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Abstract

The behavior of many magnetic and dielectric solids, and the more contemporary mag-

netic super-lattices, is governed by dipolar interactions. They are anisotropic and long-

ranged, having varied consequences ranging from ground states with complicated magnetic

order to the presence of glassy dynamics characterized by a plethora of relaxation times.

These systems are well-captured by the dipolar Ising model (DIM) with nearest-neighbor

exchange interactions (J) and long-range dipolar interactions (D). Depending on the rel-

ative interaction strength Γ = J/D, there are four phases of distinct magnetic order and

symmetry. Using Monte Carlo simulations, we perform deep quenches to study domain

growth or coarsening in the d = 3 DIM. This important non-equilibrium phenomenon has

not been addressed as dipolar interactions are notoriously difficult to handle theoretically.

Our study reveals that, in spite of the anisotropy in interactions and diversity in ground

state configurations, we observe universality in the ordering dynamics of all phases.
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I. INTRODUCTION

Dipolar interactions are prevalent in magnetic and dielectric solids composed of

rare-earths and transition metals [1–8]. They are anisotropic and long-ranged, and

arise from nuclear magnetic moments in alkali hydrides and solid 3He, electron mag-

netic moments in rare earth fluorides, chlorides and hydroxides, electric dipole mo-

ments in ferroelectric and anti-ferroelectric structures, etc. A large class of these

compounds is well-described by the nearest-neighbor (nn) Ising model with dipolar

interactions or the dipolar Ising model (DIM). For N Ising spins on a d-dimensional

cubic lattice with sites labeled by i, the Hamiltonian is given by

H = −J
∑

〈ij〉

σiσj −D
∑

i,j
i 6=j

(

3 cos2 θij − 1

r3ij

)

σiσj , σi = ±1. (1)

The first term on the right-hand-side is the contribution from the nn exchange en-

ergy. The parameter J represents the interaction strength, and favors ferromagnetic

(antiferromagnetic) alignment of spins for J > 0 (J < 0). The second term is the con-

tribution from the dipole-dipole interactions, whose strength is given by D = µ2/a3.

Here, µ is the dipole moment of the spin, and a is the spacing between nn sites of

the underlying lattice. Further, ~rij is a vector joining sites i and j in units of lattice

spacing a, and θij is the angle made by ~rij with the Ising axis (z-axis). The presence

of r3ij in the denominator makes dipolar interactions long-ranged due to which spin-

spin interactions are significant up to multiple lattice spacings. Consequently, the

sum in the second term extends over all spin pairs. In addition to being long-ranged,

the dipolar interactions are anisotropic, fluctuating in sign and strongly influenced

by the underlying lattice structure. The θij-dependence implies that dipolar inter-

actions can be zero, positive or negative – depending on the positions of the spins i

and j. For a reference spin i, the interaction with spin j is zero for 3 cos2 θij − 1 = 0,

antiferromagnetic for 55° < θij < 125°, and ferromagnetic for other values. There-
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fore, a ferromagnetic alignment of spins is favored along the z-direction, but domain

walls are preferred along the xy-plane.

A phase diagram of the DIM was obtained by Kretschmer and Binder for a simple

cubic lattice (L3, L = 6, 8) using Monte Carlo (MC) simulations [1]. The interplay

of the nn exchange interactions and the complicated dipolar interactions reveals rich

phase behavior. The phase diagram in Fig. 1 has been obtained by varying J, T with

fixed D = 1. Depending on the relative interaction strength Γ = J/D, the system

exhibits four phases with distinct magnetic order and symmetry:

(I) For Γ < −1.338, the nn exchange interaction with J < 0 dominates over the

dipolar term. As expected, the ground state (GS) is an antiferromagnet (AFM).

(II) For −1.338 < Γ < 0.127, the dipolar term dominates over the nn exchange

interaction. The ground state is anisotropic and consists of ferromagnetic columns

along the z-axis arranged antiferromagnetically in the xy-plane. We refer to this GS

as a columnar antiferromagnet (CAFM).

(III) For 0.127 < Γ < 0.164, the nn exchange favors ferromagnetic alignment and the

dipolar interaction continues to dominate. The GS structure changes to a layered

antiferromagnet (LAFM) with a two-component order parameter.

(IV) For Γ > 0.164, the exchange interactions are dominant and the GS is a ferro-

magnet (FM).

It is interesting to note the systematic transition from the AFM phase to the

FM phase via the onset of ferromagnetic alignment – first along a single-site one-

dimensional column (CAFM), then along a two-dimensional layer (LAFM) and fi-

nally . The lower panel depicts the corresponding ground state (GS) configurations

for each phase. The symmetry of the Hamiltonian under σi → −σi spins results in

degenerate GS. The degeneracy is two for Phases I, II, IV, and four for Phase III.

The equilibrium states for a given value of Γ at non-zero T will be combinations

of the corresponding degenerate GS, separated by frustrated spins due to conflict-
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ing interactions. The free energy landscape is complex with several local minima,

especially in the dipolar-dominated regimes.

A large number of experimental realizations of the DIM indeed exhibit a non-

trivial organization of dipoles in the (so-called) equilibrium phase. For example,

magnetic measurements of rare earth hydroxides reveal FM ordering for Tb(OH)3,

Dy(OH)3 and Ho(OH)3, and a complex AFM ordering for Nd(OH)3 and Gd(OH)3

[9]. Amongst rare-earth fluorides, LiHoF4 and LiTbF4 exhibit FM ordering, while

LiErF4 shows AFM ordering [6, 10–12]. Similar observations have been made in the

context of rare earth ethyl sulphates [13], rare earth perovskites [7, 14], and rare earth

garnets [8]. The above examples have captured much attention in modern solid state

physics and materials science because they exhibit interesting magnetic, multiferroic,

and optical effects. Some of these systems, due to their low critical temperatures,

are also realizations of quantum Hamiltonians and exhibit phase transitions driven

by quantum fluctuations [15, 16]. The presence of a glassy phase due to frustrated

moments arising from conflicting FM and AFM interactions has also been seriously

contemplated [17–19]. Recent inclusions in the family of dipolar solids are self-

assembled super-lattices of mono-disperse magnetic nanoparticles such as ferric oxide

(Fe2O3) or magnetite (Fe3O4) [20, 21]. They exhibit a rich phase diagram revealing

a variety of stable structures such as hexagonal close-packed, face centered cubic,

spherical, cylindrical, etc [22, 23]. Complex and almost perfect geometric ordering

of the nano-dipoles has also been observed in microscopy snapshots [24]. Both these

observations have been interpreted in the context of dipolar interactions between

individual particles.

Laboratory experiments generally require application of external fields that drive

the system out-of-equilibrium. The system re-equilibrates, and the approach to

equilibrium critically depends on the free energy landscape. An important non-

equilibrium study in this context is the kinetics of domain growth or phase ordering,
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initiated by a sudden quench of the system from the disordered phase to the or-

dered phase [25]. The subsequent domain growth or coarsening, characterized by a

growing length scale ℓ(t), is monitored with time. The growth law reveals details

of the free energy landscape and relaxation time-scales [26]. For example, pure and

isotropic systems with non-conserved kinetics such as the Ising model (D = 0) obey

the Lifshitz-Allen-Cahn (LAC) law: ℓ(t) ∼ t1/2 [27, 28]. It is characteristic of systems

with no energy barriers to coarsening and a unique relaxation time-scale. Systems

with complicated free energy landscape due to disorder and competing interactions

have a plethora of relaxation time-scales [29–32]. The interfaces are usually rough

fractals, and the barriers to coarsening grow as a power law of the domain size [33–

35]. Domain growth in these systems exhibits logarithmic behavior in the asymptotic

limit [36].

In spite of its wide-ranging presence, there are only a few studies of the DIM in d =

3, and non-equilibrium phenomena are even less addressed [37, 38]. This is primarily

because handling long-ranged interactions is notoriously difficult, both analytically

and computationally. Thus challenged, we were motivated to develop theoretical

techniques to study the DIM. In a benchmarking study, we investigated coarsening

via large-scale Monte Carlo (MC) simulations on cubic lattices (L = 128) using Ewald

summation procedures to accurately handle the long-range dipolar interactions [37].

We investigated their effect on growth laws in the FM phase for a limited range of

Γ values (& 0.16). Encouraged by the unusual observation of anisotropic growth

laws in this simplest phase, we now undertake the task of exploring the entire phase

diagram. Our investigations are guided by the following questions: Are the growth

laws distinct in the four phases or are they universal? What information can we

obtain about the energy landscapes of the four phases? Is the system characterized

by a universal scaling behavior or is it phase specific? Does the complexity and

frustration introduced by dipolar interactions yield rough fractal interfaces?
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There are two important results in our paper. Our first finding is that, although

the equilibrium states in the four phases have distinct symmetry and the interactions

are anisotropic, the system obeys the LAC domain growth law ℓ(t) ∼ t1/2 across

phases and directions. The growth exponent 1/2 is universal for the DIM. The second

important result is that the two-point equal-time correlation function that quantifies

domain growth exhibits generalized scaling in all phases: C (x, y, z, t) = g(ρ/ℓρ, z/ℓz),

where ρ is the radial coordinate in the xy-plane. The coarsening system is thus

characterized by unique but distinct length-scales along xy and z directions. The

scaling function in both directions is universal, and can be approximated by the

well-known Ohta-Jasnow-Kawasaki (OJK) function [25, 39]. The rest of the paper is

organized as follows. In Section 2, we present detailed numerical results on coarsening

in phases 1-4 of the DIM. Section 3 provides a summary and discussion.

II. COARSENING STUDIES

We now proceed to present detailed results from our studies of coarsening. These

studies use local single-spin flip moves which are computationally expensive in con-

trast to the cluster algorithms often used for equilibrium studies. Further, in systems

with long-range dipolar interactions, spins separated by multiple lattice spacings also

contribute to the energy. An explicit evaluation of the latter is only possible for small

systems as the number of computations scales as O(N2). A successful procedure for

dealing with long-range interactions is the Ewald summation technique [40]. The

basic idea here is to write the potential in two parts using the identity:

1

r3
=
f(r)

r3
+

1− f(r)

r3
. (2)

Here, f(r) is an appropriate splitting function with the following properties: (i) The

first part is negligible beyond a certain cutoff rcut so that the summation up to this
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cutoff is a good approximation of this contribution to the total energy. (ii) The

second part is a slowly varying function for all r so that its Fourier transform can

be represented by only a few k-vectors with |k| ≤ kcut = 2π/rcut. Therefore, this

part can be efficiently evaluated in reciprocal space. There are many choices of f(r)

that satisfy the above two conditions, but the usual choice is a complementary error

function:

erfc(r) =
2√
π

∫ ∞

r

e−t2dt. (3)

In particular, we use f(r) = erfc(
√
η r), where the Ewald splitting parameter η

decides the relative weights of the real and Fourier terms. By a suitable choice of

η, we can optimize the computation time for a specified error bound. An excellent

discussion of this procedure is found in Ref. [41].

Using cubic systems of up to 1283 spins, we performed deep quenches to T =

0.5 Tc(Γ) in the ordered phase. The quench locations are marked in the phase

diagram in Fig. 1. The initial state for all quenches was chosen to be a random

configuration of σi = ±1 corresponding to the disordered (paramagnetic) phase.

The Ewald summation technique with metallic boundary conditions was used to

compute the dipolar term of Eq. (1) [40] . We chose the Ewald splitting parameter

η = 0.032, which yields an error of δ = 10−3 in the evaluation of the dipolar term. We

also performed simulations designed to yield an error of δ = 10−4 on smaller lattices.

This did not alter the growth laws obtained with δ = 10−3 for larger lattices.

The system evolution was studied using spin-flip Glauber dynamics with the stan-

dard Metropolis procedure up to 1024 MC steps (MCS). In each phase, the accep-

tance rate (fraction of spins flipped in 1 MCS) decreases exponentially with time. In

Table I, we show typical values of the acceptance rate in the 4 quenches studied in

this paper. All statistical quantities have been averaged over 10 different initial con-

ditions. This results in error bars for the correlation function and length scale data
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TABLE I: Typical values of the acceptance rate at different times in the four

quenches studied here.

Γ −10.0 0.0 0.14 ∞

t = 100 0.345 0.358 0.335 0.537

t = 101 0.052 0.080 0.066 0.147

t = 102 0.014 0.024 0.027 0.055

t = 103 0.001 0.003 0.003 0.012

which are smaller than the symbol sizes we use subsequently for these quantities.

In Fig. 2, we present typical snapshots of coarsening morphologies in the four

phases. The top row shows the snapshots at t = 8 MCS, and the second row at t = 64

MCS. During the coarsening process, the degenerate equilibrium states compete with

one another, and the corresponding domains are separated by interfacial defects. As

time evolves, the defects annihilate and the system selects one of the ground states.

The different colors in each snapshot represent domains of one of the degenerate

ground states of that phase, as shown in the keys below. To identify the domains in

phases I-III, a standard prescription is used to define the staggered magnetization:

(i) In phase I, the morphology has AFM spin arrangement along x, y and z directions.

The staggered spin variables are obtained using:

ψxyz = (−1)x+y+zσxyz. (4)

The green (blue) domains in Fig. 2(a) correspond to correlated regions of up (down)

spins in the staggered representation. The key below also shows the corresponding

GS configurations in terms of the original spin variables σxyz.

(ii) In phase II, the morphology is AFM along the x and y directions, and FM along
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the z direction. So the spins are staggered using:

ψxyz = (−1)x+yσxyz. (5)

The green (blue) domains in Fig. 2(b) correspond to correlated regions of up (down)

spins in the staggered representation of the GS.

(iii) In phase III, the morphology comprises of FM xz (or yz) planes with an AFM

arrangement in the y (x) direction. In such morphologies, the system is characterized

by a two-component order parameter ~ψxyz ≡
(

ψ1
xyz, ψ

2
xyz

)

[42, 43] with

ψ1
xyz = (−1)x

1

4

[

σxyz + σx(y+1)z −
(

σ(x+1)yz + σ(x+1)(y+1)z

)]

, (6)

ψ2
xyz = (−1)y

1

4

[

σxyz + σ(x+1)yz −
(

σx(y+1)z + σ(x+1)(y+1)z

)]

. (7)

In the morphologies in Fig. 2(c), a site is assigned: green for ~ψxyz = (1, 0); blue for

~ψxyz = (−1, 0); red for ~ψxyz = (0, 1); orange for ~ψxyz = (0,−1). Each of the colored

domains represents correlated regions corresponding to one of the four GS, as shown

in the key below.

(iv) No staggering is required for the morphologies in Fig. 2(d) in the FM phase. For

uniformity of notation, we assign ψxyz = σxyz .

Clearly, the domains in each phase grow with time, although the growth is faster in

the z direction as compared in the xy plane. However, the growth in the xy plane

for Fig. 2(c) is arrested as the system gets stuck in metastable states. The problem

of metastability is widespread in phase III due to the presence of four competing GS.

The length scales associated with the evolving domains can be evaluated from the

two-point equal-time correlation function:

C(~r, t) = 〈ψ(~r1, t)ψ(~r2, t)〉 − 〈ψ(~r1, t)〉 〈ψ(~r2, t)〉. (8)

Here, ψ is the appropriate order parameter, ~r = ~r1 − ~r2, and 〈· · ·〉 represents an

average over independent runs [25]. In the case of isotropic domain growth, the
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dynamical scaling ansatz assumes the presence of a single length scale ℓ(t). This is

demonstrated post facto by the scaling collapse of the correlation function: C(~r, t) =

g(r/ℓ). The validity of this has been shown in many experiments and simulations. In

the anisotropic case considered here, we propose (following Ref. [44, 45]) the simplest

anisotropic generalization of this ansatz. This also has to be verified post facto by the

dynamical scaling of the correlation function. Thus, we introduce C(~r, t) ≡ C(~ρ, z; t)

where ~ρ = (x, y). In the case of unique length scales ℓρ and ℓz characterizing domain

growth in the xy and z-directions, the correlation function should exhibit generalized

dynamical scaling: C(~ρ, z, t) = g(ρ/ℓρ, z/ℓz).

In the isotropic case, an approximate analytical form of the correlation function

for a system described by a scalar nonconserved order parameter has been obtained

by Ohta et al. (OJK) by studying the interfacial defect dynamics [25, 39]. The OJK

function is given by

C(r, t) =
2

π
sin−1 γ, γ = exp

(

−r2/ℓ2
)

. (9)

In Fig. 3, we show the scaled correlation functions for phase II with Γ = 0:

C(~ρ, 0, t) vs. ρ/ℓρ in Fig. 3(a), and C(0, z, t) vs. z/ℓz in Fig. 3(b). The length scales

are self-consistently defined from the data as the distance over which the relevant

correlation function decays to 0.2 times its maximum value. We emphasize that no

fitting parameters have been used to observe the data collapse. Both data sets exhibit

dynamical scaling, indicating that the system is characterized by unique but distinct

length-scales along xy and z-directions. More striking is their agreement with the

OJK function (solid line), which shows that the defect dynamics is robust across

directions in spite of the inherent anisotropy of the dipolar interactions. Fig. 3(c)

shows C(~ρ, 0, t) vs. ρ/ℓρ for t = 64 in phases I-IV for the specified values of Γ.

Fig. 3(d) shows the corresponding data for C(0, z, t) vs. z/ℓz for t = 64. The data

collapse is excellent in both Figs. 3(c)-(d), and is well-approximated by the OJK
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form. These observations reveal that the coarsening morphologies are robust across

diverse phases of the DIM.

Finally, we discuss the growth laws in the four phases of the DIM. In this context,

it is useful to reiterate observations from earlier studies [46] of domain growth in the

Ising model with isotropic long-range interactions:

J(rij) ∼ r
−(d+µ)
ij . (10)

Using energy scaling arguments, Bray-Rutenberg [46] predicted the following domain

growth laws:

ℓ(t) ∼



















t1/1+µ, µ < 1,

(t ln t)1/2, µ = 1,

t1/2, µ > 1.

(11)

A recent work by Christiansen et al. [47] has studied coarsening in the d = 2

Ising model with additional long-range interactions as in Eq. (10). Using efficient

numerical schemes, the authors confirmed the predictions in Eq. (11) for many values

of µ.

The angular dependence of the dipolar interactions yields anisotropic morpholo-

gies due to ferromagnetic interactions along the z-direction and antiferromagnetic

interactions in the xy-plane. Roughly speaking, the system behaves as a long-range

Ising model along the z-axis with d = 1, µ = 2. Then, the expected growth law from

Eq. (11) is ℓz(t) ∼ t1/2. On the other hand, in the xy-plane, we have d = 2, µ = 1 in

Eq. (10). Again, we expect the growth to be predominantly diffusive with logarithmic

corrections.

In Fig. 4, we present the growth laws ℓρ(t) vs. t and ℓz(t) vs. t on a log-log scale

for phases I-IV. We have not shown ℓρ vs. t for the LAFM phase as the growth

in the xy plane is almost frozen in that phase [1]. Further, as the growth in the
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z-direction is very rapid, we see finite-size effects in the late-time data for the FM

phase. The error bars for each data point are smaller than the symbol sizes used

except in the regime where finite-size effects are seen. The dashed lines with the

expected slope 1/2 have been plotted for reference. It is striking that the growth

in both directions, in spite of the diversity of phases and the inherent anisotropy of

the dipolar interactions, obeys the universal LAC law ℓ(t) ∼ t1/2! Their presence is

thus confined to the prefactors alone. There are no length-scale-dependent barriers

to coarsening in the DIM, and the non-equilibrium evolution is characterized by a

unique relaxation time-scale. (In our earlier study, the domain growth in the FM

phase is studied for smaller values of Γ & 0.16 that are close to the phase boundary

separating the LAFM and FM phase [37]. Here, longer timescales are required to

observe the t1/2 law and the anisotropy is again contained in the pre-factors.)

Before concluding, it is relevant to ask how the finite size of the system would

affect the growth laws. In contrast to the equilibrium case, various physical quantities

do not change systematically with the system size. Rather, the domains grow in a

power-law manner until the domain scale becomes some significant fraction of the

lateral system size. After that, finite-size effects are seen via a crossover to a regime

with flattening and saturation of the domain growth law. Typically, the data sets

for different system sizes are numerically coincident until they encounter finite-size

effects. This is shown in Fig. 4(b) for the case with Γ = 0.

III. SUMMARY AND DISCUSSION

We end this paper with a summary of our results, their implications, and future

directions. We have performed large-scale Monte Carlo (MC) simulations to study

coarsening dynamics in the dipolar Ising model (DIM) which encompasses short-

range exchange interactions as well as long-range dipolar interactions. This model is
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characterized by four distinct phases: (i) antiferromagnet (AFM), (ii) columnar anti-

ferromagnet (CAFM), (iii) layered antiferromagnet (LAFM), (iv) ferromagnet (FM).

The dipolar interactions lead to diverse ground state (GS) configurations with strong

anisotropy. Yet the non-equilibrium dynamics is characterized by universality. Our

main observations are (i) the spatial correlation function exhibits universal scaling;

(ii) The domain growth law obeys the universal Lifshitz-Allen-Cahn law ℓ(t) ∼ t1/2.

Thermal quenches are a starting point for many non-equilibrium studies in the lab-

oratory. In these experiments, the system often accesses long-lived metastable states

that are encountered in our simulations. So our observations could provide a fresh

outlook to interpret relaxation phenomena in dipolar solids [5, 6, 14]. Our work also

suggests novel experimental investigations in the more contemporary self-assembled

super-lattices [48]. In the latter system, the constituent magnetic nanoparticles are

usually functionalized with an insulating surfactant layer to prevent aggregation.

The surfactant thickness can be adjusted to manipulate dipole-dipole interactions

to tailor spin morphologies dictated by applications. For example, a large class of

self-assembled lattices finds applications for spintronic devices that require an AFM

arrangement of the nano-dipoles for efficient operation [49–55]. An improved un-

derstanding of the interplay of short-range and long-range interactions would yield

better strategies to achieve such challenges.

To the best of our knowledge, this is the first study of coarsening in (d = 3)

dipolar solids. The developed methodologies provide a basis for relaxation studies

in systems with anisotropic and long-range interactions in general. We have iden-

tified unexpected dynamical universalities in the DIM, which is representative of a

large class of microscopic and mesoscopic systems. However, there are many puzzles

that still need to be understood. For example the basis for universality, the role of

lattice geometry and other forms of long-range interactions, and the possibility of

the glassy state in the LAFM phase are open questions. Another non-equilibrium
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phenomenon of great relevance in experimental systems is that of aging [29, 30].

This property probes the history-dependent evolution of correlation and response

functions when the system is driven out-of-equilibrium by, e.g., a thermal quench or

the application of a magnetic field. There are a few such studies for the Ising model

with long-range interactions in d = 2, and these have suggested novel violations,

phases and exponents [56–58]. It will be interesting to study aging phenomena in

the anisotropic DIM. The consequence of special directions on the relationship be-

tween waiting times and relaxation times is an open question. We hope that our

study will motivate investigations to seek these answers, which are important for

fundamental understanding as well as experimental interpretations.
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FIG. 1: Schematic phase diagram of the DIM model in the (Γ, kBT/D)-plane,

where Γ = J/D. We set D = 1 and vary J, T . There are four distinct phases: (I)

Antiferromagnet (AFM); (II) Columnar antiferromagnet (CAFM); (III) Layered

antiferromagnet (LAFM); (IV) Ferromagnet (FM). The corresponding ground state

configurations are shown below. The quench locations are marked by crosses, and

satisfy T = 0.5Tc(Γ). The corresponding parameter values are

(Γ, kBT/D) = (−10, 1.75) for AFM; (0, 1.19) for CAFM; (0.14, 0.825) for LAFM;

and (∞,∞) for FM.
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FIG. 2: Evolution snapshots of the staggered magnetization at t = 8 MCS (top

row) and t = 64 MCS (second row) for the four phases: (a) AFM, (b) CAFM, (c)

LAFM, and (d) FM. The key shows the color code for the degenerate GS in each

phase, as described in the text.
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FIG. 3: Scaled correlation functions at t = 16, 64, 128 for Γ = 0 in phase II: (a)

C(ρ, 0, t) vs. ρ/ℓρ, and (b) C(0, z, t) vs. z/ℓz. Scaled correlation functions at t = 64

for specified Γ-values: (c) C(ρ, 0, t) vs. ρ/ℓρ, and (d) C(0, z, t) vs. z/ℓz. The solid

line in (a)-(d) represents the OJK function.
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FIG. 4: Characteristic length scales, ℓρ(t) vs. t and ℓz(t) vs. t on a log-log scale.

The panels correspond to (a) Γ = −10; (b) Γ = 0; (c) Γ = 0.14; (d) Γ = ∞. In (b),

we also include data for systems of size 323 and 643 to show the finite-size effects.

In (c), we have not shown ℓρ vs. t as there is almost no growth in that direction. In

(d), the data sets for ℓρ and ℓz are numerically indistinguishable as the growth is

isotropic. The dashed line in each panel denotes the LAC law: ℓ(t) ∼ t1/2.
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