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Abstract

Localised radial patterns have been observed in the vegetation of semi-arid ecosystems, often as localised

patches of vegetation or in the form of ‘fairy circles’. We consider stationary localised radial solutions

to a reduced model for dryland vegetation on flat terrain. By considering certain prototypical pattern-

forming systems, we prove the existence of three classes of localised radial patterns bifurcating from

a Turing instability. We also present evidence for the existence of localised gap solutions close to a

homogeneous instability. Additionally, we numerically solve the vegetation model and use continuation

methods to study the bifurcation structure and radial stability of localised radial spots and gaps. We

conclude by investigating the effect of varying certain parameter values on the existence and stability of

these localised radial patterns.

1 Introduction

The self-organisation of vegetation in semi-arid ecosystems remains one of the most visually striking examples

of pattern formation in nature. Non-uniform distributions of vegetation are thought to result from symmetry-

breaking instabilities induced by a lack of resources, such as a scarcity of water, combined with a positive

feedback between local vegetation growth and water transport towards the growing vegetation; see [38] for

a detailed review of the mechanisms involved in the formation of vegetation patterns, and see Figure 1 for a

schematic of how vegetation patterns form and are measured. Semi-arid ecosystems are defined to have an

annual rainfall of 250-500 mm; these ecosystems are not rare, with 90% of Israel defined to be semi-arid or

arid, and 30% of the Earth’s land surface estimated to be semi-arid [53]. With the advent of aerial [33, 34] and

satellite imagery, and an increasing public awareness of ecological issues such as desertification, the study of

vegetation patterns has never been more accessible or relevant; this is reflected in the wealth of new research

being completed in this area (see [4, 19, 27, 47, 50] for recent work in mathematical modelling, [36, 58] for

experimental and numerical simulations, and [14, 15, 43] for remote sensing from satellite imagery).

While sloped terrains often produce slowly migrating stripe patterns [44, 48, 53], flat terrains are known

to produce a variety of different steady structures [6, 23, 24, 41]. These patterns include localised patches,

where sparse regions of vegetation are surrounded by bare soil [40], and ‘fairy circles’, where a sparse region

of bare soil is surrounded by uniform vegetation (as seen in the Namib desert [50, Figure 1.]). A single patch

or fairy circle is locally axisymmetric and spatially localised; hence, we restrict our focus to localised radial

patterns in order to better understand these structures.

There has been a number of analytical and numerical studies of localised vegetation patterns; see [4, 5, 40, 50]

for nonlocal mean-field models, [4, 5, 31] for non-variational PDE models, and [16] for a variational nonlocal
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a) b) c)

Figure 1: a) Due to evaporation of the soil water (illustrated by the blue arrows) and insufficient resources to sustain

uniform plant growth, semi-arid ecosystems can exhibit localised patches of vegetation. The soil water is also localised,

subsisting in the shadow of the vegetation. b) For sufficiently large domains, these patches can also form part of a

larger pattern (such as spots, stripes or hexagons, for example). c) By measuring the vegetation and soil water

densities, vegetation patterns can be described by continuum models. Here, we present a schematic density plot of the

vegetation in panel b), where the darker green indicates a higher intensity of vegetation.

Nagumo-type model. Notably, Jäıbi et al. [27] rigorously analysed a 2-component reaction-diffusion model

in order to prove the existence of localised travelling fronts, as well as stationary spot and gap patterns. This

work focused on one-dimensional patterns and utilised singular perturbation theory in order to complete the

proof; it may be possible to extend these results for the radial case, however the associated equations will

explicitly depend on the radial coordinate, which may introduce some extra technical challenges. Instead, we

will take a weakly nonlinear approximation of the reaction-diffusion model introduced by von Hardenberg et

al. in [55], which we term the ‘von Hardenberg’ model, and draw connections to prototypical pattern-forming

models, which we will discuss presently.

Within the study of localised states, we wish to highlight an important distinction between localised spikes

and localised spots; here we are using the terminology set out in [11], related to the spatial eigenvalues of

the surrounding homogeneous state at the bifurcation point. We note that, for radial problems, we typically

examine the spatial eigenvalues in the limit as r → ∞. A localised spike is commonly the result of spatial

eigenvalues bifurcating from the origin onto the real line; these solutions do not have an associated wave

number, and so they have monotonic decay in their tails; see Figure 2 a). In contrast, a localised spot is

often the result of purely imaginary eigenvalues bifurcating off of the imaginary axis; such solutions have an

associated wave number, and so they decay with spatially-oscillating tails; see Figure 2 b). Localised patterns

associated with this bifurcation often possess much more complicated bifurcation curves than localised spikes

and are known to sometimes undergo homoclinic snaking, where infinite families of localised patterns are

connected via a snaking process, as seen in [57]. For more information about homoclinic snaking, see [8] and

references therein.

In the context of vegetation patterns, localised spikes are typically found far from any symmetry-breaking

instability, while localised spots are found close to such an instability (see [11] for a review of such structures).

This instability is often called a ‘Turing’ bifurcation after Turing’s seminal work on pattern formation [51].

Since we will be studying a reaction-diffusion model, such that the instabilities of the system are diffusion-

driven, we will stick to this naming convention; we will also refer to the spike-inducing bifurcation, where real

eigenvalues are bifurcating from the origin, as a ‘homogeneous’ bifurcation. A notable difference between

localised spikes and spots can be seen in how they interact; see [4, 5, 49, 50]. Berrios-Caro et al. [4] found

that, for a nonlocal reaction-diffusion equation, localised spikes can be either purely attractive or purely

repulsive; in contrast, the interaction between localised spots alternates between attractive and repulsive

depending the distance separating the patterns, allowing for the existence of bound states. Similar results

can be found in [49], where localised spots with monotonic tails are seen to be repulsive while localised

gaps with oscillatory tails were found to exhibit bound states. Throughout this work, we will attempt to
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Figure 2: a) For localised spikes, the top picture shows a pair of real eigenvalues bifurcating from the origin (blue

circle with cross) onto the real line (red circles). This results in a localised solution with monotonic tails, as shown

in the bottom picture. b) For localised spots, the top picture shows four purely imaginary eigenvalues bifurcating from

±ik (blue circle with cross), for some k ∈ R, into the complex plane (red circles). This results in a localised solution

with spatially-oscillatory tails with wave number k, as shown in the bottom picture.

distinguish between localised spikes and localised spots, identifying their bifurcation points and regions of

existence for the von Hardenberg model. However, we first require some background theory regarding the

existence of localised radial patterns, which we will now discuss in the context of some prototypical models.

Localised Radial Patterns One of the biggest issues in the analytical study of localised planar patterns

is when localisation occurs in multiple directions. There has been some progress regarding two-dimensional

patterns, such as [7, 25, 45], but the majority of analytical work focuses on localised radial patterns. In

this case the localisation is restricted to just the radial direction, effectively reducing the problem to one

independent variables. Localised radial patterns are seen as the first step to better understanding localised

planar patterns [29]; however, radial problems tend to have explicit dependence on the spatial coordinate r,

which can cause significant problems in the analysis.

There are a number of papers that investigate the existence of localised radial patterns in various systems,

such as [26, 32, 35, 37, 54]. However, all of these examples utilise the radial invariant manifold and normal

form theory introduced by Scheel [46], and so we quickly summarise the relevant results from [46] and their

applications in two prototypical examples.

General results for localised radial patterns: We begin with a general stationary axisymmetric reaction-diffusion

system,

D∆rU+ F(U;µ) = 0,

where D is a diffusion matrix, ∆r := ∂rr +
1
r
∂r is the radial Laplacian operator, U ∈ R2 is the dependent

variable, µ ∈ Rp is a parameter, and F is a nonlinear function where F(0; 0) = 0. We can also express this

as a first-order ODE system

ur = A(r)u + F(u;µ), (1.1)

where u = (U, ∂rU)⊺ ∈ R
4,

A(r) =

(
0 12

−D−1∂UF(0; 0) − 1
r
12

)
, F(u;µ) =

(
0

−D−1 (F(U;µ) − ∂UF(0; 0))

)
,

3



where 12 denotes the 2-dimensional identity matrix. The key idea is the following; a localised radial pattern

remains bounded close to the origin, which we will call the ‘core’ region, while exhibiting exponential decay

sufficiently far from the origin, which we will call the ‘far-field’ region. The existence proof follows from a

singular perturbation argument, and involves local invariant manifold theory. We first construct the set of all

possible small-amplitude solutions that remain bounded in the core region. We call this set of solutions the

core manifold, denoted by Wcu
− (µ), which we construct over the finite sub-interval r ∈ [0, r0]. Likewise, we

then construct the set of all small-amplitude solutions that exhibit exponential decay in the far-field region.

We call this set of solutions the far-field manifold, denoted by Ws
+(µ), which is defined for sufficiently large

values of r. We note that we are borrowing the notation for standard ‘centre-unstable’ and ‘stable’ manifolds

to denote the core and far-field manifolds, respectively; this is equivalent to the notation used in previous

works regarding localised radial patterns [32, 35, 37, 46]. Once both of these manifolds have been constructed,

we evaluate their parametrisations at some coincidental point, which we can choose to be at r = r0. Any

function that lies on the intersection of the two manifolds is then, by definition, a localised solution.

Due to the explicit r-dependence of the system (1.1), the core manifold Wcu
− (µ) must be constructed explic-

itly; this is usually done by introducing a variation-of-constants formula and applying a fixed-point argument.

In contrast, because the radial coordinate r is taken to be very large in the far-field region, the construction

of the far-field manifold Ws
+(µ) can be seen as an extension of standard local centre-manifold theory. In

order to parametrise the far-field manifold Ws
+(µ), it is helpful to reduce the problem onto the coordinates

of a local centre manifold. In [46], it was proven that the extended vector field of (1.1), where r is sufficiently

large, can be reduced to the centre eigenspace; then, the reduced equations have a leading order expansion

that is partially determined by the type of bifurcation occurring as r → ∞. The two respective bifurcation

types, homogeneous and Turing, are examined in [46]; their reduced equations are found in [46, Lemmas 3.9

& 3.10]. We now present one example of each bifurcation type, starting with a summary of the results of

McQuighan and Sandstede [37] regarding a homogeneous bifurcation.

Example 1: Homogeneous Bifurcation In [37], McQuighan and Sandstede investigate the existence of sta-

tionary localised radial patterns in the complex Ginzburg-Landau equation with 2 : 1 forcing. By choosing

the parameters of the system such that a homogeneous bifurcation occurs, the problem can be reduced to

the real reaction-diffusion system,

0 = ∆rU −C1U − ε2C2U − |U |2C3U,

where U ∈ R2, ε is the bifurcation parameter, and Ci is a square matrix that is determined by the parameters

of the original system, for each i = 1, 2, 3. This can also be written as the following first-order ODE system,

ur = A(r)u + F(u; ε), A(r) =

(
0 1N
C1 − 1

r
1N

)
, F(u; ε) =

(
0

ε2C2U + |U |2C3U

)
, (1.2)

where u = (U, ∂rU)⊺ ∈ R4. The linear solutions of (1.2) are associated with the eigenvectors of C1, which

has eigenvalues λ = 0 (double), −m, and m for some m ∈ R. For ε > 0 the zero eigenvalues split onto the

real line, as seen in Figure 2 a), and so we have a homogeneous bifurcation as stated. By determining four

linearly independent solutions of the linearisation of (1.2), the core manifold Wcu
− (ε) was constructed using

the standard approach of a fixed-point argument for a variation-of-constants formula; see [37, Lemma 3.2].

In order to construct the far-field manifold Ws
+(ε) and reduce the equations to some local centre manifold

in the far-field region, McQuighan and Sandstede utilised the theory of strong stable foliations. This is

presented in great detail in Section 4 of [37], and so we just note the following: there exists coordinates

A,B ∈ R on some autonomous local centre manifold Wc
+(ε) such that (1.2) reduces to

Ar = B +RA(A,B, σ, ε),

Br = −σA+ ε2A+ c03A
3 +RB(A,B, σ, ε), (1.3)

σr = −σ2,
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where c03 is a fixed constant and RA,RB contain higher-order terms. Here, σ ∝ 1
r

is taken to be an

unconstrained variable such that the system becomes autonomous; in order to recover the r-dependent

system (1.2), we just define σ(r0) =
1
r0

when evaluating the far-field parametrisation.

To find exponentially decaying solutions to (1.3), McQuighan and Sandstede introduced geometric blow-

up coordinates to track solutions backwards in r to r = r0. They determined that exponentially decay-

ing solutions to (1.3) were associated with exponentially decaying solutions to the cubic non-autonomous

Ginzburg-Landau equation,
(
∂ss +

1

s
∂s

)
q(s) = q(s) + c03q(s)

3. (1.4)

For c03 < 0, there exists a unique exponentially decaying solution to (1.4); tracking back through the blow-up

coordinate charts, McQuighan and Sandstede proved the existence of localised spikes in (1.2) such that the

amplitude of the spike is O(ε).

Example 2: Turing Bifurcation For the second example, we focus on the work of [32, 35] on the quadratic

cubic Swift-Hohenberg equation,

0 = − (1 + ∆r)
2 u− ε2u+ νu2 − u3,

where u ∈ R, ε is the bifurcation parameter, and ν is a fixed parameter. As with the previous examples, we

express this equation as a first-order ODE system,



u1

u2

u3

u4




r

=




0 0 1 0

0 0 0 1

−1 1 − 1
r

0

0 −1 0 − 1
r







u1

u2

u3

u4


+




0

0

0

−ε2u1 + νu2
1 − u3

1


 . (1.5)

Examining the spatial eigenvalues at the bifurcation point as r → ∞, we observe a pair of purely imaginary

eigenvalues at λ = ±i; these eigenvalues split off of the imaginary axis for ε > 0, and so we have a Turing

bifurcation as illustrated in Figure 2 b). The core manifold Wcu
− (µ) is constructed in the usual way; see

[32, Lemma 1]. The system (1.5) is already reduced to the centre eigenspace, and so no extra local centre

manifold reduction is required. Introducing some complex coordinates A,B ∈ C, (1.5) can be written as

Ar = −σ

2
A+B +RA(A,B, σ, ε),

Br = −σ

2
A+ c0ε

2A+ c3|A|2A+RB(A,B, σ, ε), (1.6)

σr = −σ2,

where c0, c3 are fixed constants and RA,RB contain higher-order terms. Again, σ ∝ 1
r
is taken to be

an unconstrained variable such that the system becomes autonomous; in order to recover the r-dependent

system (1.5), we just define σ(r0) =
1
r0

when evaluating the far-field parametrisation.

To find exponentially decaying solutions to (1.6), geometric blow-up coordinates are introduced to allow for

tracking solutions backwards in r to r = r0. Exponentially decaying solutions to (1.6) were found to be

associated with exponentially decaying solutions to the cubic non-autonomous Ginzburg-Landau equation,
(
∂s +

1

2s

)2

q(s) = c0q(s) + c3q(s)
3. (1.7)

For c0 > 0, c3 < 0, there exists a exponentially decaying solution to (1.7); there also exists a sufficiently

small solution that decays exponentially independent of the sign of c3. Tracking back through the blow-up

coordinate charts, Lloyd and Sandstede [32] proved the existence of an elevated localised spot in (1.5), as

well as localised rings. Following this, McCalla and Sandstede [35] also proved the existence of a localised

depressed spot, termed spot B. We will use these examples as a guide for our analysis of localised radial

vegetation patterns.
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Pattern Density

Plot
Bifurcation Type Existence in Model?

Spike

Gap

Spot B

Ring

Homogeneous

Homogeneous

Turing

Turing

Does not exist

Exists, but unphysical

Exists

Exists

Profile

Spot A Turing Exists

Figure 3: A summary of our results regarding the existence of different localised radial patterns. For the five classes

of patterns, we present their relative vegetation density plot and radial profile, as well as their bifurcation type and

whether or not they exist in the vegetation model.

Results We summarise our results in Figure 3. We look for two types of localised solutions bifurcating

from the homogeneous instability: elevated spikes and depressed spikes, which we now refer to as ‘spikes’

and ‘gaps’, respectively. We find that no localised spikes bifurcate from the homogeneous instability of the

von Hardenberg model, while localised gaps bifurcate both sub- and super-critically. However, for standard

parameter values, localised gaps are seen to have a negative profile; hence, these solutions are unphysical.

Close to a Turing instability, we prove that three classes of localised patterns exist and bifurcate sub-

critically from a uniform vegetated state. These solutions include spots A and B, with respective maximum

and minimum values at the core r = 0, as well as elevated and depressed rings, whose maximum values

are away from the core. We expect each of the localised patterns bifurcating from the Turing instability to

remain physical for a reasonable choice of parameter values.

Overview The rest of the paper is structured as follows: we begin by introducing the von Hardenberg

model [55] for stationary radial patterns, identifying uniform states and their associated bifurcation diagram.

We then introduce the weakly nonlinear approximation for the von Hardenberg model derived in [13]; again,

we compute uniform states and the bifurcation diagram of the system. We identify three parameter regions

of the precipitation p where localised states may emerge; these bifurcations are categorised by their spatial

eigenvalues, and so we label each as either ‘homogeneous’ or ‘Turing’ bifurcations, appropriately.

Having categorised the bifurcations of the system, we relate each case to the relevant prototypical examples

((1.2) or (1.5)) and apply weakly nonlinear theory to compute the relevant coefficients required in the

analysis. Where possible, we quote results from the prototypical examples; if the results are not identical

we highlight the extra work necessary to complete the proof, although the technical details are beyond the
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scope of this paper.

Following this, we arrive at the following results for the reduced model: we prove the existence of three

classes of localised radial patterns bifurcating from the uniform vegetated state at some Turing point p = p1,

where we recall that p denotes precipitation. These localised patterns have spatially-oscillatory tails with

an associated wave number k1 > 0, and are directly associated with the spot A, spot B and ring solutions

found in the Swift-Hohenberg equation [32, 35]. We also find evidence of the existence of localised gaps,

characterised by depressions at their core and monotonic tails, bifurcating from the critical precipitation

p = pc where the bare state destabilises. We expect there to be one solution bifurcating sub-critically

from the bare state and another bifurcating super-critically from the uniform vegetated state, though these

solutions may be unphysical.

We conclude by finding numerical solutions to the full von Hardenberg model corresponding to the localised

spot A and localised gap solutions found in our analysis. We explore the effect of changing the shading

parameter ρ and plot the various bifurcation curves of these localised radial structures for distinct parameter

choices.

2 The Model

We focus our analysis on the model introduced by von Hardenberg et al. [55] to explain vegetation dynamics

via a two-component reaction-diffusion system. This can be seen as an adaptation of the model presented

in [28]; we note that there have been numerous studies of the von Hardenberg model (see [39] for an

in-depth description of model terms and behaviour, and [24] for an analysis of two-dimensional pattern

selection), including the work of Dawes and Williams [13] in which localised one-dimensional patterns are

observed. Hence, this model is a natural first choice for the study of localised radial patterns, since we can

then directly compare our results with the one-dimensional case. We consider two non-negative dynamical

variables n(x, t) and w(x, t), denoting the plant biomass density and ground water density, respectively;

then, the dimensionless model takes the form,

nt =

(
γw

1 + σw

)
n− n2 − νn+∆n, (2.1)

wt = p− (1− ρn)w − w2n+ δ∆(w − βn)− c (w − αn)x .

Here, ∆ is the planar Laplacian, p represents precipitation, and δ denotes the relative diffusivity of the water

with respect to the vegetation, which is taken to be a large, positive parameter. In addition, γ, σ, ρ, β, and

ν are taken to be O(1), positive parameters. We briefly summarise the ecological role of each term in (2.1).

The term ( γw
1+σw

)n models plant growth which has a linear rate for low levels of water. The terms −νn and

−n2 account for the plant mortality and saturation due to limited nutrients, respectively, while the term ∆n

models the spread of vegetation. The term p denotes the increase of water due to precipitation, while the

−(1 − ρn)w term represents a loss of water due to evaporation. Hence, we require n ≤ 1
ρ
in order for the

model to remain physical, where the parameter ρ > 0 represents the reduction in evaporation caused by the

presence of vegetation, mostly through shading effects. The term −w2n models the local uptake of water,

mostly determined by transpiration. The ∆(w − βn) term represents the transport of water in the soil as

modelled by Darcy’s law, where the βn term accounts for the suction of water by the roots of the plant.

The −c(w − αn)x term models the advection of soil water down a slope in the x-direction, where c is the

runoff velocity. We will restrict our model to level ground, setting c = 0, in order to study localised radial

patterns. It would be interesting to reintroduce a slope, where c > 0, and investigate how localised radial

patterns are affected by this imposed symmetry-breaking; this is left for future study.

7



a) b)

Figure 4: Diagram of the bifurcation structure for a) the full model (2.2), where the vegetation density n is plotted

against the precipitation p, and b) the weakly nonlinear reduction (2.5), where the scaled vegetation density N is plotted

against the scaled precipitation P . Stable solutions are indicated by solid lines and unstable solutions by dashed lines;

points at which there is a change in stability are highlighted by red circles. In both equations, the uniform vegetated

state V (green) bifurcates from the bare state B (blue) and undergoes at least one change of stability.

Setting c = 0 and considering stationary axisymmetric solutions, (2.1) becomes

0 =

(
γw

1 + σw

)
n− n2 − νn+∆rn, 0 = −(w − p) + (ρ− w)wn+ δ∆r (w − βn) , (2.2)

where r is the planar radial coordinate and ∆r := ∂rr+
1
r
∂r is the planar axisymmetric Laplacian. We begin

by discussing the uniform states associated with (2.2).

Uniform States Any spatially uniform solution of (2.2), which we call (n∗, w∗), must solve the following

algebraic system,

0 =

[(
γw∗

1 + σw∗

)
− n∗ − ν

]
n∗, 0 = −(w∗ − p) + (ρ− w∗)w∗n∗.

Hence, we see that there are two types of spatially uniform equilibria: the ‘bare’ state (n∗, w∗) = (0, p), and

‘vegetated’ states where n∗ =
(

γw∗

1+σw∗

)
− ν and w∗ satisfies

− [γ − σν]w3
∗ + [ρ(γ − σν) + ν − σ]w2

∗ + [pσ − 1− ρν]w∗ + p = 0. (2.3)

The bare state is known to undergo a homogeneous instability at p = pc :=
ν

γ−νσ
(as discussed in [13, 24, 39])

and so we require that γ > νσ in order for pc to be physically relevant. We note that this condition also

guarantees that (2.3) has at least one positive solution w∗, by Descartes’ rule of signs; for our choice of

parameters, as seen in [13, 24], there is only one uniform vegetated state that bifurcates from the Bare state

at p = pc. Turing bifurcations have been found at some values p = p1, p2, with associated critical wave

numbers k = k1, k2, where periodic patterns emerge from the vegetated state; see [24]. For a bifurcation

diagram of the uniform solutions to (2.2), see Figure 4 a).

Weakly Nonlinear Reduction In order to make (2.2) more analytically tractable, we now simplify the

model in the case where δ ≫ 1; to do this, we first introduce ε := δ−
1

2 such that we can write (2.2) as

0 =

(
γw

1 + σw

)
n− n2 − νn+∆rn, 0 = −(w − p) + (ρ− w)wn+

1

ε2
∆r (w − βn) . (2.4)

This is now reminiscent of problems studied in [3, 10, 27], in which existence of solutions can be proven

via geometric singular perturbation methods. Similar techniques should be applicable here, although the
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r-dependent terms in (2.4) may cause some extra complications. Instead, we will perform a weakly nonlinear

reduction seen in [13] in order to find a simpler radial reaction-diffusion system that we can analyse. Following

this, we will then numerically investigate the full system (2.2) for physically relevant parameter values, using

the intuition gained from the reduced model.

In [13], Dawes and Williams presented a simplified model of (2.2) for large values of δ; for ε = δ−
1

2 , the

authors found that

p1 = pc +O
(
ε2
)
, w∗(p1) = w∗(pc) + O

(
ε2
)
, n∗(p1) = O

(
ε2
)
, k1 = O(ε) ,

where (n∗, w∗) denotes the uniform vegetated state, p1 is the minimum Turing point at which the vegetated

state destabilises, and k1 is the critical wave number associated with p1. Then, by defining p = pc + ε2P ,

n = ε2N , w = p+ ε2W and r̃ = εr, (2.4) can be rewritten, to leading order, as

0 = ∆r̃N + b0PN + (b0W −N)N, 0 = ∆r̃ (W − βN)−W + a0N (2.5)

as ε → 0, where b0 = γ

(1+σpc)
2 , pc =

ν
γ−σν

, and a0 = (ρ− pc) pc. For simplicity, we perform the transforma-

tion (N,W,P ) 7→
(
N, βW, b−1

0 P
)
and drop the tilde notation for r, such that we can write (2.5) as

∆r

(
N

W

)
=

(
−PN − (bW −N)N

W − aN − PN − (bW −N)N

)
, (2.6)

where a = a0

β
and b = b0β. Again, we see that there are two uniform states: the ‘bare’ state B : (N,W ) =

(0, 0), and a uniform vegetated state V : (N,W ) = (N0,W0), where

N0 =
P

1− ab
, W0 =

aP

1− ab
. (2.7)

Then, we require sgn(P ) = sgn(1− ab) such that N0 > 0. We note that 1 > ab for the choice of parameters

seen in [13, 24]; see (4.1), (4.2). Hence, we see that the vegetated state is bifurcating from the bare state

super-critically; the bifurcation diagram for the uniform states of (2.6) is presented in Figure 4 b).

3 Localised Radial Patterns in the Reduced Model

We now wish to identify possible bifurcations of the reduced system (2.6), where localised solutions may

emerge as perturbations from a uniform state. To do this, we will linearise about each uniform state in turn,

investigating the spatial eigenvalues in the limit as r → ∞.

3.1 Bifurcation Analysis and Canonical Forms

We recall that there are two uniform states associated with (2.6): the bare state B : (N,W ) = (0, 0), and

the vegetated state V : (N,W ) = (N0,W0), where N0,W0 are defined in (2.7). We begin by looking for any

localised radial solutions bifurcating from the bare state B.

Case 1 We linearise about the bare state B; then, we can express (2.6) as the first-order system

Ur = LB (r)U+ FB (U) , (3.1)

for U = (N,W, ∂rN, ∂rW ) ∈ R4, where

LB (r) =




0 0 1 0

0 0 0 1

−P 0 − 1
r

0

−P − a 1 0 − 1
r


 , FB (U) =




0

0

− (bU2 −U1)U1

− (bU2 −U1)U1


 .
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We investigate the eigenvalues of the linear operator LB(r) in the limit as r → ∞; any eigenvalue λ ∈ C of

limr→∞ LB(r) must be a root of the characteristic polynomial,

pB(λ) = λ4 − (1− P )λ2 − P =
(
λ2 + P

) (
λ2 − 1

)
.

We see that solutions of pB(λ) = 0 take the form λ = 1,−1, and ±
√
−P . Hence, for P > 0 we have purely

imaginary eigenvalues ±i
√
P ; these eigenvalues pass through the origin at P = 0 and, for P < 0, lie on the

real axis at ±
√
|P |. Thus, we define P = −ε2 such that the bifurcation point is at ε = 0, and we expect

localised solutions to emerge in the region 0 < ε ≪ 1. Taking ε small, we now write (3.1) as

Ur = L1 (r)U+ F1

(
U; ε2

)
, (3.2)

where

L1 (r) =




0 0 1 0

0 0 0 1

0 0 − 1
r

0

−a 1 0 − 1
r


 , F1

(
U; ε2

)
=




0

0

ε2U1 − (bU2 −U1)U1

ε2U1 − (bU2 −U1)U1


 .

This is the only bifurcation for the bare state B, and so we now turn our attention to localised solutions

bifurcating off of the vegetated state V .

Case 2 We linearise about the vegetated state V ; that is, we define N = N0 +N1, W = W0 +W1 where

N0 and W0 are defined in (2.7) and N1,W1 are taken to be small. Then, we can write (2.6) as the first-order

system,

Vr = LV (r)V + FV (V) , (3.3)

for V = (N1,W1, ∂rN1, ∂rW1) ∈ R4, where

LV (r) =




0 0 1 0

0 0 0 1
P

1−ab
− bP

1−ab
− 1

r
0

P
1−ab

− a 1− bP
1−ab

0 − 1
r


 , FV (V) =




0

0

− (bV2 −V1)V1

− (bV2 −V1)V1


 .

We investigate the eigenvalues of the linear operator LV(r) in the limit as r → ∞; an eigenvalue λ ∈ C of

limr→∞ LV (r) must be a root of the characteristic polynomial,

pV(λ) = λ4 − (1 +KP )λ2 + P, (3.4)

where we have defined K := 1−b
1−ab

. For small values of P , we see that

λ = 1 +

(
K − 1

2

)
P +O

(
P 2
)
, λ = −1−

(
K − 1

2

)
P +O

(
P 2
)
, or λ = ±

√
P +O

(
P

3

2

)
.

Hence, taking P = ε2, we again have a bifurcation at ε = 0 such that we expect localised solutions to emerge

in the region 0 < ε ≪ 1. We can now write the roots of (3.4) as

λ = 1 + O(ε), λ = −1 + O(ε), λ = ε+O(ε3), or λ = −ε+O(ε3),

and express (3.3) as

Vr = L1 (r)V + F2

(
V; ε2

)
, (3.5)
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where L1(r) is the linear operator defined in (3.2), and

F2

(
V; ε2

)
=




0

0

ε2
(

V1−bV2

1−ab

)
− (bV2 −V1)V1

ε2
(

V1−bV2

1−ab

)
− (bV2 −V1)V1




.

Thus, at the bifurcation point P = 0, we have a homogeneous bifurcation close to which localised radial

solutions may emerge, bifurcating from either uniform state. Notably, any solutions bifurcating from the bare

state B will emerge in a sub-critical region (P < 0), whereas any solutions bifurcating from the vegetated

state V will emerge in a super-critical region (P > 0). As previously discussed, we also expect the vegetated

state V to undergo a Turing instability, and so we return to our characteristic polynomial pV(λ).

Case 3 For the vegetated state V , we expect a Turing instability to be associated with the repeated roots

of pV(λ), as defined in (3.4). Completing the square, we note that

pV(λ) =

(
λ2 − 1

2
[1 +KP ]

)2

+ P − 1

4
(1 +KP )2 ,

and so pV(λ) has repeated roots at some critical P = Pc, where Pc satisfies

0 = 4Pc − (1 +KPc)
2 , Pc,± =

2−K ± 2
√
1−K

K2
.

Both choices of Pc,± have an associated eigenvalue λ±, where

λ2
± =

1

2
[1 +KPc,±] =

1±
√
1−K

K
.

For the parameter choices seen in [13, 24], we find that K < 0; hence, λ2
+ < 0 and λ2

− > 0, and so a

Turing instability occurs at P = P0 := 2−K+2
√
1−K

K2 . The critical eigenvalue is defined as λ = ±ik, where

k :=
√

1±
√
1−K

−K
∈ R. We note that P0 = k4 and take P = k4 + P̃ ; then, we see that

λ2 =
1

2

[
1−

(
2k2 + 1

k4

)(
k4 + P̃

)]
±

√
1

4

[
1−

(
2k2 + 1

k4

)(
k4 + P̃

)]2
−
(
k4 + P̃

)
,

= −
[
k2 +

(
2k2 + 1

2k4

)
P̃

]
±

√(
2k2 + 1

2k4

)2

P̃ +

(
k2 + 1

k2

)√
P̃ ,

= −k2 ±
√(

k2 + 1

k2

)√
P̃ −

(
2k2 + 1

2k4

)
P̃ +O

(
P̃

3

2

)
.

We recall that the Turing instability occurs as the spatial eigenvalues bifurcate off of the imaginary axis, as

seen in Figure 2 b). This would mean that λ2 has non-zero imaginary part, and so P̃ must be negative; that

is, we expect the Turing instability to be a sub-critical bifurcation. We define P := P0 − ε2 such that ε = 0

is the bifurcation point and we expect localised solutions to emerge for 0 < ε ≪ 1. Hence, we can now write

the eigenvalues {λi}4i=1 as

λ1 = ik +O(ε) , λ2 = ik +O(ε) , λ3 = −ik +O(ε) , λ4 = −ik +O(ε) .

and express (3.3) as

Vr = L3 (r)V + F3

(
V; ε2

)
, (3.6)
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where

L3 (r) =




0 0 1 0

0 0 0 1

dk − k2 −
[
1 + k2 + dk

]
− 1

r
0

d2

k

1+k2+dk

−dk − k2 0 − 1
r


 , F3

(
V; ε2

)
=




0

0
dk−k2

k4 (bV2 −V1) ε
2 − (bV2 −V1)V1

dk−k2

k4 (bV2 −V1) ε
2 − (bV2 −V1)V1


 ,

and we have defined dk := k4

1−ab
+ k2 =

(
2k2+1
b−1

)
+ k2. We introduce the following transformation

P :=

(
P 0

0 1
k
P

)
, P :=

(
1

(dk−k2) 0
dk

k2(dk−k2) − dk+k2+1
k2(dk−k2)

)
, (3.7)

which has a well-defined inverse

P−1 :=

(
P−1 0

0 kP−1

)
, P−1 :=

(
(dk − k2) 0
dk(dk−k2)
dk+k2+1 −k2(dk−k2)

dk+k2+1

)
.

Then, defining Ṽ := PV, r̃ := kr and ε̃ := k−2ε, we can finally write (3.6) as

Ṽr̃ = L̃3 (r̃) Ṽ + F̃3

(
Ṽ; ε̃2

)
, (3.8)

where

L̃3 (r̃) =




0 0 1 0

0 0 0 1

−1 1 − 1
r̃

0

0 −1 0 − 1
r̃


 , F̃3

(
Ṽ; ε̃2

)
=




0

0(
Ṽ1 − Ṽ2

)(
ε̃2 − Ṽ1

)

−ω
(
Ṽ1 − Ṽ2

)(
ε̃2 − Ṽ1

)




,

with the fixed parameter ω := k2+1
k2 . Finally, we drop the tilde notation for simplicity. Thus, we have three

regions of interest: the sub- and super-critical regions close to a homogeneous bifurcation at P = 0, where

localised solutions may bifurcate from the respective bare or vegetated states, and the sub-critical region

close to a Turing bifurcation at P = P0, where localised solutions may bifurcate from the vegetated state;

see Figure 5. We now look to relate these cases to the prototypical equations seen in [32, 35, 37] associated

with each bifurcation type, and then discuss the existence of possible localised radial solutions in each case.

3.2 Cases 1 and 2: Homogeneous Bifurcation

We recall that cases 1 and 2 both occur close to a homogeneous bifurcation, and so we expect that we can

relate both to the study of oscillons in the complex Ginzburg-Landau equation [37]. To make this more

clear, we express our equations (3.2), (3.5) in a more general form; that is, for cases 1 and 2, we write our

equations in the following way,

(
U

V

)

r

=

(
0 12
C − 1

r
12

)(
U

V

)
+

(
0

ε2DU+ f(U)

)
, (3.9)

for some U,V ∈ R2, C,D ∈ R2×2, and f : R2 → R2. In both cases,

C =

(
0 0

−a 1

)
, f :

(
U1

U2

)
7→
(
−(b U2 − U1)U1

−(b U2 − U1)U1

)
,
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Figure 5: In the weakly reduced model (2.5), we expect there to be three possible cases in which localised radial solutions

can emerge. In case 1, solutions bifurcate from the bare state B (blue) sub-critically at P = 0. In case 2, solutions

bifurcate from the uniform vegetated state V (green) super-critically at P = 0. In case 3, solutions bifurcate from the

uniform vegetated state V (green) sub-critically at P = P0.

however U, V and D differ for each case. In particular, for case 1,

(1) : U =

(
N

W

)
, V =

(
∂rN

∂rW

)
, D =

(
1 0

1 0

)
,

whereas in case 2, we have

(2) : U =

(
N1

W1

)
, V =

(
∂rN1

∂rW1

)
, D =

(
1

1−ab
− b

1−ab
1

1−ab
− b

1−ab

)
.

By writing our equations in this form, we have expressed cases 1 and 2 in an analogous way to the CGL

problem in [37]. We note that the general system (3.9) has a quadratic nonlinearity, which is in contrast to

Z2 symmetry seen in [37]. However, the core parametrisation and the foliations in the far-field are entirely

dependent on the linear part of the system, and so the results in [37] should follow identically if C has the

same properties as the matrix C1 in [37]. Hence, we begin by analysing the associated linear problem of

(3.9).

We note that, at the bifurcation point ε = 0, the linear operator of (3.9) in the limit as r → ∞ has

eigenvalues λc = 0 (with double multiplicity), λu = 1, and λs = −1; these eigenvalues have associated

generalised eigenspaces

Ec
+ = span

{(
Ũ0

0

)
,

(
0

Ũ0

)}
, Eu

+ = span

{(
Ũ1

Ũ1

)}
, Es

+ = span

{(
Ũ1

−Ũ1

)}
,

where,

Ũ0 =

(
1

a

)
, Ũ1 =

(
0

1

)
. (3.10)

We note that this has the same structure as in [37] (in the case when m = 1) for different values of Ũ0, Ũ1.

Then, the linearisation of (3.9) at ε = 0,

(
U

V

)

r

=

(
0 12
C − 1

r
12

)(
U

V

)
, (3.11)
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for some U,V ∈ R2, has four linearly independent solutions {Wi(r)}4i=1, given by

W1(r) =

(
Ũ0

0

)
, W2(r) =

(
Ũ0 ln(r)

Ũ0
1
r

)
, W3(r) =

(
Ũ1I0(r)

Ũ1I1(r)

)
, W4(r) =

(
Ũ1K0(r)

−Ũ1K1(r)

)
,

(3.12)

where Iν(r),Kν(r) are the νth-order modified Bessel functions of the first and second kind, respectively;

see [1, Section 9.6]. We also note that span {W1(r),W2(r)} ≡ Ec
+ for all r, since c1W1(r) + c2W2(r) =

(c1 + c2 ln(r))W
0
1 + c2

r
W0

2, where W0
1 :=

(
Ũ0,0

)⊺
and W0

2 :=
(
0, Ũ0

)⊺
. We define P cu

− (r) to be the

projection on span {W1(r),W3(r)} along span {W2(r),W4(r)} for each fixed r ≥ 0.

These solutions have exactly the same structure as [37]; since the explicit values of Ũ0 and Ũ1 are not used

in the following analysis, we can conclude the following results from [37].

The first result is regarding the existence and parametrisation of the core manifold Wcu
− (ε), which contains

all small-amplitude solutions of (3.9) on the interval r ∈ [0, r0], for some large fixed r0 > 0, that remain

bounded as r → 0,

Lemma 3.1 Fix r0 > 0; then, there are constants δ0, δ1, ε0 > 0 such that the set Wcu
− (ε) of solutions U(r)

of (3.9) for which sup0≤r≤r0
|U| < δ0 is a smooth two-dimensional manifold for each ε < ε0. Furthermore,

U ∈ Wcu
− (ε) with |P cu

− (r0)U(r0)| < δ1 if and only if

U(r0) =
[
d1 +Or0

([
ε2 + |d|

]
|d|
)]

W0
1 +Or0

([
ε2 + |d|

]
|d|
)
W0

2 + d3W3(r0)

+ Or0

([
ε2 + |d|

]
|d|
)
W4(r0), (3.13)

for some d = (d1, d3) ∈ R
2 with |d| < δ1, where the right hand side of (3.13) depends smoothly on (d, ε),

and Or0(·) denotes the standard Landau symbol where the bounding constants may depend on the value of

r0.

Proof. This follows from Lemma 3.2 and Remark 3.1 in [37] and involves a standard application of the

variation-of-constants formula on a bounded interval r ∈ [0, r0]; see [32] for a similar example.

Next, we establish the existence and parametrisation of the far-field manifold W̃s
+(ε), which contains all

small-amplitude solutions of (3.9), for sufficiently large r, that decay exponentially as r → ∞. To do

this, we replace any 1
r
terms by the unconstrained variable σ, defined such that (3.9) becomes an extended

autonomous system of the form,


U

V

σ




r

=




0 12 0

C 0 0

0 0 0





U

V

σ


+




0

−σV + ε2DU+ f(U)

−σ2


 . (3.14)

In order to recover the non-autonomous system (3.9), we would later implement the restriction σ(r0) = r−1
0 ,

thus ensuring σ(r) = r−1 for all r ≥ r0. The parametrisation of W̃s
+(ε) relies on the existence of autonomous

local centre-stable and centre manifolds for (3.14), as well as the existence of strong stable foliations; this is

tackled in great detail in Section 4 of [37], which we summarise in the following result,

Lemma 3.2 There exist constants ε0, δ0, δ1, ρ0 > 0 such that the set Wcs
+ (ε) of solutions (U(r), σ(r)) of

(3.14) for which supr≥ρ0
{|U(r)| , |σ(r)|} < δ0 is a smooth four-dimensional manifold for each 0 < ε ≤ ε0.

Furthermore, (U, σ) ∈ Wcs
+ (ε) has the expansion

U(r) =
[
A(r) + Oσ

(
|ds|

[
|ds|+ |A|+ |B|+ ε2

])]
W0

1

+
[
B(r) + Oσ

(
|ds|

[
|ds|+ |A|+ |B|+ ε2

])]
W0

2 (3.15)

+
[
Oσ

(
[|ds|+ |A|+ |B|]

[
|ds|+ |A|+ |B|+ ε2

])]
W3(r)

+
[
ds +Oσ

([
|A|+ |B|+ ε2

] [
|A|+ |B|+ ε2

])]
W4(r),
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for some A = (A,B, ds) ∈ R3 with |A| < δ1 for all r ≥ ρ0.

Proof. The existence and smoothness of the relevant manifolds and foliations follow from Propositions 4.1

& 4.2, as well as Lemmas 4.4 & 4.5 in [37]. The parametrisation of the local centre-stable manifold is then

derived in Section 4.4 of [37], resulting in (4.9).

We note that the functions A and B are defined in [37] as the projections of a point (p, σ) on a local centre

manifold Wc
+(ε) onto W0

1 and W0
2, respectively. In order to parametrise the far-field manifold W̃s

+(ε),

we need to determine an expression for (U, σ) ∈ Wcs
+ (ε) such that |U(r)| decays exponentially as r → ∞.

Assuming that we can determine the conditions such that A and B are exponentially decaying, and so |U(r)|
is also exponentially decaying in (3.15), we then evaluate our parametrisation at σ = 1

r
in order to recover

solutions U(r) ∈ W̃s
+(ε) for the non-autonomous system (3.9). Following the parametrisation of the far-field

manifold W̃s
+(ε) by exponentially-decaying coordinates A,B on some local centre manifold Wc

+(ε), we now

reduce (3.14) to a system of equations for the centre coordinates (A,B, σ),

Lemma 3.3 Using the coordinates P c
+U(r) = A(r)W0

1+B(r)W0
2, the vector field (3.14) restricted to Wc

+(ε)

can be written as

Ar = B +RA(A,B, σ, ε),

Br = −σB + c0
[
ε2A+ c02A

2
]
+RB(A,B, σ, ε), (3.16)

σr = −σ2,

where c0 =
(

1+a
1+a2

)
and c2 = (1− ab). The remainder terms RA and RB satisfy

RA = O
((
ε2 + |A|+ |B|

)
(|A|+ |B|)

)
,

RB = O
((

ε2 + |σ|2
) (

ε2 + |A|
)
|A|+

(
ε2 + |σ|2 + |A|

)
|σB|+ (|A|+ |B|)3

)
,

Proof. This follows identically to Lemma 4.6 in [37] except that we no longer have Z2-symmetry, due to

the quadratic nonlinearity in (3.9). Instead, we retain the more general normal form seen in [46, (58) on

page 42],

Ar = B̃,

B̃r = −σB̃ + γ1(ε, σ)A + γ2(ε, σ)A
2 +O

((
ε2 + |σ|2 + |A|

)
|σB̃|+

(
|A|+ |B̃|

)3)
,

σr = −σ2,

where [46, Lemma 3.9] implies that

γ1(ε, σ) = ε2
[
c0 +O

(
|σ|2 + ε2

)]
, γ2(ε, σ) = c0

[
c02 +O

(
|σ|2 + ε2

)]
,

for some fixed constants c0, c
0
2. In order to obtain the normal form (3.16), we introduce a new coordinate B

such that B̃ = B +RA(A,B, σ, ε). Then, because RA is higher order in B̃, no new terms are introduced to

leading order and we obtain the leading-order expansion seen in (3.16). Finally, the leading order expansions

of each coefficient can be computed via weakly nonlinear analysis seen in [9]; see Appendix A.1. We note

that these coefficient values can also be found rigorously via normal form transformations, as seen in [46].

In Section 5 of [37], localised solutions were found to take the form A(r) = εA2(εr), where A2(s) satisfies
(
∂ss +

1

s
∂s

)
A2 = A2 + c03A

3
2, (3.17)
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where c03 is the cubic coefficient in the radial normal form, such that the full system (1.2) has a localised

solution if there exists a localised solution to the real non-autonomous Ginzburg-Landau equation (3.17).

Similarly, we can take an ansatz of the form A(r) = ε2A2(εr), such that the quadratic nonlinearity scales at

the same rate as the linear part of the normal form (3.16). Then, we see that localised solutions to (3.16)

are associated with localised solutions to the real non-autonomous Ginzburg-Landau equation

(
∂ss +

1

s
∂s

)
A2 = c0

[
A2 + c02A

2
2

]
. (3.18)

We note that (3.18) can be rescaled such that

(
∂s̃s̃ +

1

s̃
∂s̃

)
Ã2 = Ã2 − Ã2

2, (3.19)

where we have defined s̃ :=
√
c0s, Ã2 := −c02A2. By [30], we know that there exists a unique positive localised

solution to (3.19); we note that sgn (A) = −sgn (c02), and so we expect to find localised depressed spikes.

However there remains some significant technical analysis required to complete this existence proof: including

setting up appropriate geometric blow-up charts, proving the existence of a connecting orbit between the

two charts related to localised solutions of (3.18), and tracking solutions through the various charts. Hence,

the full existence proof is beyond the scope of this paper. We will, however, use this as motivation for

our numerical investigation in Section 4, where we observe localised depressed spikes bifurcating from the

homogeneous bifurcation point, both sub- and super-critically. In the sub-critical region the spikes decay to

the bare state as r → ∞, whereas the spikes in the super-critical region decay to the uniform vegetated state

as r → ∞. This is all in agreement with our analysis, and so we expect that these localised solutions exist

and bifurcate from the homogeneous bifurcation point P = 0 as previously discussed.

For both cases 1 and 2, we have followed the work of [37] to produce a (currently incomplete) proof of the

existence of localised radial spikes bifurcating from the homogeneous bifurcation at P = 0. The general

equation (3.9) is sufficiently similar to [37] that much of the analysis follows identically up to the centre-

manifold reduction in the far-field. We expect that the existence of localised solutions to (3.9) is dependent

on the existence of localised solutions to the Ginzburg-Landau equation (3.18), although this analysis has

been left for future work. Finally, we applied the result seen in [30] to conclude that, when the uniform

vegetated state bifurcates super-critically at P = 0, localised depressed spikes may emerge in both cases 1

and 2. This is supported by our numerical results in which we find localised depressed spikes bifurcating

both sub- and super-critically from the homogeneous instability for the full von Hardenberg model (2.1); see

Section 4.

We note that in case 1 solutions are bifurcating from the bare state B, and so localised depressed spikes are

always unphysical in our vegetation model. In case 2 solutions are bifurcating from the uniform vegetated

state V , and so it is possible that these solutions may be physical if the amplitude of the spike is sufficiently

small such that N(r) and W (r) remain non-negative. Our results also suggest that models where the uniform

vegetated state bifurcates sub-critically, such as [22, 40], may allow for localised elevated spikes to emerge

close to the critical precipitation p = pc. However, a closer analysis of the model would first be required in

order to substantiate such a prediction.

3.3 Case 3: Turing Bifurcation

We recall that case 3 occurs close to a Turing bifurcation, and so we expect that we can relate this case to

the study of localised radial patterns in the Swift-Hohenberg equation [32]. In fact, the system (3.8) has

been transformed in such a way that the linear part is identical to the Swift-Hohenberg equation seen in

[32], and so the results of [32, 35] will follow almost identically. We first note that the linearisation of (3.8)
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at the bifurcation point ε = 0




U1

U2

U3

U4




r

=




0 0 1 0

0 0 0 1

−1 1 − 1
r̃

0

0 −1 0 − 1
r̃







U1

U2

U3

U4


 , (3.20)

has four linearly independent solutions, as seen in [32, (2.4)], of the form

V1(r) =
√
2π (J0(r), 0,−J1(r), 0)

⊺
, V2(r) =

√
2π (rJ1(r), 2J0(r), rJ0(r),−2J1(r))

⊺
,

V3(r) =
√
2π (Y0(r), 0,−Y1(r), 0)

⊺
, V4(r) =

√
2π (rY1(r), 2Y0(r), rY0(r),−2Y1(r))

⊺
,

where Jν , Yν denote the νth Bessel functions of the first and second kind, respectively. We denote the

projection onto the space span{V1(r),V2(r)} as P cu
− (r), with null space given by span{V3(r),V4(r)}, for

each fixed r ≥ 0. We now conclude the following results from [32, 35]. The first result is regarding the

existence and parametrisation of the core manifold Wcu
− (ε), which contains all small-amplitude solutions of

(3.8) on the interval r ∈ [0, r0], for some large fixed r0 > 0, that remain bounded as r → 0,

Lemma 3.4 Fix r0 > 0; then, there are constants δ0, δ1, ε0 > 0 such that the set Wcu
− (ε) of solutions U(r)

of (3.8) for which sup0≤r≤r0
|U| < δ0 is a smooth two-dimensional manifold for each ε < ε0. Furthermore,

U ∈ Wcu
− (ε) with |P cu

− (r0)U(r0)| < δ1 if and only if

U(r0) = d1V1(r0) + d2V2(r0) + Or0

([
ε2 + |d|

]
|d|
)
V3(r0)

+
[(

ν +O
(
r

1

2

0

))
d21 +Or0

(
ε2|d|+ |d2|2 + |d1|3

)]
V4(r0), (3.21)

for some d = (d1, d2) ∈ R2 with |d| < δ1, where ν = ω
√

π
6 , the right hand side of (3.21) depends smoothly

on (d, ε), and Or0(·) denotes the standard Landau symbol where the bounding constants may depend on the

value of r0.

Proof. This follows from [32, Lemma 1] and involves a standard application of the variation-of-constants

formula on a bounded interval r ∈ [0, r0]. As seen in [32], the quadratic coefficient ν is found from a Taylor

expansion to be

ν =

√
2π

8

∫ r0

0

rJ0(r)
(
ω [V1(r)]

2
1

)
dr,

where [X]1 denotes the first element of a vector X. Hence, we see that

ν =
ω (2π)

3

2

8

∫ ∞

0

rJ3
0 (r) dr +O

(
r
− 1

2

0

)
= ω

√
π

6
+ O

(
r
− 1

2

0

)
,

where we have used [56, (3) on page 411] to compute the final integral.

Next, we establish the existence and parametrisation of the far-field manifold Ws
+(ε), which contains all

small-amplitude solutions of (3.8), for sufficiently large r, that decay exponentially as r → ∞. To do

this, we replace any 1
r
terms by the unconstrained variable σ, defined such that (3.8) becomes an extended

autonomous system of the form,



U1

U2

U3

U4

σ




r

=




0 0 1 0 0

0 0 0 1 0

−1 1 0 0 0

0 −1 0 0 0

0 0 0 0 0







U1

U2

U3

U4

σ




+




0

0

−σU3 + (U1 − U2)
(
ε2 − U1

)

−σU4 − ω (U1 − U2)
(
ε2 − U1

)

−σ2




. (3.22)
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In order to recover the non-autonomous system (3.8), we would later implement the restriction σ(r0) = r−1
0 ,

thus ensuring σ(r) = r−1 for all r ≥ r0. The far-field normal form equations are constructed identically to

[32]; we introduce the coordinates Ã, B̃ ∈ C, defined in [32, (3.5)] as
(
Ã

B̃

)
=

1

4

(
2U1 − i (2U3 + U4)

−U4 − iU2

)
, (3.23)

and present the following result,

Lemma 3.5 Fix 0 < m < ∞; then, there exists a change of coordinates

(
A

B

)
= e−iφ(r) [1 + T (σ)]

(
Ã

B̃

)
+O

((
ε2 + |Ã|+ |B̃|

)(
|Ã|+ |B̃|

))
, (3.24)

so that the (3.22), evaluated at (3.23), becomes

Ar = −σ

2
A+ B +RA(A,B, σ, ε),

Br = −σ

2
B + c0ε

2A+ c3|A|2A+RB(A,B, σ, ε), (3.25)

σr = −σ2.

The coordinate change (3.24) is polynomial in (A,B, σ) and smooth in ε, and T (σ) = O(σ) is linear and

upper triangular for each σ, while φ(r) satisfies

φr = 1 + O
(
ε2 + |σ|3 + |A|2

)
, φ(0) = 0.

The constants c0, c3 are given by c0 = ω
4 and c3 = ω(23ω−30)

36 , and the remainder terms satisfy

RA(A,B, σ, ε) = O




2∑

j=0

∣∣AjB3−j
∣∣+ |σ|3|A|+ |σ|2|B|+ (|A|+ |B|)5 + ε2|σ|m (|A|+ |B|)


 ,

RB(A,B, σ, ε) = O




1∑

j=0

∣∣AjB3−j
∣∣+ |σ|3|B|+ ε2

(
ε2 + |σ|3 + |A|2

)
|A|+ (|A|+ |B|)5 + ε2|σ|m|B|


 .

Proof. This follows identically from [32, Lemma 2], where we compute the leading order expansions of

c0, c3 via weakly nonlinear analysis seen in [9]; see Appendix A.2. Again, we note that these coefficient values

can also be found rigorously via normal form transformations, as seen in [46].

Localised solutions of (3.25) are found to take the form A(r) = ε
1

2A2

(
ε

1

2 r
)
, where A2(s) satisfies

(
∂s +

1

2s

)2

A2 = c0A2 + c3|A2|2A2. (3.26)

It was determined in [32, 35] that there are two types of localised solutions to (3.26) for c0 > 0: one that

satisfies the full nonlinear equation (3.26), and another where |A2| ≪ 1 and so solutions follow the linear

flow of (3.26). The linear flow of (3.26) has a unique localised solution that can be found explicitly and is

independent of c3; it was proven in [52] that the cubic equation (3.26) has a unique positive localised solution

q(s)eiY , for some Y ∈ R, if and only if c3 < 0. The real function q(s) has the asymptotic form

q(s) =

{
q0s

1

2 +O
(
s

3

2

)
, s → 0

(
q+ +O

(
e−

√
c0s
))

s−
1

2 e−
√
c0s, s → ∞,
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where q0 > 0 and q+ 6= 0 are fixed constants. By introducing geometric blow-up coordinates, as seen in

[35], one can track small-amplitude exponentially decaying solutions back through extended phase spaces

by following close the localised solutions of (3.26). This is entirely identical to the work in [32, 35], which

allows us to state the following theorems:

Theorem 1 (Existence of Spot A) Fix ω > 0. Then, there is some ε0 > 0 such that (3.8) has localised

radial solutions VA(r) := (UA, VA)
⊺
(r), where UA, VA ∈ R2 for all r ≥ 0, of amplitude O(ε) for each

ε ∈ (0, ε0). In particular, UA(r) has the expansion

UA(r) ∼
√
3

ω
ε

(
J0(r)

0

)
+O(ε2), (3.27)

uniformly on bounded intervals [0, r0] as ε → 0, where J0(r) is a Bessel function of the first kind of order 0.

Theorem 2 (Existence of Rings) Fix ω > ω∗ := 30
23 . Then, there is some ε0 > 0 such that (3.8) has

localised radial solutions V±
R(r) :=

(
U±
R , V ±

R

)⊺
(r), where U±

R , V ±
R ∈ R2 for all r ≥ 0, of amplitude O

(
ε

3

2

)

for each ε ∈ (0, ε0). In particular, U±
R (r) has the expansion

U±
R (r) ∼ ±q0ε

3

2

(
rJ1(r)

2J0(r)

)
+O(ε2), (3.28)

uniformly on bounded intervals [0, r0] as ε → 0, where q0 > 0 is a fixed constant and (J1(r), J0(r)) are Bessel

functions of the first kind of orders 1 and 0, respectively.

Theorem 3 (Existence of Spot B) Fix ω > ω∗ := 30
23 . Then, there is some ε0 > 0 such that (3.8) has a

localised radial solution VB(r) := (UB, VB)
⊺
(r), where UB, VB ∈ R2 for all r ≥ 0, of amplitude O

(
ε

3

4

)
for

each ε ∈ (0, ε0). In particular, UB(r) has the expansion

UB(r) ∼ −

√
q0
√
3

ω
ε

3

4

(
J0(r)

0

)
+O(ε), (3.29)

uniformly on bounded intervals [0, r0] as ε → 0, where q0 > 0 is a fixed constant and J0(r) is a Bessel

function of the first kind of order 0.

Each of these theorems follow identically from the work of [32, 35], where the corresponding parameter

values are computed in Lemmas 3.4 and 3.5; see Figure 6 for the profile of each solution. We note that

ω := k2+1
k2 > 1; hence, spot A solutions exist for all choices of ω, whereas spot B and ring solutions require

that ω > ω∗ ≈ 1.3 in order to emerge.

Remark 3.6 We can invert the coordinate transformations defined in (3.7) to obtain expressions for the
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a) b) c)

UA(r) UR(r) UB(r)

r r r

Figure 6: Radial profiles for a) spot A, b) ring, and c) spot B solutions to (3.8). Here, the first element of UA/R/B(r)

is plotted for each solution, as defined in a)(3.27), b)(3.28), and c) (3.29).

water and vegetation densities (N,W )(r). Then, in the core region 0 ≤ r ≤ k−1r0, we find that

Spot A: NA(r) ∼
k4

1− ab

[
1 +

√
3

ω

ε

k2
J0(kr) + O(ε2)

]
,

WA(r) ∼
k4

b(1− ab)

[
1 +

√
3

ω

ε

k2
J0(kr) + O(ε2)

]
− k4

b

[
1−

√
3

ω

ε

k4
J0(kr) + O(ε2)

]
,

Spot B: NB(r) ∼
k4

1− ab


1−

√
q0
√
3

ω

ε
3

4

k
3

2

J0(kr) + O(ε)


 ,

WB(r) ∼
k4

b(1− ab)


1−

√
q0
√
3

ω

ε
3

4

k
3

2

J0(kr) + O(ε)


 − k4

b


1 +

√
q0
√
3

ω

ε
3

4

k
7

2

J0(kr) + O(ε)


 ,

Rings: N±
R (r) ∼ k4

1− ab

[
1± q0

ε
3

2

k2
rJ1(kr) + O(ε2)

]
,

W±
R (r) ∼ k4

b(1− ab)

[
1± q0

ε
3

2

k2
rJ1(kr) + O(ε2)

]
− k4

b

[
1∓ q0

ε
3

2

k5
[krJ1(kr) − 2J0(kr)] + O(ε2)

]
.

Hence, we have found three classes of localised radial patterns bifurcating from the uniform vegetated state

at the Turing point P = P0. These are all physical solutions for ε sufficiently small and have oscillatory tails

with an associated wave number k :=
√

1+
√
1−K

−K
, for K = 1−b

1−ab
. If these solutions persist away from the

Turing point, these oscillatory tails may be damped by the stronger localisation, resulting in solutions that

appear to have monotonic tails even though they bifurcate from a Turing instability.

4 Numerical Results for the von Hardenberg Model

We numerically investigate the existence of localised spot A and spike solutions in the full von Hardenberg

model (2.2). We employ finite-difference and numerical continuation methods in order to find localised

solutions to (2.2) and determine their bifurcation structure. While we expect to be able to also find localised

rings and spot B solutions, as proven to exist in the reduced model in Theorems 2 & 3, these solutions typically

exist in more restrictive parameter regions than spot A solutions and are harder to find numerically. Hence,

while we do expect to be able to find such patterns, we restrict our attention to localised spike and spot A
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solutions. We also investigate the role of the shading parameter ρ in the emergence of these localised radial

patterns and their bifurcation structure. In [24], the default choice of parameters is the following,

γ = 1.6, σ = 1.6, ν = 0.2, β = 3, δ = 30, ρ = 1.5. (4.1)

In this parameter regime, peaks arranged in a hexagonal lattice bifurcate sub-critically from p = p1 whereas

stripes bifurcate super-critically; see Figure 8 in [24]. In [13], localised one-dimensional solutions do not

emerge for this parameter region; in order to numerically find such solutions, the authors introduce a second

choice of parameters,

{γ, σ, ν, β, δ} as defined in (4.1), ρ = 2.5, (4.2)

which ensures that stripes bifurcate sub-critically, and so localised one-dimensional solutions emerge from

the Turing point p = p1. We wish to see how the choice of ρ affects localised radial patterns; we fix the other

parameters {γ, σ, ν, β, δ} as in (4.1) and present our results for four distinct cases:

(i) ρ = 1.5, (ii) ρ = 2, (iii) ρ = 2.5, (iv) ρ = 2.7. (4.3)

These cases include the choices of ρ seen in [24] and [13] (cases (i) and (iii), respectively), as well as an

intermediate value (case (ii)) and an exceeding value (case (iv)) for ρ. We note that our analysis holds as

long as a < 1
b
, where

a :=
1

β
(ρ− pc) pc, b :=

βγ

(1 + σpc)
2 , pc :=

ν

γ − σν
,

which, for {γ, σ, ν, β, δ} fixed as in (4.1), is equivalent to the condition ρ < (1+σpc)
2

γpc

+ pc ≈ 6.41. Thus, each

case in (4.3) is valid for our weakly nonlinear analysis.

Numerical Implementation We briefly describe our numerical scheme for finding localised solutions to

(2.2) via central finite-difference methods. We recall that the von Hardenberg model (2.2) can be written in

the form

0 = F(U ; p) := ∆r

(
1 0

−δβ δ

)(
n

w

)
+

( [(
γw

1+σw

)
− n− ν

]
n

−(w − p) + (ρ− w)wn

)
(4.4)

where U := (n,w)T . We define our finite radial domain 0 ≤ r ≤ r∗ := 400 and impose the following Neumann

boundary conditions

lim
r→r∗

∂rU = 0, and lim
r→0

∂rU = 0, =⇒ lim
r→0

∆rU = 2 lim
r→0

∂rrU. (4.5)

We are looking for solutions that decay exponentially to some uniform state as the radius r increases, which

is why we use homogeneous Neumann boundary conditions at the outer boundary; the inner boundary

condition is defined such that (4.4) is well-defined in the limit as r → 0. We discretise our radial domain

into T := 2000 grid points {ri}Ti=1 and define U := (n,w) ∈ R
2T , where ni = n(ri) and wi = w(ri) for each

i ∈ [1, T ], such that we can write (4.4) as

0 = F(U; p) := Dr

(
1T 0T

−δβ1T δ1T

)(
n

w

)
+

([
γw ◦ (eT + σw)−1 − n− νeT

]
◦ n

−(w− peT ) + (ρeT −w) ◦w ◦ n

)
. (4.6)

Here, 1T , 0T and eT are the identity matrix, zero matrix and vector of ones for RT , respectively. Furthermore,

the ◦ notation indicates a Hadamard (or element-wise) product andDr := D2+RD1 ∈ R2T×2T approximates

the operator ∆r. The matrices D1 and D2 are the respective central finite-difference matrices for first and
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second derivatives, R := diag(1, r−1
2 , r−1

3 , . . . , r−1
T ) approximates 1/r, and the first and last rows of each

matrix are chosen such that the boundary conditions (4.5) are satisfied.

We use Matlab’s trust-region solver fsolve to solve the discretised problem (4.6) for a localised initial guess,

and then employ path-following codes from [2] in order to continue our solutions in parameter space. At each

localised solution U∗ := (n∗,w∗) of (4.6), with p = p∗, we calculate the radial stability of our solution by

computing the eigenvalues of the Jacobian of the discretised system evaluated at the localised state (n∗,w∗).

That is, we solve the eigenvalue problem λV = δUF(U∗; p∗)V for some V ∈ R2T , where the Jacobian

δUF(U∗; p∗) is the following,

Dr

(
1T 0T

−δβ1T δ1T

)
+

(
diag

(
γw∗ ◦ (eT + σw∗)−1 − 2n∗ − νeT

)
diag

(
γ
[
(eT + σw∗)−2

]
◦ n∗

)

diag ((ρeT −w∗) ◦w∗) diag ((ρeT − 2w∗) ◦ n∗ − eT )

)
. (4.7)

If we find an eigenvalue λ of (4.7) such that Re(λ) > 0, we conclude that the solution U∗ is unstable

with respect to radial perturbations; likewise, if every eigenvalue λ is such that Re(λ) < 0, we conclude

that the solution U∗ is stable with respect to radial perturbations. We emphasise that radial stability is a

necessary, but not sufficient, condition for solutions to be stable in the two-dimensional plane; for example,

a solution might be stable with respect to radial perturbations but unstable with respect to perturbations

in the x-direction. Hence, from these calculations we can only definitively say when solutions are unstable,

not stable.

We note that the size of our radial domain r∗ must be chosen sufficiently large in order to find localised

solutions. If the domain is too small, then solutions will solve the boundary value problem (4.4)-(4.5) but

will not exhibit exponential decay as r increases. Our choice of r∗ = 400 is acceptable in our numerical study,

since the observed solutions decay to their uniform state well before reaching the outer boundary. In fact,

the solution profiles shown in Figures 7-10 are only displayed for r ∈ [0, 200]; each solution remains flat for

the remainder of the radial domain, and so we omit this from the figures. Then, for each localised solution,

the profile in the core remains the same for different domain sizes as long as the domain is sufficiently large

such that boundary effects are avoided. We now present our numerical findings for cases (i)-(iv).

Case (i) The bifurcation diagram for ρ = 1.5 is plotted in Figure 7, where the L2-norm of the vegetation

density n(r) is plotted against the shifted precipitation p− pc. We recall that, in [13], this choice of ρ does

not exhibit one-dimensional localised patterns bifurcating from the Turing point p = p1. As predicted in our

earlier analysis, however, we observe three localised radial patterns: localised gap solutions bifurcating sub-

and super-critically from the homogeneous point p = pc, respectively, as well as a localised spot A solution

bifurcating sub-critically from p = p1.

The localised spot A branch is unstable to radial perturbations as it bifurcates from the uniform vegetated

state at p = p1; as p decreases, the spot undergoes a fold bifurcation where it gains stability with respect

to radial perturbations. The changing radial profile of the spot can be seen in panels a) and b) of Figure 7.

As p re-approaches the critical value p1, the localisation of the spot becomes weaker and its oscillatory tails

become more prominent. Eventually the localisation becomes so weak that the oscillating tails reach the

outer boundary, and the bifurcation curve of the localised radial spot connects to a domain-covering target

pattern; the bifurcation curve for this domain-covering pattern is omitted from Figure 7.

The super-critical localised gap solution remains unstable with respect to radial perturbations for all p > pc.

The solution emerges as a monotonic negative perturbation from the uniform vegetated state at p = pc, as

seen in Figure 7 c), and increases in amplitude as p increases. The branch also undergoes a fold bifurcation,

although the solution remains unstable to radial perturbations. For the upper part of the solution branch,

the localised gap gains a positive peak, as seen in Figure 7 d). We note that this peak remains much smaller

than the depression at r = 0, however.
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Figure 7: Bifurcation diagram for localised radial solutions to (2.2), when ρ = 1.5; solid lines indicate stable solutions,

and dashed lines unstable solutions. Localised gap solutions bifurcate sub-critically (purple) from the bare state (light

blue), as well as super-critically (yellow) from the uniform vegetated state (orange). Localised spot A solutions

bifurcate sub-critically (dark blue) from the uniform vegetated state (orange). Panels a) - e) plot the radial profiles

for the vegetation density n(r) (red) at the designated points on the bifurcation diagram.

The sub-critical localised gap solution bifurcates from the bare state at p = pc and remains unstable with

respect to radial perturbations. An example of this solution’s radial profile is plotted in Figure 7 e). As

mentioned previously, the sub-critical localised gap is a negative perturbation from the bare state, and so will

always be unphysical in the context of our vegetation model. We also note that, for this choice of ρ as well

as the remaining cases (ii)-(iv), the super-critical localised gap is a sufficiently large perturbation from the

uniform vegetated state that it is also unphysical. As the precipitation increases, this perturbation appears

to increase in amplitude faster than the uniform vegetated state, and so we expect the entire branch to be

unphysical. Although the localised gap solutions exist in the mathematical model, they are both unphysical

for each of our choices of ρ; hence, for the remaining cases, we will focus on the behaviour the localised spot

A solution.

Case (ii) The bifurcation diagram for ρ = 2 is plotted in Figure 8, with the same measures as in case (i).

We note that, in [13, Figure 15], this choice of ρ may exhibit one-dimensional localised patterns bifurcating

from the Turing point p = p1, but only for a very small parameter region of p. As predicted in our earlier

analysis, we observe sub- and super-critical localised gap solutions and a localised spot A solution; see Figure

8.

Similarly to case (i), the localised spot A branch is unstable as it bifurcates and then undergoes a fold

bifurcation where it gains stability with respect to radial perturbations. The first difference to note between

cases (i) and (ii) is the increased region of existence for the localised spot A solution. By increasing ρ from

(i) 1.5 to (ii) 2, the length of the spot A branch, in terms of the precipitation p, has grown from (i) 0.01

to (ii) 0.032. Hence, there is a much larger range of precipitation values for which stable localised spot A

solutions exist.

Close to the Turing point p = p1, the solution has spatially-oscillating tails with an associated wave number
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Figure 8: Bifurcation diagram for localised radial solutions to (2.2), when ρ = 2; solid lines indicate stable solutions,

and dashed lines unstable solutions. Localised gap solutions bifurcate sub-critically (purple) from the bare state (light

blue), as well as super-critically (yellow) from the uniform vegetated state (orange). Localised spot A solutions

bifurcate sub-critically (dark blue) from the uniform vegetated state (orange). Panels a) - c) plot the radial profiles

for the vegetation density n(r) (red) at the designated points on the bifurcation diagram.

k1; see Figure 8 a). However, as the solution branch moves further away from p = p1, the localisation

becomes sufficiently strong that the solution appears to be monotonic; see Figure 8 b). We emphasise that

oscillations with wavenumber k1 are still present in these solutions, but they have become sufficiently small

such that they are not observed qualitatively. This means that a localised spot, typically associated with

a Turing bifurcation, can take on an appearance similar to that of a localised spike, typically associated

with a homogeneous bifurcation. We note that, following the fold bifurcation, the spot branch returns to

p = p1, now with a larger amplitude. The localisation of the solution becomes weaker as the precipitation

approaches the critical value p = p1, and so spatially-oscillating tails with wave number k1 become more

prominent again; see Figure 8 c). As with case (i), the solution branch for the localised spot terminates when

the localisation becomes sufficiently weak that its oscillations reach the outer boundary; here, the solution

coincides with a radial target pattern whose bifurcation curve we omit from Figure 8.

Case (iii) The bifurcation diagram for ρ = 2.5 is plotted in Figure 9, where the L2-norm of the vegetation

density n(r) is plotted against the shifted precipitation p − pc. We recall that this is the parameter choice

in [13] such that localised one-dimensional solutions exist and engage in homoclinic snaking; see [13, Figure

12]. Again, we observe sub- and super-critical localised gap solutions and a localised spot A solution; see

Figure 9.

As with the previous cases, the localised spot A branch is unstable as it bifurcates and then undergoes a fold

bifurcation where it gains stability with respect to radial perturbations. Again, compared to the previous

cases, we see that there is a larger range of precipitation values for which stable localised spot A solutions

exist. A notable change for ρ = 2.5 is that the localised spot A solution now exists and is stable for some

part of the region p < pc, where one might expect localised peaks to bifurcate from the homogeneous point

p = pc as opposed to the Turing point p = p1. As discussed previously, the localisation of the solution is

sufficiently strong in this region, such that the spot A may appear to be a monotonic spike even though

it has an implicit wave number k1. This highlights a potential issue with analysing localised structures

experimentally, as their qualitative behaviour may belie the intrinsic properties of their bifurcation.

The behaviour of the localised spot A solution, illustrated in Figure 9 a) & b), is identical to case (ii) for

most p sufficiently far from the Turing point p1. However, for ρ = 2.5 we note that the upper branch for the
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Figure 9: Bifurcation diagram for localised radial solutions to (2.2), when ρ = 2.5; solid lines indicate stable solutions,

and dashed lines unstable solutions. Localised gap solutions bifurcate sub-critically (purple) from the bare state (light

blue), as well as super-critically (yellow) from the uniform vegetated state (orange). Localised spot A solutions

bifurcate sub-critically (dark blue) from the uniform vegetated state (orange). Panels a) - c) plot the radial profiles

for the vegetation density n(r) (red) at the designated points on the bifurcation diagram.

localised spot A destabilises close to p = p1 in the bifurcation diagram; see Figure 9. At this point, the core

value decreases such that the maximum value of n(r) is no longer at r = 0; see Figure 9 c). This type of

behaviour has been seen in [37, Figure 15], in which the radial solution grows outwards and leaves a plateau

in the core region. It is unclear whether the same phenomenon would occur in this problem, however, and

we leave this question for future study.

Case (iv) Finally, we plot the bifurcation diagram for ρ = 2.7 in Figure 10. We note that this choice of ρ

exceeds those used in [13], but we would expect localised one-dimensional solutions to exist and snake within

the entire region between the homogeneous point pc and the Turing point p1. As with the previous cases,

we observe sub- and super-critical localised gap solutions and a localised spot A solution; see Figure 10.

We note that the existence region for stable localised spot A solutions is smaller than in case (iii). The stable

part of the spot A branch is now almost entirely contained in the region p < pc, and so the stable localised

spot only appears in the form of a localised monotonic spike; see Figure 10 b).

The behaviour of the localised spot A solution, illustrated in Figure 10 a), b) & c), is identical to case

(iii) for most p sufficiently far from the Turing point p1. However, for ρ = 2.7 we note that instability

point seen in case (iii) has moved further from the Turing point; see Figure 10. At this instability, the core

value decreases in a similar way to Figure 9 c), except with damped spatially-oscillating tails such that they

appear monotonic; see Figure 10 c). Following this unstable branch, the solution decreases in amplitude as

it approaches the Turing point and spatially-oscillating tails become more prominent again; see Figure 10

d). This solution appears similar to a localised ring, suggesting that the spot A branch may connect to other

localised radial patterns near the Turing instability, but we leave this question for future study.

5 Conclusion

In this paper, we have investigated the existence of stationary localised radial patterns in the von Hardenberg

model for dryland vegetation [55]. We began by applying a weakly nonlinear reduction, introduced by [13],

to the stationary axisymmetric von Hardenberg model on flat soil (2.2), resulting in the stationary radial
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Figure 10: Bifurcation diagram for localised radial solutions to (2.2), when ρ = 2.7; solid lines indicate stable solutions,

and dashed lines unstable solutions. Localised gap solutions bifurcate sub-critically (purple) from the bare state (light

blue), as well as super-critically (yellow) from the uniform vegetated state (orange). Localised spot A solutions bifurcate

sub-critically (dark blue) from the uniform vegetated state (orange). Panels a) - d) plot the radial profiles for the

vegetation density n(r) (red) at the designated points on the bifurcation diagram.

reaction-diffusion system (2.6). By comparing this system to prototypical pattern-forming equations seen in

[32, 37], we were able to analyse the existence of localised radial patterns close to a homogeneous instability

and a Turing instability, respectively.

In a sub- (super-) critical region close to the homogeneous instability, we presented evidence that localised

gap solutions to (2.6) bifurcate from the uniform bare state B (vegetated state V). We also note that we

expect these gap solutions to be unphysical, at least for some range of parameter values, due to the vegetation

density becoming negative. The existence proof for these solutions is almost identical to the work presented

in [37]; however, due to a difference in the nonlinearity, further analysis is required to track exponentially

decaying solutions in the far-field. This analysis would require tracking solutions through the geometric

blow-up charts presented in [37] for our nonlinear solutions, which is beyond the scope of this paper, and so

the proof is left incomplete. Also, in a sub-critical region close to the Turing instability, we proved that three

classes of localised radial patterns exist and solve (2.6). These patterns are small perturbations from the

uniform vegetated state V , and are equivalent to the patterns found in the quadratic-cubic Swift-Hohenberg

equation [32, 35]; see Figure 6.

Following this, we used our analytical results as a guide to numerically find localised radial patterns in the

full von Hardenberg model (2.2). For simplicity, we restricted our investigation to the existence and radial

stability of localised spot A and gap solutions, which have been predicted by our weakly nonlinear analysis.

We used numerical path following routines to continue our solutions to larger amplitudes, and investigated

the effect of changing the parameter ρ, related to shading effects in (2.2), on the bifurcation structure of the

system.

Through this work, we have found that no physically-relevant localised radial patterns bifurcate from the

homogeneous instability, at least for a range of appropriate parameter values. Therefore, in this parameter

region, any observed localised vegetation patches are predicted to be the result of the uniform vegetated

state undergoing a Turing instability. As the precipitation decreases, the oscillatory tails of a localised spot

become damped such that they may appear monotonic; in this way, a localised spot can have the appearance

of a localised spike far from the Turing instability.

26



Localised Spots We now comment on how our results relate to previous literature regarding localised

spots in vegetation models. We first note that the majority of studies of localised spots use models where

the uniform vegetated state bifurcates subcritically, and are focused on multi-state solutions, i.e. where there

is more than one spot [21, 40, 59]. However, despite these differences, we find that our results remain in

qualitative agreement with the wider literature. Localised spots have been observed in the field (see [40, Fig.

3 & 7], [31, Fig. 1]) and in many cases appear to be have monotonic tails [21, 31, 40, 59]. However, we note

that these solutions also tend to exhibit bound states [31, 40], which suggests that they are localised patterns

emerging from a Turing bifurcation [4, 49]. This is in harmony with our results, as we only find localised spots

bifurcating from the Turing bifurcation and observe that a localised spot can appear monotonic sufficiently

far from its associated Turing point; see Figure 8 b).

We also find that localised spots can exist for every choice of shading parameter ρ in (4.3) as well as for

very low precipitation values, where uniform vegetated states are no longer viable, which is in agreement

with results for the Gilad et al. model in [40]. This is in contrast to localised one-dimensional patterns [13],

otherwise known as stripes, which do not emerge for weak shading effects (ρ < 2) and do not persist for low

precipitation values (p < pc). Furthermore, whereas stripes undergo homoclinic snaking, where additional

peaks are added to the solution as p oscillates [13], radial spots do not appear to undergo any snaking

behaviour and instead terminate at a periodic-pattern branch, as seen in [59, Fig. 7] and Figures 7-10.

Another phenomenon observed in the literature is the radial destabilisation of localised spots, resulting in a

transition to ring-like structures seen in [40]. For ρ = 2.5, 2.7, we observe a radial instability for the localised

spot, as seen in Figures 9 & 10, such that the solution transitions towards a more ring-like structure as the

precipitation increases. This is consistent with the behaviour described in [40, Fig. 10], but we leave further

study for a follow-up investigation.

Fairy Circles Regarding fairy circles, we were unable to find physically-relevant examples of this phe-

nomenon in the von Hardenberg model. However, there may be a number of reasons for this. It may be

that the localised depressed spikes bifurcating from the uniform state, pictured as the yellow lines in Figures

7-10, can remain strictly positive for a certain choice of parameter values. It could also be that localised

spot B solutions, bifurcating from the Turing instability, are responsible for fairy circles. If the spot B

solution extends sufficiently far from the Turing instability, much like the spot A solution does, it may begin

to resemble a fairy circle more closely. In fact, an analysis of satellite imagery of fairy circles in Namibia

and Australia has suggested that such structures exhibit an implicit wavenumber, see [20, Fig. 3], which

supports our hypothesis that fairy circles are related to the localised spot B solution.

Finally, it may also be possible that the von Hardenberg model is insufficient to find fairy circles, and so a

different model may be required. There have been various models used to better study fairy circles; these

include the Gilad et al. model [22] which, under certain assumptions, can be reduced to a reaction-diffusion

system similar to the model studied in this paper [20, 59]. There exist similar reaction-diffusion models for

studying fairy circles, as seen in [60], as well as more complex equations such as the non-local models seen

in [4, 18, 49]. Some of these models may prove difficult to study analytically, especially those with non-local

terms, but any progress could be a major step in developing our understanding of the emergence of fairy

circles.

Ecological Implications We will briefly discuss some of the ecological implications of this work. We

observe that localised spots emerge from the uniform vegetated state V at a Turing point p = p1; whereas

domain-filling patterns mostly exist in the super-critical region p > p1, apart from a possible hysteresis

region, localised radial patterns exist in the sub-critical region p < p1. Hence, we expect localised patterns

to emerge when the precipitation levels are not sufficient to sustain the domain-covering patterns seen in

[24], for example. Furthermore, we expect that localised radial patterns can be found for a much wider range

of environments than localised stripes, which are associated with the one-dimensional patterns found in [13].
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Localised stripes are not found for sufficiently weak shading effects (i.e. for ρ < 2), suggesting that some

species of vegetation may only be able to maintain localised spots and not localised stripes.

For vegetation with weaker shading effects, for example cases (i) and (ii) in (4.3), localised spots appear as

a local concentration of vegetation surrounded by a sparser vegetated state. An example of this can be seen

in French Guiana, where isolated patches of woody vegetation have been found surrounded by grassland;

see [31, Fig. 1]. For vegetation with stronger shading effects, for example cases (iii) and (iv) in (4.3), we

instead find that localised spots persist as the precipitation decreases until they appear as isolated patches

of vegetation surrounded by bare soil; examples of this have been found in the Negev region of Israel, such as

in [40, Fig. 3 & 7]. Hence, changes to the bifurcation structure caused by the value of the shading parameter

ρ can result in the formation of qualitatively different localised spot solutions in the field.

The saddle node of spot A solutions, as seen in Figures 7-10, defines a tipping point in climate dynamics;

when the precipitation decreases beyond this point, solutions can undergo a transition to the stable uniform

state. This transition is hysteretic because the uniform state remains stable as the precipitation returns to

its original value. For plant species with sufficiently strong shading effects the spot A saddle node point

extends into a region of low precipitation such that the uniform vegetated state is no longer viable; then,

this tipping point represents an ecological collapse to the bare state B. This transition is sometimes referred

to as a ‘catastrophic regime shift’ [42], and provides an example of desertification induced by a change in

environment.

Further Study A possible extension of this work would be to use the singular perturbation methods

seen in [10, 27] to attempt to prove the existence of stationary localised radial patterns in the full von

Hardenberg model (2.2). There is also an interesting question regarding the reintroduction of a sloping term

into the original model. Instead of setting c = 0 in (2.1), what if we set c = ĉδ
1

2 such that there is some

small symmetry-breaking that favours stripes over spots? Are we still able to find localised radial solutions

for sufficiently small ĉ in the reduced model (2.6) and, if so, can we say anything about their stability?

There is also the question of whether we can study the existence of more complicated localised patterns,

such as solutions with dihedral symmetry [25] or labyrinthine patterns [12], in the von Hardenberg model.

These are just a couple possibilities for future work; there has also been recent progress on centre manifold

reduction techniques for nonlocal equations [17], which we may be able to adapt for radial solutions to

nonlocal vegetation models seen in [40, 50], for example.
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Appendix

A Weakly Nonlinear Analysis

For each case, the radial problem can be written as a generic 2-dimensional problem,

L

(
u

v

)
+ N (u, v) = 0, (A.1)

where L is a linear differential operator and N contains all the nonlinear terms of the problem such that

N (0, 0) = 0 and δN (0, 0) = 0, where δN is the Jacobian of N . Using the work of Scheel [46], we obtained

radial normal forms (3.16), (3.25) for the far-field behaviour in cases 1,2 and 3. We now wish to perform
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weakly nonlinear analysis, as seen in [8], in order to determine certain coefficients for each of the normal

forms. In particular, for each case we will derive a nonlinear non-autonomous Ginzburg-Landau equation

that determines the behaviour of small-amplitude solutions for large values of r.

A.1 Cases 1 and 2

For cases 1 and 2, (A.1) has the following form,

L =

(
∂rr +

1

r
∂r

)
12 −C− ε2Di, N (u, v) =

(
(bv − u)u

(bv − u)u

)
,

where,

C =

(
0 0

−a 1

)
, D1 =

(
1 0

1 0

)
, D2 =

(
1

1−ab
− b

1−ab
1

1−ab
− b

1−ab

)
,

respectively. From the normal form for this bifurcation, we expect to find a quadratic Ginzburg-Landau

equation that defines the behaviour of solutions in the far-field, after some rescaling. Hence, we define

R = εr and

(
u(r)

v(r)

)
= ε2

(
u1(R)

v1(R)

)
+ ε4

(
u2(R)

v2(R)

)
+ . . .

Then, we can write L = −C+ ε2L1, N (u, v) = ε4N1(u1, v1) + O(ε6), where L1 =
(
∂RR + 1

R
∂R
)
12 −Di,

and so (A.1) can be expressed as

O(ε2) : C

(
u1

v1

)
= 0,

O(ε4) : C

(
u2

v2

)
=

[
L1

(
u1

v1

)
+ N1(u1, v1)

]
.

The first equation implies that (u1, v1)
⊺ must take the form of an eigenvector of C with eigenvalue 0; hence,

we define (u1, v1)
⊺ := A(R)Ũ0, where Ũ0 is defined in (3.10). Then, we choose (u2, v2)

⊺ = B(R)Ũ0, such

that the second equation becomes

L1Ũ0A(R) +N(A)

(
1

1

)
= 0,

for the function N(A) = − (1− ab)A2(R). In order to solve this equation, we define the projection P,

where

P =

(
1

1+a2

a
1+a2

a
1+a2

a2

1+a2

)
.

Then, for both cases 1 and 2, pre-multiplying by P results in the following equation for A(R),

(
∂RR +

1

R
∂R

)
A =

(
1 + a

1 + a2

)[
A+ (1− ab)A2

]
. (A.2)

Hence, we have found that the coefficients c0 and c2 in (3.16) are defined such that c0 =
(

1+a
1+a2

)
and

c2 = (1− ab).
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A.2 Case 3

For case 3, we write the explicit form of (A.1) as

L =

(
∂rr +

1
r
∂r + 1− ε2 ε2 − 1

ωε2 ∂rr +
1
r
∂r + 1− ωε2

)
, N (u, v) =

(
(u− v) u

−ω (u− v)u

)
.

From the normal form for this bifurcation, we expect to find a cubic Ginzburg-Landau equation that defines

the far-field behaviour, and so we define R = εr and

(
u(r)

v(r)

)
= ε

(
u1(r, R)

v1(r, R)

)
+ ε2

(
u2(r, R)

v2(r, R)

)
+ ε3

(
u3(r, R)

v3(r, R)

)
+ . . .

Then, we can write L = L0 + εL1 + ε2L2, N (u, v) = ε2N1(u1, v1) + ε3N2(u1, v1, u2, v2) + O(ε4), and so

(A.1) can be expressed as

O(ε) : L0

(
u1

v1

)
= 0, (A.3)

O(ε2) : L0

(
u2

v2

)
= −

[
L1

(
u1

v1

)
+ N1(u1, v1)

]
, (A.4)

O(ε3) : L0

(
u3

v3

)
= −

[
L1

(
u2

v2

)
+ L2

(
u1

v1

)
+ N2(u1, v1, u1, v2)

]
, (A.5)

where,

L0 =

(
∂rr + 1 −1

0 ∂rr + 1

)
,

L1 =

(
2
(
∂R + 1

2R

)
∂r 0

0 2
(
∂R + 1

2R

)
∂r

)
, N1 =

(
(u1 − v1)u1

−ω(u1 − v1)u1

)
,

L2 =

(
∂RR + 1

R
∂R − 1 1

ω ∂RR + 1
R
∂R − ω

)
, N2 =

(
[(u2 − v2)u1 + (u1 − v1)u2]

−ω [(u2 − v2)u1 + (u1 − v1)u2]

)
.

Solving (A.3), we take

u1(r, R) = A1(R)eir +A1(R)e−ir, v1(r, R) = 0,

where overbars denote complex conjugation. Then, (A.4) becomes

(
(∂rr + 1)u2 − v2

(∂rr + 1) v2

)
=

(
−2
(
∂R + 1

2R

)
∂ru1 − u2

1

ωu2
1

)
.

We take the following ansatz,

v2(r, R) = Ov,2(R) +Av,2(R)eir +Bv,2(R)e2ir +Av,2(R)e−ir +Bv,2(R)e−2ir,

such that

Ov,2 − 3Bv,2e
2ir − 3Bv,2e

−2ir = ω
[
A2

1e
2ir + 2|A1|2 +A

2

1e
−2ir

]
.

Then, equating for each eair, for a = −2, 0, 2, we determine that

v2(r, R) = 2ω|A1|2 +Av,2(R)eir − ω

3
A2

1e
2ir +Av,2(R)e−ir − ω

3
A

2

1e
−2ir.
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Similarly for u2, we define

u2(r, R) = Ou,2(R) +Au,2(R)eir +Bu,2(R)e2ir +Au,2(R)e−ir +Bu,2(R)e−2ir,

and so

Ou,2 − 3Bu,2e
2ir − 3Bu,2e

−2ir = −2i

(
∂R +

1

2R

)[
A1(R)eir −A1(R)e−ir

]
−
[
A2

1e
2ir + 2|A1|2 +A

2

1e
−2ir

]

+ 2ω|A1|2 +Av,2(R)eir − ω

3
A2

1e
2ir +Av,2(R)e−ir − ω

3
A

2

1e
−2ir.

Hence, we find that Av,2(R) = 2i
(
∂R + 1

2R

)
A1(R) and

u2(r, R) = 2(ω − 1)|A1|2 +A2(R)eir +

(
ω + 3

9

)
A2

1e
2ir +A2(R)e−ir +

(
ω + 3

9

)
A

2

1e
−2ir,

which we now need to substitute into (A.5),

(
(∂rr + 1)u3 − v3

(∂rr + 1) v3

)
= −

[
2

(
∂R +

1

2R

)
∂r

(
u2

v2

)
+

((
∂RR + 1

R
∂R − 1

)
u1

ωu1

)
+

(
(2u2 − v2)u1

−ω(2u2 − v2)u1

)]
.

We take the second equation, introduce a similar ansatz to before, and compute the eir terms; this results

in the following equation,

(
∂R +

1

2R

)2

A1 =
ω

4
A1 −

(
ω (23ω − 30)

36

)
|A1|2A1. (A.6)

Hence, we find that the coefficients c0 and c3 in (3.25) are defined such that c0 = ω
4 and c3 = −ω(23ω−30)

36 .
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