(y))

H(1) = y .

This is the analogon to equ. (46) from ref. [30] for the
number of the n-th nearest neighbors on random graphs.

Now, define Hi→j(y) : RM → R to be the PGF for the
edges in finite partial clusters when following the edge
i→ j, including i→ j. These PGFs are independent for
all edges, therefore, according to equ. (3) H(y) satisfies
the following fixed-point equation and yields the PGF
H0i(y) for all arbitrary large but finite clusters of edges
c ∈ NM0

H0i(y) = G0i(H(y))

H(y) = y ∗G(H(y)) .

Finally, we obtain the PGF H0i(x) : RN → R for the
distribution of finite clusters a ∈ NN0 by multiplying xi
for the root and applying the concatenation yi→j = xj in
order to count nodes instead of edges, which are trivial
cases of equs. (2) and (3)

H0i(x;p) = xi ·G0i(H(x;p);p) (6)

Hi→j(x;p) = xj ·Gi→j(H(x;p);p) . (7)

These message-passing equations fully determine the for-
mation of finite clusters, hence, they are sufficient to solve
percolation on the tree G(i). This is completely analo-
gous to equs. (27) and (26) from ref. [30] for the cluster
size distribution on random graphs.

The solutions for percolation of incoming occupied
edges on the tree F(i), which is obtained by recursively
following all incoming edges without returning to the pre-
viously visited node, can simply be obtained by flipping
all arrows and introducing new letters without repeating
the procedure. With the definitions

F0i(y;p) =
∏

j∈N−(i)

(1− pi←j) + pi←j · yi←j (8)

Fi←j(y;p) =
∏

k∈N−(j)\i

(1− pj←k) + pj←k · yj←k , (9)

where N−(i) is the set of predecessors of node i, the
PGFs for the distributions of finite clusters of incoming
edges are given by

Q0i(x;p) = xi · F0i(Q(x;p);p) (10)

Qi←j(x;p) = xj · Fi←j(Q(x;p);p) . (11)

For x = x · 1 and pi→j ≡ p, equs. (6)and (10) are re-
duced to equ. (3) from ref. [8] for undirected networks and
equs. (7) and (11) are reduced to equs. (3) and (4) from
ref. [33] for directed networks by substitution according
to

H
(out)
i→j (x) := 1− p+ p ·Hi→j(x · 1)

H
(in)
i←j(x) := 1− p+ p ·Qi←j(x · 1) .

A. Percolation probability

Above the percolation threshold, there is a chance, that
the cluster will become infinite. The cluster distribution
contains the probabilities for all finite clusters, hence,
H0i(1) and Q0i(1) are the probabilities that node i is in
a finite cluster of outgoing and incoming edges, respec-
tively. Thus, according to equs. (6)(7)(10) and (11), the
percolation probabilities for a randomly chosen node are
given by

Pout =
1

N

N∑
i=1

Pout(i) (12)

Pout(i) = 1−G0i(H) (13)

H = G(H) (14)

Pin =
1

N

N∑
i=1

Pin(i) (15)

Pin(i) = 1− F0i(Q) (16)

Q = F(Q) , (17)

where Hi→j := Hi→j(1) is the probability that the par-
tial cluster obtained by following the occupied edge i→ j
is finite and Qi←j := Qi←j(1) is the probability that
the partial cluster obtained by backtracking the occu-
pied edge i ← j is finite. For pi→j ≡ p, equs. (12) and
(15) are equivalent to equs. (5) and (6) from ref. [33] for
directed networks and equ. (6) from ref. [8] for undirected
networks. For locally tree-like networks, the probabilities
for a node to be part of a giant cluster of outgoing and
incoming edges are independent, therefore, the probabil-
ity that a randomly chosen node is part of a giant cluster
of outgoing and incoming edges simultaneously is given
by

PS =
1

N

N∑
i=1

Pin(i) · Pout(i) , (18)

which - due to the existence of loops - equals the prob-
ability that a randomly chosen node is part of the giant
strongly connected component within the cluster. For
pi→j ≡ p, equ. (18) is equivalent to equ. (7) from ref. [33].

Let us go one step ahead and consider each copy of
node i in G(i) and F(i) to be vacant with independent
probabilities qi ∈ [0, 1). The PGFs for the distribution
of occupied nodes within finite clusters of occupied edges
are

H0i(q + (1− q) ∗ x)

Q0i(q + (1− q) ∗ x) .

Hence, the probabilities that node i is part of a vacant
cluster without any occupied nodes is obtained by in-
serting x = 0 and therefore given by the PGFs for the
distribution of clusters evaluated at x = q, i.e. H0i(q)
and Q0i(q). Clearly, in the limit of large networks with
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many loops, the probabilities for a node to be part of a
vacant cluster obtained by the message-passing approxi-
mation must always be smaller than or equal to the true
probabilities due to the overcount of nodes.

Htrue
0i (q) ≥ H0i(q) ∀q∈[0,1)N

Qtrue
0i (q) ≥ Q0i(q) ∀q∈[0,1)N .

In the limit ‖1− q‖∞ � 1, we find

P true
out ∼

1

N

N∑
i=1

1−Htrue
0i (q) (19)

≤ 1

N

N∑
i=1

1−H0i(q) ∼ Pout (20)

P true
in . Pin . (21)

Thus, the message-passing approach yields a rigorous up-
per bound for the percolation probabilities and a rigorous
lower bound for the percolation threshold for networks
with loops in the large N limit. If the overcount of nodes
becomes negligible, the message-passing approximation
must converge to the exact result in the large N limit,
which is the case, if the probability for a finite cluster to
contain closed loops vanishes. This is true for locally tree-
like networks, except at the percolation threshold, where
the average finite cluster size diverges and the largest
finite size effects are expected.

B. Cluster size distribution

The PGFs for the distribution of finite cluster sizes are

H0i(x) :=
∑
a≥0

pi(a) · x|a|

= H0i(x · 1) (22)

Q0i(x) = Q0i(x · 1) . (23)

After averaging over all nodes and normalization, we ob-
tain the average size of finite clusters for a randomly cho-
sen node

〈nout〉 =

∑N
i=1H

′
0i(1)∑N

i=1H0i(1)
(24)

H ′0i(1) = H0i(1) +G′0i(H) ·H′ (25)

H′ = H + G′(H) ·H′ (26)

〈nin〉 =

∑N
i=1Q

′
0i(1)∑N

i=1Q0i(1)
(27)

Q′0i(1) = Q0i(1) + F ′0i(Q) ·Q′ (28)

Q′ = Q + F′(Q) ·Q′ , (29)

where H′ := H′(1) · 1 and Q′ := Q′(1) · 1. The average
finite cluster sizes for node i are given by

〈nout(i)〉 = H ′0i(1)/H0i(1)

〈nin(i)〉 = Q′0i(1)/Q0i(1) .

These are equivalent to equ. (8) from ref. [8] for undi-
rected networks with pi→j ≡ p. Beyond the percolation
threshold, we have H = Q = 1 and H0i = Q0i = 1, thus

〈nout〉 =
1

N

N∑
i=1

H ′0i(1) (30)

H ′0i(1) = 1 +G′0i(1) ·H′ (31)

H′ = 1 + G′(1) ·H′ (32)

〈nin〉 =
1

N

N∑
i=1

Q′0i(1) (33)

Q′0i(1) = 1 + F ′0i(1) ·Q′ (34)

Q′ = 1 + F′(1) ·Q′ . (35)

Within the non-percolating phase, the average cluster
sizes obtained by the message-passing approximation
must be greater than or equal to the true value, due to
the overcount of nodes

H ′0i(1)true ≤ H ′0i(1) (36)

Q′0i(1)true ≤ Q′0i(1) . (37)

For ρ(G′(1)) < 1 and ρ(F′(1)) < 1, where ρ denotes the
spectral radius, we find

H′ = (id−G′(1))−1 · 1
Q′ = (id−F′(1))−1 · 1 ,

therefore, the average finite cluster sizes possess a sin-
gularity at ρ(G′(1)) = 1 and ρ(F′(1)) = 1, respec-
tively. These singularities mark the critical points at
which the formation of giant clusters become possible,
which is again analogous to the theory of random graphs,
see equs. (31) and (32) from ref. [30] and equ. (22) from
ref. [2].

C. Percolation threshold

First, consider percolation of incoming edges. The per-
colation threshold is the critical point at which the perco-
lation probability Pin becomes positive. For p ∈ [0, 1]M ,
the set of all critical points is defined by

Pc = ∂{p |Pin = 0} ∩ ∂{p |Pin > 0} . (38)

Beyond the percolation threshold, Q = 1 is the triv-
ial solution of the the fixed-point equation Q = F(Q).
The percolation probability Pin is positive, if and only if
at least one component of Q becomes smaller than one.
Thus, for continuous phase transitions, consider the first
order expansion of the fixed-point equation for Q = 1−ε

ε = F′(1) · ε .

Following the same line of argumentation as for ordinary
percolation [8], the trivial solution ε = 0 becomes un-
stable, if the spectral radius of F′(1) exceeds one, which
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marks the point at which a non-trivial solution is ob-
tained and the percolation threshold is exceeded. Hence,
for any p ∈ Pc

ρ(F′(1;p)) = 1 . (39)

Similarly, the critical points at which Pout becomes pos-
itive satisfy

ρ(G′(1;p)) = 1 , (40)

which is again analogous to the theory of random graphs,
see equ. (32) from ref. [30]. We introduce the Hashimoto-
Matrix or non-backtracking matrix [51]

BTi←j,k←l = Bi→j,k→l := δjk(1− δil) , (41)

which is useful in applications such as community detec-
tion [52, 53] and network centrality [54]. With this we
find

F′(1) = BT · diag(p) (42)

G′(1) = B · diag(p) . (43)

For pi→j ≡ p, the well-known percolation threshold pc =
ρ(B)−1 is retrieved [8, 16, 33].

The percolation thresholds for Pin and Pout are the
same, since

ρ := ρ(F′(1)) = ρ(G′(1)) , (44)

which is proven using the Leibniz formula in lemma 1.
Hence, either equ. (39) or (40) can be used to derive
criteria which prohibit the formation of giant clusters on
any large network as illustrated for the SIR model in
sec. (V B).

Lemma 1. The characteristic polynomials for F′(1) and
G′(1) are equal.

Proof. Each permutation σ ∈ SM can be represented
by a concatenation of cyclic permutations σ = π1◦· · ·◦πn.
Each πk permutes a sequence of distinct indices Ik =
(i1, . . . , im(k)), such that πk(il) = il+1, if il ∈ Ik and
πk(il) = il, else, where im(k)+1 := i1. Further, let I0 :=
{1, . . . ,M} \ ∪nk=1Ik. The characteristic polynomial of
G′(1) is given by∑

σ∈SM

sgn(σ)

M∏
i=1

[B diag(p)− λ id]i,σ(i)

=
∑
σ∈SM

(−λ)|I0|
n∏
k=1

sgn(πk)
∏
i∈Ik

[B diag(p)]i,πk(i)

and for F′(1)∑
σ∈SM

sgn(σ)

M∏
i=1

[BT diag(p)− λ id]σ(i),i

=
∑
σ∈SM

(−λ)|I0|
n∏
k=1

sgn(πk)
∏
i∈Ik

[BT diag(p)]πk(i),i .

However,∏
i∈Ik

[B diag(p)]i,πk(i) =

{ ∏
i∈Ik pi ,

∏
i∈Ik Bi,πk(i) = 1

0 , else

=
∏
i∈Ik

[BT diag(p)]πk(i),i ,

which concludes the proof. �
In the following, we derive some additional, rigorous

results for the percolation threshold for percolation of
incoming edges. The same results are obtained for per-
colation of outgoing edges by replacing F, Q and Pin with
G, H and Pout, respectively.

Lemma 2. Let p(λ) : [0, 1] → [0, 1]M be a continuous
parametrization of the occupation probabilities. If a con-
tinuous phase transition occurs at λc ∈ [0, 1), then

ρ(λc) ≥ 1 .

Proof. Since Pin(λc) = 0 is continuous in λc, we have
limλ→λc

Q(λ) = 1, where the components of Q are de-
fined as the probabilities to obtain a finite partial cluster
when backtracking the corresponding edges. Q solves
Q = F(Q) and is continuous at λc, thus, we may apply
the first order expansion for Q = 1 − ε with ε 
 0 and
w.l.o.g. for the limit from the right limλ↘λc

ε = 0

‖ε‖ = ‖F′(1) · ε‖+ o(‖ε‖) .

For any induced matrix norm we have

‖F′(1) · ε‖ ≤ ‖F′(1)‖ · ‖ε‖ ,

hence, for λ↘ λc, we find

‖F′(1;λc)‖ ≥ 1 .

Further, for any ε > 0 exists an induced matrix norm,
such that

ρ(λc) + ε ≥ ‖F′(1;λc)‖ ≥ 1 ,

which yields a contradiction for ρ(λc) < 1. �
For irreducible Hashimoto matrices B, the expression

for the percolation threshold is a consequence of the
Perron-Frobenius theorem. For C ∈ RM×M , let G(C) be
the graph with adjacency matrix Aij = 0, if Cij = 0 and
Aij = 1, else. Then, the matrix C is irreducible, if and
only if G(C) is strongly connected (see ref. [55], p. 671).
For non-negative irreducible matrices C, the Perron vec-
tor x > 0 is defined by Cx = ρ(C)x with ‖x‖1 = 1. The
Perron-Frobenius theorem for non-negative irreducible
matrices states, that x exists and is the only non-negative
eigenvector, except for multiples of x ([55], p. 673). Fur-
ther, ρ(C) is a simple eigenvalue.

Lemma 3. The Hashimoto matrix B ≥ 0 be irreducible.
Let p(λ) : [0, 1] → (0, 1]M be a continuous parametriza-
tion of the occupation probabilities. If a continuous phase
transition occurs at λc ∈ [0, 1), then

ρ(λc) = 1 .
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Proof. As in lemma 2 we may apply the first order
expansion for Q = 1− ε

ε = F′(1) · ε + o(ε) .

Thus, for λ ↘ λc, ε converges to a non-negative eigen-
vector of F′(1, λc) with eigenvalue 1. F′(1;λc) ≥ 0 is
irreducible, hence, ε converges to a multiple of the Per-
ron vector with eigenvalue ρ(λc) = 1. �

Above the percolation threshold, the fixed-point equa-
tion possesses a non-trivial solution. For irreducible
Hashimoto matrices, this can be shown using the
Brouwer fixed-point theorem, which states that any con-
tinuous function f : D → D on a compact convex subset
D 6= ∅ of a finite-dimensional normed vector space has a
fixed point (see e.g. ref. [56], p. 194).

Theorem 4. The Hashimoto matrix B be irreducible,
p ∈ (0, 1]M and ρ > 1. Then, there exists a non-trivial
solution Q = F(Q) ∈ [0, 1]M \ 1.

Proof. F : [0, 1]M → [0, 1]M is a continuous func-
tion on a finite-dimensional normed vector space. Using
the Brouwer fixed-point theorem, it is sufficient to find
a compact convex subset Dδ ⊆ [0, 1]M \ 1, such that
F(Dδ) ⊆ Dδ. Let λi be the eigenvalues and λ1 = ρ.
Consider the M − 1 dimensional affine subspace

Uδ := 1− δx + U U :=
⊕
i≥2

V [λi] ,

where V [λi] are the generalized eigenspaces and x > 0 is
the Perron vector for F′(1). Now we cut off the edge at
1 from the domain using the cut surface Uδ ∩ [0, 1]M to
obtain the compact convex subset Dδ ⊆ [0, 1]M \ 1. F is
monotonic, thus, it is sufficient to show that there exists
a δ > 0, such that F maps the cut surface to Dδ. Let
v ∈ Uδ ∩ [0, 1]M arbitrary, where v =: 1− δ · x + u with
u ∈ U . Then,

F(v) = 1 + F′(1) · (v − 1) + o(‖v − 1‖)
= 1 + F′(1) · (u− δ · x) + o(δ)

⇔ F(v)− F′(1) · u = 1− δ · ρ · x + o(δ) .

Hence, for ρ > 1 there exists a δ > 0, such that

F(v)− F′(1) · u ∈ Dδ .

Since F′(1) · u ∈ U and F(v) ∈ [0, 1]M , we find

F(v) ∈ Dδ ,

which concludes the proof. �

IV. NUMERICAL SOLUTIONS

The directed network obtained by removing all va-
cant edges can be represented by the bow-tie diagram
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FIG. 1. Uniform distributed graph with 104 nodes, 60,068
directed edges and degree distribution f(z) = 1/9 for z =
2, . . . , 10. Theoretical results (lines) and simulations (sym-
bols) for the percolation probabilities (top) and the average
finite cluster sizes for a randomly chosen node (bottom) for
the parametrization p+ (labeled with +), which yields com-
plementary results with respect to p− (labeled with −). The
vertical line shows the theoretical percolation threshold at
λc = 0.5, see appendix A.

[57], which is widely used to describe the structure of di-
rected networks [26, 30, 33, 58, 59]. The giant strongly
connected component (GSCC) is defined by the largest
strongly connected component. The giant in-component
(GIN) is the set of nodes for which a path to GSCC ex-
ists and the giant out-component (GOUT) is the set of
nodes which can be reached from GSCC, where GIN ∩
GOUT = GSCC. The relative sizes of the giant compo-
nents GSCC, GIN and GOUT are denoted by SS , Sin

and Sout, respectively. The rest of the network consists
of tendrils and disconnected components.

We require that the sizes of the tendrils and discon-
nected components are small compared to the size of
GSCC. Then, for locally tree-like networks, the percola-
tion probabilities from equs. (12),(15) and (18) converge
to the relative sizes of the giant components in the large
N limit

Sin ∼ Pout Sout ∼ Pin SS ∼ PS . (45)

Further, let sout be the size of clusters of outgoing edges
averaged over all nodes which are not part of GIN and
let sin be the size of clusters of incoming edges averaged
over all nodes which are not part of GOUT. Then,

sout ∼ 〈nout〉 sin ∼ 〈nin〉 , (46)

where 〈nout〉, 〈nin〉 are the average finite cluster sizes from
equs. (24) and (27).

In the following, we investigate the solutions for
two non-symmetric parametrizations p+(λ),p−(λ) with
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FIG. 2. Power-law distributed graph with degree distribution
f(z) ∝ z−2 for z = 1, . . . , 1000. Shows the percolation prob-
abilities and finite cluster sizes for pi→j ≡ p with 104 nodes
and 43078 directed edges (top) in comparison to the results
for p+ with 105 nodes and 471234 edges (mid, bottom), which
yields complementary results with respect to p−.

p±(0) = 0, p±(1) = 1 and linear components, except at
λ = 0.5, where

p+i→j(0.5) := |N+(j) \ i|−1 (47)

p−i←j(0.5) := |N−(j) \ i|−1 . (48)

If N±(j) \ i = ∅, the corresponding occupation proba-
bility at λ = 0.5 is set to one. Figs. (1) and (2) show
the solutions for two undirected random graphs, where
each edge is decomposed into two anti-parallel edges and
figs. (3)-(5) show the solutions for real directed networks
from the Stanford collection (SNAP) [60]. Simulations
were averaged over 1000 realizations.

The numerical simulations in figs. (1) and (2) for (lo-
cally treelike) undirected random graphs coincide per-
fectly with the theoretical predictions for the percola-
tion probabilities and average finite cluster sizes, which
confirms equs. (45) and (46). Further, fig. (1) shows a
uniform distributed graph for which ρ(0.5) = 1 for both
parametrizations, see appendix A. Indeed, the percola-
tion threshold occurs exactly at λc = 0.5 in agreement
with equs. (39) and (40). Near the percolation thresh-
old, finite-size effects occur. Here, GSCC is the largest
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FIG. 3. Percolation probabilities and finite cluster sizes for
the Gnutella peer to peer network [60] with 10876 nodes and
39994 edges for p−.

strongly connected component, thus, the relative sizes of
the giant components beyond the percolation threshold
will only vanish in the large N limit. For random graphs,
the finite size yields a chance to encounter small loops,
which can be seen in the average cluster size beyond
the percolation threshold in figs. (1) and (2), where the
theoretical results are an upper bound in agreement to
equs. (36) and (37), which also hold for real networks, see
fig. (3). On large networks, the finite-size effects become
negligible, however, the occurrence of loops decreases the
percolation probabilities in accordance to equs. (19) and
(21), see figs. (4) and (5) for the Epinion and Slashdot
network. In contrast to Epinion, the Slashdot network
shows large deviations, which is explained by a higher
average degree resulting in a larger GSCC and signifi-
cant node overcount due to closed loops.

Interestingly, the parametrizations p± significantly de-
lay the formation of giant clusters in comparison to the
standard case pi→j ≡ p. For p+, the occupation proba-
bilities are anti-correlated with the number of outgoing
edges of the end node, which creates a bottleneck for
Pin. Similar, for p−, the occupation probabilities are
anti-correlated with the number of incoming edges of the
starting node, which creates a bottleneck for Pout. At
the percolation threshold, the bottleneck is overloaded,
which may induce an abrupt increase of the respective
percolation probabilities, see figs. (2),(5).

V. SIR EPIDEMIC MODEL

Within the scope of the SIR model, each node rep-
resents an individual which is either susceptible (S), in-
fected (I) or recovered (R). Each edge i→ j represents a
contact through which a transmission might occur. The
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(bottom).

transmission probability pi→j(τi) is the probability that
an infected node i transmits the disease to node j, if
node j is not infected by another neighbor, where τi is
the time span for which node i is infectious. At time τi af-
ter infection, node i will recover and gain immunity. The
recovery times τi are drawn independently from arbitrary
distributions ri(τi). For fixed recovery times, the trans-
mission of the disease along directed edges is assumed to
be independent.

A. Late-time behavior

First, consider fixed recovery times τ . Then, the con-
tagions are independent and the state of the network at
the end of an epidemic can be interpreted as a percola-
tion problem, where the occupation probabilities equal
the transmission probabilities p(τ ). Clusters of outgo-
ing edges represent clusters of infected individuals for a
singly infected node. Thus, the major outbreak probabil-
ity for node i equals the probability Pout(i) from equ. (13)
that node i is part of a giant cluster of outgoing edges and
the major outbreak probability for a randomly chosen
node is given by equ. (12) for the percolation probability
Pout.

Similarly, a node i will contract the disease, if an ini-
tially infected node is part of the cluster of incoming
edges of node i. Hence, the probability that node i will
be infected during the epidemic, if (1 − q) ∈ [0, 1)N are
the probabilities for each node to be initially infected, is
given by the probability 1−Q0i(q) that node i is not part
of a vacant cluster of incoming edges, where Q0i is given
by equs. (10) and (11). Therefore, the total fraction of
infected individuals is

1

N

N∑
i=1

1−Q0i(q) .

For a small fraction of initially infected individuals
(‖1− q‖∞ � 1), the probability that node i will be in-
fected equals the probability Pin(i) from equ. (16) that
node i will be part of a giant cluster of incoming edges.
Thus, the total fraction of infected individuals for a small
fraction of initially infected nodes is given by equ. (15)
for the percolation probability Pin. Beyond the percola-
tion threshold, the average outbreak size for a randomly
chosen node is given by 〈nout〉 from equ. (30).

Now, consider the general case where the recovery
times τ are drawn from the distribution f(τ ) =

∏
i ri(τi).

Then, the conditional PGFs from equs. (4),(5),(8) and
(9) depend on the random variable τ and must be re-
placed by their average

F 0i(x) := F0i(x;p)

F i→j(x) := Fi→j(x;p)
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G0i(x) :=

∫ ∞
0

ri(τi) ·G0i(x|τi) dτi

Gi→j(x) :=

∫ ∞
0

rj(τj) ·Gi→j(x|τj) dτj ,

With these definitions the interpretation in this section
remains valid and one obtains the exact results on large
locally treelike networks. This can be shown either by
repeating the derivation in sec. III using the new PGFs
or by averaging over the recovery times to obtain the
exact solutions on the infinite trees G(i) and F(i), where
the recovery times are drawn independently for each node
from the infinite trees

Q0i(x) = Q0i(x;p) (49)

H0i(x) = xi ·G0i(H(x)) (50)

Hi→j(x) = xj ·Gi→j(H(x)) . (51)

Thus, non-degenerate recovery times τ result in a lack
of symmetry due to statistically dependent transmission
probabilities (which was previously shown for the SIR
model on random graphs [5]). The major outbreak prob-
ability P out for a randomly chosen node and the fraction
of infected individuals P in for a small fraction of initially
infected nodes are given by

P out =
1

N

N∑
i=1

1−H0i(1) (52)

P in =
1

N

N∑
i=1

1−Q0i(1;p) . (53)

Similar to equs. (39) and (40), the epidemic threshold
at which the fraction of infected individuals as well as
the major outbreak probability become positive satisfies

ρ(F
′
(1)) = ρ(G

′
(1)) = 1 with

F
′
(1) = BT · diag(p)

G
′
(1) = B · diag(p) .

Since G
′
0i(1) = G′0i(1;p) and G

′
(1) = G′(1;p), the av-

erage outbreak size for a randomly chosen node beyond
the percolation threshold is given by

〈nout〉 =
1

N

N∑
i=1

H ′0i(1;p) ,

see equs. (30)-(32).
On large networks with loops, the solutions we have

given remain a lower bound for the epidemic threshold
as well as an upper bound for the average outbreak size
beyond the epidemic threshold, the major outbreak prob-
ability and the fraction of infected individuals. Similar
to ref. [5], by recursively applying Jensen’s inequality to
equs. (50) and (51), we find

H0i(x) ≥ H0i(x;p) .

where we assume the convergence for the initial value
H(x) to the fixed-point H(x;p). Hence, using the PGFs
from equs. (4),(5),(8) and (9) for bond percolation, the
occupation probabilities can be chosen to be p = p,
which yields the correct results for the fraction of in-
fected individuals, the average outbreak sizes beyond the
epidemic threshold as well as the epidemic threshold but
an upper bound for the major outbreak probability on
large locally treelike networks in agreement with the re-
sults from ref. [5].

B. Suppression of large outbreaks

The occupation probabilities be defined by p := p as
described in the previous section. For any induced ma-
trix norm, one obtains two criteria, which prohibit large
outbreaks and guarantee vanishing percolation probabil-
ities

‖G′(1)‖ < 1

‖F′(1)‖ < 1 .

According to equs. (39),(40) and (44), both criteria yield
ρ < 1, hence, Pin = Pout = 0. For the row-sum and
column-sum norm, we find

∀i←j pi←j <
1

|N−(j) \ i|
⇒ ‖G′(1)‖1 < 1

∀i→j pi→j <
1

|N+(j) \ i|
⇒ ‖F′(1)‖1 < 1

∀i→j
∑

k∈N+(j)\i

pj→k < 1 ⇒ ‖G′(1)‖∞ < 1

∀i←j
∑

k∈N−(j)\i

pj←k < 1 ⇒ ‖F′(1)‖∞ < 1

For convenience, let each edge possess an anti-parallel
edge, such that N (i) = N±(i). If one of the following
statements holds for each node j

max
i∈N (j)

pi←j <
1

|N (j)| − 1

max
i∈N (j)

pi→j <
1

|N (j)| − 1

max
i∈N (j)

∑
k∈N (j)\i

pj→k < 1

max
i∈N (j)

∑
k∈N (j)\i

pj←k < 1 ,

then Pin = Pout = 0. Hence, major outbreaks due to the
infection of a single node become impossible. Further, if
a small fraction of the network is initially infected, only
a small fraction of the population will be infected at the
end of the epidemic. Since the message-passing approxi-
mation yields an upper bound for the percolation proba-
bilities, these criteria hold for any large network, regard-
less the existence of many small loops. For |N (j)| ≥ 2
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the first two criteria are sharp on large locally tree-like
networks, except for increments of the transmission prob-
abilities which leave ρ invariant, see appendix A.

VI. CONCLUSION

In summary, we derived the percolation transition and
generalized message-passing equations for the cluster size
distribution on weighted, directed networks by extending
the generating function formalism in analogy to the the-
ory of random graphs. These equations determine up-
per bounds for the percolation probabilities (and hence a
lower bound for the percolation threshold), which become
exact for locally tree-like networks. Numerical simula-
tions on large random graphs with asymmetric occupa-
tion probabilities accurately confirm the theoretical pre-
dictions for the percolation probability, percolation tran-
sition and average cluster size. We demonstrated that the
message-passing approximation on real directed networks
still is in very good agreement with numerical simula-
tions, if the network is large and sparse. On scale-free and
social networks we observed an eminent increase of the
percolation threshold, if the occupation probabilities are
anti-correlated with the degree of the start and end node,
which induces a bottleneck for the size of the giant in-
and out-component, respectively. Further we discussed
the SIR model on weighted, directed networks and have
given a lower bound for the epidemic threshold as well
as upper bounds for the average outbreak size, the major
outbreak probability and the fraction of infected individ-
uals, and we have proposed strategies to suppress major
outbreaks (“vaccination strategies”). The derivation nat-
urally includes modified message-passing equations which
remain exact on large locally tree-like networks by taking
into account correlations between transmission probabil-
ities due to non-degenerate recovery times.

Appendix A

We prove that

∀i←j pi←j = |N−(j) \ i|−1 ⇒ ρ = 1

∀i→j pi→j = |N+(j) \ i|−1 ⇒ ρ = 1 .

We consider only the first statement, since the second is
derived the same way.
Proof. It is easy to show that

∀i←j pi←j < |N−(j) \ i|−1 ⇒ ρ ≤ ‖G′(1)‖1 < 1 .

Since the spectral radius is continuous, it is left to prove
that

∀i←j pi←j > |N−(j) \ i|−1 ⇒ ρ ≥ 1 .
Taking the first order expansion, we have

G(1− δek→l) = 1− δ · pk→l
∑
i→j

Bi→j,k→l · ei→j + o(δ)∥∥∥∥∑
i→j

Bi→j,k→l · ei→j
∥∥∥∥
1

= |N−(k) \ l| .

Thus,

∀i←j pi←j > |N−(j) \ i|−1 ⇒ ∃δ0>0∀0<δ<δ0G(Cδ) ⊆ Cδ
Cδ := {y ∈ [0, 1]M | ‖1− y‖1 ≥ δ} .

Now, assume ρ < 1. Then, using the Perron vector x ≥ 0
for G′(1), we find a contradiction to the previous state-
ment

G(1− δx) = 1− δρx + o(δ)

⇒ ∃δ0>0∀0<δ<δ0‖1−G(1− δx)‖1 < δ

⇒ ∃δ0>0∀0<δ<δ0(1− δx) ∈ Cδ ∧G(1− δx) /∈ Cδ .�

Therefore, if N±(j) \ i 6= ∅ for all edges i → j,
we have ρ(0.5) = 1 for the parametrizations p± from
equs. (47)(48). Assuming that the spectral radius is strict
monotonic near λ = 0.5, equs. (39)(40) predict a phase
transition at λc = 0.5, see fig. (1).
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