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Recent advances in vortex imaging allow for tracing the position of individual vortices with high
resolution. Pushing an isolated vortex through the sample with the help of a controlled dc transport
current and measuring its local ac response, the pinning energy landscape could be reconstructed
along the vortex trajectory [L. Embon et al., Scientific Reports 5, 7598 (2015)]. This setup with
linear tilts of the potential landscape reminds about the dexterity game where a ball is balanced
through a maze. The controlled motion of objects through such tilted energy landscapes is fun-
damentally limited to those areas of the landscape developing local minima under appropriate tilt.
We introduce the Hessian stability map and the Hessian character of a pinning landscape as new
quantities to characterize a pinning landscape. We determine the Hessian character, the area frac-
tion admitting stable vortex positions, for various types of pinning potentials: assemblies of cut
parabolas, Lorentzian- and Gaussian-shaped traps, as well as a Gaussian random disordered en-
ergy landscape, with the latter providing a universal result of (3 −

√
3)/6 ≈ 21% of stable area.

Furthermore, we discuss various aspects of the vortex-in-a-maze experiment.

I. INTRODUCTION

The recent years have seen an astounding progress in
the ability to image vortices in superconductors [1–5].
The high accuracy of these local-probe techniques allow
to study the shape of individual vortices [5] and even
manipulate them, e.g., via magnetic forces [6, 7] or local
mechanical stress [8]. A new quality in precision-imaging
has been achieved using a novel SQUID-on-Tip (SOT)
device combined with ac techniques [9, 10]. Changing
the current drive in the sample allows to push and trace
individual vortices and extract the shape of the energy
landscape (pinning landscape or simply pinscape) from
measured SOT data. Such information is most welcome
in optimizing pinscapes, which in turn is of great tech-
nological interest for high-current applications [11, 12].
The functionality of the experiment reminds about the
well-known ‘ball-in-the-maze’ dexterity game shown in
Fig. 1(a), where a ball is driven through a maze by con-
trolling the tilt of the plane. The present work focuses
on the ‘vortex-in-the-maze’ problem, see Fig. 1(b), where
a vortex is driven across a pinning landscape through a
controlled transport current that induces a linear tilt of
the potential. Here, we address the question which parts
of the pinning energy landscape can be probed in such an
experiment, that takes us to the Hessian stability map as
a new charateristics of a pinscape. The Hessian map of
a pinning landscape then defines the areal regions where
vortices can assume stable positions—vortex trajectories
realizable in the vortex-in-a-maze setup are limited to
these stable areas. We define the Hessian character of
a landscape as the area fraction of the plane where vor-
tices can be pinned and determine this quantity for var-
ious types of pinning landscapes, a random distribution
of cut parabolic wells and of Lorentzian- and Gaussian-
shaped pins of given density; such traps are often used in
numerical work [13, 14] on vortex pinning and dynamics.

Furthermore, we study the case of a Gaussian random
potential landscape for which we find the universal re-
sult of (3 −

√
3)/6 ≈ 21% stable area; this type of po-

tential is typically used in the context of analytical work
on random manifolds [15] and disorder-induced pinning
[16–18].

The Hessian matrix of random landscapes has been
studied in different contexts, ranging from more abstract

(a)

(b)

FIG. 1. (a) Ball in the maze: In this dexterity game, a ball
driven by gravity is guided through a labyrinth by adjusting
the slope of the game board via the two handles (front and
right knobs). (b) Vortex in the maze: the color map on the
game-board shows the pinning potential landscape derived in
Ref. [9], see figure 5(a) therein. When compared to the situ-
ation in (a), the labyrinth is replaced by the pinscape, while
the gravitational force manipulated by tilt is replaced by the
Lorentz force acting on the vortex; this corresponds to a tilt
in only one direction as indicated by the single knob (front).
While this feature limits the region that is probed by the vor-
tex, combining low- and high-frequency response data as well
as different entry points in principle allows for extended vor-
tex guiding (and thus reconstruction of the two-dimensional
pinscape) within the stable regions of the potential, see Fig. 3.
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discussions of the statistics of critical points (where gradi-
ents vanish) of Gaussian fields in high-dimensional spaces
[19, 20] or topological rules for their arrangement in a
random phase field [21], to more specific analyses of the
intensity of laser speckle patterns [22] or the complex-
ity of the free energy function in a model glass [23], see
Ref. [20] for an extended list of references. Here, we fo-
cus on a planar energy landscape (the pinscape) where we
are interested in its stable area, i.e., the collection of all
points that can become minima under appropriate tilt,
rather than studying the (spectral) distribution of indi-
vidual critical points (minima, maxima, and saddles).

In the experiment of Ref. [9], a vortex (carrying a quan-
tum Φ0 = hc/2e of magnetic flux) is driven across a
two-dimensional superconducting strip made from lead
(Pb). The variations of the vortex energy across the
strip defines the pinning landscape where the vortex can
be trapped in local minima, see Fig. 2—we refer to this
pinscape as ‘the maze’. These local minima can be ma-
nipulated by applying a transport current j along the
constriction (the y direction) that tilts the potential land-
scape to the right (in the x direction). In the experiment,
a small ac current imposed on top of the dc drive allows
for the precise tracking of the vortex position.

When drawing a comparison between the dexterity
game and the vortex experiment, few similarities and dif-
ferences are to be noticed: In both setups, the ball or
vortex can only be stabilized in subregions of the maze,
where, upon applying the proper tilt, the ball or vortex
can be trapped in a local minimum. It is this local min-
imum which then is manipulated by the external force,
gravity through geometric tilt in the case of the ball,
a transverse current producing the Lorentz force in the
case of the vortex. Tilting the ball’s potential beyond the
critical slope, the ball rolls along a guiding plane to the
next barrier where its motion stops. Similarly, pushing a
vortex beyond a region of stable points (as defined by the
Hessian of the potential surface, see below), the vortex
crosses the landscape until it gets retrapped in a suitable
local minimum within another stable region. The two
objects, ball and vortex, move quite differently, though,
with a massive dynamics mr̈ governing the ball’s motion,
while the vortex motion is dissipative, ηṙ with η denoting
the vortex viscosity [24].

Now, the question may be asked, what regions of the
pinscape can be probed at all, i.e., which points in the
plane allow for a local minimum in the (tilted) potential
landscape (or the maze)—this question will take us to
the Hessian stability map of the disorder potential, see
Fig. 3 below. A quantitative question then is about the
total area fraction where a vortex can be stabilized in a
fixed position of the pinning landscape, given an appro-
priate (linear) force—this question is addressed by the
calculation of the Hessian character. While the ball can
be driven along both planar axes x and y, subjecting the
vortex to a current along y, the ensuing Lorentz force
will drive the vortex exclusively along x [see the miss-
ing second control knob in Fig. 1(b)] with the trajectory

ds
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FIG. 2. Setup for carrying out the ‘vortex-in-the-maze’ ex-
periment inspired from Ref. [9]. A Pb-film of thicknes ds of
order of the coherence length (and of the same order as the
penetration depth) is subject to an external field H produc-
ing vortices in the film. The current density j‖y drives the
vortex along the x direction. Different entry points along the
y direction allow to probe other parts of the pinscape.

running in 2D plane. The one-dimensional nature of the
trajectory, however, is complicating the task of mapping
out the two-dimensional potential landscape. One pos-
sible way out is to make use of different ‘entry points’
for the vortex along the y axis (see Fig. 2) and repeat
the ‘vortex-in-the-maze’ experiment several times—this
has been partly (but not systematically) done in Ref. [9].
Another possibility, briefly discussed in this paper, is to
induce a local motion along y with the help of an ad-
ditional high-frequency ac drive and measuring the out-
of-phase response signal; this technique allows to expand
the probing region in the y direction but may be quite
demanding, depending on the material and experimental
parameters.

The reconstruction of vortex tracks in Ref. [9] has
brought forward interesting observations in the vortex
dynamics at the center and edge of the Hessian stable
regions: for one, a very large ac amplitude in the mid-
dle of the potential well suggests a strong softening of
the confining potential, while the abrupt departure of
the vortex from the defect—with no significant softening
and absence of a maximum in the pinning force—has in-
spired the ’broken-spring’ effect. We will briefly comment
on these features below.

Before entering the discussion of the Hessian map and
character, we briefly discuss in Sec. II the pinscape spec-
troscopy used in the reconstruction of the pinning land-
scape [9]. The definition of the Hessian stability map in
Sec. III then follows quite naturally and we discuss its
various relations to the pinscape spectroscopy of Ref. [9].
In section IV, we focus on the main topic of this pa-
per, the determination of the Hessian character of various
types of pinscapes. Section V provides a short summary.
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II. PINSCAPE SPECTROSCOPY

As a motivation to study the Hessian stability map
and the Hessian character of a pinscape, we start with
briefly reminding the setup and technique of Ref. [9], see
also Fig. 2, that allows for mapping out the pinning land-
scape of vortices in a type-II superconducting film. Ap-
plying a current j ‖ ŷ along the y direction of the film,
the total force F acting on the vortex involves the two
contributions F = Fpin + FL, where Fpin = −∇U(r)
accounts for the potential landscape U(r) [r = (x, y)
is the two-dimensional coordinate] and F L = Φ0jdsx̂/c
is the current-induced Lorentz force, with ds the film
thickness. The Lorentz force effectively tilts the pinscape
U(r)→ Utilt(r, FL) = U(r)− FLx in the x direction.

Besides the excellent resolution of the SOT device,
the precise determination of the vortex position in the
vortex-in-the-maze experiment [9] relies on a shaking
technique where an additional small oscillatory ac cur-
rent jac exp(−iωt) is applied on top of the dc drive. The
vortex trajectory u(t) then is governed by the dissipative
equation of motion

ηu̇ = F (u, t), (1)

with η the viscosity and F = Fpin +F L +F ac exp(−iωt)
the total force acting on the vortex. By applying a se-
quence of increasing dc tilts FLn, the vortex will move
forward through the pinscape and oscillate around a tilt-
dependent minimum rn(FLn). Near this position, the
associated energy profile can be expanded in the displace-
ment u = r − rn,

Utilt(r, FLn)=Utilt(rn, FLn) + anu
2
x+ bnu

2
y+ cnuxuy, (2)

with higher-order corrections becoming relevant near the
edges of the stable regions. The local curvatures an =
a(rn), bn = b(rn), and cn = c(rn) define the Hessian
matrix via Eq. (10), see below.

Expressing the vortex displacement through u =
(ux, uy) e−iωt, the equation of motion (1) takes the form

iηωux = 2aux + cuy − Fac, (3)

iηωuy = 2buy + cux. (4)

These equations can be solved and analyzed perturba-
tively in the small parameter ηω/U ′′ involving the vis-
cous term ηω and the curvatures U ′′ ∼ a, b, c ; indeed,
simple estimates (see Appendix A) show that this ratio
is small for the material and setup in Ref. [9]. Solving
Eqs. (3) and (4) and expanding the result to lowest (0-th)
order in ηω/U ′′, we find that

ux =
Fac

2a(1− c2/4ab) and uy = (−c/2b)ux. (5)

The motion is in phase with the external driving force
and follows the local potential minimum. Hence, al-
though the ac force is applied along x, the vortex

oscillates at a finite angle φ = arctan(uy/ux) =
− arctan(c/2b) away from the x axis in the direction of
its trajectory.

Given the displacement amplitudes ux and uy, one eas-
ily reconstructs the potential along the vortex trajectory.
For the specific choice of linear increments FLn = nFac
[9], the equilibrium position rn at the drive FLn relates
to the position rn−1 via

rn = rn−1 + (ux,n−1, uy,n−1), (6)

where ux,n, uy,n are the ac displacement amplitudes (5)
measured at the drive FLn. This trivial iterative rela-
tion leads to the trajectory rn =

∑n−1
m=0(ux,m, uy,m).

Combining the definition of the tilted potential Utilt at
FLn = nFac with the quadratic approximation (2), we
obtain

Untilt(x, y) = U(x, y)− nFacx (7)

≈ Untilt(xn, yn) + an(x− xn)2 + bn(y − yn)2

+ cn(x− xn)(y − yn).

Solving for U(xn−1, yn−1) and U(xn, yn) and combining
the results with Eqs. (5) and (6), one finds the change
in the pinning potential between neighboring points (we
choose the arbitrary offset U(r0) = 0),

U(xn, yn) ≈ U(xn−1, yn−1) + (n− 1/2)ux,n−1Fac (8)

and its iteration provides us with potential

U(rn) ≈ Fac
n−1∑
m=0

(m+ 1/2)ux,m. (9)

The reconstruction of the pinscape along a trajectory in
2D only involves a 1D integral along x, a consequence
of the unidirectional tilt. Indeed, the implicit stability
criterion along y, ∂U/∂y = 0, reduces the integration in
the xy plane to the simple 1D form of Eq. (8).

The above scheme allows for the reconstruction of the
pinscape along the trajectory. Interestingly, the solu-
tion and subsequent expansion of Eqs. (3) and (4) to lin-
ear order in ηω/U ′′ provides an out-of-phase correction
δux, δuy ∝ i(ηω/U ′′)/U ′′ that could be measured inde-
pendently, at least in principle. The four displacements
ux, uy, δux, and δuy then allow for the determination of
all local curvatures a, b, and c and thus give access to
the local reconstruction of the potential U(x, y) within a
strip around the trajectory; details of this extension of
pinscape spectroscopy are presented in Appendix B.

III. HESSIAN STABILITY MAP

Given the possibility to map out the pinning poten-
tial of a film through pinscape spectroscopy, the question
poses itself which part of the plane can actually be ana-
lyzed in this manner and what happens at the boundaries
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of these areas; the answer to these questions is given by
the Hessian stability map.

In the absence of an ac current, the vortex resides in a
minimum of the tilted potential Utilt(r, FL). Such a stable
point is characterized by a vanishing first derivative along
both x and y (no net force) and a positive curvature. The
second condition is satisfied, if the Hessian matrix

H(x, y) =

(
∂2U
∂x2

∂2U
∂x∂y

∂2U
∂y∂x

∂2U
∂y2

)
=

(
2a(x, y) c(x, y)
c(x, y) 2b(x, y)

)
(10)

is positive-definite, i.e., it has a positive determinant

detH(x, y) = 4a(x, y)b(x, y)− c2(x, y) > 0 (11)

and a positive trace

trH(x, y) = 2[a(x, y) + b(x, y)] > 0. (12)

Here, the coefficients a(r), b(r), and c(r) coincide with
the local expansion coefficients in Eq. (2). While Eq. (11)
only excludes indefinite matrices (saddle-point solutions),
the positive trace (12) discards negative-definite Hessian
matrices (potential maxima). Note that the Hessian does
not depend on the (linear) drive, hence it characterizes
the pinscape U(x, y) itself, rather than the forced pin-
scape Utilt. As such, the Hessian matrix with its deter-
minant and trace provides information on the potential’s
capability of stabilizing a vortex at a specific point r of
the plane upon application of the appropriate tilt.

The traditional way of studying the potential land-
scape is via equipotential (or elevation) maps. They de-
pend on the current-induced tilt and their minima tell
about possible (meta-)stable positions for the vortex.
Adopting a global view, the Hessian matrix helps sepa-
rating stable points from unstable points. This way, the
two-dimensional pinning landscape can now be divided
into stable areas characterized by the set of conditions
detH(x, y) > 0 and trH(x, y) > 0, and unstable ones
where at least one condition is violated. We thus intro-
duce the Hessian stability map, i.e., the graphical repre-
sentation of the pinscape regions associated with stable
points, as a new tool to characterize a potential land-
scape, with a ‘good’ pinscape described by a large per-
centage of stable area. In Fig. 3, we show, for illustration,
the stability region, together with equi-Hessian contour
lines, for the potential landscape considered in Ref. [9]
[see Fig. 5(a) therein] and also shown on the game-board
in Fig. 1(b) as well as the setup in Fig. 2. Within the
black regions, at least one eigenvalue is negative, imply-
ing that this position cannot be made a stable vortex
position for any tilt (in either x and y direction). In the
following, we briefly discuss the role played by the Hes-
sian map in the context of pinscape spectroscopy via ac
and dc forces. In Section IV, we assume a more generic
view on the problem and determine the Hessian charac-
ter, i.e., the area fraction of stable regions, for different
potential landscapes often used in numerical or analytical
studies of vortex pinning and dynamics. These are a fi-
nite density of cut parabolas, of Gaussian and Lorentzian

x [nm] -50 0 50

50

0

-50

y 
[n

m
]

spring softening

FIG. 3. A new view on the pinning landscape through the
Hessian stability map. Shown is the example of the pinscape
derived from measurements in Ref. [9], see Fig. 5(a) therein,
and shown on the game-board in Fig. 1(b). All of the black
area is unstable, i.e., the Hessian matrix Eq. (10) has at least
one negative eigenvalue; vortices cannot be trapped at any
point within this region and the potential landscape cannot be
probed. A position within the white area is stable and turns
into a local minimum for a specific tilt along x and y. Contour
lines show equi-Hessians where detH = 0.3k (meV/nm2)2 for
integer k. For a unidirectional tilt along x, only one specific
trajectory (red) is accessible within the stable regions. Close
to the border of the stable regions, the Hessian becomes small
and the ac response of the vortex increases. The divergence
of the ac displacement at the Hessian boundary is preempted
by the thermal activation out of the well and subsequent run-
away of the vortex across the unstable region. At the center
of the double-defect (yellow arrow) the vortex goes though a
flat region with a small Hessian, implying a large ac response
(spring softening) as observed in Fig. 2(e) of Ref. [9].

shaped potentials, as well as a Gaussian random poten-
tial.

Let us first interpret the Hessian stability map and
extract some physical insights into the pinscape. Focus-
ing on the boundaries in the stability map, we note that
the vortex displacement u ∝ (1 − c2/4ab)−1 diverges,
as c2 → 4ab when the minimum in rn approaches the
boundary, see Eq. (5). Upon approaching the singular
point c2 = 4ab, the expression for the trajectory’s angle
φ simplifies to φ = arctan[(a/b)1/2] and thus provides
access to the ratio of the potential curvatures along the
directions x and y. Interesting features show up when
multiple defects combine into a more complex pinning
landscape [9]. For example the vortex can approach the
depinning point of one defect and transit to another with-
out entering the unstable region of the pinscape. The
pinscape then develops a flat region with a small Hes-
sian determinant in the middle of the well. As a result,
the ac displacement amplitude rises steeply as observed
in Ref. [9], what corresponds to a spring softening as
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highlighted in Fig. 3, yellow arrow. Analyzing the vortex
trajectory in the central defect more carefully, one notes
that the vortex traverses (from left to right) a region go-
ing from detH∼1 (meV/nm2)2 near the first minimum,
to a small value below 0.3 (meV/nm2)2 near the ‘saddle’,
to a large value ∼2 (meV/nm2)2 in the second minimum.
One thus expects an enhancement of the ac amplitude by
a factor of 3–4 starting at the left of the spring softening
and a factor 7–8 relative to the value at the right side, in
qualitative agreement with the experiment.

Another aspect of interest is the escape of the vortex
from the stable regime. The proper understanding of this
phenomenon requires to include higher-order terms in the
local expansion of the potential U(x, y) and involves ther-
mal escape over barriers and possibly anharmonic effects,
see Appendix C for details. Our semi-quantitative analy-
sis of the setup in Ref. [9] confirms that thermal fluctua-
tions are strong and trigger the escape of the vortex from
the stable region at quite a large distance away from the
stability boundary, in agreement with the discussion of
the ‘broken-spring effect’ in the experiment. Specifically,
thermal fluctuations and vortex escape do cut off the ex-
pected divergence in the displacement u ∝ (1−c2/4ab)−1

and the reconstructed pinning force does not go through
a maximum at the point of escape.

IV. HESSIAN CHARACTER OF PINSCAPES

We now turn to the main part of this paper, the calcu-
lation of the Hessian character Cpos of a pinscape. This
number quantifies the fraction (less than unity) of the
plane’s area that admits a stable vortex position (i.e.,
a positive definite Hessian matrix) under an appropriate
tilt force. The Hessian has been used in the characteriza-
tion of various functions in a multitude of fields, includ-
ing optics [21, 22], statistical physics of random systems
[19, 20, 23], or cosmology [25], see Ref. [20] for a more de-
tailed list of references. Those studies typically focus on a
set of specific critical points in a given area (correspond-
ing to extremal points at a given fixed tilt in the present
context), while we aim at characterizing every point in
space as potentially giving rise to a minimum under an
appropriate tilt. As a result, here, we determine the area
fractions with specific curvature properties.

A point r ∈ Ω in the two-dimensional landscape of
area Ω is called stable if the local potential landscape
features a positive-definite Hessian matrix; the collection
of such stable positions defines the stability regions of the
pinscape where the pinscape can be mapped through the
spectroscopic method described in Sec. II.

A. Single defect

As a warmup, consider the pinscape of a single de-
fect. Here, we focus on isotropic defects with a po-
tential V (r) = V (r), assuming a minimum −V0 at

the origin r = 0, and a monotonic radial dependence
V ′(r) > 0, where the prime ′ denotes the radial deriva-
tive V ′(r) = ∂rV (r). We demand the potential to be
integrable,

∫
d2r |V (r)| < ∞, implying its asymptotic

decay V (r→∞) = 0; a notable exception is the long-
range Lorentzian potential discussed below. The Hessian
matrix of such an isolated defect possesses the eigenval-
ues V ′′(r) and V ′(r)/r; they describe longitudinal (along
r) and transverse (to r) curvatures. While the latter is
positive everywhere, the longitudinal curvature assumes
a positive value only in the vicinity of the defect’s cen-
ter. Defining the stability radius ξ0 through the condition
V ′′(r = ξ0) = 0, we find the stable area Ω0 = πξ2

0 ; at dis-
tances larger than ξ0, the landscape is indefinite. Maxima
appear in the pinscape only through the interference of
(at least two) defects.

For the specific cases of a Gaussian-shaped

VG(r) = −V0 exp(−r2/ξ2) + V̄G (13)

and Lorentzian-shaped

VL(r) = −V0/(1 + r2/ξ2) + V̄L (14)

defect potential, we find the stability radii ξ0 = ξ/
√

2

and ξ0 = ξ/
√

3, respectively. The constant shifts V̄G =
V0πξ

2/Ω and V̄L = V0(πξ2/Ω) ln[1 + (Ω/πξ2)] assure a
vanishing potential average, i.e.,

∫
Ω
d2r V (r)=0. Below,

we will also consider the case of a cut parabola

VP(r) = −V0(1− r2/ξ2)Θ(r − ξ) + V̄P, (15)

with ξ0 = ξ and V̄P = V0πξ
2/2Ω; this type of potential

has often been used in numerical simulations of vortex
pinning [13, 14].

Next, we consider a pinscape originating from a small
density np = N/Ω of defects, where N denotes the num-
ber of defects in the area Ω. For a very low density of
defects, npΩ0 � 1, the probability ∼ (npξ

2)2 for defects
to overlap is parametrically small; as a result the stability
region to leading order in npξ

2 assumes the value

Cpos ≈ npΩ0. (16)

This generic result tells, that only a minute areal fraction
in the immediate vicinity of defects is capable of being
probed within the vortex-in-the-maze scheme.

B. Gaussian limit of dense defects

The nontrivial and hence interesting structure of a pin-
scape develops when defect potentials start to overlap.
Below, we study pinning landscapes of the type

U(r) =
∑N

j=1
V (r − ri). (17)

We assume
∫

Ω
d2r V (r) = 0 such that the potential U

averages to zero as well. Given a random distribution
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of defect positions ri, the pinscape turns into a random
energy surface. Our task now consists in determining
the (mean) character Cpos for specific types of random
landscapes. The latter is defined through the probability
density p(D,T) of finding a position with given Hessian
determinant detH=D and trace trH=T, both of which
have to be positive D > 0 and T > 0,

Cpos =

∫ ∞
0

∫ ∞
0

dD dT p(D,T). (18)

Characterizing the random pinscape potential U(r)
through its functional probability measure P[U(r)], we
find the probability density p(D,T) via functional inte-
gration,

p(D,T) =

∫
D[U(r)]P[U(r)] δ[detH −D] δ[trH − T],

(19)

where the Hessian matrix H can be evaluated at any
spatial point r due to the translation invariance of the
result; without loss of generality, we choose r = 0. For a
homogeneous distribution of N defects in an area Ω, see
Eq. (17), the measure in (19) is given by

D[U(r)]P[U(r)] =

N∏
j=1

[d2rj
Ω

]
. (20)

A second generic result [besides the trivial dilute limit
(16)] can then be obtained in the high density limit
npΩ0 � 1 when many defects overlap. As shown in
Appendix D, the pinscape of many overlapping defects
approaches a Gaussian distribution with vanishing mean
〈U(r)〉 = 0 [since 〈V (r)〉 = 0] and a two-point correlator

G(r−r′)=〈U(r)U(r′)〉=np

∫
d2s V (r−s)V (r′−s) (21)

deriving from the convolution of two shifted potentials
V (r). It follows from the central limit theorem that
the distribution function P[U(0)] for the potential in a
fixed point, e.g., at the origin, is of Gaussian form. The
fact that the functional distribution function P[U(r)] be-
comes Gaussian as well,

P[U(r)] = PG[U(r)] = e−S/Z, (22)

with Z =
∫
D[U(r)] e−S and the quadratic action

S =
1

2

∫
d2r

Ω

∫
d2r′

Ω
U(r)G−1(r − r′)U(r′), (23)

is less trivial and can be checked by confirming the va-
lidity of Wick’s theorem for the 2k-point correlators (up
to corrections in the small parameter 1/npΩ0) or via a
direct calculation of P[U(r)], see Appendix D.

For such a Gaussian random potential, symmetry im-
poses that regions of positive- and negative-definite Hes-
sians (i.e., with D > 0 and sign(T) = ±1 respectively)

are equally probable and hence Eq. (18) reduces to the
evaluation of the simpler expression

Cpos =
1

2

∫ ∞
0

dD p(D), (24)

where p(D) denotes the probability distribution of the
Hessian determinant detH taking the value D.

The task of finding the probability density p(D) can
be broken up into a sequence of problems: in a first
step, we can determine the probability π(a, b, c) for a
Hessian matrix to assume diagonal entries 2a, 2b and
off-diagonal entries c, thereby reducing the problem of
evaluating Eq. (24) to an algebraic integral,

p(D) =

∫
da db dc π(a, b, c) δ[4ab− c2 −D]. (25)

We find the probability function π(a, b, c) via the func-
tional integration

π(a, b, c)=

∫
D[U(r)]PG[U(r)] 4 δ[Uxx(0)− 2a] (26)

× δ[Uyy(0)− 2b] δ[Uxy(0)− c].

The numerical factor 4 appears from applying the iden-
tity δ[Uxx(0)/2 − a] = 2 δ[Uxx(0) − 2a] and equally for
δ[Uyy(0)/2 − b]. The difficulty with the functional inte-
gration over all realizations U(r) is now moved to the
evaluation of π(a, b, c) in Eq. (26).

Substituting Eq. (23) into Eq. (26) and expressing the
δ distributions in Fourier space, we have to the evaluate

π(a, b, c) =
1

Z

∫
D[U(r)]e−

1
2

∫
d2r
Ω

∫
d2r′

Ω U(r)G−1(r−r′)U(r′)

(27)
×
∫
dk dl dm

(2π)3
4ei(2ka+2lb+mc)

× e−i
∫
d2r[kUxx(r)+lUyy(r)+mUxy(r)]δ(r).

Two integrations by parts in the exponent of the last
factor yield

∫
d2r U(r)[kδxx(r)+lδyy(r)+mδxy(r)], with

δκµ(r)≡∂2δ(r)/∂xκ∂xµ. The remaining functional inte-
gration can now be performed through Gaussian integra-
tion [26, 27] (i.e., completing the square),

π(a, b, c) =

∫
dk dl dm

(2π)3
4ei(2ka+2lb+mc) (28)

× e− 1
2 [k2Gxxxx0 +l2Gyyyy0 +(m2+2kl)Gxxyy0 ],

where Gκµνσ0 ≡ ∂4G(r)/∂xκ∂xµ∂xν∂xσ|r=0 > 0 denotes
the fourth derivative of the Green’s function. For an
isotropic problem, symmetry tells that G(4)

0 ≡ Gxxyy0 =
Gxxxx0 /3 = Gyyyy0 /3 and hence

π(a, b, c) =

∫
dk dl dm

(2π)3
4ei(2ka+2lb+mc) (29)

× e− 1
2 [3k2G

(4)
0 +3l2G

(4)
0 +(m2+2kl)G

(4)
0 ].
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Im[Q]
~

Re[Q]
~i/4

−i/2

integration
contour

for D > 0

integration
contour

for D < 0

FIG. 4. Sketches of the contours in the complex plane for
evaluating integral in Eq. (32). For D > 0, the (magenta)
contour encloses the upper half-plane except for the cut along
the imaginary axis starting from i/4. For D< 0, the (blue)
contour encloses the lower half-plane with a pole at −i/2.

The remaining Gaussian integrations over k, l, and m
then yield the result

π(a, b, c) =
4e−(3a2−2ab+3b2+2c2)/4G

(4)
0(

4πG
(4)
0

)3/2 (30)

and we find that the probability distribution of Hessian
matrix elements is Gaussian, as one might have expected
for a Gaussian distributed random potential.

Making use of the result (30) in Eq. (25), we find the
distribution

p(D) =
4[

4πG
(4)
0

]3/2 ∫ dQ

2π

∫
da db dc eiQD (31)

× e−iQ(4ab−c2)e−(3a2−2ab+3b2+2c2)/4G
(4)
0 ,

which after another series of Gaussian integrations gives

p(D) =

∞∫
−∞

dQ̃

2πG(4)

0

eiQ̃D/G
(4)
0√(

1− 2iQ̃
)2(

1 + 4iQ̃
) , (32)

with Q̃=QG(4)

0 . The integrand has a pole of order one

in the negative complex plane at Q̃=−i/2 and a line cut

along the positive imaginary axis, terminating at Q̃ =
i/4, see Fig. 4. The above integral can be solved for
D>0 using a closed contour in the upper complex plane
avoiding the line cut along the imaginary axis. We then
find with the substitution ζ = arccot[(4q/3)1/2]

p(D>0) =
2e−D/4G

(4)
0

G
(4)
0

∫ ∞
0

dq

2π

e−qD/G
(4)
0

(3 + 4q)
√
q

(33)

=
2eD/2G

(4)
0

√
3G

(4)
0

∫ π/2

0

dζ

2π
e−
(

3D/4G
(4)
0

)
(sin ζ)−2

. (34)

The integral in the last line is Craig’s formula [28] for
the complementary error function Erfc[z] ≡ 1−Erf[z] for

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n 

p
(D

)

p(D) ≡ p(detH=D)

D [G0   ]

Cpos+Cneg =(3−   3)/3
≈ 42%

(4)

FIG. 5. Probability distribution function p(D) of the Hes-
sian detH for a Gaussian distributed random potential, see
Eq. (35). The horizontal axis measures the determinant D
in units of G(4)

0 . The shaded probability indicates the area-
fraction of points with positive- or negative-definite curvature.

non-negative z= (3D/4G
(4)
0 )1/2, with the error function

defined as Erf(z) = (4/π)1/2
∫ z

0
dt e−t

2

. For D < 0 the
contour is closed in the lower half-plane, encircling the
pole at Q̃ = −i/2. The residue theorem then yields p(D<

0)=eD/2G
(4)
0 /(2

√
3G(4)

0 ).
The probability distribution p(D) for the Hessian de-

terminant then takes the compact global form (see Fig. 5
for an illustration)

p(D) =
eD/2G

(4)
0

2
√

3G(4)

0

[
1− Erf

(√
3

4

D

G(4)

0

)
Θ(D/G(4)

0 )

]
, (35)

where we have expressed the result through the Heavi-
side function Θ(z)=1 for z>0 (and zero otherwise). The
result behaves as p(D)≈p(0)[1− (3D/πG(4)

0 )1/2] at small
positive arguments 0<D/G(4)

0 � 1 and decays exponen-

tially with p(D) ≈ p(0)(4G(4)

0 /3πD)1/2 exp(−D/4G(4)

0 )
for large values D/G(4)

0 � 1.
With the full expression for p(D) at hand, the sta-

ble area fraction Cpos of the two-dimensional (Gaussian-
distributed) potential landscape can be determined: It is
convenient to use the expression (33) and integrate over
D first; the subsequent integral over q then yields the
universal result

Cpos = (3−
√

3)/6 ≈ 0.21, (36)

independent of G(4)

0 and thus of the shape of the cor-
relator. We find that for a Gaussian random potential
the stable area involves about one-fifth of the total land-
scape; in physical terms it means that only a small frac-
tion the landscape can be explored by pinscape spec-
troscopy, while a large portion (nearly 80%) of the plane
are either unstable or indefinite areas.

C. Intermediate defect densities

At intermediate densities, we have to resort to numer-
ical studies; these will provide us—besides the desired
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information on the stable fraction Cpos—with some ad-
ditional insights on the fraction of unstable (Cneg) and
indefinite regions (Cind) of such random landscapes.

We have explored this regime for the three differ-
ent types of defect potentials, cut parabolas VP(r),
Lorentzian-shaped VL(r) with algebraic tails, and short-
range Gaussian-shaped VG(r), and computed the area
fractions Cpos, Cneg, and Cind for stable, negative-definite
and indefinite regions, respectively. This numerical anal-
ysis reveals several interesting facts, see Fig. 6: First,
the Hessian character Cpos grows linearly from zero (at
low densities). For the regular potentials VL(r) and VG,
the stable fraction saturates rapidly (i.e., for npΩ0 & 4)
to the value obtained for a Gaussian random pinscape,
with the precise functional dependence on the density pa-
rameter npΩ0 differing numerically. The (irregular) cut
parabolas VP(r), however, behave differently, with the en-
tire area becoming stable at large densities np, Cpos → 1,
see below for more details.

A qualitative difference is observed between VL and
VG for the negative-definite area-fraction Cneg (the latter
vanishes for VP). This quantity assumes a macroscopic
value ∼ 30% for the long-range Lorentzian traps, while
vanishing at low densities for the Gaussian-shaped pins,
see Fig. 6 (bottom). The difference is attributed to the
long-range, i.e. power-law, nature of the potential and
can be understood by considering a pair of defects: For a
single (rotationally symmetric) defect, the transverse cur-
vature (along the azimuth) is always positive, while the
longitudinal curvature (along the radius) changes from
positive near the center to negative further out. Hence,
a single defect generates either minima or saddles and a
pair of defects is required to produce a maximum through
proper superposition of the two negative longitudinal cur-
vatures.

For a pair of defects with long-ranged potential (e.g.,
Lorentzian) at a distance d, the decay of the tails [V (r)∼
r−α, α>1] has no intrinsic length scale, and the area of
regions with negative curvature scales as d2. This area
becomes anisotropic [width×height≈(d/

√
α)×(

√
αd), see

thumbnail in Fig. 6] as α increases. At low defect density,
the height

√
αd gets cut off by the typical inter-defect

distance d=n
−1/2
p , resulting in a concave area ∝ d2/

√
α.

The area fraction Cneg∝ (npΩ0)0/
√
α with negative cur-

vature is non-vanishing in the limit np→ 0. For short-
ranged defects, i.e., where a length-scale ξ dictates the
decay away from the defect, the result is not universal
as it depends on the negatively curved overlap produced
by two distant defects. Specifically, for two defects sep-
arated by d, the negative overlap is limited to a slim
area concentrated near the normal (line) to the midpoint
between the defects (Wigner-Seitz or Voronoi decompo-
sition), see thumbnails in Fig. 6. For Gaussian-shaped
defect potentials, the area fraction can be evaluated to
(ξ/d)2 ln(d/ξ), yielding Cneg ∝ npΩ0 ln[(npΩ0)−1].

The special case of cut parabolas VP(r) can be treated
analytically, since curvatures are non-negative integer
multiples of 2V0/ξ

2. More specifically, within a defect’s

ξ2

d

ξ2d2

ξ2 ln(d)

Gauss

Lorentz

0.2

0.4

1

0.8

Cneg
Cind

Cpos

central limit
Cpos=(3−

√
3)/6

0.6

0

1−e−npΩ0

Gauss Lorentz

0.1

0.01

0.001

0.001 0.01 npΩ00.1

n pΩ
0

0.010.001 0.1

C

C
npΩ01

2npΩ
0
ln[
50(

npΩ
0)
−1 ]

FIG. 6. Fraction of stable (Cpos, squares), unstable (Cneg, cir-
cles), and indefinite (Cind, crosses) areas of a potential land-
scape characterized by a finite density np of Lorentzian [VL(r),
red] or Gaussian [VG(r), blue] shaped defects potentials, re-
spectively. The log-linear scale (top) highlights the behavior
at large densities, while the scaling at low densities is more
prominent in the log-log representation (bottom). At small
densities the fraction of stable points follows the universal law
Cpos = npΩ0, see bottom figure. At large densities the Hessian
character approaches that of a random potential with Gaus-
sian correlator (black dashed line in top panel). The stable
area fraction of the cut parabolic trap VL(r) is shown as a
black line in the top panel. At low defect densities npΩ0→0,
see bottom panel, the unstable fraction Cneg reaches a con-
stant value for the Lorentzian-shaped potential (red circles)
and decays as Cneg ∼ npΩ0 ln[(npΩ0)−1] for the Gaussian-
shaped potential (blue circles). This is owed to the different
scaling of unstable regions defined by distant defects in the
dilute limit, as shown in the two thumbnails on the bottom
right with yellow (stable), blue (unstable/maxima), and black
(unstable/saddle points) areas.

range of action r < ξ, the Hessian matrix H = (2V0/ξ
2)I

is position independent, diagonal, and positive definite,
while it vanishes outside. As a result, non-overlapping
traps act as isolated ones, while the total Hessian de-
terminant of ν overlapping traps is ν2(2V0/ξ

2)2 ≥ 0.
We thus conclude that the only non-stable (and hence
indefinite) regions are those where no defect is active,
i.e., where ν = 0. This probability is given by the ze-
roth term of the Poisson distribution Poiss(ν, npΩ0) =
(npΩ0)ν exp(−npΩ0)/ν! (see Appendix E for a detailed
discussion) and hence the complement defines the stable
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FIG. 7. Hessian map of a potential landscape for a moder-
ate density of cut parabolic (top), Lorentzian (middle), and
Gaussian (bottom) traps. To allow for direct comparison, the
defect position is the same in all panels (we chose a density
parameter npξ

2
G =0.125 and the view area 100 ξG×50 ξG) and

the length ξ (defining the defect shape) assumes the values

(1/2)1/2ξG, (3/2)1/2ξG, and ξG respectively. This implies an
elementary area fraction of npΩ0 ≈ 0.2 for all three cases.
Yellow/blue denote stable/unstable regions where the Hes-
sian matrix is positive/negative definite. Indefinite points are
colored in black. Here, the difference in the area fraction Cneg
of unstable points for the Lorentzian (∼ 28%) and Gaussian
(∼ 22%) traps is apparent, see Fig. 6.

area,

Cpos = 1− Poiss(0, npΩ0). (37)

This area fraction approaches unity at large defect den-
sities np, see black line in Fig. 6 and top panel in Fig. 8,
quite different from the other two examples of Gaus-
sian and Lorentzian shaped potentials that approach the
Gaussian limit Cpos ≈ 21%. This is due to the singular
property of the cut parabola that does not provide any
region with a negative definite Hessian; when the parabo-
las are cut rather than smoothly connected to zero, only
convex and flat regions appear in the pinning potential
landscape.

Figures 7 and 8 illustrate our findings for the two
cases of low, npΩ0 = 1/5, and high density parameters
npΩ0 = 4, respectively. In Figure 7, we show the Hes-

FIG. 8. Hessian map of a potential landscape for a high den-
sity of cut parabolas (top), Lorentzian (middle), and Gaus-
sian (bottom) traps. The defect position is equal in all panels
(we chose a density parameter npξ

2
G = 2.5 and a view area

100 ξG× 50 ξG). The length parameter ξ (defining the de-

fect shape) assumes the values (1/2)1/2ξG, (3/2)1/2ξG, and
ξG respectively. The elementary area fraction is npΩ0 ≈ 4.
Yellow/blue denotes stable/unstable regions where the Hes-
sian matrix is positive/negative definite. Indefinite points are
black. Dense defect clusters (black points in yellow domains)
define stable pinning regions, low density areas (white defects
in blue regions) are unstable.

sian map for a moderate density of cut parabolic (top),
Lorentzian (middle), and Gaussian (bottom) defects. For
the cut parabolas, the Hessian determinant assumes only
discrete values that follow from the number of overlap-
ping defects. While the shape of stable regions (yellow)
are trivial for the cut parabolas, this is no longer the case
for the Lorentzian/Gaussian potentials. In Figure 8, we
show the Hessian map for a large density of cut parabolic
(top), Lorentzian (middle), and Gaussian (bottom) de-
fects. For the cut parabolas, the Hessian determinant
guarantees stability in almost every point on the map.
For the smooth Lorentzian and Gaussian potentials, dif-
ferent pins mutually neutralize one another and the sta-
ble regions are more scarce. Only when defects cluster,
they reinforce one another to produce stable regions, see
black dots in yellow regions. On the contrary, dilute re-
gions with fewer defects than average (white dots in blue
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Switzerland Netherlands
Cpos

Cneg

Cind

20.5%
18.9%
60.6%

20.7%
19.2%
60.1%

50km

50km N

FIG. 9. Hessian Map of two natural landscapes: For Switzerland (left) and the Netherlands (right) stable, unstable, and
indefinite areas are colored in yellow, blue, and black respectively. From an elevation map on a square lattice with longitude and
latitude angular resolution of 15 arcseconds [data from Wolfram Mathematica’s geographic data package], the Hessian matrix
is evaluated by fitting a quadratic polynomial through each 3×3 plaquette. Despite the two countries having very different
topography, their Hessian characters—tabled above—are close to the Gaussian result Cpos = Cneg ≈ 21%, see Eq. (36). We
thus surmise a universal Hessian law for natural landscapes.

domains) produce unstable regions.

V. SUMMARY AND CONCLUSION

Inspired by the recent advances in vortex imaging and
the development of pinscape spectroscopy, we have ana-
lyzed the properties of 2D pinning landscapes with the
help of a new characteristics, the Hessian matrix H(r),
its determinant detH, and its trace trH. We have in-
troduced the Hessian stability map as a bi-colored map
that separates stable from unstable regions of the pin-
scape; while stable regions can be mapped via pinscape
spectroscopy using appropriate (linear) driving forces,
unstable regions cannot, i.e., these regions do not pro-
vide equilibrated vortex positions for any applied (linear)
force. We have drawn attention to several peculiarities
of pinscape spectroscopy (the so-called ‘sping-softening’
and ‘broken spring effects’ in Ref. [9]) related to the sta-
bility boundaries of the Hessian map where the deter-
minant detH vanishes, e.g., an enhanced response in-
volving potential non-linearities as well as the thermal
activation over barriers into the unstable regions. Fur-
thermore, we have indicated how pinscape spectroscopy
can be enhanced to cover extended regions around the
vortex trajectories by probing the out-of-phase response

of vortices at high frequencies.

Second, we have introduced the Hessian character Cpos

of a pinning landscape U(r) as the area fraction of the
plane that covers the stable regions of the Hessian map.
We have investigated two types of generic pinscapes,
those arising from a random distribution of defects with
individual pinning potentials V (r) and the case of a
Gaussian random potential characterized through its cor-
relator G(r). Different individual defect potentials V (r)
have been studied, cut parabolas with a discrete Hessian
map and an exceptionally large stable fraction Cpos → 1
at large defect densities npΩ0 � 1, Lorentzian-shaped
trapping potentials that induce correlations through their
long-range tails and produce a finite unstable fraction
Cneg in the limit of small defect density npΩ0 � 1, and
Gaussian shaped potentials with a short range that be-
have most regularly at all densities. The Hessian char-
acter of both, Gaussian and Lorentzian potentials, ap-
proaches the character of the random Gaussian potential
for large defect densities npΩ0 � 1, with the latter as-
suming a universal value of Cpos ≈ 21 % independent of
the correlator G(r). Hence, we find that pinscape spec-
troscopy of regular pinning potentials can probe at most
a fraction of about one-fifth of the plane.

Unfortunately, up to now, the ’vortex in the maze’ ex-
periment is limited to a single tunable drive parameter.



11

This is owed to the experimental setup measuring the
vortex motion in the region of a current-driven strip. An
expanded view on the pinscape within this setup can be
gained by injecting the vortex at different positions along
the transverse (y) direction. However, other geometries
allowing for different drive directions may open the pos-
sibility to probe the full stable region of a pinscape, thus
coming closer to the original ’ball-in-the-maze’ setup also
for the vortex.

Finally, the Hessian of pinning potentials U(r) turns
out relevant in the discussion of strong pinning physics
[29], see also Refs. [30, 31], specifically near the onset
of strong pinning as described by the famous Labusch
criterion [32]: Within the strong pinning paradigm, the
many body problem of vortex lattice pinning is reduced
to the minimization of the two-dimensional total pinning
energy epin(r) = C̄(r − x)2/2 + V (r) including both an
elastic energy (with C̄ an effective elastic constant) and
V (r) the pinning potential of an individual defect. Un-
der strong pinning conditions with V (r) dominating the
elastic term, the position r of the pinned vortex under-
goes pinning and depinning jumps as the lattice moves
smoothly along x, similar to our vortex in the plane
that gets trapped and detrapped by stable regions of the
pinscape. Indeed, expanding the total pinning energy
epin(r) = C̄ x2/2 − C̄ r · x + Veff(r) with the renormal-
ized effective potential Veff(r) = V (r)+ C̄ r2/2 (the term
C̄ x2/2 is an irrelevant shift), we reduce the strong pin-
ning problem to the vortex-in-the-maze problem with the
elastic term C̄ r · x replacing the external drive F L · r
due to the current-induced Lorentz force (incidentally,
the lattice coordinate x is driven by the applied current
density j as well). This equivalence opens up interesting
new avenues in the strong pinning problem [29].

Besides this relation to strong pinning, one might think
of completely different applications of Hessian maps and
characters, a quite obvious one that comes to mind are
natural (topographic) landscapes. Indeed, analyzing the
elevation map of different topographic landscapes—we
chose Switzerland and the Netherlands as examples, see
Fig. 9—one finds in both cases the characters Cpos≈21 %,
Cneg ≈ 19 % and Cind ≈ 60 %, close to the value for
the Gaussian random landscape. This raises interesting
questions about universality and the (non-)Gaussianity
of natural landscapes.
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Appendix A: Parameter ηω/U ′′

We derive an estimate for the parameter ηω/U ′′ gov-
erning the response u. Typical values for this ratio are
obtained from the estimate Epin ∼ (H2

c /4π) ξ2ds of the
vortex core energy in a film of thickness ds; here, Hc =
Φ0/2

√
2πλξ denotes the thermodynamic critical field and

λ and ξ are the penetration depth and the coherence
length, respectively. The coherence length provides an
estimate for the typical spatial variation in the pinscape
and hence U ′′ ∼ Epin/ξ

2. The viscosity η follows from
the Bardeen-Stephen [24] formula η = Φ2

0ds/2πξ
2ρnc

2,
with the flux quantum Φ0 = hc/2e = 2.07× 10−7 Gcm2.
Inserting the Drude expression ρn = m/ne2τ for the nor-
mal state resistivity, where n is the electronic density and
τ the electron relaxation (scattering) time, we find the
ratio

ηω/U ′′ ∼ (n/ns)ωτ (A1)

with ns the superfluid density. Assuming a value n/ns of
order unity, we find the parameter ηω/U ′′ to be small in
general. E.g., in the experiment on Pb-films of Ref. [9],
the parameters ξ = 46 nm, λ ≈ 90 nm, and ds = 75 nm
provide an estimate Epin/ξ

2 ≈ 7.5× 10−5 N/m. Assum-
ing a normal state resistivity ρn ≈ 0.01 µΩcm for lead
[33], we find that η ≈ 2.4 × 10−13 Ns/m and combin-
ing this estimate with the ac frequency ω = 13.3 kHz of
the experiment, we arrive at ηω ≈ 3.2 × 10−9 N/m, a
value that is 3–4 orders of magnitude lower than typical
curvatures U ′′.

Appendix B: 2D local reconstruction of pinscape

The solution of the equation of motion (1) provides us
with the expressions

ux
Fac

=
4b2 + η2ω2

2b(4ab−c2) + 2aη2ω2 + iηω[4b2+c2+η2ω2]
, (B1)

uy
Fac

=
−c(2b− iηω)

2b(4ab−c2) + 2aη2ω2 + iηω[4b2+c2+η2ω2]
(B2)

for the displacements ux and uy. This result can be ana-
lyzed perturbatively in the small parameter ηω/U ′′ and
leads us to the simple expression Eq. (5) to lowest (0-th)
order. The expansion of Eqs. (B1) and (B2) to linear or-
der in ηω/U ′′ contributes the out-of-phase displacements
δux, δuy ∝ i(ηω/U ′′)(Fac/U ′′) that allow for the full lo-
cal construction of the pinscape U(x, y) in the vicinity
of the vortex trajectory. Specifically, this out-of-phase
response assumes the form

δux
Fac

= −iηω 4b2 + c2

(4ab− c2)2
,

δuy
Fac

= iηω
2(a+ b)c

(4ab− c2)2
(B3)
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and can be measured independently from the in-phase
displacements in Eq. (5). For a fixed drive amplitude
Fac, the independent measurement of the four quantities
ux, uy, δux, and δuy then allows to extract all the local
curvatures a, b, and c from the experiment,

a =
Fac
2ux

[
1 +

u2
y/u

2

(δuy/uy)(ux/δux)− 1

]
, (B4)

b =
Fac
2ux

u2
x/u

2

(δuy/uy)(ux/δux)− 1
, (B5)

c =
Fac
2ux

−2uxuy/u
2

(δuy/uy)(ux/δux)− 1
, (B6)

where u = (u2
x + u2

y)1/2 is the total displacement am-
plitude. The additional independent relation ηω =
Fac |δux|/u2 with a constant left-hand side ηω serves as a
check. The results (B4)–(B6) can be used to reconstruct
the potential in the vicinity of the trajectory. We define
the vector η⊥ ≡ (1,−ux/uy) = (1, 2bn/cn) perpendicu-
lar to the vortex trajectory and parametrize the positions
rn,ε = rn + εη⊥ transverse to the equilibrium trajectory
at rn. Combining Eqs. (B4)–(B6) and (7), we find the
potential shift

U(rn,ε)−U(rn) = εFLn + ε2[an + 2bn + 4b3n/c
2
n] (B7)

= εFLn + ε2
Fac
2ux

[
1 +

u2/u2
y

(δuy/uy)(ux/δux)− 1

]
.

While the linear term ∝ ε in the bare potential is ’tilted
away’ by the force FLn = nFac, the quadratic term ∝ ε2

provides the parabolic confinement transverse to the vor-
tex trajectory. Unfortunately, the corrections Eq. (B3)
are small in the parameter ηω/U ′′, requiring a high mea-
surement sensitivity and ac frequencies in the MHz range.

The solutions Eqs. (5) and (B3) for the in-phase and
out-of-phase motion apply when δux/ux, δuy/uy � 1,
i.e., when

ηω � 2b(4ab− c2)

4b2 + c2
and ηω � 4ab− c2

2(a+ b)
. (B8)

These criteria are violated in the vicinity of the Hessian
boundary where the condition 4ab− c2 = 0 is separating
a stable from an unstable region. Near this boundary,
the singularities in Eq. (5) are cut off by the dissipative
term ηω and the appropriate solutions to linear order in
Fac/ηω take the form

ux
Fac

=
−i
ηω

1

1+(c/2b)2
,

uy
Fac

=
i

ηω

c/2b

1+(c/2b)2
. (B9)

These displacements are phase-lagged with respect to the
external drive, while the motion is still at the same angle
φ away from the x axis.

Appendix C: Escape

Here, we comment on the escape of the vortex from the
stable region when approaching the Hessian boundary.

The quadratic approximation (2) then is insufficient to
describe the escape dynamics over the depinning barrier.
The latter is obtained by including cubic terms in the
expansion; limiting ourselves to the most relevant term
d u3

x, we obtain the expansion around the position r0 near
the boundary

Utilt(r, FL) = Utilt(r0, FL) + au2
x + bu2

y + cuxuy + du3
x

with d < 0 describing the escape for positive tilt. This
potential features a saddle point at

r = r0 −
2ã

3d
(1,−c/2b) (C1)

and defines a barrier

Ub = 4ã3/27d2 (C2)

that prevents the escape of the vortex to the unstable
region; here, we have introduced the renormalized cur-
vature ã = a(1 − c2/4ab), which scales linearly with the
Hessian determinant and vanishes upon approaching the
stability edge. Note that the curvature parameters in
the above expressions depend on r0 and hence on the
closeness of this point to the Hessian stability boundary.

At finite temperature, the vortex escapes the defect by
thermal activation when the criterion Ub ≈ kBT ln(ω0τ)
is met, with ω0 the attempt frequency for escaping the
well and τ the relevant time scale of the experiment [34,
35]. In order to better understand the situation in the
experiment of Ref. [9], we can use these relations to find
the distance δr = |r−r0| away from the boundary where
the vortex leaves the pin via thermal activation. Using
the estimates [9] ω0 ∼ 1011 Hz and τ ∼ 300 s, we find
that Ub ≈ 30 kBT ≈ 130 K at the temperature T = 4.2
K of the experiment. Combining the expressions for the
saddle point position (C1), for the barrier (C2) and for
the displacement ux = Fac/2ã, see (5), we obtain

δr ≈ [(u2
x + u2

y)(6Ub/Facux)]1/2. (C3)

For the escape out of the well at x≈20 nm (right edge of
the central well in Fig. 3), where (ux, uy)≈(0.15,−0.05)
nm and with Fac ≈ 10−14 N, one arrives at a typical
energy change per step in FL of Facux ≈ 0.1 K. This
results in an estimate δr ≈ 14 nm, an appreciable dis-
tance away from the Hessian stability boundary. Hence,
one has to conclude that thermal fluctuations cut off
the measured trajectory long before reaching the Hessian
stability boundary, in agreement with the discussion in
the experiment [9]. As a consequence, the displacements
ux and uy, although proportional to the inverse Hessian
(4ab − c2)−1, do not show a divergence when approach-
ing the Hessian stability boundary, as the latter is never
closely approached. In the same vain, the vortex leaves
the pin much before the force saturates at the Hessian
boundary.

In principle, anharmonic effects may influence the vor-
tex escape from the stable regions—this is the case at
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small temperatures [when Ub � kBT ln(ω0τ)] or at large
ac amplitudes u. Including such anharmonicities and
solving for the displacement ux, we find the periodic dy-
namics

ux = −2b

c
uy =

ã

3d

[√
1 +

3d

ã2
Face−iωt − 1

]
eiωt, (C4)

as long as the ac amplitude Fac is below the threshold

Fthr ≡
ã2

3|d| . (C5)

As the ratio Fac/Fthr approaches unity, anharmonic ef-
fects manifest; in particular, the barrier decreases peri-
odically in time to a value

Uanh
b =

4ã3

27d2

(
1− Fac

Fthr

)3/2

, (C6)

thus allowing for a faster escape of the vortex due to the
combined effect of thermal activation and anharmonicity
in the ac response. For even larger ac forces, Fac > Fthr,
the vortex is pushed over the barrier and leaves the de-
fect for good. Expressing the ratio again through known
quantities, we find that Fac/Fthr ≈

√
Facux/Ub which,

when inserting the experimental numbers [9], provides us
with the value 1/20, telling us that anharmonic effects are
small for the experiment in Ref. 9.

Appendix D: Gaussian probability distribution

In the limit of strongly overlapping defects, the func-
tional distribution function P[U(r)] assumes a Gaussian
form, see Eqs. (22) and (23). We verify (and sharpen)
this statement by studying correlators and via direct cal-
culation of P[U(r)] from Eq. (20).

1. Correlators

Given a set of defect (or pin) locations {ri}Ni=1, we
define the associated density

ρ(r) =
∑N

i=1
δ(r − ri). (D1)

When distributed homogeneously over the area Ω, the
average density at the position r is

〈ρ(r)〉 =

∫ [ N∏
i=1

d2ri
Ω

]
ρ(r) = N/Ω = np (D2)

and the two-point correlator reads

〈ρ(r)ρ(s)〉 = N(N−1)/Ω2 + (N/Ω) δ(r − s). (D3)

Going over to reduced densities ρ̄(r) = ρ(r) − np, the
first four correlators read (in the thermodynamic limit
N,Ω→∞, with N/Ω = np)

〈ρ̄(r)〉 = 0, (D4)

〈ρ̄(r)ρ̄(s)〉 = np δ(r − s),
〈ρ̄(r)ρ̄(s)ρ̄(t)〉 = np δ(r − s)δ(r − t),

〈ρ̄(r)ρ̄(s)ρ̄(t)ρ̄(x)〉 = np δ(r − s)δ(r − t)δ(r − x)

+ n2
p

[
δ(r − s)δ(t− x)

+δ(r−t)δ(s−x)+δ(r−x)δ(s−t)
]
.

These results translate into correlators for the potential

U(r) =
∑

i
V (r − ri) =

∫
d2xV (r − x)ρ(x) (D5)

via simple integration: 〈U(r)〉 = 0 (as
∫
d2rV (r)=0) and

〈U(r)U(s)〉 = np

∫
d2xd2yV (r − x)V (s− y)〈ρ(x)ρ(y)〉

= G(r − s) (D6)

with the two-point potential correlator

G(r − s) = npξ
2

∫
d2x

ξ2
V (r − x)V (s− x). (D7)

Here, npξ
2 takes the role of the large density parameter,

with the integral remaining of order V 2
0 . One easily shows

that the even-order (2k)-point correlators are dominated
by the Wick term ∝ (npξ

2)k,

〈U(r1) · · ·U(r2k)〉 = (D8)∑
pairings
{p1,...,pk}

[ k∏
`=1

G(rp`,1−rp`,2)
]

+O[(npξ
2)k−1],

with the set of pairings {p1, . . . , pk} including all sites ri
(i ∈ {1, . . . 2k}). The odd-order (2k+1)-point correlators
start with a subleading term ∝ (npξ

2)k. Note that all
subleading terms involve higher-order potential overlaps,
e.g., the three-defect overlap of the form

G3(r, s, t) = npξ
2

∫
d2x

ξ2
V (r − x)V (s− x)V (t− x).

(D9)

For large densities the Wick term dominates and the dis-
tribution for U(r) becomes Gaussian as npξ

2→∞.

2. Probability distribution P[U(r)]

In order to calculate the functional probability distri-
bution P[U(r)], we discretize the problem and evaluate
P[{Uα}] on the discrete set of lattice sites {rα}M1 on a
mesh with unit volume v = a2, Mv = Ω. Note that
positions r with Latin/Greek indices denote coordinates



14

of defects/mesh-points. The discretized probability func-
tion then derives from the measure Eq. (20),

P[{Uα}] =

∫ [ N∏
i=1

d2ri
Ω

]{∏
β

δ[Uβ − U(rβ)]
}
. (D10)

We rewrite the Dirac δ distributions in Fourier space and
obtain the expression

P[{Uα}] =

∫ [∏
α

dKα

2π/v

][ N∏
i

d2ri
Ω

]
eiv

∑
βKβ [Uβ−U(rβ)]

=

∫ [∏
α

dKα

2π/v

]
eiv

∑
β KβUβ

×
[ ∫

d2r

Ω
e−iv

∑
β KβV (rβ−r)

]N
, (D11)

where we have made use of Eq. (D5). Adding and sub-
tracting unity in the last square bracket, and taking the
thermodynamic limit N,Ω→∞ with np = N/Ω, we can
rewrite the above equation as

P[{Uα}]=
∫ [∏

α

dKα

2π/v

]
eψ[{Kα,Uα};V (r)] (D12)

with

ψ[{Kα, Uα};V (r)] = iv
∑
β

KβUβ (D13)

+ npv
∑
α

[
e−iv

∑
βKβV (rβ−rα) − 1

]
.

For consistency, we have discretized the average over de-
fect positions

∫
d2r → v

∑
α. The saddle-point equation

∂ψ/∂Kβ = 0 for a given Kβ reads

Uβ = npv
∑

α
V (rβ − rα)e−iv

∑
γKγV (rγ−rα). (D14)

We expand the exponential function above assuming its
argument to be small, an assumption that will be vali-
dated a-posteriori below, and find

Uβ ≈ npv
∑
α

V (rβ−rα) (D15)

−inpv2
∑
α,γ

KγV (rβ−rα)V (rγ−rα)

−npv3
∑
α,γ,δ

KγKδV (rβ−rα)V (rγ−rα)V (rδ−rα).

The first term on the right-hand side is the potential’s
mean value which we have assumed to vanish. For the
second term in the expression above, we introduce

Gβ,γ = npv
∑

α
V (rβ − rα)V (rγ − rα), (D16)

the discrete version of the two-point correlator (D7).
With Gβ,γ of the scale (npξ

2)V 2
0 and decaying on a length

|rβ − rγ | ∼ ξ, we arrive at the estimate

K̄β ≡ v
∑

γ,|rβ−rγ |<ξ

Kγ ∼
Uβ

(npξ2)V 2
0

. (D17)

Substituting this estimate in the third term of Eq. (D15),
we find that it is small when

V0K̄β � 1. (D18)

The width of the distribution function for the expectation
value of the potential grows only with (npξ

2)1/2V0, what
tells us that in the limit npξ

2 →∞, the above condition is
satisfies almost everywhere (except for far-distant tails:
for U ∼ V0npξ

2, see (D17) and (D18), the probability
has dropped to exp(−U2/G) ∼ exp(−const. npξ

2)). This
reasoning justifies the truncation of (D15) to include only
terms up to linear order in K. At the same time, it
validates the assumption used after Eq. (D14) and allows
to expand the exponential in (D13) to quadratic order in
K. We thus arrive at the simple expression

P[{Uα}]≈
∫ [∏

α

dKα

2π/v

]
eiv

∑
βKβUβe−

1
2 v

2 ∑
β,γ KβGβ,γKγ

(D19)

for the discretized probability distribution, a result that
becomes exact for npξ

2→∞. Computing the Gaussian
integrals over K, we find that

P[{Uα}] ∝ e−
1
2

∑
β,γ Uβ(G−1)β,γUγ , (D20)

where we have used the discrete version of the inversion
identity

∫
d2xG(r − x)G−1(r′ − x) = δ(r − r′), i.e.,

v
∑

β
Gα,β(G−1)β,γ = δα,γ/v. (D21)

Returning back to the continuum notation, we arrive at
the final result

P[U(r)]→ PG[U(r)] ≡ 1

Z e
− 1

2

∫
d2r
Ω

d2r′
Ω U(r)G−1(r−r′)U(r′),

(D22)

where Z accounts for the correct normalization. Note
that more terms in the expansion of (D13) need to be
retained if one is interested in properties away from the
body of the probability distribution, at least in principle.

Appendix E: Parabolic traps

The determination of the probability distribution
p(D,T) of the Hessian determinant and trace for a land-
scape made from cut parabolas makes use of Eqs. (26)
and (20), from which follows that

π(a, b, c) =

∫ [ N∏
j=1

d2rj
Ω

]
δ[Uxx(0)− 2a] (E1)

× δ[Uyy(0)− 2b] δ[Uxy(0)− c].

Rewriting the delta-distributions in Fourier space, and
expressing the potential U(r) through the sum of indi-
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vidual defect potentials V (r− ri), we obtain the expres-
sion

π(a, b, c) =

∫
dk dl dm

(2π)3
ei(2ka+2lb+mc) (E2)

×
[ ∫ d2r

Ω
e−i[kVxx(r)+lVyy(r)+mVxy(r)]

]N
.

In the thermodynamic limit, N,Ω→∞ at fixed defect
density np=N/Ω, the last factor can be rewritten as[

1 +
np
N
ε(k, l,m)

]N
= enpε(k,l,m) (E3)

with ε(k, l,m) involving only the potential shape V (r) of
an individual defect,

ε(k, l,m) =

∫
d2r
[
e−i[kVxx(r)+lVyy(r)+mVxy(r)]−1

]
. (E4)

As a result, we arrive at the compact form

π(a, b, c) =

∫
dk dl dm

(2π)3
ei(2ka+2lb+mc)enpε(k,l,m). (E5)

While the above procedure applies for all defect types,
we explicitly evaluate the above expressions for the cut
parabolic defect. Since all second derivatives of V (r) are
either 2V0/ξ

2 or zero, Eq. (E4) reads

ε(k, l,m) = Ω0

[
e−i2V0(k+l)/ξ2 − 1

]
. (E6)

Inserting this result into Eq. (E5), expanding the last
factor in a power series, and using the binomial theorem,
we find that

π(a, b, c) =

∫
dk dl dm

(2π)3
ei(2ka+2lb+mc) (E7)

∞∑
ν=0

∞∑
µ=ν

(npΩ0)µ

ν!(µ− ν)!
e−i2V0ν(k+l)/ξ2

(−1)µ−ν .

The integrations over k, l,m provide δ distributions and
rearranging terms in the sum, we obtain

π(a, b, c)=
∑∞

ν=0
δ[ν(2V0/ξ

2)− 2a] δ[ν(2V0/ξ
2)− 2b]

× δ(c) Poiss(ν, npΩ0). (E8)

As expected, the Hessian matrix can only take on discrete
values (2νV0/ξ

2) I and, correspondingly, the probability
distribution is a sum of δ distributions.

Next, we make use of the result for π(a, b, c), Eq. (E8),
in the determination of the probability distribution
p(D,T) for a Hessian H with detH = D and trH = T,
see Eq. (19). The expression (25) for p(D) generalizes to

p(D,T)=

∞∞∞∫∫∫
-∞ -∞ -∞

da db dc π(a, b, c)f(a, b, c;D,T) (E9)

with

f(a, b, c;D,T) = δ[4ab−c2−D] δ[2a+2b−T]. (E10)

and inserting the result Eq. (E8) for π(a, b, c), we find

p(D,T) =
∑∞

ν=0
Poiss(ν, npΩ0)δ[ν2(2V0/ξ

2)2 −D]

× δ[ν(2V0/ξ
2)− T]. (E11)

The final integration over strictly positive D and T results
in the stable area fraction of the Hessian map, Cpos =
1− Poiss(0, npΩ0).
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