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ON A FACTORIZATION FORMULA FOR THE PARTITION

FUNCTION OF DIRECTED POLYMERS.

TOBIAS HURTH, KONSTANTIN KHANIN, BEATRIZ NAVARRO LAMEDA, FEDOR
NAZAROV

Abstract. We prove a factorization formula for the point-to-point partition
function associated with a model of directed polymers on the space-time lattice
Zd+1, subject to an i.i.d. random potential and in the regime of weak disorder.
In particular, we show that the error term in the factorization formula is
uniformly small for starting and end points x, y in the sub-ballistic regime
‖x − y‖ ≤ tσ , where σ < 1 can be arbitrarily close to 1. This extends a
result obtained in [Sin95]. We also derive asymptotics for spatial and temporal
correlations of the field of limiting partition functions.

AMS classifiers: 60H15, 35R60, 37L40, 60K35, 60F05

1. Introduction

The theory of directed polymers has been actively studied in the mathematical
and physical literature in the last 30 years. From the point of view of probability
theory and statistical mechanics, directed polymers are random walks in a random
potential. The probability distribution for a random path γ of length t is given
by the Gibbs distribution P t

ω(γ) =
1
Zt

ω
exp [−βHt

ω(γ)], where β is the inverse tem-

perature, Ht
ω(γ) is the total energy of the interaction between the path γ and a

fixed realization of the external random potential, and the normalizing factor Zt
ω

is the partition function. The random potential is a functional defined on some
probability space, and a point ω in this probability space completely characterizes
a fixed realization of the potential. In this paper we are interested only in the case
of non-stationary time-dependent random potentials. The simplest setting corre-
sponds to the discrete space-time lattice Zd+1, where d is the spatial dimension. In
this case the random potential normally is assumed to be given by the i.i.d. field
ω = {ξ(x, i) : x ∈ Zd, i ∈ Z}, and Ht

ω = −
∑t

i=0 ξ(γi, i). As usual one is interested
in the asymptotic behavior of directed polymers as t → ∞.

The first rigorous results for directed polymers were obtained by Imbrie and
Spencer ([IS88]), Bolthausen ([Bol89]), and Sinai([Sin95]). It was proved that in
the case of weak disorder, namely when d ≥ 3 and |β| is small, the polymer almost
surely has diffusive behavior with a non-random covariance matrix. It was later
proved by P. Carmona and Hu ([CH02]), and Comets, Shiga, and Yoshida ([CSY03])
that in the cases d = 1, 2, and d ≥ 3 with |β| large, the asymptotic behavior is very
different. In this regime, called strong disorder, the directed polymers are not
spreading as t → ∞ but remain concentrated in certain random places.
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Sinai’s approach in [Sin95] is based on the study of asymptotic properties of
partition functions Zt

ω as t → ∞. It turns out that if the polymer starts at a
point x at time s, then in the limit t → ∞ the properly normalized partition
function converges almost surely to a random variable Z∞

x,s. Here, in order to
simplify notation, we are not indicating the dependence on ω. In a similar way
one can consider backward in time partition functions, and prove that after the
same normalization they also converge to limiting partition functions Zy,t

−∞, where
(y, t) is the endpoint of the polymer. The proof of the diffusive behavior follows
from a factorization formula proved by Sinai. Namely, a bridging partition function
Zy,t
x,s corresponding to the random-walk bridge between points (x, s), (y, t), t > s,

satisfies the following asymptotic relation:

Zy,t
x,s = qy−x

t−s (Z
∞
x,sZ

y,t
−∞ + δy,tx,s), (1.1)

where qy−x
t−s is the transition probability of the simple symmetric random walk, and

a small error term δy,tx,s tends to zero as t− s → ∞, provided y − x belongs to the

diffusive region: ‖y−x‖ = O(
√
t− s). Later, Sinai’s formula was extended by Kifer

([Kif97]) to the continuous setting.

The interest in the asymptotic behavior of directed polymers is largely motivated
by the connection between directed polymers and the theory of the stochastic heat
equation

∂tZ(x, t) =
1

2
∆Z(x, t) + ξω(x, t)Z(x, t)

and the random Hamilton-Jacobi equation

∂tΦ(x, t) +
1

2
|∇Φ(x, t)|2 =

1

2
∆Φ(x, t) − ξω(x, t),

which is related to the stochastic heat equation through the Hopf-Cole transforma-
tion Φ(x, t) = − lnZ(x, t). The connection between directed polymers and the sto-
chastic heat equation is a direct consequence of the Feynman-Kac formula ([BK07]).

The main conjecture about the asymptotic behavior of the solutions to the ran-
dom Hamilton-Jacobi equation can be formulated in the following way. For a fixed
value of the average velocity b = 〈∇Φ(x, ·)〉, which is preserved by the equation,
with probability one there exists a unique (up to an additive constant) global so-
lution. This means that solutions starting from two different initial conditions
Φ1(x, 0) = b · x + Ψ1(x, 0), Φ2(x, 0) = b · x + Ψ2(x, 0) approach each other up to
an additive constant as t → ∞, provided Ψ1(x, 0) and Ψ2(x, 0) are functions of
sublinear growth in ‖x‖ ([BK07]).

In terms of the stochastic heat equation, a similar uniqueness statement up to
a multiplicative constant conjecturally holds for two initial conditions of the form
Z1(x, 0) = exp [−b · x−Ψ1(x, 0)] and Z2(x, 0) = exp [−b · x−Ψ2(x, 0)].

In order to be able to prove the above conjecture in the weak-disorder case
one has to extend the factorization formula (1.1) to a much larger scale. This is
the purpose of the present article: We prove that the factorization formula holds
for ‖x − y‖ < (t − s)σ, where σ can be taken arbitrarily close to 1. Compared
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to [Sin95], such an extension of the factorization formula requires very different
analytical methods.

In this paper we restrict ourselves to the simplest discrete case, i.e. polymers live
on the discrete space-time lattice Zd+1 and the potential is induced by an i.i.d. field
of random variables. This allows us to make the exposition more transparent. How-
ever, in order to prove the uniqueness conjecture for the stochastic heat equation
in the weak-disorder regime, one needs to consider the parabolic Anderson model,
which is discrete in space and continuous in time. The proof of the factorization
formula in this semi-discrete setting, which is based on similar ideas but technically
more involved, will be published elsewhere. The proof of the uniqueness conjecture
itself will be published separately as well.

We conclude the introduction with several remarks:

1. The factorization formula can be extended to the full sub-ballistic regime
‖y − x‖ = o(t − s). We are considering a smaller region ‖x − y‖ < (t − s)σ which
allows for effective estimates of the smallness of the error term δy,tx,s.

2. We believe that a similar factorization formula can be proved in the fully
continuous case. For this, one would need to assume that the correlations of the
disorder field {ξ(x, t) : x ∈ Rd, t ∈ R} are decaying sufficiently fast.

3. It is interesting to study the probability distribution for the limiting partition
function Z := Z∞

x,s and for Φ = − lnZ. Although these probability distributions are
not universal, we believe that the tail distributions have many universal features.
We conjecture that in the case when the probability distribution of ξ has compact
support, the left tail of the density for Φ behaves like exp [−Φ1+d/2] and the right tail
decays like exp [−Φ1+d]. A related conjecture concerns the moments m(l) := 〈Z l〉
of Z, which we conjecture to grow as exp [l1+2/d] in the limit l → ∞. If the disorder
ξ is Gaussian, then for any β > 0 only a finite number of moments for Z is finite.
Thus, one can expect exponential decay of the left tail for Φ.

4. The uniqueness of global solutions to the stochastic heat equation and the
random Hamilton-Jacobi equation was also proved in dimension d = 1 ([BCK14,
BL16, BL17]). The mechanism leading to uniqueness in this case is completely
different from our setting. We should also mention that the case d = 1 corresponds
to the famous KPZ universality class.

The rest of this paper is organized as follows: In Section 2 we derive an ex-
pansion for the partition functions and convergence to limiting partition functions.
This allows us to state our main result, the factorization formula for Zy,t

x,s. We
also derive asymptotics for both spatial and temporal correlations of the field of
limiting partition functions. In Section 3, we collect several estimates on transition
probabilities for the simple symmetric random walk on Zd. Sections 4 and 5 are
devoted to the proof of the factorization formula. Finally, in the appendix we prove
the estimates on transition probabilities from Section 3.
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Notation: Throughout this article the Euclidean norm and inner product in
Rd are denoted by ‖ · ‖ and · , respectively. The 1-norm in Rd is denoted by
‖ · ‖1. We simply write a ≡ b to indicate that a ≡ b (mod 2). For functions A
and B, potentially of several variables, we write A . B or A is dominated by B to
denote that A ≤ cB for some constant c > 0. The constant c may depend on the
dimension d, the inverse temperature β and the law of the disorder (e.g., through
λ defined in (2.5)), or on scaling parameters such as σ from Theorem 2.3 or ξ from
Section 4.1. However, c is not allowed to depend on any time or space variables
such as t and z. The same remark applies to every constant introduced in this
paper. Finally, in order to simplify notation, we will write

∑
z
to indicate that we

are summing over all z = (z1, . . . , zr) ∈ (Zd)r, where the value of r will be clear
from the context.
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2. Setting and Main Result

Let γ = (γn)n∈Z be a discrete-time simple symmetric random walk on Zd, d ≥ 3,
starting at point x ∈ Zd at time s ∈ Z, with corresponding probability measurePx,s

and corresponding expectation Ex,s. As d ≥ 3, γ is transient. For integers t > s
and y ∈ Zd, we denote the probability measure obtained from Px,s by conditioning
on the event {γt = y} by Py,t

x,s. The corresponding expectation is denoted by Ey,t
x,s.

We also set

qzt := P0,0(γt = z).

Let (ξ(x, t))x∈Zd,t∈Z be a collection of i.i.d. random variables with corresponding
probability measure Q and corresponding expectation 〈 · 〉. These constitute the
random potential in our setting. We assume that

c(β) := 〈eβξ(0,0)〉 < ∞
for β > 0 sufficiently small. To a sample path of γ over a time interval [s, t], we
assign the random action

At
s = At

s(γ) :=
t∑

j=s

ξ(γj , j).

For integers s < t, x, y ∈ Zd, and inverse temperature β > 0, we define the random
partition functions

Zy,t
x,s := c(β)−(t−s+1) qy−x

t−s Ey,t
x,se

βAt
s ,

Zt
x,s :=

∑

y∈Zd

Zy,t
x,s, and Zy,t

s :=
∑

x∈Zd

Zy,t
x,s.



FACTORIZATION FORMULA 5

Since c(β)−(t−s+1)〈eβAt
s〉 = 1 for every realization of γ, we have 〈Zt

x,s〉 = 〈Zy,t
s 〉 = 1.

Notice that the law of the stochastic process (Zs+τ
x,s )τ∈N0 with respect to Q does

not depend on x or s. Besides, (Zs+τ
x,s )τ∈N0 and (Zy,t

t−τ )τ∈N0 have the same law.

Remark 2.1. This is essentially the model considered by Sinai, where F (x, t)
in [Sin95] corresponds to βξ(x, t) in our setting. Furthermore, the partition function
Zy,n
x,k from [Sin95] becomes c(β)n−k+1Zy,n

x,k in our notation.

Given z ∈ Zd and s ∈ Z, define

h(z, s) :=
eβξ(z,s) − c(β)

c(β)
.

As shown in the proof of Theorem 2 in [Sin95], Zy,t
x,s admits the expansion

Zy,t
x,s = qy−x

t−s +

t−s+1∑

r=1

∑

s≤i1<...<ir≤t,

z1,...,zr∈Zd

qz1−x
i1−s q

z2−z1
i2−i1

. . . q
zr−zr−1

ir−ir−1
qy−zr
t−ir

r∏

j=1

h(zj , ij). (2.1)

Similarly, one obtains

Zy,t
s = 1 +

t−s+1∑

r=1

∑

s≤i1<...<ir≤t,

z1,...,zr∈Zd

qz2−z1
i2−i1

. . . qy−zr
t−ir

r∏

j=1

h(zj , ij) (2.2)

and

Zt
x,s = 1 +

t−s+1∑

r=1

∑

s≤i1<...<ir≤t,

z1,...,zr∈Zd

qz1−x
i1−s . . . q

zr−zr−1

ir−ir−1

r∏

j=1

h(zj , ij). (2.3)

2.1. Convergence to limiting partition functions.

As in [Sin95], define

αd :=
∞∑

t=1

∑

z∈Zd

(qzt )
2 . (2.4)

It is well known that qzt . t−
d
2 for all z ∈ Zd and t ∈ N (see for instance [LL10]).

Therefore, as d ≥ 3, there is a constant C > 0 such that

αd ≤ C
∞∑

t=1

1

t
d
2

∑

z∈Zd

qzt = C
∞∑

t=1

1

t
d
2

< ∞.

We also define

λ := c(β)−2c(2β)− 1. (2.5)

The following convergence statement for partition functions corresponds to The-
orem 1 in [Sin95].

Theorem 2.1. For β so small that αdλ < 1, the following holds: As t → ∞, Zt
x,s

converges in L2(Q) to a limiting partition function Z∞
x,s.
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Remark 2.2. Due to symmetry, we also have that

Zy,t
−∞ := lim

s→−∞
Zy,t
s

exists in the sense of L2(Q) for all y ∈ Zd and t ∈ Z.

Remark 2.3. As pointed out by Bolthausen ([Bol89]), (Zt
x,s)t≥s is a martingale

with respect to the filtration Ft := σ(ξ(y, u) : s ≤ u ≤ t, y ∈ Zd), so convergence
to the limiting partition functions also holds Q-almost surely by the martingale
convergence theorem.

Proof of Theorem 2.1: We follow the approach in [Sin95]. The right-hand side
of (2.3) has an orthogonality structure, which we shall exploit. Since h(z, s) and
h(z′, s′) are independent if z 6= z′ or if s 6= s′, and since 〈h(z, s)〉 = 0, we have with
Jensen’s inequality and Fubini’s theorem that 〈(Zt

x,s)
2〉 is bounded from above by

2 + 2

∞∑

r=1

∑

s≤i1<...<ir ,

z1,...,zr∈Zd

(
qz1−x
i1−s

)2
. . .
(
q
zr−zr−1

ir−ir−1

)2〈 r∏

j=1

h(zj , ij)
2

〉
. (2.6)

Since 〈h(z, s)2〉 = c(β)−2c(2β)− 1, we find

〈 r∏

j=1

h(zj, ij)
2

〉
=

r∏

j=1

(
c(β)−2c(2β)− 1

)
= λr. (2.7)

Since αdλ < 1, one has
∑∞

r=1(αdλ)
r < ∞, so the expression in (2.6) is finite. As a

result,

sup
t>s

〈(
Zt
x,s

)2〉
< ∞,

and L2-convergence follows with the martingale convergence theorem. �

The following theorem gives us a rate of convergence to the limiting partition
function Z∞

x,s, which is needed to prove the factorization formula in Theorem 2.3.

Theorem 2.2. For β so small that αdλ < 1 and for θ ∈ (0,min{ d
2−1,− ln(αdλ)}),

one has

lim
t→∞

(t− s)θ
〈(

Zt
x,s − Z∞

x,s

)2〉
= 0.

Proof. For an integer t ≥ s, let

Mt :=
〈(

Zt
x,s − 1

)2〉
=

t−s+1∑

r=1

λr
∑

s≤i1<...<ir≤t,

z1,...,zr∈Zd

(
qz1−x
i1−s

)2
. . .
(
q
zr−zr−1

ir−ir−1

)2
,

which is monotone increasing in t. Set

M := lim
t→∞

Mt ∈ (0,+∞).
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Then, for t > s,
〈(

Zt
x,s − Z∞

x,s

)2〉
= lim

T→∞

〈(
Zt
x,s − ZT

x,s

)2〉 ≤ 2(M −Mt) (2.8)

≤2
∑

1≤r≤ln(t−s)

λr
∑

s≤i1<...<ir ,ir>t,

z1,...,zr∈Zd

(
qz1−x
i1−s

)2
. . .
(
q
zr−zr−1

ir−ir−1

)2

+ 2
∑

r>ln(t−s)

λr
∑

s≤i1<...<ir ,

z1,...,zr∈Zd

(
qz1−x
i1−s

)2
. . .
(
q
zr−zr−1

ir−ir−1

)2
.

The expression in the third line of (2.8) is dominated by
∑

r>ln(t−s)

(αdλ)
r . (t− s)ln(αdλ),

and

lim
t→∞

(t− s)θ(t− s)ln(αdλ) = 0, θ ∈ (0,− ln(αdλ)).

The expression in the second line of (2.8) is dominated by
∑

1≤r≤ln(t−s)

λr
∑

t1,...,tr∈N,
t1+...+tr>t−s

∑

x1,...,xr∈Zd

(
qx1
t1

)2
. . .
(
qxr
tr

)2

≤
∑

1≤r≤ln(t−s)

λr
r∑

l=1

∑

t1,...,tr∈N,

tl≥
t−s

ln(t−s)

r∏

k=1

( ∑

xk∈Zd

(
qxk
tk

)2
)

.

∞∑

r=1

r(αdλ)
r

∑

j≥ t−s
ln(t−s)

1

j
d
2

.

∞∑

r=1

r(αdλ)
r

(
t− s

ln(t− s)

)1− d
2

,

and

lim
t→∞

(t− s)θ
(

t− s

ln(t− s)

)1− d
2

= 0, θ ∈ (0, d2 − 1).

�

2.2. Factorization formula.

The following factorization formula for the partition function Zy,t
x,s with fixed start-

ing and endpoint is the main result of this article.

Theorem 2.3. Let β be so small that αdλ < 1. For any σ ∈ (0, 1), no matter how
close to 1, there exists θ = θ(σ) > 0 such that for all x, y ∈ Zd and s < t with
‖x− y‖ < (t− s)σ, the partition function Zy,t

x,s has the representation

Zy,t
x,s = qy−x

t−s

(
Z∞
x,sZ

y,t
−∞ + δy,tx,s

)
, (2.9)

where the error term δy,tx,s defined by the formula above satisfies

lim
(t−s)→∞

(t− s)θ sup
x,y∈Zd:‖x−y‖<(t−s)σ

〈|δy,tx,s|〉 = 0. (2.10)
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Theorem 2.3 is proved in Section 4. Notice that the formula is similar to the
ones obtained by Sinai in [Sin95, Theorem 2] and Kifer in [Kif97, Theorem 6.1].
However, we show that the error term is small not only within the diffusive regime

‖x − y‖ < O(t − s)
1
2 , but also for ‖x − y‖ < (t − s)σ with σ arbitrarily close to

1. This extension beyond the diffusive regime is nontrivial because the error term
in (2.9) is multiplied by the random-walk transition probability qy−x

t−s , which is itself

extremely small for ‖x−y‖ ≥ (t−s)
1
2 . In a forthcoming publication, we rely heavily

on a continuous-time version of Theorem 2.3 to prove a uniqueness statement for
global solutions to the semi-discrete stochastic heat equation.

2.3. Correlations for the field of limiting partition functions.

As mentioned in Section 1, the distribution for the field of limiting partition func-
tions (Z∞

x,s)x∈Zd,s∈Z is an interesting object to study, with several important ques-
tions still open. Below, we state asymptotics for the spatial and temporal correla-
tions of this field.

Theorem 2.4. Let β be so small that αdλ < 1. Then the spatial and tempo-
ral correlations for the field of limiting partition functions (Z∞

x,s)x∈Zd,s∈Z have the
following asymptotics.

(1)
lim

‖y‖→∞,
‖y‖1≡0

‖y‖d−2
(
〈Z∞

0,0Z
∞
y,0〉 − 〈Z∞

0,0〉〈Z∞
y,0〉
)
∈ (0,∞);

(2)

lim
|s|→∞,
s≡0

|s| d2−1
(
〈Z∞

0,0Z
∞
0,s〉 − 〈Z∞

0,0〉〈Z∞
0,s〉
)
∈ (0,∞).

It is necessary to take the limit in part (1) along sequences (yn) such that ‖yn‖1 ≡
0 for all n, for Z∞

0,0 and Z∞
y,0 are independent if ‖y‖1 ≡ 1. A similar observation

applies to the limit in part (2). The proof of Theorem 2.4 relies on the following
estimates for simple symmetric random walk on Zd, d ≥ 3.

Lemma 2.1. The following statements hold:

(1)

lim
‖y‖→∞,
‖y‖1≡0

‖y‖d−2
∞∑

t=0

∑

x∈Zd

qxt q
y−x
t ∈ (0,∞);

(2)

lim
s→∞,
s≡0

s
d
2−1

∞∑

t=0

∑

x∈Zd

qxt q
x
s+t ∈ (0,∞).

Proof: For y ∈ Zd whose 1-norm is even,
∞∑

t=0

∑

x∈Zd

qxt q
y−x
t =

∞∑

t=0

qy2t = G(0, y),

where G denotes the Green’s function for simple symmetric random walk on Zd.
Theorem 4.3.1 in [LL10] implies that

lim
‖y‖→∞,
‖y‖1≡0

‖y‖d−2G(0, y) ∈ (0,∞),
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so (1) follows. To prove (2), first notice that for every even s ∈ N0,
∞∑

t=0

∑

x∈Zd

qxt q
x
s+t =

∞∑

t=0

q0s+2t =

∞∑

t=s/2

q02t.

It is well known (see, e.g., Chapter 1 of [Law10]) that

lim
t→∞

t
d
2 q02t =: c ∈ (0,∞).

Let ǫ > 0. Then there is T ∈ N such that

c− ǫ ≤ t
d
2 q02t ≤ c+ ǫ, ∀t ≥ T.

Thus, for even s ≥ 2T ,
∞∑

t=s/2

q02t ≤ (c+ ǫ)
∞∑

t=s/2

t−
d
2 ≤ (c+ ǫ)

2

d− 2

(s
2
− 1
)1−d

2

and
∞∑

t=s/2

q02t ≥ (c− ǫ)
2

d− 2

(s
2

)1− d
2

.

Hence,

lim sup
s→∞,
s≡0

s
d
2−1

∞∑

t=s/2

q02t ≤ (c+ ǫ)
2

d
2

d− 2
and lim inf

s→∞,
s≡0

s
d
2−1

∞∑

t=s/2

q02t ≥ (c− ǫ)
2

d
2

d− 2
.

Since ǫ was arbitrarily chosen, we obtain (2). �

Proof of Theorem 2.4: For y ∈ Zd such that ‖y‖1 ≡ 0 and t ∈ N, the expansion
in (2.3) along with the properties of h(z, s) yield

〈Zt
0,0Z

t
y,0〉 = 1+

t+1∑

r=1

λr
∑

0≤i1<...<ir≤t,

z1,...,zr∈Zd

qz1i1 q
z1−y
i1

(
qz2−z1
i2−i1

)2
. . .
(
q
zr−zr−1

ir−ir−1

)2
.

Along the lines of the proof of Theorem 2.2, one can easily show that, as t → ∞,
the expression on the right converges to

1 +

∞∑

r=1

λr
∑

0≤i1<...<ir ,

z1,...,zr∈Zd

qz1i1 q
z1−y
i1

(
qz2−z1
i2−i1

)2
. . .
(
q
zr−zr−1

ir−ir−1

)2
.

Therefore,

〈Z∞
0,0Z

∞
y,0〉 − 〈Z∞

0,0〉〈Z∞
y,0〉

=

∞∑

r=1

λr
∑

0≤i1<...<ir ,

z1,...,zr∈Zd

qz1i1 q
z1−y
i1

(
qz2−z1
i2−i1

)2
. . .
(
q
zr−zr−1

ir−ir−1

)2

=

∞∑

i=0

∑

x∈Zd

qxi q
x−y
i α−1

d

∞∑

r=1

(αdλ)
r,

and part (1) follows from Lemma 2.1. The proof of part (2) is similar and we omit
it. �
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3. Transition Probabilities for the Simple Symmetric

Random Walk

In this section we collect several estimates on transition probabilities for the discrete-
time simple symmetric random walk on Zd. Subsection A will be devoted to the
proofs of the results presented here.

Let (γn)n∈N0 be a discrete-time simple symmetric random walk on Zd starting
at the origin.

Lemma 3.1. There are constants c1, c2 > 0 such that the following holds: For
every σ ∈ (34 , 1) and σ̃ ∈ (σ, 1), there exists T ∈ N such that for every t ≥ T and

y ∈ Zd with qyt > 0 and ‖y‖ ≤ tσ,

qyt ≥ c1
(

d
2πt

) d
2 exp

(
− d

2t‖y‖2
)
exp

(
− c2t

4σ̃−3
)
. (3.1)

Lemma 3.2. There is c1 > 0 such that for every y ∈ Zd and for every linear
functional ϕ on Rd with |ϕ(x)| ≤ ‖x‖, x ∈ Rd, we have

qyt e
ϕ(y) ≤ c1t

− d
2

∑

z∈Zd

qzt e
ϕ(z), ∀t ∈ N.

In particular,

qyt . t−
d
2 , ∀t ∈ N, y ∈ Z

d.

Fix a linear functional ϕ on Rd such that |ϕ(x)| ≤ ‖x‖ for all x ∈ Rd. To simplify
notation, we set ϕj := ϕ(ej) for 1 ≤ j ≤ d, where {ej} is the standard basis in Rd.
Define, for all θ = (θ1, . . . , θd) ∈ Rd,

Φ(θ) := E
[
eiθ·γ1eϕ(γ1)

]
=

1

2d

d∑

j=1

(
eiθ

j

eϕj + e−iθj

e−ϕj

)
, (3.2)

where i is the imaginary unit. Notice that for all θ ∈ Rd,
∣∣Φ(θ)

∣∣ ≤ Φ(0) =
∑

z∈Zd

qz1e
ϕ(z), (3.3)

where 0 is the zero vector in Rd. Furthermore,

Φ(0)t =
∑

y∈Zd

qyt e
ϕ(y), ∀t ∈ N0. (3.4)

Notice also that Φ is 2π-periodic in every argument, so it will be convenient to
work with the cube C := (−π

2 ,
3π
2 ]d. It is not hard to see that the inequality (3.3)

is strict for all θ ∈ C except for θ0 := (0, . . . , 0) and θ1 := (π, . . . , π).

Lemma 3.3. There are ρ1, ρ2 > 0 such that the following holds: For any t ∈ N

and for any z ∈ Zd such that ‖z‖ ≤ ρ1t and qzt > 0, there is a linear functional ϕ

on Rd of norm ‖ϕ‖ ≤ ρ2
‖z‖
t which satisfies

1

(2π)d

∫

C

∣∣Φ(θ)
∣∣t dθ ≤

(
1 +O(t−

2
5 )
)
qzt e

ϕ(z)

and

qzt e
ϕ(z) & t−

d
2

∑

y∈Zd

qyt e
ϕ(y).
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Lemma 3.4. There are constants ρ, c > 0 such that for any t, t′ ∈ N and for any
z, z′ ∈ Zd with ‖z‖ ≤ ρt and qzt > 0, we have

qz
′

t′

qzt
≤
(
1 +O(t−

2
5 )
)
exp

(
c

(‖z‖
t

(‖z − z′‖+ |t′ − t|) + ln(t)
|t− t′|

t

))
.

4. Proof of Theorem 2.3

The main idea behind the factorization formula, which goes back at least to [Sin95],
is that there is strong averaging for times neither too close to s nor too close to t.

For fixed i1, . . . , ir and z1, . . . , zr, the random walk is pinned to the points
z1, . . . , zr at the corresponding times i1, . . . , ir. The proof of Theorem 2.1 sug-
gests that the contribution to Zy,t

x,s from r on the order of (t − s) is negligible. If
r is not on the order of (t− s), at least one of the gaps ij − ij−1 must be in some
sense large (see Subsection 4.1). In Subsection 4.2.2, we show that the contribution
to Zy,t

x,s coming from two or more large gaps is negligible as well. Thus, the main
contribution comes from having exactly one large gap ij − ij−1, which is then on

the order of (t − s). In order for q
zj−zj−1

ij−ij−1
to be positive, zj−1 must be close to x

and zj must be close to y. The transition probability q
zj−zj−1

ij−ij−1
is then close to qy−x

t−s .

Notice that to prove Theorem 2.3, it is enough to show that for αdλ < 1, for any
given σ ∈ (0, 1) there is θ > 0 such that

lim
t→∞

tθ sup
y∈Zd:‖y‖<tσ

〈|δy,t0,0|〉 = 0.

This is because for a fixed realization ω of the disorder, δy,tx,s(ω) can be written as

δy−x,t−s
0,0 (ω̂), where ω̂ is obtained by shifting ω in space and time. The distribution
of the disorder is invariant under such shifts.

For t ∈ N0 and r ∈ {1, . . . , t+ 1}, let
I(t, r) := {i = (i1, . . . , ir) ∈ N

r
0 : 0 ≤ i1 < · · · < ir ≤ t}.

For i ∈ I(t, r) and z = (z1, . . . , zr) ∈ (Zd)r, define

qyt (i, z) := qz1i1 q
z2−z1
i2−i1

. . . qy−zr
t−ir

.

With this notation, the expansion in (2.1) becomes

Zy,t
0,0 = qyt +

t+1∑

r=1

∑

i∈I(t,r),z

qyt (i, z)
r∏

j=1

h(zj , ij), (4.1)

where one should recall from Section 1 the notational shorthand
∑

z
for summation

over all z = (z1, . . . , zr) ∈ (Zd)r. The first step is to split the double sum into
terms according to the size of the largest gap between indices, as discussed in
Subsection 4.1.

4.1. Large and huge gaps

If there are σ ∈ (0, 1) and θ > 0 such that (2.10) (the convergence of the error
term in the factorization formula) holds, then (2.10) also holds for all σ̃ ∈ (0, σ)
and the same θ. There is then no loss of generality in assuming that σ > 3/4,
and one may even think of σ as being very close to 1. For a collection of indices
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0 =: i0 ≤ i1 < . . . < ir ≤ ir+1 := t, the gaps are the differences between consecutive
indices, i.e. i1 − i0, i2 − i1, . . . , ir+1 − ir. To quantify what it means to have many
gaps, we fix positive constants κ1, κ2 ∈ (12 (3σ − 1), σ) such that κ1 < κ2. Let
Tκ2 ∈ N be so large that 2(t− tκ2) > t for all t ≥ Tκ2 . Then we define

k(t) :=

{
(t− Tκ2)

κ1 − 1, (t− Tκ2)
κ1 − 1 ≥ 1,

0, (t− Tκ2)
κ1 − 1 < 1.

Note that k(t) grows with t like tκ1 . We say that a collection of indices 0 ≤ i1 <
. . . < ir ≤ t has many gaps if r > k(t).

To classify the size of a gap between indices, fix another constant ξ such that
0 < ξ < min

{
1− σ, κ2 − κ1}. One should think of ξ as being very close to 0. Note

that ξ+κ1 < 1 and that ξ < κ1, the latter because of ξ < 1−σ < 1/4 < 1
2 (

9
4 −1) <

κ1. Let t ∈ N such that k(t) ≥ 1, r such that 1 ≤ r ≤ k(t), and consider a sequence
of indices 0 = i0 ≤ i1 < . . . < ir ≤ ir+1 = t. We say that the gap between two
consecutive indices ij−1 and ij is

• large if ij − ij−1 ≥ tξ;
• huge if ij − ij−1 ≥ t− rtξ .

Observe that the size of the largest gap is necessarily greater than t/(r + 1) ≥
t1−κ1 ≥ tξ, so there is at least one large gap. A huge gap is necessarily large.
If there is only one large gap, then all other gaps are of size less than tξ, so this
large gap is even huge. Thus, if there is no huge gap, there are at least two large
ones. Since t must be greater than Tκ2 in order for k(t) ≥ 1 to hold, we have
2(t − rtξ) > 2(t − tκ1+ξ) > 2(t − tκ2) > t, so there can be at most one huge gap.
Note, however, that a huge gap is not necessarily the only large one.

Let us introduce some more notation. Fix r ∈ N and t ∈ N0. For any m ∈ N

such that 1 ≤ m ≤ r + 1, define the following set of r-tuples:

I1(t, r,m) := {(i1, . . . , ir) ∈ I(t, r) : the gap between im−1 and im is huge} .
Also define

I2(t, r) := {(i1, . . . , ir) ∈ I(t, r) : there is no huge gap} .
For t so large that k(t) ≥ 1, we decompose the expansion of Zy,t

0,0 in (4.1) as follows:

Zy,t
0,0 = qyt +

3∑

j=1

By,t
j ,

where,

By,t
1 :=

∑

k(t)<r≤t+1

∑

i∈I(t,r),z

qyt (i, z)

r∏

j=1

h(zj, ij),

By,t
2 :=

∑

1≤r≤k(t)

∑

i∈I2(t,r),z

qyt (i, z)

r∏

j=1

h(zj , ij),

By,t
3 :=

∑

1≤r≤k(t)

r+1∑

m=1

∑

i∈I1(t,r,m),z

qyt (i, z)

r∏

j=1

h(zj , ij).

With this decomposition in hand, Theorem 2.3 follows immediately from the fol-
lowing lemma.
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Lemma 4.1 (Central Lemma). Let β > 0 be so small that αdλ < 1, and let
σ ∈ (0, 1).

(1) For every θ > 0,

lim
t→∞

tθ sup
y:‖y‖≤tσ,qyt >0

〈|By,t
1 |〉
qyt

= 0. (4.2)

(2) There is θ > 0 such that

lim
t→∞

tθ sup
y:‖y‖≤tσ,qyt >0

〈|By,t
2 |〉
qyt

= 0. (4.3)

(3) There is θ > 0 such that

lim
t→∞

tθ sup
y:‖y‖≤tσ,qyt >0

〈∣∣∣∣∣1 +
By,t

3

qyt
− Z∞

0,0Z
y,t
−∞

∣∣∣∣∣

〉
= 0. (4.4)

The Sections 4.2 and 4.3 are devoted to the proof of this lemma.

4.2. Proof of the Central Lemma, Parts 1 and 2: Small contributions

In this subsection, we show that the contributions of the terms By,t
1 and By,t

2 to

Zy,t
0,0 are negligible. We start with the observation that, by Jensen’s inequality,

(
1

qyt

〈∣∣By,t
j

∣∣
〉)2

≤ 1

(qyt )
2

〈(
By,t

j

)2〉
, j = 1, 2. (4.5)

4.2.1. Proof of Part 1: Many gaps. Let t ∈ N be so large that k(t) ≥ 1. Since

αdλ < 1, (2.7) and the definition (2.4) of αd let us estimate 〈(By,t
1 )2〉 as follows:

〈(
By,t

1

)2〉
=

∑

k(t)<r≤t+1

λr
∑

i∈I(t,r),z

qyt (i, z)
2

.
∑

k(t)<r≤t+1

(αdλ)
r ≤

∑

r>k(t)

(αdλ)
r ≤ (αdλ)

k(t)

1− αdλ
.

Recall our assumption that σ > 3
4 . To estimate 1/(qyt )

2 on the right-hand side
of (4.5), fix σ̃ ∈ (σ, 1) such that 4σ̃ − 3 < 2σ − 1. By Lemma 3.1, there are
constants c1, c2 > 0 (independent of σ, σ̃) and T ∈ N (depending on σ, σ̃) such that
for every integer t ≥ T and y ∈ Zd with qyt > 0 and ‖y‖ ≤ tσ,

qyt ≥ c1
(

d
2πt

)d/2
exp

(
− d

2t‖y‖
2
)
exp

(
−c2t

4σ̃−3
)

& t−d/2 exp
(
− d

2 t
2σ−1 − c2t

4σ̃−3
)
≥ t−d/2 exp

(
− ct2σ−1

)

for some constant c > 0. Therefore,

sup
y:‖y‖≤tσ,qyt >0

1

(qyt )
2

〈(
By,t

1

)2〉
. td (αdλ)

k(t) exp
(
2ct2σ−1

)
.

Since κ1 > 1
2 (3σ − 1) > 2σ − 1, we have t2σ−1/k(t) → 0 as t → ∞, and therefore,

for all θ > 0,

tθ sup
y:‖y‖≤tσ,qyt >0

1

(qyt )
2

〈(
By,t

1

)2〉
. tθ+d (αdλ)

k(t) exp
(
2ct2σ−1

)
−−−→
t→∞

0.
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4.2.2. Proof of Part 2: No huge gaps. Let t ∈ N be so large that k(t) ≥ 1.
Then 〈(

By,t
2

)2〉
=

∑

1≤r≤k(t)

λr
∑

i∈I2(t,r),z

qyt (i, z)
2 .

∑

1≤r≤k(t)

λrMt,r(y), (4.6)

where
Mt,r(y) :=

∑

i∈I2(t,r),z
i1 6=0,ir 6=t

qyt (i, z)
2.

Now we estimate Mt,r(y). Let r ∈ N such that 1 ≤ r ≤ k(t), and y ∈ Zd such
that ‖y‖ ≤ tσ and qyt > 0. Given i = (i1, . . . , ir) ∈ I2(t, r) such that i1 6= 0 and
ir 6= t, set t1 := i1, t2 := i2 − i1, . . . , tr := ir − ir−1, tr+1 := t− ir. And given z =
(z1, . . . , zr) ∈ (Zd)r, set x1 := z1, x2 := z2 − z1, . . . , xr := zr − zr−1, xr+1 := y− zr.
This change of variables yields

qyt (i, z)
2 =

(
qx1
t1

)2
. . .
(
q
xr+1

tr+1

)2
. (4.7)

For i ∈ I2(t, r), there is no huge gap and hence there are at least two large ones.
Let

l :=
∣∣{1 ≤ j ≤ r + 1 : tj ≥ tξ

}∣∣− 1,

i.e. (l + 1) gives the number of large gaps in i. There are (r + 1) possible slots for
the largest gap (which is then also a large gap), and

(
r
l

)
possible slots for the other

l large gaps once the largest gap has been fixed. Together with (4.7), this gives the
estimate

Mt,r(y) ≤ (r + 1)

r∑

l=1

(
r

l

)
Mt,r,l(y), (4.8)

where

Mt,r,l(y) :=
∑

t1+...+tr+1=t
x1+...+xr+1=y

tr+1≥t1,...,tl≥tξ

tl+1,...,tr<tξ

(
qx1
t1

)2
. . .
(
q
xr+1

tr+1

)2
.

The sum on the right-hand side is taken over all t1, . . . , tr+1 ∈ N and x1, . . . , xr+1 ∈
Zd that satisfy the four conditions under the summation sign. In the special case
l = r, the fourth condition is void.

For given positive integers tl+1, . . . , tr that are strictly less than tξ, set

t′(tl+1, . . . , tr) = t′ := t− (tl+1 + . . .+ tr);

and for xl+1, . . . , xr ∈ Zd set

x′(xl+1, . . . , xr) = x′ := y − (xl+1 + . . .+ xr).

If l < r, this lets us write

Mt,r,l(y) =
∑

tl+1,...,tr<tξ

(
q
xl+1

tl+1

)2 · · ·
(
qxr
tr

)2
M t′

t,r,l(x
′), (4.9)

where M t′

t,r,l(x
′) :=

∑

t1+...+tl+tr+1=t′

x1+...+xl+xr+1=x′

tr+1≥t1,...,tl≥tξ

(
qx1
t1

)2 · · ·
(
qxl
tl

)2(
q
xr+1

tr+1

)2
. (4.10)

We now search for a bound for M t′

t,r,l(x
′) when t is sufficiently large.
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Claim 4.1. There are constants C,C′, T > 0 such that for all integers t ≥ T and
for all r, l, t′, x′ as above,

M t′

t,r,l(x
′) . t−ξ/4 (qyt )

2 Cl t−ξl(2d−5)/4 exp
(
C′(r − l)tσ+ξ−1

)
,

and, in the special case l = r,

Mt,r,r(y) . t−ξ/4 (qyt )
2 Cr t−ξr(2d−5)/4.

We use Claim 4.1 to estimate Mt,r,l(y) from (4.9) as follows:

Mt,r,l(y) . αr−l
d t−ξ/4 (qyt )

2 Cl t−ξl(2d−5)/4 exp
(
C′(r − l)tσ+ξ−1

)

≤ t−ξ/4 (qyt )
2
(
C t−ξ(2d−5)/4

)l (
αd exp

(
C′tσ+ξ−1

))r−l

.

Then we combine this with (4.8) to obtain

Mt,r(y) . t−ξ/4(qyt )
2(r + 1)

r∑

l=1

(
r

l

)(
Ct−ξ(2d−5)/4

)l(
αd exp

(
C′tσ+ξ−1

))r−l

= t−ξ/4 (qyt )
2 (r + 1)

(
Ct−ξ(2d−5)/4 + αd exp

(
C′tσ+ξ−1

))r
.

Finally, combining this estimate with (4.5) and (4.6), we obtain

(
1

qyt

〈∣∣By,t
2

∣∣〉
)2

. t−ξ/4
∞∑

r=1

(r + 1) λr
(
Ct−ξ(2d−5)/4 + αd exp

(
C′tσ+ξ−1

))r
.

Since d ≥ 3 and since ξ < 1− σ, one has

lim
t→∞

tθ sup
y:‖y‖≤tσ,qyt >0

(
1

qyt

〈∣∣By,t
2

∣∣〉
)2

= 0

as long as θ < ξ/4 and hence (4.3) for all θ < ξ/8. To complete the proof of Part
2, it remains to prove Claim 4.1.

Proof of Claim 4.1. By Lemma 3.3, there are constants ρ1, ρ2 > 0 such that for any
t ∈ N and for any y ∈ Zd with ‖y‖ ≤ ρ1t and qyt > 0, there is a linear functional ϕ
on Rd of norm ‖ϕ‖ ≤ ρ2‖y‖/t which satisfies

qyt e
ϕ(y) & t−d/2

∑

z∈Zd

qzt e
ϕ(z). (4.11)

Fix t ∈ N so large that k(t) ≥ 1, as well as tσ ≤ ρ1t and ρ2t
σ−1 ≤ 1. Let y ∈ Zd

such that ‖y‖ ≤ tσ and qyt > 0. The conditions ρ2t
σ−1 ≤ 1 and ‖y‖ ≤ tσ imply

in particular that ‖ϕ‖ ≤ 1 for the linear function ϕ corresponding to t and y. Let
t1, . . . , tl, tr+1 ∈ N and x1, . . . , xl, xr+1 ∈ Zd such that the conditions under the
summation sign in (4.10) hold. In the special case l = r, replace t′ and x′ with t
and y, respectively, here and in the remainder of the proof. By Lemma 3.2, there
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is a constant c1 > 0 such that

qx1
t1 · · · qxl

tl
q
xr+1

tr+1
= eϕ(−x′)

∏

j∈{1,...,l,r+1}

eϕ(xj)q
xj

tj

≤ eϕ(−x′)
∏

j∈{1,...,l,r+1}

(
c1t

−d/2
j

∑

z∈Zd

qztje
ϕ(z)

)

= eϕ(−x′)
∑

z∈Zd

qzt′e
ϕ(z)

∏

j∈{1,...,l,r+1}

(
c1t

−d/2
j

)

= eϕ(−x′) Φ(0)t
′ ∏

j∈{1,...,l,r+1}

(
c1t

−d/2
j

)
,

where in the third line we used the fact that ϕ is a linear functional, and in the
fourth line we used (3.4), where Φ was defined in (3.2). Since t′ < t and Φ(0) ≥ 1,

it follows from (4.11) that Φ(0)t
′ ≤ Φ(0)t . td/2qyt e

ϕ(y). As a result, for all positive
integers t1, . . . , tl, tr+1 such that t1 + . . .+ tl + tr+1 = t′ and tr+1 ≥ t1, . . . , tl ≥ tξ,
one has

max
x1+...+xl+xr+1=x′

qx1
t1 · · · qxl

tl q
xr+1

tr+1
. td/2 qyt eϕ(y−x′)

∏

j∈{1,...,l,r+1}

(
c1t

−d/2
j

)
.

Furthermore, the sum
∑

qx1
t1 · · · qxl

tl
q
xr+1

tr+1
over all tuples (x1, . . . , xl, xr+1) such that

x1 + · · ·xl + xr+1 = x′ equals qx
′

t′ , and by Lemma 3.4 there are constants c, ρ > 0
such that

qx
′

t′ ≤ qyt
(
1 +O(t−2/5)

)
exp

(
c

t

(
‖y‖‖y− x′‖+ ‖y‖(t− t′) + ln(t)(t− t′)

))
,

for t so large that tσ ≤ ρt. Therefore,

∑

x1+...+xl+xr+1=x′

(
qx1
t1

)2 · · ·
(
qxl
tl

)2(
q
xr+1

tr+1

)2
. td/2 qyt qx

′

t′ e
ϕ(y−x′)

∏

j∈{1,...,l,r+1}

(
c1t

−d/2
j

)

. td/2 (qyt )
2 P (t)

∏

j∈{1,...,l,r+1}

(
c1t

−d/2
j

)
,

where P (t) := exp

(
c′

t

(
2‖y‖‖y− x′‖+ ‖y‖(t− t′) + ln(t)(t − t′)

))
, for a constant

c′ > 0. In the second line of the estimate above, we also used that ‖ϕ‖ ≤ ρ2‖y‖/t.
Together with Lemma B.1 from the appendix, we obtain the following estimate

on M t′

t,r,l(x
′):

M t′

t,r,l(x
′) . td/2 (qyt )

2 P (t)
∑

t1+...+tl+tr+1=t′

tr+1≥t1,...,tl≥tξ

∏

j∈{1,...,l,r+1}

(
c1t

−d/2
j

)

. (qyt )
2 Cl t−ξl(d−2)/2

(
t

t′

)d/2

P (t),

≤ t−ξ/4 (qyt )
2 Cl t−ξl(2d−5)/4

(
t

t′

)d/2

P (t),
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where C > 0 is a constant. It remains to bound (t/t′)d/2P (t). We estimate the
following expressions involved in (t/t′)d/2P (t) like so:

(
t

t′

)d/2

≤ exp

(
d

2
ln(t)

t− t′

t− 1

)
, t− t′ =

r∑

j=l+1

tj ≤ (r − l)tξ,

‖y − x′‖ ≤
r∑

j=l+1

‖xj‖ ≤
r∑

j=l+1

tj ≤ (r − l)tξ,

where
∑r

j=l+1 ‖xj‖ ≤
∑r

j=l+1 tj is valid under the assumption that qx1
t1 . . . q

xr+1

tr+1
>

0. Then, using ‖y‖ ≤ tσ, we obtain

(
t

t′

)d/2

P (t) ≤ exp
(
C′(r − l)tσ+ξ−1

)

for some constant C′ > 0. This completes the proof of Claim 4.1.

4.3. Proof of the Central Lemma, Part 3: The main contribution

Let t be so large that k(t) ≥ 1 and let y ∈ Zd such that ‖y‖ ≤ tσ and qyt > 0. For
i ∈ I1(t, r,m) and z ∈ (Zd)r, define

qyt,m̂(i, z) := qz1i1 . . . ̂q
zm−zm−1

im−im−1
. . . qy−zr

t−ir
, (4.12)

where the factor with the hat is absent; in other words, we remove the transition
probability corresponding to the huge gap.

Now decompose By,t
3 further, depending on the position of the huge gap 1) at

the begining, 2) in the middle, or 3) at the end, as follows:

By,t
3 = qyt

3∑

i=1

(
F y,t
i + Ly,t

i

)
,

where

F y,t
1 :=

∑

1≤r≤k(t)

∑

i∈I1(t,r,1),z

qy
t,1̂
(i, z)

r∏

j=1

h(zj, ij), (4.13)

F y,t
2 :=

∑

2≤r≤k(t)

r∑

m=2

∑

i∈I1(t,r,m),z

qyt,m̂(i, z)
r∏

j=1

h(zj , ij),

F y,t
3 :=

∑

1≤r≤k(t)

∑

i∈I1(t,r,r+1),z

qy
t,r̂+1

(i, z)

r∏

j=1

h(zj , ij);
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and the error terms are given by

Ly,t
1 :=

∑

1≤r≤k(t)

∑

i∈I1(t,r,1),z

qz1i1 − qyt
qyt

qy
t,1̂
(i, z)

r∏

j=1

h(zj , ij),

Ly,t
2 :=

∑

2≤r≤k(t)

r∑

m=2

∑

i∈I1(t,r,m),z

q
zm−zm−1

im−im−1
− qyt

qyt
qyt,m̂(i, z)

r∏

j=1

h(zj , ij),

Ly,t
3 :=

∑

1≤r≤k(t)

∑

i∈I1(t,r,r+1),z

qy−zr
t−ir

− qyt
qyt

qy
t,r̂+1

(i, z)

r∏

j=1

h(zj , ij).

Notice that F y,t
1 , F y,t

2 , F y,t
3 are well-defined even if qyt = 0. We first show that the

contribution from each error term is negligible.

Lemma 4.2. There is θ > 0 such that

lim
t→∞

tθ sup
y:‖y‖≤tσ,qyt >0

〈∣∣∣∣
3∑

i=1

Ly,t
i

∣∣∣∣
〉

= 0.

Proof. It is enough to show that there is θ > 0 such that for i ∈ {1, 2, 3},

lim
t→∞

tθ sup
y:‖y‖≤tσ,qyt >0

〈(
Ly,t
i

)2〉
= 0. (4.14)

For t so large that k(t) ≥ 1 and for y ∈ Zd such that ‖y‖ ≤ tσ and qyt > 0, one
has

〈(
Ly,t
i

)2〉
=

∑

1≤r≤k(t)

λrai(r)
∑

t∈Ξi
r ,x

(
qx1
t1

)2
. . .
(
qxr
tr

)2 (qy−x1−...−xr

t−t1−...−tr − qyt )
2

(qyt )
2

,

where ai(r) := 1 if i = 1, 3, a2(r) := (r − 1)1r≥2,

Ξi
r :=

{
t = (t1, . . . , tr) ∈ N

r
0 :

t1 ≥ 0, t2, . . . , tr > 0
t1 + · · ·+ tr ≤ rtξ

}
, i = 1, 3,

Ξ2
r :=

{
t = (t1, . . . , tr) ∈ N

r
0 :

t1, tr ≥ 0, t2, . . . , tr−1 > 0
t1 + · · ·+ tr ≤ rtξ

}
,

and where the sum
∑

x
is taken over all x = (x1, . . . , xr) ∈ (Zd)r.

The convergence in (4.14) relies on qy−x1−...−xr

t−t1−...−tr being close to qyt in the following
sense: Let ρ > 0 be the constant from Lemma 3.4, and assume that t is so large
that tσ ≤ ρt. Let 1 ≤ r ≤ k(t), t1, tr ∈ N0, t2, . . . , tr−1 ∈ N with t1 + . . .+ tr ≤ rtξ.
Without loss of generality, let x1, . . . , xr ∈ Zd such that qx1

t1 . . . qxr
tr > 0, as otherwise

the contribution to 〈(Ly,t
i )2〉 is zero.

Claim 4.2. There is a constant c3 > 0 such that

(
qy−x1−...−xr

t−t1−...−tr − qyt
qyt

)2

≤
(
1 +O(t−

2
5 )
)
exp

(
c3rt

σ+ξ−1
)
− 1.
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Using this claim we can bound supy:‖y‖≤tσ,qyt >0〈(Ly,t
i )2〉 as follows:

sup
y:‖y‖≤tσ,qyt >0

〈(
Ly,t
i

)2〉
.

∞∑

r=1

λrr
∑

(t1,...,tr)∈Nr,x

(
qx1
t1

)2
. . .
(
qxr
tr

)2
(4.15)

((
1 +O(t−

2
5 )
)
exp

(
c3rt

σ+ξ−1
)
− 1
)

.

∞∑

r=1

(αdλ)
r
r
((

1 +O(t−
2
5 )
)
exp

(
c3rt

σ+ξ−1
)
− 1
)
.

Let θ ∈ (0,min{2/5; 1− σ − ξ}). The definition of the Landau symbol O(t−
2
5 )

implies that there are constants C, T > 0 such that for t > T ,

tθ
((

1 +O(t−
2
5 )
)
exp

(
c3rt

σ+ξ−1
)
− 1
)

≤ c3rt
σ+ξ−1+θ exp(c3rt

σ+ξ−1)− 1

c3rtσ+ξ−1
+ Ct−

2
5+θ exp

(
c3rt

σ+ξ−1
)

≤ (c3r + C) exp
(
c3rt

σ+ξ−1
)
,

where, in the third line, we used that (ex − 1)/x ≤ ex for x > 0. Hence,

tθ
∞∑

r=1

∣∣∣∣(αdλ)
r
r
((

1 +O(t−
2
5 )
)
exp

(
c3rt

σ+ξ−1
)
− 1
)∣∣∣∣

≤
∞∑

r=1

(
αdλ exp

(
c3t

σ+ξ−1
))r (

c3r
2 + Cr

)
.

For ϕ ∈ (αdλ, 1) and t so large that αdλ exp(c3t
σ+ξ−1) ≤ ϕ, the series on the right

is dominated by the convergent series
∑

ϕr(c3r
2 + Cr). Dominated convergence

and (4.15) then imply (4.14) for θ ∈ (0,max{2/5; 1− σ − ξ}).
To complete the proof of Lemma 4.2, it remains to prove Claim 4.2.

Proof of Claim 4.2. Let x′ := x1 + · · · + xr and t′ := t1 + · · · + tr. Observe that

qy−x′

t−t′ > 0: Indeed, notice first that t − t′ ≥ t − k(t)tξ since t′ ≤ rtξ. As k(t) is of
order tκ1 and κ1 + ξ < 1, the term t− t′ is of order t. Moreover,

‖y − x′‖ ≤ tσ +

r∑

j=1

‖xj‖ ≤ tσ +

r∑

j=1

tj ≤ tσ + k(t)tξ,

which is of smaller order than t − t′. Finally, t − t′ and ‖y − x′‖1 have the same
parity because qyt > 0 and qx1

t1 . . . qxr
tr > 0. Now, we derive an upper bound on

|qy−x′

t−t′ − qyt |/qyt . If qy−x′

t−t′ ≥ qyt , then combining Lemma 3.4 with the estimate

‖x′‖ ≤ t′ ≤ rtξ gives

|qy−x′

t−t′ − qyt |
qyt

≤
(
1 +O(t−

2
5 )
)
exp

(
c

(
2tσ−1rtξ +

ln(t)

t
rtξ
))

− 1 (4.16)

≤
(
1 +O(t−

2
5 )
)
exp

(
c1rt

σ+ξ−1
)
− 1

for some constant c1 > 0. If qyt > qy−x′

t−t′ , we argue as follows: Let t ∈ N be so large

that tσ + k(t)tξ ≤ ρ(t− t′). Then,

‖y − x′‖ ≤ tσ + k(t)tξ ≤ ρ(t− t′)
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and Lemma 3.4 with the estimate k(t)tξ . tκ1+ξ ≤ tσ (coming from ξ < κ2 − κ1 <
σ − κ1) yields

|qy−x′

t−t′ − qyt |
qyt

≤ qyt

qy−x′

t−t′

− 1 (4.17)

≤
(
1 +O(t−

2
5 )
)
exp

(
c

(
tσ + k(t)tξ

t− t′
2rtξ + ln(t− t′)

rtξ

t− t′

))
− 1

≤
(
1 +O(t−

2
5 )
)
exp

(
c2rt

σ+ξ−1
)
− 1.

Using the general fact that (a− 1)2 ≤ a2 − 1 for every a ≥ 1, in either case (4.16)
or (4.17), we have the following bound:

(
qy−x′

t−t′ − qyt
qyt

)2

≤
(
1 +O(t−

2
5 )
)
exp

(
c3rt

σ+ξ−1
)
− 1,

where c3 > 0 is a constant.
�

In order to deal with the Fi’s defined in (4.13), the strategy is to first define
suitable truncations of the partition functions. Fix ξ1, ξ2 satisfying

0 < ξ1 < ξ2 < ξ,

and notice that since ξ + σ < 1, we have ξ1 + σ < 1. Now set

T t
0,0 := 1 +

∑

1≤r≤tξ1+1

∑

i∈Ir,t,z

ir≤tξ2

qy
t,r̂+1

(i, z)

r∏

j=1

h(zj , ij)

and

T y,t
0 := 1 +

∑

1≤r≤tξ1+1

∑

i∈Ir,t,z

t−tξ2≤i1

qy
t,1̂
(i, z)

r∏

j=1

h(zj , ij),

where qy
t,r̂+1

(i, z) and qy
t,1̂
(i, z) are defined according to (4.12), with qy

t,r̂+1
(i, z) not

depending on y. Notice that T t
0,0 and T y,t

0 are truncations of the partition functions

Zt
0,0 and Zy,t

0 , respectively (see (2.3) and (2.2)). The convergence statement in (4.4)
will follow from the lemmas below.

Lemma 4.3. There is θ > 0 such that

lim
t→∞

tθ sup
‖y‖≤tσ

〈∣∣F y,t
2 − (T t

0,0 − 1)(T y,t
0 − 1)

∣∣〉 =0, (4.18)

lim
t→∞

tθ sup
‖y‖≤tσ

〈∣∣F y,t
1 − (T y,t

0 − 1)
∣∣〉 =0, (4.19)

lim
t→∞

tθ sup
‖y‖≤tσ

〈∣∣F y,t
3 − (T t

0,0 − 1)
∣∣〉 =0. (4.20)

Lemma 4.4. There is θ > 0 such that

lim
t→∞

tθ sup
‖y‖≤tσ

〈∣∣T y,t
0 T t

0,0 − Z∞
0,0Z

y,t
−∞

∣∣〉 =0. (4.21)
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The convergence statement in (4.18) is shown in Section 5.1. We show the
convergence statements in (4.19) and (4.20) in Section 5.2, and the one in (4.21) in
Section 5.3.

5. Main Contribution: Proofs of Lemmas 4.3 and 4.4

5.1. Proof of Lemma 4.3, (4.18): Convergence for one huge gap in the

middle

One has

(T t
0,0 − 1)(T y,t

0 − 1) =
∑

1≤r≤tξ1+1

∑

1≤s≤tξ1+1

∑

0≤i1<...<ir≤tξ2 ,

z1,...,zr∈Zd

∑

t−tξ2≤l1<...<ls≤t,

c1,...,cs∈Zd

(5.1)

qz1i1 . . . q
zr−zr−1

ir−ir−1
qc2−c1
l2−l1

. . . qy−cs
t−ls

r∏

j=1

h(zj , ij)

s∏

k=1

h(ck, lk).

Define the set

V (t, r,m) :=

{
i = (i1, . . . , ir) ∈ I1(t, r,m) : 0 ≤ i1 < . . . < im−1 ≤ tξ2

t− tξ2 ≤ im < . . . < ir ≤ t

}

and its complement in I1(t, r,m)

W (t, r,m) :=
{
i = (i1, . . . , ir) ∈ I1(t, r,m) : im−1 > tξ2 or im < t− tξ2

}
.

Recall the notation qyt,m̂(i, z) from (4.12). Making the change of summation indices

r := r + s and m := r + 1 in (5.1), one has

(T t
0,0 − 1)(T y,t

0 − 1) =
∑

2≤r≤tξ1+2

r∑

m=2

∑

i∈V (t,r,m),z

qyt,m̂(i, z)

r∏

j=1

h(zj , ij) (5.2)

+
∑

tξ1+2<r,

r≤2tξ1+2

∑

r−tξ1≤m,

m≤tξ1+2

∑

i∈V (t,r,m),z

qyt,m̂(i, z)
r∏

j=1

h(zj, ij).

The identity in (5.2) allows us to rewrite F y,t
2 −(T t

0,0−1)(T y,t
0 −1) as fy,t

2;1+fy,t
2;2+fy,t

2;3 ,
where

fy,t
2;1 :=

∑

r∈R1

r∑

m=2

∑

i∈W (t,r,m),z

qyt,m̂(i, z)
r∏

j=1

h(zj, ij),

fy,t
2;2 :=

∑

r∈R2

( r∑

m=2

∑

i∈I1(t,r,m),z

qyt,m̂(i, z)

r∏

j=1

h(zj , ij)

−
∑

r−tξ1≤m,

m≤tξ1+2

∑

i∈V (t,r,m),z

qyt,m̂(i, z)

r∏

j=1

h(zj , ij)

)
,

fy,t
2;3 :=

∑

r∈R3

r∑

m=2

∑

i∈I1(t,r,m),z

qyt,m̂(i, z)
r∏

j=1

h(zj , ij),

R1 := {r ∈ N : 2 ≤ r ≤ tξ1 + 2}, R2 := {r ∈ N : tξ1 + 2 < r ≤ 2tξ1 + 2}, and
R3 := {r ∈ N : 2tξ1 + 2 < r ≤ k(t)}.
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In order to prove (4.18), it is then enough to show existence of θ > 0 such that
for i = 1, 2, 3,

lim
t→∞

tθ sup
‖y‖≤tσ

〈(
fy,t
2;i

)2〉
= 0. (5.3)

For i = 1, 3, one has

〈(fy,t
2;i )

2〉 =
∑

r∈Ri

λr
r∑

m=2

∑

i∈Hi(t,r,m),z

qyt,m̂(i, z)2, (5.4)

where H1(t, r,m) := W (t, r,m) and H3(t, r,m) := I1(t, r,m). Notice furthermore

that 〈(fy,t
2;2)

2〉 is bounded by (5.4) with i = 2 and H2(t, r,m) := I1(t, r,m). Now,
we take up cases i = 1, 2, 3 separately.

Case i = 1. Since for i ∈ W (t, r,m),

i1 + (i2 − i1) + . . .+ (im−1 − im−2)+(im+1 − im) + . . .+ (t− ir)

=im−1 − im + t ≥ max{im−1; t− im} > tξ2 ,

the expression in (5.4) is dominated by

∑

r∈R1

rλr
∑

t1,...,tr∈N,x

t1+...+tr>tξ2

(
qx1
t1

)2
. . .
(
qxr
tr

)2
.

∞∑

r=1

r2(αdλ)
r
∑

j> tξ2

tξ1+2

1

j
d
2

. t(ξ2−ξ1)(1−
d
2 ).

This implies (5.3) for θ < (ξ2 − ξ1)(
d
2 − 1).

Case i = 2. The expression in (5.4) is dominated by
∑

r∈R2

rλr
∑

t1,...,tr∈N,x

(
qx1
t1

)2
. . .
(
qxr
tr

)2 ≤
∑

r>tξ1

r(αdλ)
r.

From this estimate we deduce (5.3) for all θ > 0.

Case i = 3. The expression in (5.4) is dominated by
∑

r∈R3

r(αdλ)
r,

which converges to 0 as t → ∞ faster than any polynomial by the same argument
as in the case i = 2.

5.2. Proof of Lemma 4.3, (4.19) and (4.20): Convergence for one huge gap

at the start or the end

We only show the convergence statement in (4.20) as the proof of (4.19) is analo-
gous. Write

F y,t
3 − T t

0,0 + 1 = f t
3;1 + f t

3;2,

where for i = 1, 2,

f t
3;i :=

∑

r∈Ri

∑

i∈Hi(t,r),z

qy
t,r̂+1

(i, z)

r∏

j=1

h(zj, ij)
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and R1 := {r ∈ N : 1 ≤ r ≤ tξ1 + 1}, R2 := {r ∈ N : tξ1 + 1 < r ≤ k(t)},
H1(t, r) :=

{
i = (i1, . . . , ir) : 0 ≤ i1 < . . . < ir ≤ rtξ

ir > tξ2

}
, H2

r := I1(t, r, r + 1).

For i = 1, 2, one has
〈(

f t
3;i

)2〉
=
∑

r∈Ri

λr
∑

i∈Hi(t,r),z

qy
t,r̂+1

(i, z)2.

Convergence in the cases i = 1 and i = 2 works then as in the proof of (4.18).

5.3. Proof of Lemma 4.4: Convergence to limiting partition functions

Let us first show that the truncated partition function T t
0,0 converges to the limiting

partition function Z∞
0,0 in the L2 sense and obtain a rate of convergence. We will

prove that there is θ > 0 such that

lim
t→∞

tθ
〈(

T t
0,0 − Zt

0,0

)2〉
= 0. (5.5)

One has

Zt
0,0 − T t

0,0 = N t
1 +N t

2,

where

N t
1 :=

∑

1≤r≤tξ1+1

∑

i∈I(t,r),z

ir>tξ2

qy
t,r̂+1

(i, z)
r∏

j=1

h(zj , ij),

N t
2 :=

∑

tξ1+1<r≤t+1

∑

i∈I(t,r),z

qy
t,r̂+1

(i, z)

r∏

j=1

h(zj , ij).

It is then enough to show existence of θ > 0 such that

lim
t→∞

tθ
〈(

N t
i

)2〉
= 0, i ∈ {1, 2}. (5.6)

We have 〈(
N t

2

)2〉
=

∑

tξ1+1<r≤t+1

λr
∑

i∈I(t,r),z

qy
t,r̂+1

(i, z)2 .
∑

r>tξ1+1

(αdλ)
r ,

so (5.6) holds for i = 2 and for every θ > 0. Moreover,
〈(

N t
1

)2〉
=

∑

1≤r≤tξ1+1

λr
∑

i∈I(t,r),x

ir>tξ2

qy
t,r̂+1

(i, z)2,

.
∑

1≤r≤tξ1+1

λr
∑

t1,...,tr∈N,x

t1+...+tr>tξ2

(
qx1
t1

)2
. . .
(
qxr
tr

)2
,

so (5.6) holds for i = 1 and θ ∈ (0, (ξ2 − ξ1)(
d
2 − 1)). This implies (5.5). Com-

bining (5.5) with Theorem 2.2, one obtains in particular that there is θ > 0 such
that

lim
t→∞

tθ
〈(

T t
0,0 − Z∞

0,0

)2〉
= 0. (5.7)

To complete the proof of Lemma 4.4, notice that
〈∣∣T t

0,0T
y,t
0 − Z∞

0,0Z
y,t
−∞

∣∣〉 ≤
〈∣∣T y,t

0

(
T t
0,0 − Z∞

0,0

)∣∣〉+
〈∣∣Z∞

0,0

(
T y,t
0 − Zy,t

−∞

)∣∣〉 .
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Therefore, we obtain the desired result by applying Cauchy–Schwarz to the two
summands on the right, and using (5.7) together with

lim
t→∞

〈(
T t
0,0

)2〉
=
〈(

Z∞
0,0

)2〉
< ∞.

Appendix A. Proofs of estimates for transition

probabilities

A.1. Proof of Lemma 3.1

For t ∈ N0, set γ
∗
t := γ2t. Then γ∗ is a random walk on the lattice (Zd)ev consisting

of those points in Zd whose coordinate sum is even. If {ej}1≤j≤d is the standard
basis for Rd, then {e1 + ej : 1 ≤ j ≤ d} is a basis for (Zd)ev. Let L : Rd → Rd be
the linear transformation mapping e1+ej to ej for 1 ≤ j ≤ d, and define γ̃t := Lγ∗

t .
Then, γ̃ is an aperiodic, irreducible, symmetric random walk on Zd with bounded
increments, so it satisfies the conditions of Theorem 2.3.11 in [LL10]. Thus, there
is ρ > 0 such that for any i ∈ N and for any z ∈ Zd satisfying ‖z‖ < ρi, we have

q̃zi := P(γ̃i = z) = 2

(
d

4πi

) d
2

exp

(
− d

4i
‖L−1z‖2

)
exp

(
O

(
1

i
+

‖z‖4
i3

))
.

Now, we fix σ ∈ (34 , 1), σ̃ ∈ (σ, 1), and let T ∈ N be so large that 1 + tσ < (t− 1)σ̃

and tσ̃ < ρ
2|||L||| t for all t ≥ T , where |||L||| is the operator norm of L. We distinguish

between two cases: t is either even or odd.

Even case. If t = 2m for some m ∈ N then we can prove a slightly stronger
statement:

Claim A.1. There are constants c1, c2 > 0, independent of σ and σ̃, such that
(3.1) holds for every even t ≥ T and y ∈ Zd with qyt > 0 and ‖y‖ ≤ tσ̃.

The difference to the conclusion of Lemma 3.1 is that the estimate holds for
‖y‖ ≤ tσ̃ and not just for ‖y‖ ≤ tσ. To prove this claim, fix t = 2m ≥ T , y ∈ Zd

such that qy2m > 0 and ‖y‖ ≤ (2m)σ̃. Then qy2m = q̃Ly
m . Since ‖Ly‖ ≤ |||L|||‖y‖ ≤

|||L|||tσ̃ < ρm, one has

q̃Ly
m = 2

(
d

2πt

) d
2 exp

(
− d

2t‖y‖
2
)
exp

(
O

(
1

m
+

‖Ly‖4
m3

))

≥ c1
(

d
2πt

) d
2 exp

(
− d

2t‖y‖
2
)
exp

(
− c2t

4σ̃−3
)

for some constants c1, c2 > 0.

Odd case. Now, suppose t = 2m+ 1 ≥ T for some m ∈ N. Fix y ∈ Zd such that
qy2m+1 > 0 and ‖y‖ ≤ (2m + 1)σ. Let E be the set of standard unit vectors in Rd

and their additive inverses. Then

qy2m+1 =
∑

z∈Zd

qy−z
2m qz1 =

1

2d

∑

z∈E

qy−z
2m .

Since ‖y − z‖ < 1 + tσ < (t − 1)σ̃ = (2m)σ̃ and qy−z
2m > 0 for all z ∈ E, then using

Claim A.1, we can bound qy2m+1 from below as follows: There are c′1, c
′
2 > 0 such
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that

qy2m+1 ≥ c′1
2d

(
d

4πm

) d
2 exp

(
− c′2(2m)4σ̃−3

)∑

z∈E

exp
(
− d

4m‖y − z‖2
)

≥ c′1
2d

(
d

2πt

) d
2 exp

(
− c′2t

4σ̃−3
)
exp

(
− d

4m‖y − e1‖2
)
. (A.1)

In addition to t ≥ T , assume that t is so large that

exp

(
−d

2

(
t2σ

t(t− 1)
+

1 + 2tσ

t− 1

))
>

1

2
.

Since ‖y − e1‖2 = ‖y‖2 + 1− 2y · e1 ≤ ‖y‖2 + 1 + 2‖y‖, it follows that

exp
(
− d

4m‖y − e1‖2
)
≥ exp

(
− d

4m

(
‖y‖2 + 1+ 2‖y‖

))

≥ exp
(
− d

2t‖y‖
2
)
exp

(
− d

2

(
t2σ

t(t−1) +
1+2tσ

t−1

))

> 1
2 exp

(
− d

2t‖y‖
2
)
.

Plugging this into (A.1), we obtain the desired estimate.

A.2. Proof of Lemma 3.2

Recall from Section 3 that θ0 = (0, . . . , 0) and θ1 = (π, . . . , π). For any ε > 0 and
j ∈ {0, 1}, let Dε

j := {θ ∈ Rd : ‖θ − θj‖ < ε}. Let ϕ be a linear functional on Rd

such that |ϕ(x)| ≤ ‖x‖, x ∈ Rd, and let Φ be the corresponding function defined
in (3.2).

Claim A.2. There exist ε, δ > 0 such that, for j ∈ {0, 1},
∣∣∣∣
Φ(θ)

Φ(θj)

∣∣∣∣ ≤ e−δ‖θ−θj‖2

for all θ ∈ C \ Dε
1−j.

Proof of Claim A.2. For each j ∈ {0, 1}, define scaled versions of the gradient vector
and the Hessian matrix of Φ at θj :

Gj := −i
∇Φ(θj)

Φ(θj)
and Hj := −1

2

∇2Φ(θj)

Φ(θj)
.

A simple computation shows that the matrix Hj is diagonal, and that for every
l ∈ {1, . . . , d}, the l-th component of Gj and the (l, l)-entry of Hj are, respectively,

Gl
j =

sinh(ϕl)

dΦ(0)
and H l

j =
cosh(ϕl)

2dΦ(0)
. (A.2)

If we Taylor expand Φ around θj , we obtain

∣∣∣∣
Φ(θ)

Φ(θj)

∣∣∣∣ =
∣∣∣1 + iGj · (θ − θj)− (θ − θj) ·Hj(θ − θj) +O

(
‖θ − θj‖3

)∣∣∣

=
(
1− 2(θ − θj) ·Hj(θ − θj) + (Gj · (θ − θj))2 +O

(
‖θ − θj‖3

))1/2
.

Here and in the sequel, g(θ) = O(f(θ)) means there is a constant c > 0, indepen-
dent of ϕ, such that |g(θ)| ≤ cf(θ). In the Taylor expansion above, the constant
c corresponding to the error term O

(
‖θ − θj‖3

)
may be chosen independently of

ϕ because of the assumption that ‖ϕ‖ ≤ 1. Notice from (A.2) that G0 = G1 and
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H0 = H1, so in order to prove Claim A.2, it is enough to consider the case j = 0,
where θj = (0, . . . , 0). If we write θ = (θ1, . . . , θd), then, using Jensen’s inequality
for sums,

(
G0 · θ

)2 ≤ 1

dΦ(0)

d∑

l=1

sinh(|ϕl|) θ2l .

Using the expression for H0 in (A.2) as well as ‖ϕ‖ ≤ 1, we obtain

2θ ·H0θ −
(
G0 · θ

)2 ≥ 1

dΦ(0)

d∑

l=1

e−|ϕl|θ2l ≥ 1

deΦ(0)
‖θ‖2.

Thus, there are ε > 0 and a constant c > 0 such that for all ‖θ‖ ≤ ε,

∣∣∣∣
Φ(θ)

Φ(0)

∣∣∣∣ ≤
(
1− 1

deΦ(0)
‖θ‖2 +O

(
‖θ‖3

))1/2

≤
(
1− c‖θ‖2

)1/2
.

Since the map θ 7→
∣∣Φ(θ)/Φ(0)

∣∣ is continuous and strictly less than 1 for all θ ∈ C
except θ0, θ1, it follows that

s(ϕ) := sup
{∣∣Φ(θ)/Φ(0)

∣∣ : θ ∈ C; ‖θ‖, ‖θ − θ1‖ ≥ ε
}
< 1.

In fact, one even has sup‖ϕ‖≤1 s(ϕ) < 1. Hence, if we choose c̃ ∈ (0, c) so small that(
1− c̃‖θ‖2

)
≥ (sup‖ϕ‖≤1 s(ϕ))2 for all θ ∈ C, then Claim A.2 follows with δ := c̃/2.

For t ∈ N, let Φ̂t be the Fourier transform of Φt; i.e.,

Φ̂t(z) :=
1

(2π)d

∫

C

Φ(θ)te−iθ·z dθ, z ∈ Z
d.

Since Φ(θ)t = E
[
eiθ·γteϕ(γt)

]
, one has

Φ̂t(z) =
∑

y∈Zd

P(γt = y)eϕ(y) 1

(2π)d

∫

C

eiθ·(y−z) dθ = qzt e
ϕ(z). (A.3)

Now, we estimate with the help of (3.4) and Claim A.2:

qzt e
ϕ(z) ≤ 1

(2π)d

∫

C

∣∣Φ(θ)
∣∣t dθ =

1

(2π)d

∫

C

∣∣∣∣
Φ(θ)

Φ(0)

∣∣∣∣
t

dθ
∑

y∈Zd

qyt e
ϕ(y)

≤ 1

(2π)d

(∫

C\Dε
1

e−δt‖θ‖2

dθ +

∫

C\Dε
0

e−δt‖θ−θ1‖2

dθ

) ∑

y∈Zd

qyt e
ϕ(y)

≤ 2

(2π)d

∫

Rd

e−δt‖θ‖2

dθ
∑

y∈Zd

qyt e
ϕ(y).

Finally, for some constant C > 0,

∫

Rd

e−δt‖θ‖2

dθ ≤ C

∫ ∞

0

rd−1e−δtr2 dr = Ct−
d
2

∫ ∞

0

ρd−1e−δρ2

dρ.
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A.3. Proof of Lemma 3.3

For j ∈ {0, 1}, let Bj := {θ ∈ C : ‖θ− θj‖ ≤ t−2/5}. Recall from (A.3) that for all
z ∈ Zd, t ∈ N, and for every linear functional ϕ on Rd satisfying ‖ϕ‖ ≤ 1, one has

qzt e
ϕ(z) =

1

(2π)d

∫

C

Φ(θ)te−iθ·z dθ = I0 + I1 + I,

where

Ij :=
1

(2π)d

∫

Bj

Φ(θ)te−iθ·z dθ and I :=
1

(2π)d

∫

C\(B0∪B1)

Φ(θ)te−iθ·z dθ.

Then we find

1

(2π)d

∫

C

∣∣Φ(θ)
∣∣t dθ − qzt e

ϕ(z) ≤
∑

j∈{0,1}

(
1

(2π)d

∫

Bj

∣∣Φ(θ)
∣∣t dθ − Re(Ij)

)
(A.4)

+
2

(2π)d

∫

C\(B0∪B1)

∣∣Φ(θ)
∣∣t dθ.

We now estimate the expression on the right-hand side. First, we show that the
linear functional ϕ can be chosen in such a way that for j ∈ {0, 1},

1

(2π)d

∫

Bj

∣∣Φ(θ)
∣∣t dθ − Re(Ij) = O(t−2/5)

∫

C

∣∣Φ(θ)
∣∣t dθ. (A.5)

The idea is to choose ϕ as a function of z and t in such a manner that the linear

term in the Taylor expansion of Φ(θ)e−
i
t z·θ around θj vanishes, i.e.

Φ(θj)∇
(
e−

i
t z·θ

j
)
+ e−

i
t z·θ

j∇Φ(θj) = 0.

If we denote the kth component of z by zk, this is equivalent to

zk
t

=
sinh(ϕk)

dΦ(0)
=

sinh(ϕk)∑d
l=1 cosh(ϕl)

, 1 ≤ k ≤ d,

by virtue of (A.2). Let F : Rd → Rd be given by

F (x1, . . . , xd) :=

d∑

k=1

sinh(xk)∑d
l=1 cosh(xl)

ek.

For r > 0 and x ∈ Rd, let Br(x) denote the open Euclidean ball of radius r
centered at x. Since F (0) = 0 and

detDF (0) =
1

dd
6= 0,

the inverse function theorem yields existence of ρ1 > 0 and an open neighborhood
U of 0 such that F : U → Bρ1(0) is a diffeomorphism. Therefore, for any t ∈ N

and z ∈ Zd with ‖z‖ < ρ1t, there is ϕ ∈ U such that F (ϕ) = z
t . Since F−1 is

differentiable and F−1(0) = 0, there is ρ2 > 0 such that

‖ϕ‖ = ‖F−1( zt )‖ ≤ ρ2
‖z‖
t

.

Without loss of generality, we may assume that ρ1ρ2 ≤ 1 so that ‖ϕ‖ ≤ 1.
Fix t ∈ N, z ∈ Zd such that ‖z‖ ≤ ρ1t and qzt > 0, and the corresponding ϕ ∈ Rd

such that F (ϕ) = z
t . We identify ϕ with the linear functional mapping ek to ϕk
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for 1 ≤ k ≤ d. For this choice of ϕ, the linear term in the Taylor expansion of

Φ(θ)e−
i
t z·θ vanishes, so we have for j ∈ {0, 1} and θ ∈ Bj (‖θ − θj‖ ≤ t−

2
5 )

Φ(θ)e−
i
t z·θ = Φ(θj)e−

i
t z·θ

j

+ (θ − θj) ·Aj(θ − θj) +O
(
‖θ − θj‖3

)

= Φ(θj)e−
i
t z·θ

j

(
1 +

(θ − θj) ·Aj(θ − θj)

Φ(θj)e−
i
t z·θ

j
+O(t−6/5)

)
, (A.6)

where Aj is the quadratic form in the Taylor expansion of Φ(θ)e−
i
t z·θ. The error

term O(t−6/5) is complex-valued, whereas the entries of Aj

/
Φ(θj)e−

i
t z·θ

j

are real.
Let xj(θ) and yj(θ) denote respectively the real and imaginary part of

1 +
(θ − θj) ·Aj(θ − θj)

Φ(θj)e−
i
t z·θ

j
+O(t−6/5).

Then the left-hand side of (A.5) can be written as follows:

Φ(0)t

(2π)d

∫

Bj

(∣∣xj(θ) + iyj(θ)
∣∣t − Re

((
xj(θ) + iyj(θ)

)t)
)
dθ. (A.7)

Here, in the case j = 1, we used the assumption that qzt > 0 and hence t and ‖z‖1
have the same parity: as t ≡ ‖z‖1, one has Φ(θ1)te−iz·θ1

= Φ(0)t(−1)te−iπ‖z‖1 =
Φ(0)t. If we represent xj(θ)+ iyj(θ) in polar form, then the modulus is

∣∣Φ(θ)/Φ(0)
∣∣

and the argument is of order O(t−6/5). As a result, the integrand in (A.7) can be
written as ∣∣Φ(θ)

∣∣t

Φ(0)t

(
1− cos

(
O(t−1/5)

))
=

∣∣Φ(θ)
∣∣t

Φ(0)t
O(t−2/5),

which yields (A.5).

We continue estimating the expression in (A.4) by showing that for F (ϕ) = z
t ,

one also has
2

(2π)d

∫

C\(B0∪B1)

∣∣Φ(θ)
∣∣t dθ . t−2/5

∫

C

∣∣Φ(θ)
∣∣t dθ. (A.8)

By Claim A.2, there are ε, δ > 0 such that the left-hand side of (A.8) is dominated
by

2Φ(0)t

(2π)d

(∫

C\(B0∪Dε
1)

e−δt‖θ‖2

dθ +

∫

C\(B1∪Dε
0)

e−δt‖θ−θ1‖2

dθ

)
. Φ(0)te−δt1/5.

Here we used that

C \ (B0 ∪ B1) ⊆ C \
[
(B0 ∩ Dε

0) ∪ (B1 ∩Dε
1)
]
⊆
[
C \ (B0 ∪ Dε

1)
]
∪
[
C \ (B1 ∪Dε

0)
]
.

As e−δt1/5 . t−2/5t−d/2, the estimate in (A.8) follows once we show that

Jt :=

∫

C

( |Φ(θ)|
Φ(0)

)t

dθ & t−d/2. (A.9)

We have

Jt ≥
1

Φ(0)t

∫

B0

∣∣Φ(θ)e− i
t z·θ
∣∣∣
t

dθ =

∫

B0

∣∣x0(θ) + iy0(θ)
∣∣t dθ

≥ cos
(
O(t−1/5)

) ∫

B0

∣∣x0(θ)
∣∣t dθ =

(
1 +O(t−2/5)

) ∫

B0

∣∣x0(θ)
∣∣t dθ,



FACTORIZATION FORMULA 29

where we used (A.6). For θ ∈ B0, one has x0(θ) = exp
(
(θ · A0θ)/Φ(0)

)(
1 +

O(t−6/5)
)
, so we can continue the above chain of inequalities as follows:

=
(
1 +O(t−2/5)

)(
1 +O(t−6/5)

)t ∫

B0

exp

(
t
θ ·A0θ

Φ(0)

)
dθ

&

∫

B0

exp

(
t
θ ·A0θ

Φ(0)

)
dθ &

∫

B0

e−ct‖θ‖2

dθ & t−d/2,

where c > 0 is some constant. Combining (A.4), (A.5), and (A.8) yields

qzt e
ϕ(z) ≥

(
1 +O(t−2/5)

) 1

(2π)d

∫

C

∣∣Φ(θ)
∣∣t dθ (A.10)

and hence
1

(2π)d

∫

C

∣∣Φ(θ)
∣∣t dθ ≤

(
1 +O(t−2/5)

)
qzt e

ϕ(z).

To show that

qzt e
ϕ(z) & t−

d
2

∑

y∈Zd

qyt e
ϕ(y),

one simply combines (A.10) with (A.9) and (3.4).

A.4. Proof of Lemma 3.4

Let ρ := ρ1 and ρ2 be as in Lemma 3.3, and let t, t′ ∈ N, z, z′ ∈ Zd such that ‖z‖ ≤
ρt and qzt > 0. Let ϕ be the linear functional from Lemma 3.3 that corresponds to

t and z, and for which ‖ϕ‖ ≤ ρ2
‖z‖
t and

1

(2π)d

∫

C

|Φ(θ)|t dθ ≤
(
1 + O(t−

2
5 )
)
qzt e

ϕ(z). (A.11)

We consider two cases: t′ > t and t′ ≤ t.

Case “t′ > t”. By (A.3) and (3.3), one has

qz
′

t′ e
ϕ(z′) ≤ 1

(2π)d

∫

C

|Φ(θ)|t′ dθ ≤ Φ(0)t
′−t 1

(2π)d

∫

C

|Φ(θ)|t dθ.

Furthermore,

Φ(0)t
′−t ≤ e‖ϕ‖(t′−t) ≤ eρ2

‖z‖
t (t′−t).

The estimate in (A.11) then implies

qz
′

t′

qzt
≤
(
1 +O(t−

2
5 )
)
eϕ(z−z′)eρ2

‖z‖
t (t′−t)

≤
(
1 +O(t−

2
5 )
)
exp

(
ρ2

‖z‖
t

(‖z − z′‖+ |t′ − t|)
)
.

Case “t′ ≤ t”. If t′ ≤ t, the function x 7→ xt/t′ is convex, and Jensen’s inequality
implies

qz
′

t′ e
ϕ(z′) ≤

(
1

(2π)d

∫

C

|Φ(θ)|t dθ
)t′/t

= Φ(0)t
′

J
t′/t
t ≤ Φ(0)tJ

t′/t
t , (A.12)
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where Jt was defined in (A.9). Since Jt & t−d/2,

J
t′/t
t ≤

(
c2t

d
2

) t−t′

t

Jt ≤ exp

(
c3 ln(t)

t− t′

t

)
Jt (A.13)

for some constants c2, c3 > 0. Combining (A.12) and (A.13), we obtain

qz
′

t′ ≤ e−ϕ(z′) 1

(2π)d

∫

C

|Φ(θ)|t dθ exp

(
c3 ln(t)

t− t′

t

)
.

Together with (A.11), this yields

qz
′

t′

qzt
≤
(
1 +O(t−

2
5 )
)
exp

(
ϕ(z − z′) + c3 ln(t)

t− t′

t

)

≤
(
1 +O(t−

2
5 )
)
exp

(
c

(‖z‖
t

‖z − z′‖+ ln(t)
t− t′

t

))

for some constant c > 0.

Appendix B. A calculus estimate

Lemma B.1. There is c > 0 such that for any t ∈ N, l ∈ N0, and M > 0,

∑

t1+...+tl+1=t,
t1,...,tl+1≥M

l+1∏

j=1

t
−d

2

j ≤ cl

M l( d
2−1)

t−
d
2 . (B.1)

The sum on the left is taken over all positive integers t1, . . . , tl+1 that satisfy the
two conditions under the summation sign.

Proof. We choose

c := 2dmax
{
ζ(d2 ); (

d
2 − 1)−1

}
,

where ζ is the Riemann zeta function, and prove the statement by induction. In
the base case l = 0, the left side of (B.1) is either zero (if t < M), or becomes

t−
d
2 =

c0

M0
t−

d
2 .

In the induction step, suppose that (B.1) holds for some l ∈ N0. Then,

∑

t1+...+tl+2=t,
t1,...,tl+2≥M

l+2∏

j=1

t
− d

2

j =
∑

t′+tl+2=t,
t′,tl+2≥M

( ∑

t1+...+tl+1=t′,
t1,...,tl+1≥M

l+1∏

j=1

t
− d

2

j

)
t
− d

2

l+2. (B.2)

For any t′,

∑

t1+...+tl+1=t′,
t1,...,tl+1≥M

l+1∏

j=1

t
−d

2

j ≤ cl

M l( d
2−1)

(t′)−
d
2

by induction hypothesis. Hence, the right side of (B.2) is bounded from above by

cl

M l( d
2−1)

∑

t′+tl+2=t,

t′,tl+2≥M

(t′)−
d
2 t

− d
2

l+2. (B.3)
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We have ∑

t′+tl+2=t,

t′,tl+2≥M

(t′)−
d
2 t

−d
2

l+2 ≤ 2
∑

t′+tl+2=t,

t′≥tl+2≥M

(t′)−
d
2 t

−d
2

l+2.

If t′ + tl+2 = t and t′ ≥ tl+2, it follows that t
′ ≥ t

2 , so the expression on the right
is bounded from above by

2
d
2+1t−

d
2

∑

tl+2≥M

t
− d

2

l+2. (B.4)

If M ≥ 2, we have

∑

tl+2≥M

t
− d

2

l+2 ≤
∫ ∞

M
2

x− d
2 dx =

2
d
2−1

d
2 − 1

M1− d
2 .

If M < 2, ∑

tl+2≥M

n
− d

2

l+2 ≤ ζ(d2 ) < ζ(d2 )2
d
2−1M1− d

2 .

The expression in (B.4) is therefore less than cM1−d
2 n− d

2 . Combining this estimate
with (B.3) yields

∑

t1+...+tl+2=t,
t1,...,tl+2≥M

l+2∏

j=1

t
− d

2
j ≤ cl+1

M (l+1)( d
2−1)

t−
d
2 .

�
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Neuchâtel

Department of Mathematics, University of Toronto, Bahen Centre, 40 St. George

St., Toronto, ON M5S 2E4, Canada

Department of Mathematics, University College London, Gower Street, London

WC1E 6BT, UK

Department of Mathematical Sciences, Kent State University, 800 E. Summit Street,

Kent OH 44242, USA


	1. Introduction
	Acknowledgments
	2. Setting and Main Result
	2.1. Convergence to limiting partition functions.
	2.2. Factorization formula.
	2.3. Correlations for the field of limiting partition functions.

	3. Transition Probabilities for the Simple Symmetric Random Walk
	4. Proof of Theorem 2.3
	4.1. Large and huge gaps
	4.2. Proof of the Central Lemma, Parts 1 and 2: Small contributions
	4.3. Proof of the Central Lemma, Part 3: The main contribution

	5. Main Contribution: Proofs of Lemmas 4.3 and 4.4
	5.1. Proof of Lemma 4.3,  (4.18): Convergence for one huge gap in the middle
	5.2. Proof of Lemma 4.3, (4.19) and (4.20): Convergence for one huge gap at the start or the end
	5.3. Proof of Lemma 4.4: Convergence to limiting partition functions

	Appendix A. Proofs of estimates for transition probabilities
	A.1. Proof of Lemma 3.1
	A.2. Proof of Lemma 3.2
	A.3. Proof of Lemma 3.3
	A.4. Proof of Lemma 3.4

	Appendix B. A calculus estimate
	References

