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Abstract

In the present paper, we study the robustness of two-dimensional random lattices (Delaunay triangulations) under attacks based on
betweenness centrality. Together with the standard definition of this centrality measure, we employ a range-limited approximation
known as ¢{-betweenness, where paths having more than ¢ steps are ignored. For finite ¢, the attacks produce continuous percolation
transitions that belong to the universality class of random percolation. On the other hand, the attack under the full range betweenness
induces a discontinuous transition that, in the thermodynamic limit, occurs after removing a sub-extensive amount of nodes. This
behavior is recovered for ¢-betweenness if the cutoff is allowed to scale with the linear length of the network faster than £ ~

L%°'. Our results suggest that betweenness centrality encodes information on network robustness at all scales, and thus cannot be
approximated using finite-ranged calculations without losing attack efficiency.
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1. Introduction

The organization of many complex systems is restricted by
spatial constraints. Power grids, transportation and mobility
networks, the Internet, and the human brain are all examples
of systems whose structure and evolution are influenced by ge-
ometrical aspects. Spatial networks, where nodes and edges are
embedded in two- or three-dimensional space, become a natural
model for studying such systems [1].

Realistic modeling of embedded networks is often attained
by employing different random spatial networks. In the physics
literature, one of the most extensively studied models is the
Voronoi tessellation and its dual, the Delaunay triangulation
(DT), also known as random lattice [2, 3]. It is worth mention-
ing that the distribution of local measures such as node degree,
transitivity, and assortativity, which are widely used in complex
network characterizations, become less informative in the case
of spatial networks. For example, planar spatial networks usu-
ally exhibit a centered degree distribution, and in a triangula-
tion, transitivity is trivially maximized. Instead, other measures
such as topological and geometrical distances become more rel-
evant for these types of networks. In particular, a contrast be-
tween local and global measures can be expected in these kind
of networks.

Among the multiple aspects that can be addressed in the
study of spatial complex networks, robustness is a topic that
has drawn much attention for its theoretical and practical im-
plications. In general, robustness refers to the ability of a sys-
tem to maintain its functions when one or more of its parts are
compromised. In the context of networks, connectivity plays
an important role in terms of robustness as, for instance, the
breakdown of structural connectivity is frequently followed by
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a systemic failure [4].

There is a vast literature where the robustness of DT, and
other spatial networks, is addressed [5, 6, 2, 7, 8, 9, 10, 11]
within the framework of percolation theory [12]. The percola-

tion thresholds of both site and bond percolation on two-dimensional

DT are very well known [5, 6, 2], and there is evidence support-
ing that both processes belong to the same universality class
of random percolation on two-dimensional regular lattices [13,
14]. In addition to random percolation, DT networks have also
been studied in the context of centrality-based attacks. The idea
is to assess how robust the network is when nodes considered
important, or central, are deliberately removed. For instance,
two different attack strategies are analyzed by Norrenbrock et
al. [8], each based on a different centrality measure. In one of
them, nodes with the highest degree are sequentially removed.
Here, the network breaks faster than removing nodes randomly,
but the nature of the transition does not change, as it belongs
to the random percolation universality class. In the other attack
strategy, based on node betweenness [15], the network breaks
even sooner, and the percolation threshold is shown to be equal
to zero in the thermodynamic limit. Nevertheless, the authors
cannot determine the universality class of this transition.

In this work, we present a detailed study of the percolation
transition induced by attacks based on initial node between-
ness centrality. We show that the transition occurs when a sub-
extensive fraction of nodes is removed, as in the sequential ver-
sion of the attack. Moreover, the nature of the transition is com-
patible with a first-order transition, which allows us to frame
the process in terms of explosive percolation [16]. In addition
to this attack strategy, we employ a series of attacks based on
approximate values of betweenness, where only limited-range
paths are considered. In these cases, transitions are continuous
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and occur at non-zero values for the control parameter.

The paper is organized as follows. In Section 2 we describe
the Delaunay triangulation and the attack strategies employed,
and introduce the theoretical tools that we use to analyze the
percolation transitions. In Section 3 we present our main re-
sults, which are then contextualized and further discussed in 4.
Finally, we detail our conclusions in 5.

2. Methods

2.1. Delaunay triangulation

The Delaunay triangulation is one of the most studied mod-
els of spatially embedded systems. Applications of this graph
are known in diverse fields, such as the construction of ad-
hoc wireless networks [17], the modeling of cities [18] and the
study of phase transitions under quenched disorder [19]. A De-
launay triangulation is constructed as follows; given a set of
points V in a d-dimensional space, a link between two nodes
u, v € V is present if and only if there exists a d-dimensional
sphere which embeds u and v but no other points. The DT is
an example of an excluded region graph, where connectivity is
based on the absence of points in a region between two nodes.
Other members of this class of spatial networks are the Gabriel
graph, the relative neighborhood graph, and the euclidean min-
imum spanning tree, all of them subgraphs of DT. From a ther-
modynamic viewpoint, all these models have been shown to
behave similarly. In particular, continuous percolation-related
models defined on them share the same critical exponents [18,
8]. We have chosen to work with DT because of its widespread
applications, but expect our results to generalize to other kinds
of spatial networks.

2.2. Betweenness centrality

Node centrality has been largely studied in the complex net-
work literature and presents many interesting aspects. To begin
with, the concept of centrality itself is not universally defined,
as it depends on particular characteristics of the networks stud-
ied, the phenomena taking place on top of them, and the ques-
tions of interest. In some cases, as in social networks, nodes
that are more connected with their neighbors are considered the
most influential ones. For these systems, metrics such as degree
or collective influence [20] may represent good estimations of
node centrality. On the other hand, in technological networks
such as road networks or the Internet, where traffic or infor-
mation flows are present, central nodes are generally located in
high traffic paths. Here, metrics as closeness [21] and between-
ness [15] are usually preferred. In the past years, a vast set of
centrality measures have been introduced. Although each one
describes different aspects of the nodes, and the networks in
general, some of them are closely related and usually display a
high correlation between them [22].

Betweenness centrality (BC) was independently proposed
by [23] and [15] in the context of social networks and its use
has spread through the complex networks literature, with ap-
plications such as community detection [24], network robust-
ness [25], and organization of cities [3]. It can be defined in

the following way. Let o(s, f) be the number of shortest paths
connecting nodes s and ¢ and let o7;(s, 7) be the number of such
paths going through node i. Then, the betweenness centrality

of node i is (5.9
oi(s,t

b; = , 1

; o(s,1) )

where we adopt the convention that o7(s, )/ (s, ) = 0 if both
oi(s,t) and o (s, ) are zero. Betweenness can be thought of as
the amount of load a node must support when there is some kind
of flux on the network. Nodes with higher betweenness artic-
ulate different groups of nodes and their importance are more
related to the communicability of the network. In recent works,
BC has been reported as one of the most powerful strategies for
dismantling networks. For example, in [26, 27] several models
of synthetic networks, as well as real-world networks are stud-
ied under different dismantling strategies. In most cases, BC
attacks overtake the rest of the strategies considered. In a recent
work [28], it was also reported that even networks with homo-
geneous betweenness distribution can be efficiently dismantled
using betweenness-based attacks.

As BC is a global measure, its strength as a measure for
dismantling processes comes in hand with an important draw-
back, which is the computational complexity associated with
its calculation. The most efficient algorithm so far known was
proposed by Brandes, et al. in [29] and runs in O(N M), where
N and M are the number of nodes and links in the network,
respectively.

Different variations of BC have been proposed, most of which
are covered in [30]. In particular, in [31, 32], Ercsey-Ravasz, et
al. study the so-called ¢-betweenness centrality, originally pro-
posed by [33]. The difference with the original definition is that
{-betweenness ignores paths that are longer than ¢. The authors
show that the £-betweenness distributions for different values of
¢ can be scaled into a universal curve. In addition, they argue
that a moderate value of ¢ is sufficient for identifying the in-
fluencer nodes, which could give an important improvement in
terms of algorithmic complexity, allowing the identification of
central nodes in larger systems. In this work, we argue against
this idea by showing that, for large DT networks, the relation
between ¢ and the network size dramatically affects the nature
of the network dismantling process.

2.3. Percolation

Percolation is a theoretical framework used to describe tran-
sitions in which a system changes from a disconnected to a
globally connected state and vice versa. For instance, in the
case of random site percolation, each node of an existing net-
work is occupied with probability p, hence remaining unoccu-
pied with probability f = 1 — p, and links are activated only
if they connect two occupied nodes. When p is small, the oc-
cupied nodes are apportioned in small-sized components, while
if p is larger than a critical threshold p., one of the compo-
nents becomes extensive and the system percolates. This ex-
tensive component is known as the giant connected compo-
nent (GCC). Random site percolation generates a continuous
transition in the size of the GCC, with critical exponents that



are related to the topology of the network. Instead, the frag-
mentation of networks under targeted attacks can induce abrupt
transitions similar to the observed in explosive percolation pro-
cesses [16]. The nature of these transitions, i.e. whether they
are continuous (second-order) or discontinuous (first-order) is
not well understood and is a current topic of research. In par-
ticular, in the case of betweenness attacks, few works address
this point. Previous works in planar graphs [8] and random
Erd6s Renyi networks [28] seem to indicate that recalculated
attacks based on betweenness could induce discontinuous tran-
sitions. In particular, Norrenbrock, et al. [8] study the perco-
lation transition for both recalculated degree-based (RD) and
betweenness-based (RB) attacks on four different models of
spatial networks, including DT. They conclude that the RD at-
tack belongs to the standard two-dimensional percolation tran-
sition universality class. For RB, the percolation threshold is
located at f. = 1 — p. = 0, and even when the nature of the tran-
sition was not explored by these authors it seems to be abrupt
as in the case of Erdos Renyi networks [28].

2.4. Finite-size scaling analysis

The characterization of the percolation transitions associ-
ated with each attack procedure was performed using finite-size
scaling analysis (FFSA) [34, 35]. According to this theory, the
divergence of the correlation length at the percolation thresh-
old implies that every variable of the system becomes scale-
independent at that point. A finite-size system of linear size
L := N'4 where d is the number of spatial dimensions, pro-
duces a scaling of the form

X~ L“VF[(f - foL'", 2)

where f is the fraction of nodes removed, and w is an exponent
related to the variable X. For f = f,, the variable behaves as
X ~ L™/, The relation in Eq. 2 holds asymptotically, i.e. in
the limit L — oo and f — f,, and it can be used to obtain the
ratio w/v by computing X(f., L) for different system sizes. In
addition, the plot of L“/*X as a function of (f. — f)L"/” yields
the universal function F, which is independent of L, so curves
corresponding to different sizes collapse.

An important use case of Eq. 2 is the scaling for the relative
size of the components [36]

Si(f, L) ~ LS, (f = foL'"]. 3)

Here, the subscripti = 1, 2, ... indicates the rank of each compo-
nent, sorted by size in decreasing order. In particular, we will
be interested in the order parameter S| and in the size of the
second cluster S,L?. Another useful observable is the second
moment of the component size distribution, which is defined
as M, = Z;szns, where n; is the number of clusters of size s
per node and the primed sum excludes the GCC. The scaling
relation associated with this metric is

My(f, L) ~ D" S[(f - foL'"]. )

For a finite-size system, the percolation threshold does not
necessarily coincide with the corresponding value for N — co.

In general, the difference between these values presents a scal-
ing in the form

fL) - f.=bL™. 5

In standard percolation, as well as in many other models, 4 =
1/v, but this is not always valid [37, 38, 39]. For example, in
some explosive percolation models, small-sized systems present
differences between the two exponents due to large crossover
sizes. Also, using (5) as a method for estimating both the per-
colation threshold and exponent A is not recommended if only
small sizes and low sampling is available, as it might introduce
systematic errors [40].

In a recently published article, Fan, et al. proposed a new
method to analyze generalized percolation processes, based on
the scaling of the largest jump in the order parameter during the
process [41]. Although the authors deal with bond percolation,
the same analysis can be performed for site percolation. Based
on this work, we define the gap

) 1 ) .
AD(L) = 77 max [N+ 1) - NP, (©6)

where N fi)(t) is the size of the largest cluster after removing ¢
nodes from network i. We also define t(Ai) as the number of nodes
removed such that the maximum in (6) is attained and the gap
position fi’)(L) = IX) /L?. This value can be used to estimate
the percolation threshold for a finite-size system. Other estima-
tions for this value, such as the peak position of M; or § ,L% in
general differ from this value, but the differences are expected
to decrease as the size of the system increases.

According to [41], the averaged values of the previous quan-
tities present a scaling of the form !

A(L) ~ L7PI, (7a)
fa(L) = fa(eo) ~ L7, (7b)
Nia(L) ~ L7, (7¢)

Also, the corresponding fluctuations, defined as the standard
deviations, scale as

xa(L) ~ L, (8a)
XL ~L7', (8b)
v (L) ~ L7, (8¢)

Note that, in a similar way as it happens for Equation (5), the
exponent v; does not coincide in general with the correlation
length critical exponent v.

2.5. Computational and statistical methods

All simulations and computations were performed using Python

and C++, depending on the case. For the construction of DT
networks, N = L? points were drawn uniformly on an L X

"Here, A(L) := (AY(L)), where the average is taken over realizations i of
the attack. fa(L) and Nj (L) are defined in a similar way.
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Figure 1: (a-c) Relative size of the giant component S, size of the second-
largest cluster S 2L2, and second moment of the finite-cluster size distribution
M as a function of the fraction of nodes removed for the full-range between-
ness attack. Insets in Panels (b-c) show the scaling of the peaks for M, and
S,L?* with the system size. The exponent ratios obtained from the fit of the
peaks are 1 — B/v = 1.98(2), and y/v = 2.02(2), which are consistent with a
first-order transition (8 = 0 and y = 2v). (d-f) Collapse of the curves from left
panels based on Egs. (3) and (4).

L square (uniform density approach) and then the triangula-
tion was computed using the Python package SciPy [42], con-
sidering open boundary conditions. Betweenness computation
was performed using the python packages igraph [43] and Net-
worKit [44]. We found that the igraph implementation runs
faster than NetworKit, but the latter allows parallelization. Per-
colation analysis was done using our implementation of the
Newman-Ziff algorithm [45], where we introduced a variation
that allows us to compute, in linear time, the average finite-
cluster size and the size of the second-largest component. Our
code is available at the GitHub repository https://github.
com/nahuelalmeira/dismantlingScaling. Averages were
computed over 102—10* independent networks for each size and
attack strategy. Power-law fittings were performed using least-
squares linear regression over the logarithm of the correspond-
ing variables. To minimize finite-size effects, fits only include
the largest five sizes available. Uncertainties are reported for a
confidence interval of 95%.

3. Results

3.1. Full-range betweenness

Figures 1b and 1c show the second moment of the finite-
size distribution S,L? and the size of the second-largest clus-
ter M,. Both metrics peak close to the percolation threshold.
Following the scaling ansatz (3) and (4), we computed the ex-
ponent ratios 8/v and /v by fitting the peak sizes of S,L? and
M, for different system sizes (see figure insets). From the peak
height of the second-largest cluster, we obtained 8/v = 0.02(2).
Similarly, a ratio y/v = 2.02(2) was obtained from the peak
of the second moment. The latter exponent ratio can be also
obtained from the scaling of the fluctuations of the order pa-

NS %) —(S1)2. We present the analysis in the

Supplementary Material ([46], Section S1), by which an esti-
mation y/v = 2.04(2) was obtained. The critical exponents
found for this attack strategy are consistent with a first-order
phase transition (8 = 0 and y = dv [47, 48, 49]).

The right panels of Figure 1 show the collapse of each per-
colation metric based on the scaling ansatz (3) and (4). We
have chosen the parameters that give the best collapse, taking
into account that they could slightly differ from the parameters
estimated by other means, especially when small sizes are con-
sidered.

We also analyzed the component size distribution close to
the percolation threshold for the full-range betweenness attack.
Instead of considering only the finite-size components, we in-
clude the giant component, as it can give insights regarding the
nature of the transition. In Figure 2 we show histograms for
this distribution (aggregated over 10* independent simulations)
for different system sizes at the gap position fa(L). In Panel 2a,
where a linear binning is employed, we see a multimodal dis-
tribution with peaks that coincide when data are scaled by the
number of nodes L2. We note that the separation between peaks
is roughly equal, and approximately 0.25. As we will discuss
later, the location of the peaks can be understood by examining
in detail the attack evolution in single realizations. The loga-
rithmic binning in Panel 2b shows that the distribution stretches
for lower sizes.
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Figure 2: Scaled component size distribution for the full-range betweenness
attack at f = fa(L), including the largest cluster. Each histogram is built com-
bining 10* networks. (a) Linear binning, showing a series of peaks and valleys
that follow a characteristic frequency. (b) Logarithmic binning, exposing an
heterogeneous distribution of small sizes. The dashed line corresponds to the
expected distribution for random percolation on an infinite two-dimensional
lattice.
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Figure 3: Largest one-step gap statistics for the full-range betweenness at-

tack as a function of the network size. (a) Probability distribution for the gap
size. As the system size increases, the distribution becomes bimodal and the
values between the two modes become less probable. (b) Probability distribu-
tion for the gap position. The curves shift towards the left and become more
peaked as L increases. Inset: Collapse of the histograms after the change of
variables ¢ = ( fg) — fa)L'"”. The corresponding master curve (yellow curve)
is a Gaussian distribution. (c-d) Average and standard deviation of the gap size.
Blue squares include all simulations, while orange circles and green triangles
discriminate the values corresponding to the left and right peaks of the prob-
ability distribution, respectively. (e) Scaling for the average gap position fx
and its fluctuations y, . From the scaling of fa, it can be seen that the largest
gap occurs, in the thermodynamic limit, at the beginning of the attack. From
the scaling of the fluctuations, we can estimate the correlation length exponent
1/v = 0.59(3). (f) Average size and fluctuations for the giant component at the
gap position. The scaling of these two metrics indicates a fractal dimension of
the percolating cluster of dy = 2, consistent with a first-order transition.

Largest gap statistics

We complement the previous analysis by studying the largest
gap statistics similarly as in [41]. Our main results are summa-
rized in Figure 3. In Panel 3a we plot the probability distribu-
tion of gap sizes, computed over 10* independent simulations.
The distributions are bimodal, with peaks that become sharper
as the system size increases. The height of the right peak does
not seem to depend on L, but the left peak increases as the sys-
tem size increases. The positions of the peaks, which corre-
spond to the typical largest one-step damage produced by the
attack, remain constant at about 0.25 and 0.45. We will give an
interpretation of these values in the following section, based on
a geometrical characterization of the attack.

Panel 3b shows the corresponding probability distribution
for the position of the largest gap. Contrary to the gap size,

where two typical values are observed, the gap position ex-
hibits a centered, unimodal distribution. As the system size
increases, the curves shift towards the left and become sharper.
Based on the arguments presented in [41], we define the vari-
able ¢ = (f — fy)L'"”, where v is the correlation length ex-
ponent and plot its probability distribution for each system size
(see panel inset). The curves for all sizes collapse well into
a master curve (yellow curve) which, through the central limit
theorem, corresponds to a Gaussian distribution.

As it was introduced in Section 2, for continuous percola-
tion the average gap size A(L) vanishes in the thermodynamic
limit, following a power-law with associated exponent —3/v.
First-order transitions, in turn, are typically characterized by
B = 02 and thus their average gap size remains finite even for
L — co. Our data shows consistency with the latter case, as we
show in Panel 3c. When all simulations are considered (blue
squares), the average gap size remains approximately constant,
with a slight drop for larger systems. However, we note that
an average computed over a bimodal distribution could be mis-
leading, so we also computed averages restricted to each of the
two peaks of p(A®?) (separated by the vertical dashed line in
Panel 3a). When doing this, we see that each average approxi-
mates to the modes as the system size increases.

Alongside the averages, the fluctuations of the gap size are
expected to present the same scaling properties (see (8)). When
computed over all simulations, we see an increment of the fluc-
tuations for smaller systems, but the values seem to stabilize
for larger networks. This increment is associated with the con-
centration of values close to the peaks in p(A®), which is more
notorious for smaller values of L. If we discriminate each peak,
as we did for the averages, the fluctuations converge to approx-
imately the same value.

We now discuss the average and fluctuations of the gap po-
sition. As seen in Panel 3e, equation (7b) is satisfied with a
scaling exponent 1/v; = 0.30(1) and thermodynamic gap po-
sition fa(co) = 0. That is, the largest one-step damage of the
attack occurs when a sub-extensive fraction of nodes are re-
moved. In terms of network robustness, this implies that the
betweenness-based strategy is extremely efficient in disman-
tling Delaunay triangulations. As for the fluctuations of the gap
position, the power-law relation (8b) is satisfied with inverse
correlation-length exponent 1/v = 0.59(3). This is the value we
employed for collapsing the curves in Figure 1, and in Panel 3b.

To conclude this section, we analyze the average size of the
largest cluster at the gap position N;a and its corresponding
fluctuations y,,. We see from Panel 3f that both quantities
scale with exponents that are consistent with dy = 2. In other
words, the scaling predicts that the percolation cluster is not
a fractal, but a regular two-dimensional object. If the hyper-
scaling relation d — dy = /v holds, then 8 = 0 and thus, the
transition is discontinuous.

2 An exception to this rule are the so-called hybrid percolation transitions,
which describe some explosive percolation models [50].



Geometrical characterization of the attack

To gain more intuition about the nature of the transition, it
is useful to look at a single realization of the attack procedure.
Also, to reinforce ideas, we perform a comparative analysis by
using range-limited betweenness attacks as we will explain in
the next sections. As an example, we show in Figure 4 the state
of a network for a realization i at f = g’). In other words, we
present the network one step after the occurrence of the largest
gap. The size of the network is L = 512. Each panel represents
a different attack strategy. In particular, Panel 4a corresponds
to the full-range betweenness attack. To keep the figure clean,
edges are omitted and only nodes are drawn. Colored points
correspond to the nodes that remain in the network, each color
representing a connected component. On the other hand, gray
and black nodes are those that have been removed —i.e., the
nodes with the highest betweenness. The difference between
gray and black nodes is that the black ones form the largest
connected component of the subgraph induced by the removed
nodes.

The first thing to notice is that the high betweenness nodes
are located either in the central part of the network or over stri-
ations that go from the center to the periphery. Due to the sym-
metry of the network, these paths are mainly horizontal or ver-
tical. As a consequence of the open boundary conditions, the
nodes located on the border are connected by longer edges than
bulk nodes. For this reason, they tend to have large between-
ness. These nodes also connect different striations to the largest
component of removed nodes.

As it can be inferred from the figure, the largest break in the
network occurs when two of these paths, coming from different
borders, merge. As a consequence, a fragment of about a quar-
ter of the network (if the paths come from adjacent borders) or
half of the network (for paths coming from opposite borders)
is separated from the giant component. This fact explains the
bimodal distribution observed for the largest gap size A, and
the position of the peaks for the component size distribution,
located roughly at s/L? = 1/4,1/2, and 3/4.

We define the set of nodes removed up to f = f as the
vulnerability backbone of the network 3. Our definition is based
on two main facts. First, the removal of these nodes produces
a massive breakdown of the network and second, the amount
of nodes #, included in this set is a sub-extensive quantity, as it
scales as tA(L) = L2 fa(L) ~ L>'/"1, with 1/v; = 0.30(1).

3.2. Range-limited betweenness

As we have discussed so far, betweenness centrality turns
out to be a useful metric for assessing the vulnerability of ran-
dom lattices. This effectiveness is probably associated with the
fact that betweenness is a global measure, retrieving informa-
tion from the whole network for each node. One way we can
test this assumption is by introducing a parameter to the defini-
tion of betweenness, to tune the range of the interactions. We
do this by employing {-betweenness and by performing a sys-
tematic study of the percolation transition in terms of the cutoff
value ¢.

3 A similar definition is given in [31].

In Figure 5a we show the evolution of the order parameter
S as a function of the fraction of removed nodes employing
attacks for several values of ¢ on networks with linear size L =
256. Curves are averaged over 103-10* realizations, with errors
lower than line width. As expected, a more efficient dismantling
process is observed as the cutoff length increases. In addition,
the associated percolation transition becomes sharper for larger
values of {. Eventually, we see that for a large enough cutoff
the range-limited attack cannot be distinguished from the full-
range version. This suggests the existence of a crossover cutoff
£*(L) such that B¢ attacks perform as well as B for all £ > £*.

An alternative comparison between the different attacks can
be made by studying the finite-component size distribution n, at
the critical point (see Figure 5b). Before discussing the results,
we point out that the quantities plotted in this figure differ from
the ones presented in Figure 2b in two ways. First, the distri-
bution shown in 5b does not include the giant component, and
second, instead of f)(L), we choose the position of the peak of
the second moment M, as the estimator for the finite-size per-
colation threshold f,.(L). For attacks with a short cutoff value,
it is expected that the finite-component size distribution does
not differ significantly from standard percolation. As the figure
shows, this is indeed the case. For larger values of £, in turn,
clear differences can be observed. Specifically, the distribution
flattens and a bump for larger sizes arises. As we have excluded
the giant component in this calculation, we do not observe the
three peaks shown in Figure 2 for the full-range attack. Never-
theless, the bump at the end of the distribution for large cutoff
values points towards the presence of a sharp transition, acting
as a power-keg in a similar way as in other explosive percola-
tion models [51].

To complement the former qualitative description of the at-
tacks , we performed a finite-size scaling analysis to character-
ize the thermodynamic properties of the associated percolation
transitions. To keep the section simple, we discuss here only
the main results and refer the reader to the Supplementary Ma-
terial [46] for a detailed description of the methods employed.
On one side, we computed the percolation threshold fB¢ for
different values of ¢, up to £ = 16. Consistently with Figure 5,
the threshold diminishes as the cutoff increases. An interesting
point here would be to know the value to which the succession
of range-limited percolation thresholds converges as £ grows.
That is, ch°° = limg_ e ff[, where the limit £ — oo is taken
after the limit L — co. One possibility is that f2* = fB, which
we have determined as being zero. Nonetheless, there is not
a fundamental reason for which these two values should co-
incide, and later in the section, we discuss evidence supporting
that the limit is indeed strictly larger than zero. From the results
discussed so far it is not possible to extrapolate to £ — oo, as
the largest ¢ for considered was 16, which is a relatively small
value. Larger cutoffs are hard to analyze, given the computa-
tional cost involved in the calculations —not only does the cost
of {-betweenness increase significantly but also larger networks
have to be used to avoid finite-size effects.

To complete the characterization of the transitions, we com-
puted the critical exponent ratios /v and B/v employing the
same methods as for the full-range betweenness. The values ob-
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Figure 4: Single realization of different attacks on a DT network with size L = 512 at f = f,. Colored nodes in the upper panels correspond to different connected
components. Giant and second-largest clusters are colored blue and orange, respectively. Nodes that have been removed are plotted as black stars and gray squares in
the corresponding lower panels. The former belong to the GCC of the subgraph induced by the removed nodes. (a) Full-range betweenness attack. After removing
the braking nodes, the network splits into two extensive clusters plus, eventually, small-size components. (b-c) Range-limited betweenness attack with £ = 128
and ¢ = 64. As the cutoff diminishes, the behavior of the transition changes and a broad distribution of component sizes emerges, progressively approaching a

continuous phase transition.

tained for different cutoffs in the range 2 < g < 16 are all con-
sistent with standard percolation on two dimensions. This indi-
cates that, although the transitions occur sooner as ¢ increases,
they all obey the same underlying dynamics and thus, belong to
the same universality class.

As discussed at the beginning of the section, the behavior
of the full-range betweenness attack can be recovered if large
enough cutoffs are employed. To give a precise value of £*(L)
for each system size, we computed the location of the largest
gap fa for different cutoff lengths and system sizes (Figure 6a).
The curves decrease monotonically as ¢ increases until they
reach the value corresponding to the full-range attack (horizon-
tal dashed lines). We define the crossover cutoff £* as the lowest
¢ such that the relative difference between /2 and f does not
exceed a given threshold ¢, and take ¢ = 0.01 (the results are
not sensitive to the specific value of the threshold, as long as it
remains small). The inset shows that the crossover cutoff scales
as " ~ L% with @ = 0.91(2).

In addition to the scaling of £*, more information can be ex-
tracted from the behavior of fff(L). As can be seen in Panel

6a, the largest drop in the gap position occurs for £ < 10 in-
dependently of the system size. After this approximate value,
the shape of the curves becomes more dependent on the sys-
tem size. While smaller networks continue with a significant
drop until they reach ff, larger systems exhibit a plateau, fol-
lowed by an inflection point. Thus, for systems large enough
moderate values of ¢ do not seem to add too much relevant in-
formation regarding node centrality. This might be explained
by the fact that the network model here studied does not have
mesoscopic structures such as communities which could be ex-
ploited by moderate-ranged centrality measures to find weak
spots. The information required to dismantle the network is
thus encoded at all scales, ranging from each node’s neighbor-
hood to the whole system.

Panel 6b shows the curves scaled by L*, and shifted verti-
cally by subtracting ff[(L). The collapse around ¢/L* ~ 0.7
indicates that the criterion taken as a definition for ¢* makes
sense (that is, it does not depend significantly on the threshold
chosen). In the thermodynamic limit, this plot corresponds to
the phase diagram of the model, which depends on the inten-
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Figure 5: Characterization of range-limited betweenness attacks for differ-
ent cutoff values on DT networks of linear size L = 256. (a) Evolution of
the order parameter S;. For £ = 2, the attack behaves in a similar fashion as
the degree-based attack (dotted line). As ¢ increases, the percolation threshold
shifts towards the left until, for £ = 110, the attack becomes indistinguishable
from the full-range attack (dashed line). (b) Component size distribution n; at
the percolation threshold for range-limited attacks with different cutoffs. The
distribution excludes the giant component and the percolation threshold is esti-
mated as the position where M, peaks. For small cutoffs, the behavior is similar
to random percolation (solid black line). As ¢ increases, the curves flatten and
a bump for large values of s emerges.

sive parameters f and £/L®. Although it is not possible to know
the exact shape of the curve that separates the two phases, we
can sketch it by extrapolating the finite-size curves. The first
thing to notice is that, above a certain system size, all curves
cross at a single point £/L* = a = 0.12. The existence of such
a crossing point is an indicator that a non-trivial phase diagram
exists. Moreover, if we look at the region £/L* > a, the curves
tend to accumulate as the system size increases. We can infer
from this fact that the curve at the thermodynamic limit will not
differ significantly from the curve corresponding to L = 256
(the largest size studied). On the contrary, for {/L* < a the
curves seem to move consistently to the left. We hypothesize
that, in the thermodynamic limit, the curve will reach the ver-
tical axis on a finite value f;, as sketched by the dotted gray
line. For this to happen, the percolation thresholds f2¢ should
converge to a non-zero value and in that case, ff = f2*° —
see previous discussion on the possibility of fB* being larger
than zero. For comparison, the percolation thresholds f2¢ for
¢=12,3,4,6,8,and 16 are shown (orange stars).

To complete this section, we resume the discussion on the
geometrical characterization of the attacks. Alongside the full-
range betweenness attack, Figure 4 shows the same network
at f = fff(L), for £ = 128 (Panel b) and ¢ = 64 (Panel c).
Both cutoffs are under the crossover value ¢*(L), and the dif-
ferences to the full-range attack are evident. If we look at the
connected components, we see a picture that is more familiar to
standard percolation —there is a large cluster, followed by mul-
tiple finite-size components of heterogeneous sizes. Also, the
spatial distribution of the removed nodes changes significantly.
We see that the striations do not meet the center, but terminate
approximately at a distance ¢ from the border. We can use this
observation to make a heuristic prediction of £* in the following
way. For a massive breakdown of the network to happen, stria-
tions coming from different borders must meet at the center. If
the length of these paths is approximately ¢, then £*(L) ~ L/2.
If we recall the values obtained for the crossover cutoff (inset
of Figure 6), we can see that up to the sizes studied, the values
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Figure 6: (a) Largest gap position ff[(L) as a function of the cutoff length ¢
for different system sizes. For each value, the position drops until it reaches the
value corresponding to the full-range attack (dotted-lines) at £ = £*(L), marked
as red dots. The scaling of £* with L is plotted in the inset of the next panel.
(b) The same data from panel (a) presented in scaled coordinates. The vertical
axis is shifted by subtracting the largest gap position corresponding to the full-
range attack, and the horizontal axis is scaled by L*. Orange stars indicate the
percolation thresholds fB¢ for £ = 2,3,4,6,8,and 16.

are close to this estimation.

4. Discussion

In [31, 32], Ercsey-Ravasz, et al. perform a systematic
analysis on the contribution to betweenness centrality coming
from geodesics of different lengths. The authors show that ¢-
betweenness obeys a characteristic scaling versus ¢ which al-
lows to accurately approximate the full-range betweenness dis-
tribution without the expensive computation of long paths. As a
practical example, they apply their methods to the identification
of top-betweenness nodes in different network architectures. In
this sense, our systematic analysis of range-limited attacks ex-
poses a limitation of this procedure. Even if the majority of the
top-ranked nodes are correctly identified, the thermodynamic
aspects of the {-betweenness attacks are qualitatively different
from their full-range counterpart. This suggests that the topo-
logical interaction of nodes at a global scale can give important
contributions to betweenness, which are missed when local ap-
proximations are employed. We also note that the algorithm
presented by the authors does not reduce the algorithmic com-
plexity involved in the calculation of different {-betweenness
centrality —see Supplementary Material [46] for performance



comparison. Closely related to the former, we point out another
contribution of our work. The thermodynamic characterization
of percolation transitions under attacks based on related cen-
trality measures can expose differences between these measures
that are not evident from other analyses. Thus, the dismantling
approach can be used to build benchmarks for comparing dif-
ferent centrality measures.

In the statistical physics literature, phase transitions on De-
launay triangulations have been extensively studied [52, 53, 54,
14]. Together with bond dilution and local rewiring, the DT
represents a model of spatially embedded systems with topo-
logical or quenched disorder [55, 19]. One of the consequences
of this disorder is a rounding effect on phase transitions. In
some systems, disorder destroys phase coexistence and has a
rounding effect on first-order transitions [56]. For the particu-
lar case of full-range betweenness attack, the opposite occurs.
If we consider a lattice with periodic boundary conditions, all
nodes are equivalent and thus, any attack based on initial cen-
trality is equivalent to random percolation. The disorder intro-
duced by the DT graph sharpens the transition, transforming it
from second- to first-order*.

As a possible application of our work to real-world net-
works, we recall that DT networks have been employed as a
model for cities [3], where betweenness centrality has a natural
interpretation in terms of traffic flows. In this context, high-
betweenness node deletion can be interpreted as the saturation
of high traffic intersections. Both the discontinuity of the tran-
sition and its location at f = 0 are indicators of the potential
fragility of traffic networks. In fact, discontinuous percolation
transitions in real-world traffic networks have been recently ob-
served [57]. Thus, we believe our work could be useful for
understanding and predicting traffic congestion in large cities.

As a final discussion, we emphasize that all the attacks here
considered are simultaneous —the centrality measures are com-
puted at the beginning of the attack and are not updated after
each node removal. These kind of attacks corresponds to tem-
poral scales where the node removal procedure occurs faster
than the process of centrality adjustment. The extension of our
analysis to updated attacks and its comparison with the present
results would be an interesting research direction. In this line,
we recall that in Erdos-Rényi networks, updating betweenness
changes the universality class of the attack [28] and presents
a percolation threshold close to the optimal value [20]. Also,
in DT networks, Norrenbrock, et al. [8] showed that this at-
tack has a percolation threshold f, = 0, but the thermodynamic
properties of the transition remain unknown.

5. Conclusions

In this article, we studied the dismantling of two-dimensional
Delaunay triangulations under node removal based on between-
ness centrality. We studied the breakdown of the networks in

“To be fair, the comparison should be made with respect to a DT networks
with periodic boundary conditions. Preliminary work (not shown) indicates that
the transition is not sensitive to the change of boundary conditions.

terms of percolation transitions and characterized the nature
(order and criticality) of the transitions using finite-size scal-
ing analysis. Alongside the standard definition of betweenness,
we employed the so-called {-betweenness, which ignores paths
longer than ¢ and thus, varies from local to global as the param-
eter £ increases.

We found that the attack based on the full-range between-
ness produces a discontinuous transition at f2 = 0. On the
other hand, finite values of ¢ produce continuous transitions at
B¢ > 0 that belong to the universality class of random perco-
lation on two-dimensional lattices. By systematically varying
the parameter ¢, we determined that the full-range behavior is
recovered when ¢ increases with the system linear size L as
 ~ L%, with a close to 1, suggesting that any finite approxima-
tion of betweenness worsens the attack effectiveness by chang-
ing the transition not only quantitatively (increasing the perco-
lation threshold) but also qualitatively (modifying its order).

Acknowledgments

This work was partially supported by grants from CON-
ICET (PIP 112 20150 10028), FonCyT (PICT-2017-0973), Se-
CyT-UNC (Argentina), and used computational resources from
CCAD - Universidad Nacional de Cérdoba (http://ccad.
unc.edu.ar/), which are part of SNCAD — MinCyT, Reptblica
Argentina.

References

[1] M. Barthélemy, Spatial networks, Physics Reports 499 (1-3) (2011) 1-
101. doi:10.1016/j.physrep.2010.11.002.

URL http://dx.doi.org/10.1016/j.physrep.2010.11.002

[2] A. M. Becker, R. M. Ziff, Percolation thresholds on two-dimensional

Voronoi networks and Delaunay triangulations, Physical Review E

- Statistical, Nonlinear, and Soft Matter Physics 80 (4) (2009) 1-9.

doi:10.1103/PhysRevE.80.041101.

URL https://link.aps.org/doi/10.1103/PhysRevE.80.

041101

A. Kirkley, H. Barbosa, M. Barthelemy, G. Ghoshal, From the be-

tweenness centrality in street networks to structural invariants in

random planar graphs, Nature Communications 9 (2018) (2018) 2501.

d0i:10.1038/s41467-018-04978-z.

URL http://dx.doi.org/10.1038/s41467-018-04978-zhttp:

//wuw.nature.com/articles/s41467-018-04978-z

S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, S. Havlin, Catas-

trophic cascade of failures in interdependent networks, Nature 464 (7291)

(2010) 1025-1028. doi:10.1038/nature08932.

URL https://doi.org/10.1038/nature08932

[5] M. FE. Sykes, J. W. Essam, Exact critical percolation probabilities for site
and bond problems in two dimensions, Journal of Mathematical Physics
5(8) (1964) 1117-1127. doi:10.1063/1.1704215.

[6] B. Bollobds, O. Riordan, The critical probability for random Voronoi per-
colation in the plane is 1/2, Probability Theory and Related Fields 136 (3)
(2006) 417-468. doi:10.1007/s00440-005-0490-z.

[71 O. Melchert, Percolation thresholds on planar Euclidean relative-
neighborhood graphs, Physical Review E - Statistical, Nonlinear, and
Soft Matter Physics 87 (4) (2013) 1-7. doi:10.1103/PhysRevE.87.
042106.

[8] C. Norrenbrock, O. Melchert, A. K. Hartmann, Fragmentation proper-
ties of two-dimensional proximity graphs considering random failures
and targeted attacks, Physical Review E 94 (6) (2016) 1-11. doi:
10.1103/PhysRevE.94.062125.

3

=

[4

=



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

C. Norrenbrock, Percolation threshold on planar Euclidean Gabriel
graphs, European Physical Journal B 89 (5) (2016). doi:10.1140/
epjb/e2016-60728-0.

M. M. de Oliveira, S. G. Alves, S. C. Ferreira, R. Dickman, Contact
process on a Voronoi triangulation, Physical Review E 78 (3) (2008)
031133. doi:10.1103/PhysRevE.78.031133.

URL https://link.aps.org/doi/10.1103/PhysRevE.78.
031133

B. Ding, C. Li, M. Zhang, G. Lu, F. Ji, Numerical analysis of percola-
tion cluster size distribution in two-dimensional and three-dimensional
lattices, European Physical Journal B 87 (8) (2014). doi:10.1140/
epjb/e2014-40996-4.

D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd Edi-
tion, Taylor & Francis, 1994.

H. P. Hsu, M. C. Huang, Percolation thresholds, critical exponents, and
scaling functions on planar random lattices and their duals, Physical Re-
view E - Statistical Physics, Plasmas, Fluids, and Related Interdisci-
plinary Topics 60 (6 A) (1999) 6361-6370. doi:10.1103/physreve.
60.6361.

J. F. McCarthy, Invasion percolation on a random lattice, Journal of
Physics A: General Physics 20 (11) (1987) 3465-3469. doi:10.1088/
0305-4470/20/11/047.

L. C. Freeman, A Set of Measures of Centrality Based on Betweenness,
Sociometry 40 (1) (1977) 35. doi:10.2307/3033543.

URL https://wuw.jstor.org/stable/30335437origin=
crossref

R. M. D’Souza, J. Gémez-Gardeiies, J. Nagler, A. Arenas, Explosive phe-
nomena in complex networks, Advances in Physics 68 (3) (2019) 123—
223. d0i:10.1080/00018732.2019.1650450.

S. Meguerdichian, F. Koushanfar, M. Potkonjak, M. Srivastava, Cover-
age problems in wireless ad-hoc sensor networks, in: Proceedings IEEE
INFOCOM 2001. Conference on Computer Communications. Twenti-
eth Annual Joint Conference of the IEEE Computer and Communica-
tions Society (Cat. No.0O1CH37213), Vol. 3, IEEE, 2001, pp. 1380-1387.
doi:10.1109/INFCOM.2001.916633.

URL http://ieeexplore.ieee.org/document/916633/

A. P. Kartun-Giles, M. Barthelemy, C. P. Dettmann, Shape of shortest
paths in random spatial networks, Physical Review E 100 (3) (2019) 1-
13. doi:10.1103/PhysRevE. 100.032315.

H. Barghathi, T. Vojta, Phase transitions on random lattices: How random
is topological disorder?, Physical Review Letters 113 (12) (2014) 1-5.
doi:10.1103/PhysRevLett.113.120602.

F. Morone, H. A. Makse, F. Morone and H. A. Makse, Influence max-
imization in complex networks through optimal percolation, Nature
524 (7563) (2015) 65-68. doi:10.1038/naturel14604.

G. Sabidussi, The centrality index of a graph, Psychometrika 31 (4)
(1966) 581-603. doi:10.1007/BF02289527.

URL http://link.springer.com/10.1007/BF02289527

S. Oldham, B. Fulcher, L. Parkes, A. Arnatkeviciaté, C. Suo, A. Fornito,
Consistency and differences between centrality measures across distinct
classes of networks, PLoS ONE 14 (7) (2019) 1-23. doi:10.1371/
journal.pone.0220061.

J. M. Anthonisse, The rush in a directed graph (1971).

M. E. J. Newman, M. Girvan, Finding and evaluating community struc-
ture in networks, Physical Review E - Statistical, Nonlinear, and Soft
Matter Physics 69 (2 2) (2004) 1-15. doi:10.1103/PhysRevE.69.
026113.

P. Holme, B. J. Kim, C. N. Yoon, S. K. Han, Attack vulnerability of
complex networks, Physical Review E - Statistical Physics, Plasmas,
Fluids, and Related Interdisciplinary Topics 65 (5) (2002) 14. doi:
10.1103/PhysRevE.65.056109.

S. Iyer, T. Killingback, B. Sundaram, Z. Wang, Attack Robustness and
Centrality of Complex Networks, PLoS ONE 8 (4) (2013) e59613. doi:
10.1371/journal.pone.0059613.

URL https://doi.org/10.1371/journal.pone.0059613

S. Wandelt, X. Sun, D. Feng, M. Zanin, S. Havlin, A comparative analysis
of approaches to network-dismantling, Scientific Reports 8 (1) (2018) 1—
15. doi:10.1038/s41598-018-31902-8.

N. Almeira, O. V. Billoni, J. I. Perotti, Scaling of percolation transitions
on Erdos-Rényi networks under centrality-based attacks, Physical
Review E 012306 (2020) 1-9. doi:10.1103/PhysRevE.101.012306.

10

[29]

[30]

[31]

(32]

[33]

[34]

(35]

[36]

(37

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

URL http://link.aps.org/doi/10.1103/PhysRevE.101.
012306
U. Brandes, A faster algorithm for betweenness centrality*,

The Journal of Mathematical Sociology 25 (2) (2001) 163-177.
doi:10.1080/0022250X.2001.9990249.

URL http://www.tandfonline.com/doi/abs/10.1080/
0022250X.2001.9990249

U. Brandes, On variants of shortest-path betweenness centrality and their
generic computation, Social Networks 30 (2) (2008) 136-145. doi:10.
1016/j.socnet.2007.11.001.

M. Ercsey-Ravasz, Z. Toroczkai, Centrality Scaling
Networks, Physical Review Letters 105 (3) (2010)
doi:10.1103/PhysRevLett.105.038701.

URL https://link.aps.org/doi/10.1103/PhysRevLett.105.
038701

M. Ercsey-Ravasz, R. N. Lichtenwalter, N. V. Chawla, Z. Toroczkai,
Range-limited centrality measures in complex networks, Physical Re-
view E - Statistical, Nonlinear, and Soft Matter Physics 85 (6) (2012).
doi:10.1103/PhysRevE.85.066103.

S. P. Borgatti, M. G. Everett, A Graph-theoretic perspective on central-
ity, Social Networks 28 (4) (2006) 466—484. doi:10.1016/j.socnet.
2005.11.005.

Y. S. Cho, S. W. Kim, J. D. Noh, B. Kahng, D. Kim, Finite-size scal-
ing theory for explosive percolation transitions, Physical Review E - Sta-
tistical, Nonlinear, and Soft Matter Physics 82 (4) (2010) 2-5. doi:
10.1103/PhysRevE.82.042102.

S. Fortunato, F. Radicchi, S. Fortunato and F. Radicchi, Explosive per-
colation in graphs, Journal of Physics: Conference Series 297 (1) (2011)
12009. doi:10.1088/1742-6596/297/1/012009.

URL https://doi.org/10.1088/1742-6596/297/1/012009

J. Fan, M. Liu, L. Li, X. Chen, Continuous percolation phase transitions
of random networks under a generalized Achlioptas process, Physical Re-
view E - Statistical, Nonlinear, and Soft Matter Physics 85 (6) (2012) 1-6.
doi:10.1103/PhysRevE.85.061110.

J. Li, M. Astling, Corrected finite-size scaling in percolation, Physical
Review E - Statistical, Nonlinear, and Soft Matter Physics 86 (4) (2012)
1-4. doi:10.1103/PhysRevE.86.040105.

R. M. Ziff, Scaling behavior of explosive percolation on the square lattice,
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 82 (5)
(2010) 1-8. doi:10.1103/PhysRevE.82.051105.

P. Grassberger, C. Christensen, G. Bizhani, S. W. Son, M. Paczuski,
Explosive percolation is continuous, but with unusual finite size be-
havior, Physical Review Letters 106 (22) (2011) 1-4. doi:10.1103/
PhysRevLett.106.225701.

N. Bastas, K. Kosmidis, P. Giazitzidis, M. Maragakis, Method for
estimating critical exponents in percolation processes with low sampling,
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 90 (6)
(2014) 1-5. doi:10.1103/PhysRevE.90.062101.

URL https://link.aps.org/doi/10.1103/PhysRevE.90.
062101

J. Fan, J. Meng, Y. Liu, A. A. Saberi, J. Kurths, J. Nagler, Universal
gap scaling in percolation, Nature Physics 16 (4) (2020) 455-461. doi:
10.1038/s41567-019-0783-2.

URL http://www.nature.com/articles/s41567-019-0783-2

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, 1. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henrik-
sen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pe-
dregosa, P. van Mulbregt, SciPy 1.0 Contributors, SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python, Nature Methods 17
(2020) 261-272. doi:10.1038/s41592-019-0686-2.

G. Csardi, T. Nepusz, The igraph software package for complex network
research, InterJournal Complex Systems (2006) 1695.

URL https://igraph.org

C. L. Staudt, A. Sazonovs, H. Meyerhenke, NetworKit: A Tool Suite for
Large-scale Complex Network Analysis, . (3 2014).

URL http://arxiv.org/abs/1403.3005

M. E. J. Newman, R. M. Ziff, Fast Monte Carlo algorithm for site
or bond percolation, Physical Review E - Statistical Physics, Plasmas,

in Large
038701.



[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Fluids, and Related Interdisciplinary Topics 64 (1) (2001) 16. doi:
10.1103/PhysRevE.64.016706.

In the Supplementary Material at [URL] we add complementary analysis
on the order of the full-range betweenness transition. We also estimate
the percolation thresholds and universality class of several range-limited
attacks. Finally, we discuss the algorithmic complexity related to the esti-
mation of g*.

K. Binder, Finite size scaling analysis of ising model block distribution
functions, Zeitschrift fiir Physik B Condensed Matter 43 (2) (1981) 119-
140. doi:10.1007/BF01293604.

K. Binder, D. P. Landau, Finite-size scaling at first-order phase transi-
tions, Physical Review B 30 (3) (1984) 1477-1485. doi:10.1103/
PhysRevB.30.1477.

URL https://link.aps.org/doi/10.1103/PhysRevB.30.1477
N. A. Aratjo, H. J. Herrmann, Explosive percolation via control of the
largest cluster, Physical Review Letters 105 (3) (2010) 2-5. doi:10.
1103/PhysRevLett.105.035701.

R. M. D’Souza, J. Nagler, Raissa M. D’Souza and Jan Nagler, Anoma-
lous critical and supercritical phenomena in explosive percolation, Nature
Physics 11 (7) (2015) 531-538. doi:10.1038/nphys3378.

E. J. Friedman, A. S. Landsberg, Construction and analysis of random
networks with explosive Ppercolation, Physical Review Letters 103 (25)
(2009) 1-4. doi:10.1103/PhysRevLett.103.255701.

W. Janke, R. Villanova, Two-dimensional eight-state Potts model on
random lattices: A Monte Carlo study, Physics Letters A 209 (3-4)
(1995) 179-183. doi:10.1016/0375-9601(95)00813-9.

URL https://linkinghub.elsevier.com/retrieve/pii/
0375960195008139

F. W. Lima, U. M. Costa, M. P. Almeida, J. S. Andrade, Critical behav-
ior of a three-state Potts model on a Voronoi lattice, European Physical
Journal B 17 (1) (2000) 111-114. doi:10.1007/5100510070165.

M. M. De Oliveira, S. G. Alves, S. C. Ferreira, Continuous and discontin-
uous absorbing-state phase transitions on Voronoi-Delaunay random lat-
tices, Physical Review E 93 (1) (2016) 1-7. doi:10.1103/PhysRevE.
93.012110.

W. Janke, M. Weigel, Harris-Luck criterion for random lattices, Physical
Review B - Condensed Matter and Materials Physics 69 (14) (2004) 1-12.
doi:10.1103/PhysRevB.69.144208.

J. Cardy, Quenched randomness at first-order transitions, Physica A:
Statistical Mechanics and its Applications 263 (1-4) (1999) 215-221.
doi:10.1016/50378-4371(98)00489-0.

G. Zeng, J. Gao, L. Shekhtman, S. Guo, W. Lv, J. Wu, H. Liu, O. Levy,
D. Li, Z. Gao, H. E. Stanley, S. Havlin, Multiple metastable network
states in urban traffic, Proceedings of the National Academy of Sciences
XXX (Xx) (2020) 201907493. doi:10.1073/pnas.1907493117.
URL http://www.pnas.org/lookup/doi/10.1073/pnas.
1907493117

11



arXiv:2107.12779v1 [cond-mat.stat-mech] 27 Jul 2021

Explosive dismantling of two-dimensional random lattices under
betweenness centrality attacks
Supplementary Material

Nahuel Almeira®!, Juan Ignacio Perotti®!, Andrés ChacomaP, Orlando Vito Billoni®!

¢ Facultad de Matemdtica, Astronomia, Fisica y Computacion, Universidad Nacional de Cérdoba, Ciudad
Universitaria, Cérdoba, 5000, Cdérdoba, Argentina
b Instituto de Fisica Enrique Gaviola (IFEG-CONICET), Ciudad Universitaria, Cérdoba, 5000, Cérdoba, Argentina

S1. Complementary analysis for the full-range percolation transition

S1.1. Complementary estimation for the critical exponents

In the main text, we estimated the exponent ratio /v from the behavior of the susceptibility (s).

This ratio can be also estimated by the scaling of the fluctuations of the order parameter, defined as

X = /(5?) — (S)2. The corresponding scaling ansatz for this metric is

XU L) ~ LIS = fe) L), (S1)

In Figure S1 we show the curves for the fluctuations as a function of the fraction of nodes removed for
different system sizes. By the scaling of the peaks, shown in Panel S1b, we obtain /v = 2.05(1), which
is close to the value obtained from the scaling of (s), and also consistent with a first-order transition. The

collapse for the curves is good, confirming Eq. (S1).
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Figure S1:

(c) Collapse of the curves using Eq. (S1).

S2. Percolation transition for ¢-betweenness attacks

(a) Fluctuations of the order parameter as a function of the fraction of removed nodes. (b) Scaling for the peaks.

In this section, we show results for the main characteristics of the percolation transitions induced by

f-betweenness attacks on DT networks. In Figure S2 we show the scaling for the peaks of the second moment
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Figure S2: Scaling for the peak of the second moment and second-largest cluster for ¢-betweenness attacks. For comparison,
random (Rnd) node removal and initial degree attack strategy (Deg) are also included. As a reference, for standard percolation

in 2-dimensional regular lattices, the corresponding values are /v = 1.792 and 2 — /v = 1.896 [1].

of the finite-component size distribution M and second-largest cluster Sy L2. Each peak is determined from
an average of 103 — 10% realizations. As it can be seen, the exponents do no change with ¢ and, within
uncertainties, coincide with the exponents associated with standard percolation on two dimensions. Thus,
the universality class of the transition does not change as long as the cutoff remains finite.

Although the critical exponents are not sensitive to the details of the attack strategy, the percolation
threshold is expected to vary in terms of the attack. As the cutoff increases, more information is obtained
from the neighborhood of each node, so the percolation threshold should decrease as ¢ becomes larger. To
check this, we computed the percolation threshold for different values of ¢ up to £ = 16. We employed the
crossing method as in [2], which consists in computing the intersection point between the ratios Q(f,L) =
S1(f,L)/S2(f, L) of the largest and second-largest component sizes for different system sizes. In Figure S3
we show the crossings of Q(f, L) for each attack. For comparison, we include random percolation (Rnd) and
initial degree-based attack (Deg). In particular, for random percolation we obtain ff2d = 0.5002(2), which
is consistent with the theoretical value f. = 1/2 [3]. We note that, as the cutoff length increases, finite-size
effects do it as well, so larger systems are needed to get a good estimation. Together with the incremental
computational cost of extending the interaction radius, this makes it difficult to estimate f2 beyond ¢ = 16.

To conclude, we show in Figure S4 the distribution of the finite-component sizes for different cutoffs ¢
on large networks, where the condition ¢ < ¢*(L) holds. We can see that in all cases the distribution is

T

similar to random percolation, with a power-law relation ns ~ s~7, where 7 = 2.055 is the fisher exponent
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Figure S3: Estimation of the percolation threshold for ¢-betweenness attacks with different cutoff lengths ¢, by means of the

crossing method. As in Figure S2, random and initial degree attack strategies are shown for comparison. Averages are taken

over 10° simulations and the relation £ < £*(L) is satisfied for all the network sizes included in these estimation.

corresponding to random percolation on an infinite two-dimensional lattice.

S3. Performance comparison for range-limited betweenness algorithms

As mentioned in the main text, a naive computation of betweenness has a complexity of O(N2M). Brandes
algorithm [4] reduces the complexity to O(NM), the lowest value that has been obtained so far. As this
algorithm is based on a breadth-first search, it can be easily adapted for computing finite-range betweenness
by stopping the search when the given cutoff ¢ is reached. If range-limited betweenness for multiple cutoffs
is to be computed, one has to run the adapted algorithm from scratch for each value of . Thus, the final
complexity is O(/MN). In [5], the authors propose an alternative algorithm for computing range-limited
betweenness, where the centrality for all cutoffs up to a given £ are computed at once. The authors show
that the computational complexity C of their algorithm is bounded by O(NM) < C < O((MN). To compare
both algorithms, we performed the following experiment. For a given network size L, we computed all the
range-limited betweenness values up to ¢*(L). We repeated the computation 10 times and averaged the
computation time. The same procedure was then performed for different network sizes. As £* scales with
the system size as £* ~ L = N®/2 for DT networks, M ~ N, the expected worst-case complexity for both
algorithms is O(N?+/2) ~ O(N?46), according to the estimation of a given in the main text. As we can
see in Figure S5, the numerical estimation of the complexity of both algorithms is close to the theoretical

prediction. In particular, the Ercsey-Ravasz algorithm is slightly slower, indicating that the real complexity
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Figure S4: Finite component size distribution for different ¢-betweenness attacks on networks of size L = 724 at fB¢(L). Each
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Figure S5: Time complexity comparison of two different algorithms for computing range-limited betweenness.

is close to the upper bound, as the authors discuss in [5]. Our performance test thus indicates that there is
no gain in computation time for using the Ercsey-Ravasz algorithm. Actually, using the standard Brandes
algorithm has another advantage, which is that we can omit certain values of ¢ when estimating ¢* and save

some computation time.
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