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Competition between alternative states is an essential process in social and biological networks.
Neutral competition can be represented by an unbiased random drift process in which the states
of vertices (e.g., opinions, genotypes, or species) in a network are updated by repeatedly selecting
two connected vertices. One of these vertices copies the state of the selected neighbor. Such
updates are repeated until all vertices are in the same “consensus” state. There is no unique rule
for selecting the vertex pair to be updated. Real-world processes comprise three limiting factors
that can influence the selected edge and the direction of spread: (1) the rate at which a vertex
sends a state to its neighbors, (2) the rate at which a state is received by a neighbor, and (3)
the rate at which a state can be exchanged through a connecting edge. We investigate how these
three limitations influence neutral competition in networks with two communities generated by a
stochastic block model. By using Monte Carlo simulations, we show how the community structure
and update rule determine the states’ success probabilities and the time until a consensus is reached.
We present a heterogeneous mean-field theory that agrees well with the Monte Carlo simulations.
The effectiveness of the heterogeneous mean-field theory implies that quantitative predictions about
the consensus are possible even if empirical data (e.g., from ecological fieldwork or observations of
social interactions) do not allow a complete reconstruction of all edges in the network.

I. INTRODUCTION

Numerous social and biological phenomena in complex
networks can be modeled as dynamic processes in which
vertices update their states by copying their neighbors.
In social networks, individuals (represented by vertices)
tend to adopt the opinions, beliefs, or cultural traits of
their peers with whom they are connected [1, 2]. In bi-
ological settings, the vertices can represent individuals
or places inhabited by individuals. For example, in an
ecological habitat network, patches (vertices) are colo-
nized by species from connected patches [3–7]. Unbiased
random drift processes are benchmark models in which
the probability of a copying event is independent of the
state of the vertex [8, 9]. In a genetic model, this fea-
ture can be interpreted as ascribing equal fitness to all
states. In an ecological context, a random drift process
assumes that none of the species is a stronger competitor
within a habitat patch (a vertex) than any other. A state
can only gain more influence by occupying more influen-
tial positions in the network. Although a random drift
process is a highly simplified representation of real-world
dynamics, it can serve as a null model for investigating
positional influence.

The voter model is a paradigmatic example of a ran-
dom drift process [10, 11]. It aims to model the spread
of opinions in a social network. The voter model also
has applications in other contexts (e.g., spread of lan-
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guages [12], competition between species [13], and genetic
drifts [14]). In the simplest versions of the voter model,
each vertex is in one of two possible states: “red” or
“blue.” Vertices repeatedly update their states by copy-
ing the state of a random neighbor. Three conditions
must be met for a successful copying event. (1) A vertex
must send information about its state. (2) A connected
vertex must be ready to update its state. (3) A con-
nection between the sender and recipient must be active.
In an ecological setting, the equivalent conditions are as
follows: (1) The species must produce colonizers (e.g.,
seeds) in the sender patch. (2) These colonizers must be
able to establish their lives in the recipient patch. (3) The
colonizers must find a way from the sender into the recip-
ient patch (e.g., through a suitable ecological corridor).
We investigated random drift processes in which one of
the three conditions is the limiting factor in the spread
of the states.

• In a sender-limited process (SLP), all edges are per-
manently open, and the recipient immediately up-
dates its state. However, vertices attempt to spread
their states across randomly selected edges at a fi-
nite rate only.

• In a recipient-limited process (RLP), all vertices
constantly attempt to spread their states, and all
edges are permanently open. However, vertices
only copy the states of their neighbors at a finite
rate.

• In a connection-limited process (CLP), vertices at-
tempt to colonize their neighbors at an infinite rate,
and they update their state immediately after re-
ceiving a copy of a neighbor. However, the edges
are only open for transmission at a finite rate.
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We assume that the system is homogeneous in the
sense that all vertices are equally active senders, they
are all equally active recipients, and all edges are open
for transmission with equal rates. Under these assump-
tions, the conventional voter model corresponds to the
RLP. Previous studies have termed the SLP as a “reverse
voter model” [15] or an “invasion process” [16]. Others
have referred to the SLP as a “birth–death process,” the
RLP as a “death–birth process,” and the CLP as “link
dynamics” [17].

Early research on random drift models assumed that
the network was either a complete graph [18] or a regular
lattice [10]. In these networks, as well as in any other reg-
ular network (i.e., a network in which each vertex has the
same number of neighbors), no difference exists between
the SLP, RLP, and CLP; every vertex is equally likely to
be a sender and equally likely to be a recipient. In irreg-
ular networks, this symmetry is broken. The resulting
differences between the update rules have been discussed
in the context of the voter model [15, 16], evolutionary
dynamics [14], and game-theoretic settings [19–21].

The purpose of this study is to demonstrate the differ-
ences between the SLP, RLP, and CLP in networks with a
community structure. A community is conventionally de-
fined as a subnetwork that contains a significantly higher
number of edges than predicted by a null model (e.g.,
an Erdős–Rényi graph with the same mean degree as the
investigated network). In this study, we define commu-
nities more broadly as subnetworks with different (i.e.,
higher or lower) densities than the corresponding Erdős–
Rényi graph; thus, we also cover core-periphery struc-
tures and disassortative topologies under the umbrella of
community-structured networks. We generated a com-
munity structure using a stochastic block model, which
is a standard method for generating communities in net-
works [22, 23]. By considering networks with two commu-
nities, we demonstrate that, depending on the network
structure and the factor that limits the transmission of
a state, an initial minority state can become the more
probable winner in the competition. We also compare
the amount of time required to reach a consensus (i.e., a
condition in which all vertices are in the same state) in
the three processes (SLP, RLP, and CLP).

In Sec. II, we briefly review the relevant literature on
random drift processes in modular networks. In Sec. III,
we define our notation for the stochastic block model and
specify how we implemented the random drift processes
as agent-based models. We present the heterogeneous
mean-field theory of two-community random drift pro-
cesses in Sec. IV. In Sec. V, we derive the probability
with which one of the states becomes a consensus. In
Sec. VI, we compare the mean consensus times in the
SLP, RLP, and CLP. We conclude by discussing the im-
plications of our findings in Sec. VII.

II. BACKGROUND

Random drift models have a long history in mathe-
matical biology, usually under the name “neutral mod-
els.” This name indicates that competing partners are
assumed to be equally strong. Since the introduction of
the neutral theory of evolution [24], such neutral mod-
els have been intensively applied in the field of popula-
tion genetics. In this context, the “colors” (red vs. blue
or more colors) represent genotypes within a population
(i.e., within a single species). Another typical field of
application is ecology [8], in which the “colors” mark dif-
ferent species living together in a community.

In both fields, neutral models are important references
for the study of competition between genotypes/species
(in genetics/ecology). The agents can represent individ-
uals or places occupied by individuals belonging to differ-
ent species [25]. The earliest models typically used mean-
field approximations [18], assuming perfect mixing in the
whole population; nevertheless, early literature also high-
lighted the idea of considering the structure of interac-
tions between agents. For example, the classic model of
Wright [26] represents genetic drift in a population that
is spatially divided into subpopulations (demes), which
inhabit discrete habitat patches (“islands”). Members of
the demes mostly breed within themselves, except for
a few migrants drawn from the rest of the population.
Numerous models later explicitly considered the inter-
action structure, representing it by a network. These
studies investigated the effect of the network topology on
the dynamics of competition between genotypes/species
(e.g., [14, 19, 27]). Many of these models relaxed the as-
sumption of neutrality (i.e., allowing unequal competitive
strengths), further extended the voter model by includ-
ing more than two “colors” (beyond red and blue), and
permitted new colors to enter the system (by mutation
in the genetic models and by speciation or immigration
from an external species pool in the ecological settings).

A large field of research, which aims at integrating local
(patch-level) and regional species dynamics, is metacom-
munity ecology [3]. Metacommunity models usually relax
some of the aforementioned restrictive assumptions and
assume interaction rules between species that are more
complex than those in the voter model. Nevertheless,
we believe that the voter model, because of its simplic-
ity, is an important baseline model for the dynamics of
competition in metacommunities.

In the context of opinion formation, vertices typi-
cally represent individuals, and the network structure
reflects social relations (e.g., acquaintances). Some pre-
vious studies have investigated the dynamics of the voter
model on a special type of modular network structure:
two-clique networks (i.e., networks in which both com-
munities are complete subgraphs). Sood et al. [16] found
that, if the number of edges between the cliques is small,
the opinion dynamics in the two cliques can be approx-
imated by two independent diffusion processes. Con-
versely, when the inter-clique connectivity is high, the
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average opinions in the two cliques quickly become equal
and remain coupled until a consensus is reached. Later
studies showed how this finding can be explained by the
theory of coalescing random walks [28] and a heteroge-
neous mean-field theory [29]. Recent work has also inves-
tigated how the dynamics of the two-clique voter model
change if the cliques are influenced by opposing external
news sources [30, 31].

Only a few previous studies have analyzed the voter
model on general two-community networks in which the
communities are not cliques. These studies focused on
the question of suitable representations of the underly-
ing Markov chain [32]. Numerical results for the con-
sensus time [33] and the success probability of a single
mutant [34] have also been presented. Our study goes
beyond previous research by examining the process from
various initial conditions and under three kinds of limita-
tions: when the interaction rates between adjacent ver-
tices are limited by the ability of vertices to send (SLP
model) or receive information (RLP) or by the capacity
to transmit information across an edge (CLP).

III. MODEL

We generated networks using the stochastic block
model, which is a canonical model for modular networks
that can generate various community structures [22]. In
the special case of a two-community network, the stochas-
tic block model takes the following data as input. First,
we partition N vertices into two disjoint communities, C1

and C2. The number of vertices in Ci is denoted as Ni.
Between any two vertices in the same community Ci, a
link exists with probability Pi. The number of edges be-
tween C1 and C2, randomly selected from all N1N2 pairs
of vertices, is denoted by X. In our parameterization
of the stochastic block model, X is a fixed deterministic
value; thus, X ≥ 1 guarantees that there are connections
between the communities. We discarded any networks in
which communities were internally disconnected to en-
sure that a consensus could be reached.

Given a network with two communities generated by
the stochastic block model, we assign an initial state (red
or blue) to each vertex. We assume that C1 is initially
entirely red, and C2 is entirely blue. We refer to this
state as a “polarized” initial condition. This situation
can occur, for instance, if the communities were previ-
ously unconnected, and each of them developed an inter-
nal consensus before new inter-community edges enabled
interactions between communities. (In Appendix A, we
show numerical results for a non-polarized initial con-
dition.) We then update the states according to either
the SLP, RLP, or CLP. In the SLP, we randomly choose a
“sender” from all vertices in the network. The sender then
exports its state to a randomly chosen neighbor. In the
RLP, the direction of the exchange is inverted: we pick a
random “recipient” that adopts the state of a randomly
chosen neighbor. In the CLP, we first chose a random

a

b

c

Community 1 Community 2

FIG. 1. Illustrative network with two communities (circles
vs. squares). Each vertex has one of two possible states: red
(closed symbols) or blue (open symbols). In the SLP and
RLP, we pick a random vertex (e.g., the blue vertex a) and
a neighbor of that vertex. If the chosen neighbor is the blue
vertex b, a maintains its current state. If, instead, the chosen
neighbor is the red vertex c, then either c becomes blue (SLP),
or a becomes red (RLP). In the CLP, we pick a random edge
instead of a random vertex. If the selected edge is (a, c), either
a becomes red (with probability 1/2) or c becomes blue (also
with probability 1/2).

edge. A randomly chosen vertex on the edge adopts the
state of the other vertex on the same edge. In Fig. 1, we
illustrate the differences between the three processes.

In all three investigated processes, we modeled ran-
dom drift dynamics as a continuous-time Markov chain.
In other words, the time intervals between consecutive
updates are independent and identically distributed ex-
ponential random numbers. We set the time unit so that
the mean update rate per vertex is 1 in all investigated
processes (SLP, RLP, and CLP). Updates were repeated
until the vertices reached a consensus. Because we re-
stricted our study to finite, connected networks, the oc-
currence of a consensus in finite time was guaranteed [35].

IV. HETEROGENEOUS MEAN-FIELD THEORY

A continuous-time Markov chain is fully specified by
the transition rates Q(x, y) at which the process moves
from any state x to a new state y 6= x. If we wanted to
represent the state of every vertex in a network with N
vertices faithfully, we would have to distinguish between
2N different states of the network. All Monte Carlo sim-
ulations presented in this study are based on this exact
agent-based paradigm. We complemented the simula-
tions with a heterogeneous mean-field theory, in which
we denote the state of the system as (ρ1, ρ2) if a fraction
ρ1 of vertices in C1 and a fraction ρ2 of vertices in C2 are
red.

We can split the degree ki of a vertex in Ci into two
contributions: ki = ki,int +ki,ext, where ki,int is the num-
ber of neighbors in the same community, and ki,ext is
the number of neighbors in the opposite community. In
the stochastic block model, ki,int is a random variable
with a binomial distribution B(Ni − 1, Pi) for vertices
in Ci. We made a heterogeneous mean-field approxima-
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tion by replacing ki,int with the mean of the distribution,
ki,int ≈ (Ni − 1)Pi. Similarly, we replaced ki,ext with
X/Ni.

With these approximations, we can derive all the tran-
sition rates. For example, let us consider the transition
from (ρ1, ρ2) to (ρ1 + 1/N1, ρ2). The transition occurs
when a vertex in C1 changes from blue to red. In the
SLP, the transition probability can be written as a sum
of two probabilities Π1 + Π2, where Πi is the probability
that the sender is a red agent in Ci who sends its state
to a blue agent in C1. The first probability takes the
following form:

Π1(ρ1) =
N1ρ1
N
· k1,intN1(1− ρ1)

k1(N1 − 1)
, (1)

where the first factor on the right-hand side, N1ρ1/N ,
is the probability of choosing a red sender in C1. The
second factor is the expected proportion of blue neighbors
in C1, conditioned on the selection of a red agent in C1 as
the sender. The second probability follows analogously:

Π2(ρ1, ρ2) =
N2ρ2
N
· k2,ext(1− ρ1)

k2
. (2)

The transition rate is thus

Q

[
(ρ1, ρ2),

(
ρ1 +

1

N1
, ρ2

)]
(3)

= N [Π1(ρ1) + Π2(ρ1, ρ2)],

where the factor N accounts for the fact that there are,
on average, N updates per unit time. After inserting
Eqs. (1) and (2) into Eq. (3), we obtain the result in the
top left corner of Table I, where we use the mean number
of internal edges in Ci,

Ei =
1

2
Ni(Ni − 1)Pi, (4)

as an auxiliary variable to shorten the expressions. Based
on similar arguments, we can calculate the other transi-
tion rates listed in Table I. We adopted the convention
that the diagonal elements of the transition rate matrix
satisfy

Q[(ρ1, ρ2), (ρ1, ρ2)] = −
∑
(y,z)
6=(ρ1,ρ2)

Q[(ρ1, ρ2), (y, z)]. (5)

V. PROBABILITY OF A RED CONSENSUS

In this section, we calculate the probability R(ρ1, ρ2)
of reaching a red consensus from the initial state (ρ1, ρ2).
The choice of color is arbitrary; the labels “red” and
“blue” are interchangeable. R is the martingale that sat-
isfies R(0, 0) = 0, R(1, 1) = 1, and∑

y,z

Q[(ρ1, ρ2), (y, z)]R(y, z) = 0 (6)

for all (ρ1, ρ2) /∈ {(0, 0), (1, 1)}. The solution for the in-
vestigated processes has the form

R(ρ1, ρ2) =
r12ρ1 + r21ρ2
r12 + r21

(7)

with

rij =


N2
i (2Ej +X) SLP,

2Ei +X RLP,
Ni CLP.

(8)

It is possible to verify Eq. (7) and Eq. (8) by insert-
ing them into Eq. (6) together with the expressions for
Q[(ρ1, ρ2), (y, z)] in Table I. We note that rij for the SLP
is not equal to rji in the RLP; thus, there is no symmetry
between the two processes.

Equation (8) shows that the probability of a red con-
sensus in the SLP and RLP depends on the number of
edges within and between communities. In the CLP, how-
ever, R is always the initial fraction of red vertices in the
entire network, regardless of the details of the commu-
nity structure. Consequently, the initial majority state is
always the likely consensus state in the CLP. In the SLP
and RLP, the initial majority is not necessarily the likely
winner, as we can see from the following example.

We assume a polarized initial state in which ρ1 = 1 and
ρ2 = 0. In general, if R(ρ1, ρ2) > 1/2, then the consensus
opinion is more likely to be red than blue. In the SLP,
starting from a polarized state, this situation occurs if

2E1 +X

N2
1

<
2E2 +X

N2
2

. (9)

The quantity in the numerator, 2Ei + X, is the number
of end points of the edges (also called “edge stubs”) in
Ci. Equation (9) implies that even if N1 < N2 (i.e., red
is initially in the minority), red is the likely final winner
as long as the number of stubs in the red community is
sufficiently small. In Fig. 2, we confirmed the predictions
of Eqs. (7) and (8) using Monte Carlo simulations for an
illustrative set of parameters. In the SLP, the probability
of a minority takeover from a polarized state decreases
with X if the minority community contains fewer edges
than the majority (Fig. 2a). However, even for maximally
interconnected communities (i.e., X = N1N2), the mi-
nority can be the likely winner; for example, if N1 = 100,
E1 = 0, N2 = 150, and E2 = 11 175 (in which case
C2 is a clique), then Eq. (8) implies that red wins with
a probability of R = 0.525 despite initially having only
40% of the votes. This mean-field approximation agrees
well with the Monte Carlo simulations (R = 0.526, 95%
confidence interval [0.519, 0.533]).

In the SLP, it is beneficial for the initial minority to
have as few edge stubs as possible because, under these
conditions, the minority is relatively rarely “infected”
with the majority state and can spread its own state with
high probability. The opposite is true for the RLP. If the
RLP starts from (ρ1, ρ2) = (1, 0), then R is the fraction
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TABLE I. Transition rates from the state (ρ1, ρ2) in the investigated random drift processes. In these expressions, Ei is the
mean number of edges in Ci (Eq. 4). We only list transitions with positive rates.

New state (y, z) Transition rate matrix element Q[(ρ1, ρ2), (y, z)]
sender-limited recipient-limited connection-limited(

ρ1 +
1
N1
, ρ2

)
(1− ρ1)

(
N3

1P1ρ1
2E1+X

+ N2Xρ2
2E2+X

)
N1(1− ρ1) · N

2
1P1ρ1 +Xρ2
2E1 +X

N(1− ρ1) · N
2
1P1ρ1+Xρ2

2(E1+E2+X)(
ρ1 − 1

N1
, ρ2

)
ρ1

(
N3

1P1(1−ρ1)
2E1+X

+ N2X(1−ρ2)
2E2+X

)
N1ρ1 · N

2
1P1(1−ρ1) +X(1−ρ2)

2E1 +X
Nρ1 · N

2
1P1(1−ρ1)+X(1−ρ2)

2(E1+E2+X)(
ρ1, ρ2 +

1
N2

)
(1− ρ2)

(
N1Xρ1
2E1+X

+
N3

2P2ρ2
2E2+X

)
N2(1− ρ2) · Xρ1 +N2

2P2ρ2
2E2 +X

N(1− ρ2) · Xρ1+N
2
2P2ρ2

2(E1+E2+X)(
ρ1, ρ2 − 1

N2

)
ρ2

(
N1X(1−ρ1)

2E1+X
+

N3
2P2(1−ρ2)
2E2+X

)
N2ρ2 · X(1−ρ1) +N2

2P2(1−ρ2)
2E2 +X

Nρ2 · X(1−ρ1)+N2
2P2(1−ρ2)

2(E1+E2+X)

R

X
in

te
rs

ec
t

(a)

R

(b) P1 = 0.5, P2 = 0.02

P1 = 0.1, P2 = 0.2

100 101 102 103 104 105

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

X

Process

SLP

RLP

CLP

N1 = 200, N2 = 800

FIG. 2. Probability R of a red consensus as a function of
the number of inter-community edges X for two illustrative
parameter sets. In all cases, the initial state is polarized:
(ρ1, ρ2) = (1, 0). Point symbols represent the means obtained
from Monte Carlo simulations (error bars: 95% confidence
intervals). The curves are the theoretical predictions from
Eqs. (7) and (8). The background color (red vs. blue) indi-
cates the likely winner. The dotted line in panel (a) shows the
inter-community connectivity for which the three processes
have identical heterogeneous mean-field theories. For the pa-
rameters in panel (a), the smaller community C1 has fewer
internal edges than the larger community C2. In panel (b),
C1 has more internal edges than C2.

of edge stubs that are located in the red community C1.
It follows that red is likely to win if E1 > E2 (Fig 2b).
It should be noted that this criterion does not depend
on X. If there are more edges between the communities,
the difference between the success probabilities of the two
states decreases. However, the likely winner in the RLP
is always the state that initially occupies the community
with more internal edges. Consequently, the likely win-
ner can be the initial minority (e.g., red if N1 < N2 and
E1 > E2, see the RLP curve in Fig. 2b).

In general, the SLP, RLP, and CLP have different val-
ues of R. An exception is the case in which the ratio of
the number of vertices in the two communities is equal
to the ratio of the edge stubs,

N1

N2
=

2E1 +X

2E2 +X
. (10)

In this case, it follows from Eqs. (7) and (8) that R equals
the initial fraction of red vertices in all three processes.
An intuitive way to understand this feature is to note
that the left-hand side of Eq. (10) describes the SLP’s
(RLP’s) odds of choosing a sender (recipient) in C1 vs.
C2 during one update. The right-hand side represents the
odds of choosing the SLP’s recipient (RLP’s sender) from
the vertices in C1 vs. C2 in the heterogeneous mean-field
approximation. In the CLP, the right-hand side is equal
to the odds of being a sender and the odds of being a
recipient. If Eq. (10) is satisfied, then all odds mentioned
above are equal; thus, the processes are identical under
the heterogeneous mean-field assumption. In Fig. 2(a),
we confirm this prediction with Monte Carlo simulations
for an illustrative set of parameters: R is the same for
the SLP, RLP, and CLP if X has the special value

Xintersect =
N1N2[(N2 − 1)P2 − (N1 − 1)P1]

N2 −N1
. (11)

If Eq. (11) formally predicts Xintersect < 0 (e.g., for the
parameters chosen in Fig. 2b), no intersection exists.

VI. MEAN CONSENSUS TIME

The transition rates listed in Table I determine the
mean time T (ρ1, ρ2) until a consensus is reached from
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the initial state (ρ1, ρ2). The equations that determine
T are T (0, 0) = T (1, 1) = 0 and∑

y,z

Q[(ρ1, ρ2), (y, z)]T (y, z) = −1 (12)

for all (ρ1, ρ2) /∈ {(0, 0), (1, 1)}. When we insert the tran-
sition rates from Table I and Eq. (5) into Eq. (12), we
can obtain recurrence relations for the values of T . Using
a diffusion approximation [36], we can convert the recur-
rence relations into the more familiar form of a partial
differential equation. That is, we assume N1, N2 � 1
and take the continuum limit of Eq. (12). For the SLP,
this procedure leads to the following partial differential
equation:(

N1P1 ρ1(1− ρ1)

2E1 +X
+
N2X(ρ1 + ρ2 − 2ρ1ρ2)

2N2
1 (2E2 +X)

)
∂2T

∂ρ21

+

(
N2P2 ρ2(1− ρ2)

2E2 +X
+
N1X(ρ1 + ρ2 − 2ρ1ρ2)

2N2
2 (2E1 +X)

)
∂2T

∂ρ22

+
N2X(ρ2 − ρ1)

N1(2E2 +X)

∂T

∂ρ1
+
N1X(ρ1 − ρ2)

N2(2E1 +X)

∂T

∂ρ2

= −1. (13)

We now assume that the communities are so sparsely
connected to each other that X � min(N1, N2). We can
then drop all terms from Eq. (13) that are O

(
N−21

)
or

O
(
N−22

)
,

ρ1(1− ρ1)

N1

∂2T

∂ρ21
+
ρ2(1− ρ2)

N2

∂2T

∂ρ22
(14)

+
X(ρ2 − ρ1)

N1N2P2

∂T

∂ρ1
+
X(ρ1 − ρ2)

N1N2P1

∂T

∂ρ2
= −1.

For the RLP and CLP, we obtain similar second-order
partial differential equations (see Appendix B).

We are not aware of a closed-form solution of Eq. (14)
or the corresponding equations for the RLP and CLP.
However, we can obtain a good approximation of T using
a two-dimensional power series. We call this approxima-
tion Tsparse to indicate that this approximation is valid
only if the communities are sparsely connected to each
other,

Tsparse(ρ1, ρ2) (15)

=

2∑
i=0

2∑
j=0

cij

(
ρ1 −

1

2

)i(
ρ2 −

1

2

)j
.

We expand the right-hand side only up to quadratic
terms because this approximation is sufficiently accurate
if X is small. The value of T remains unchanged if we
swap the labels of the states (i.e., red and blue); thus,
T must satisfy T (ρ1, ρ2) = T (1 − ρ1, 1 − ρ2). Conse-
quently, the coefficients cij in Eq. (15) must be zero if
either i is odd and j is even, or vice versa. The remain-
ing coefficients can be determined using Eq. (14) and the
boundary conditions. In Appendix B, we show how to

T X
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FIG. 3. Mean consensus time T as a function of the number of
inter-community edges X for two illustrative parameter sets.
In all cases, the initial state is polarized: (ρ1, ρ2) = (1, 0).
Point symbols represent Monte Carlo simulations. Error
bars are invisible because the 95% confidence intervals are
smaller than the symbol sizes. The curves represent nu-
merical solutions of the diffusion approximation (Eqs. 13
and B1), obtained using the method described in Appendix C.
The dashed lines show the approximations of Eq. (16) for
X � min(N1, N2). The dotted line in panel (a) shows the
inter-community connectivity for which the three processes
have identical heterogeneous mean-field theories (Eq. 11).

.

cast the conditions on the coefficients into a system of
linear equations for the five unknowns c00, c02, c11, c20,
and c22. From the leading-order behavior of cij , we can
infer the consensus time for the polarized initial condi-
tions in the limit X

min(N1,N2)
→ 0,

Tsparse(1, 0) =
1

X
·


N1N2P1P2

P1+P2
SLP,

2E1E2

E1+E2
RLP,

2N1N2(E1+E2)
N2 CLP.

(16)

The dashed lines in Fig. 3 indicate these limits.
We can deduce from Eq. (16) that the mean consen-

sus time in the SLP for a small X is always shorter than
in the CLP. The mean consensus time for the RLP can
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range from being shorter than for the SLP (if the com-
munity with more vertices has a higher average within-
community degree) to being longer than for the CLP (if
P1/P2 is between N2/N1 and N3

2 /N
3
1 ). The two illustra-

tive parameter sets shown in Fig. 3 exhibit both cases.
The points in Fig. 3 indicate the results from the Monte

Carlo simulations. The curves in Fig. 3 are numerical so-
lutions of the diffusion approximations for the SLP, RLP,
and CLP, calculated using the method described in Ap-
pendix C. As X increases, the leading-order approxima-
tion in Eq. (16) becomes inaccurate, and the rankings of
the processes in terms of T change. However, the agree-
ment with the heterogeneous mean-field theory (curves in
Fig. 3) is excellent. For the special inter-community con-
nectivity Xintersect, derived in Eq. (11), the mean consen-
sus times for all processes are equal. Besides this special
case, there are no simple rules that govern which process
is fastest or slowest for a given X.

While T is a monotonically decreasing function of X
for the CLP, there can be local minima and maxima for
the SLP and RLP. Thus, it is possible to increase the
mean consensus time by increasing the inter-community
connectivity. At first glance, this effect is counterintuitive
because one might expect that more inter-community
edges, which necessarily speed up communication be-
tween the cliques, would always lead, on average, to a
faster consensus. The resolution to this apparent para-
dox lies in the fact that a larger X can give the initial mi-
nority state more options to displace the majority, which
can slow down consensus formation. For the special case
of the RLP on two cliques, this counterintuitive effect has
already been observed by Gastner and Ishida [29].

So far, we have focused on polarized initial states. In
Appendix A, we present results for a non-polarized initial
state with ρ1 = ρ2 = 1/2. As for the polarized case, we
found that T is a monotonically decreasing function of
X for the CLP but not for the SLP and RLP (Fig. 4).
If X is small, we also observed the same rankings of the
processes in terms of T . For larger values of X, however,
the rankings generally depend on the initial state.

VII. DISCUSSION

We compared the effect of three limitations on spread-
ing in networks that had a specific community structure:
each network consisted of two subgraphs (communities)
with arbitrary sizes and connected by X edges. The pa-
rameter X varied from 1, representing a single “bottle-
neck” transmission channel (or ecological corridor) be-
tween the communities, up to X = N1N2, in which case
every possible inter-community connection was present.

A. Two communities divided by a barrier

The case of a small X is particularly interesting from a
biological viewpoint. In an ecological interpretation, the

model can be viewed as a two-species metacommunity
model, in which the vertices represent discrete habitat
sites. A barrier (e.g., mountain range or river) divides the
area into two regions. X represents the penetrability of
the barrier. For example, the barrier can be transgressed
via ecological corridors.

Notably, when the barrier is hardly permeable (i.e., X
is very small), the time of winning is inversely related to
X (Eq. 16). For example, when the two sides of a bar-
rier are connected by twice as many corridors, the time
of coexistence is halved. This rule is important when we
prefer coexistence, to maintain species diversity, or when
we wish to eliminate one of the species. In real life, an
additional corridor can arise naturally (e.g., by a rock
slide on a mountain), or can be man-made, either vol-
untarily or involuntarily. A typical example of the latter
is when building a road, railway line, or canal promotes
the spread of species (e.g., weeds) from one geographic
region into another. Our results suggest that having two
corridors instead of one does not considerably influence
which species wins (Fig. 2) but dramatically influences
the time required for winning (Fig. 3).

Although our model contains serious simplifications,
it reflects two important, realistic features of real-life
metacommunities. First, local dynamics are integrated
into regional dynamics [4, 7]. Second, the opportunity
for spreading of a species depends on the initial posi-
tion within the network (see, for example, a review on
river networks in [5]). The capacity of the voter model
for studying metacommunities has only rarely been used
(e.g., [37]); to our knowledge, our model is the first to
introduce a habitat structure that has the topology of a
modular network (local patches with a regional barrier).

The effect of a modular habitat structure is similarly
important in evolutionary models, in which the colors
(red and blue) represent genotypes within a species. Ge-
ographic barriers have often been mentioned as major
drivers of evolution, including speciation [38]. There-
fore, studying the penetrability of barriers, compared to
spreading within each side, is of primary importance.
We propose that network theory can provide consider-
able help in this regard.

Our model is also applicable to social networks with
exogenous community structures. Barriers in social net-
works can be along religious divisions (e.g., Catholics vs.
Protestants in Northern Ireland), language barriers (e.g.,
between Dutch and French speakers in Belgium), or eth-
nic conflicts (e.g., between Greek and Turkish Cypriots).
The likelihood of inter-community links can be increased,
for example, by working in the same place, visiting com-
mon places of entertainment, or living in the same neigh-
borhood. The present results suggest that, when the
number of links is originally low, adding a few new links
can significantly decrease the time required for consensus
formation.
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B. Validity of the heterogeneous mean-field theory

The heterogeneous mean-field approximation in
Sec. IV assumes perfect mixing (in ecological terms,
no dispersal limitation) within each side of the barrier,
whereas our simulated networks represent the exact con-
figuration of the links (ecological corridors) between the
sites. Interestingly, the heterogeneous mean-field approx-
imation agrees well with the results of the explicit (i.e.,
agent-based) model. Because the heterogeneous mean-
field approximation does not contain detailed information
regarding the network structure, its effectiveness in pre-
dicting the outcome could be utilized in ecological field-
work and observational studies of social dynamics: it is
easier to estimate the connection probability within and
between groups of vertices than to map the links exactly.

At small X, the agreement between the agent-based
model and the heterogeneous mean-field theory can be
explained by the fact that winning within a single side
(within a community) is a relatively fast process because
of the higher intra-community connectivity. The main
bottleneck for an invader is to find a way from one com-
munity to another. Therefore, all sites within the same
side of the barrier can be considered almost identical in
terms of sending and receiving the species.

The validity of the heterogeneous mean-field theory is
not limited to a small X. If X is large, the proportion of
red vertices ρ1 and ρ2 quickly equalizes between commu-
nities 1 and 2. In this case, the heterogeneous mean-field
theory approximates the random drifts in ρ1 and ρ2 as
being coupled by the constraint ρ1 = ρ2 [29, 39]; thus,
the vertices in the same community can again be treated
as almost identical. Figure 2 shows that the theory cor-
rectly predicts that, in the SLP, the initial minority can
be the likely consensus at small X but is unlikely to win
at large X, even if all other parameters (P1, P2, and the
initial distribution of red and blue vertices) are held con-
stant. The heterogeneous mean-field approximation also
correctly captures the sensitive dependence of the con-
sensus time T on the process (SLP, RLP, and CLP) and
the network parameters (P1, P2, N1, and N2) for the full
range of inter-community connectivity (i.e., from X = 1
to X = N1N2; see Fig. 3).

As X increases, the network topology changes from
a modular structure sensu stricto (i.e., two clusters di-
vided by a barrier) over a core-periphery structure to
an anti-community structure, where both communities
are sparsely connected internally and highly connected
to each other. Ecological habitat networks often form
a core-periphery structure toward the edge of the geo-
graphic range [40], as the suitable area tends to become
fragmented [41]. However, these cases require more com-
plex models; the network’s parameters are unlikely to be
homogeneous from the core to the periphery because of a
change in the environment across space. More typical ex-
amples of core-periphery networks are available in social
sciences. For example, networks of professional relation-
ships between scientists have been reported to possess a

core-periphery structure [42, 43]. Networks of romantic
relationships typically exhibit anti-community structures
because most edges are between agents of different gen-
ders [44]. Our results underline the importance of know-
ing the limiting process (SLP, RLP, or CLP) regardless
of whether the network has a modular, core-periphery, or
anti-community structure.

C. Effect of sender, recipient, and channel
limitations

The importance of the update rule has been empha-
sized in several studies on general networks (e.g., [16, 45–
47]), and various update rules have appeared under un-
related names. The nomenclature suggested here (SLP,
CLP, and RLP) expresses that there are different limit-
ing factors in the process of copying the state of a vertex
to one of its neighbors. The spread can be limited by
the sender (as in our SLP), the connection (CLP), or the
recipient (RLP). In our study, only one type of limita-
tion was present in each case. To our knowledge, earlier
studies have also assumed only one type of limitation
in each process. For example, Sood et al. [16] studied
the voter model (equivalent to our RLP) and two pro-
cesses that they termed the “invasion process” (equiva-
lent to our SLP) and “link dynamics” (our CLP). Castel-
lano [15] called the SLP a “reverse voter model”, whereas
Macijewski [45] discussed the SLP and RLP under the
names birth–death and death–birth Moran processes, re-
spectively.

In an ecological and evolutionary context, the SLP,
CLP, and RLP represent different types of limitation on
the species/genotypes. In the SLP, the production of
dispersers (e.g., seeds in plants) is limited. The CLP
corresponds to another type of dispersal limitation; here,
the movement of the species between habitat patches is
limited. This situation occurs, for instance, when the
distance between the patches is high or the penetrability
of the terrain is low, relative to the organisms’ ability
to move. For example, if the landing distance of seeds
from the parent plant is relatively short compared to the
distance between suitable habitat patches, the CLP is
applicable. Finally, the RLP represents establishment
limitation. In the case of a plant species, establishment
limitation typically occurs when germination in the new
site is limited, or the survival probability of the seedlings
is low.

Several studies on metacommunity ecology and land-
scape ecology have shown that these factors are impor-
tant for the maintenance of biodiversity in landscapes
with multiple habitat patches [48]. For example, the pace
of succession in plant communities can be significantly re-
duced by any of the aforementioned limiting factors [49].

In this study, we compared the relative importance of
the three types of limiting factors. Let us consider the
case in which the initial condition is polarized: region 1
is inhabited solely by the “red” species (ρ1 = 1), whereas
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region 2 is occupied by the “blue” species (ρ2 = 0). With-
out loss of generality, we assume that N1 < N2, that is,
the red species is less frequent than the blue one (it is a
“minority”). For example, the red color may represent a
species that has newly arrived as a potential invader and
is attempting to cross a barrier for the first time. Alter-
natively, red and blue can represent two vicariant species
that have lived stably on different sides of the barrier [50].
The process starts when the originally impermeable bar-
rier becomes permeable (X > 0), for example, due to a
climate change. Building roads or bridges can also make
a barrier permeable, depending on the species. Creat-
ing artificial ecological corridors is a means of increasing
permeability for species that are worthy of protection.
Even a single link (X = 1) initiates a diffusion of species
across the barrier. The endpoint is reached when one of
the species outcompetes the other on both sides of the
barrier. If “red” is an alien invader, then low R (prob-
ability of red fixation, see Sec. V) is preferred from the
perspective of nature conservation. Conversely, if “red”
is a rare species that is worthy of protection, a high R
may be desirable. Our results suggest that there are two
scenarios in which invasion across the barrier by the ini-
tial minority is likely (see the red region in Fig. 2): in
the SLP, when the internal connectivity on the “red” side
of the barrier is low compared to the “blue” side, or in
the RLP, when this connectivity is high. This finding
agrees with earlier results in the opinion dynamics liter-
ature: it depends on the update rule whether low-degree
or high-degree vertices are more likely to spread their
opinions [16, 45, 47, 51–53]. Notably, invasion by the mi-
nority can be successful not only at low X but also in
a broad range of X, depending on P1 and P2 (Fig. 2).
In general, starting from good network positions, the mi-
nority can win against the majority, even though it does
not enjoy any local advantage (i.e., the competition is
neutral).

If spreading is limited because crossing the corridors
is difficult (i.e., in the CLP), then the final outcome of
competition does not depend on the number of corridors
(X) and only the time of winning does. Therefore, cre-
ating more ecological corridors across a barrier or closing
some existing corridors can influence the pace of inva-
sion, but not the probability of winning, at least against
an alternative species in neutral competition. In the case
of the CLP, the network positions do not matter either:
it is merely the initial abundance of the two species that
determines R. In other words, we observe a mass effect.

D. Suggestions for future work

The aforementioned results hold true only for neu-
tral competition between two species/genotypes. To
gain a more general view, the model should be ex-
tended to non-neutral competition and to more than two
species/genotypes. Non-neutrality (i.e., selection) has
been introduced into several network models of evolu-

tionary processes [14, 19, 45].
In the present model, a considerable simplification is

that each vertex can be inhabited only by a single species
(red or blue) at a time. This assumption is plausible in
two cases. In the first case, the spatial resolution is so
fine that each site can contain only a single individual
(that belongs to the red or blue species). In the sec-
ond case, a time scale separation can be made, assuming
that the time needed for competitive exclusion within a
site is much shorter than the waiting time for the arrival
of a new colonizer (i.e., the system is strongly dispersal-
limited). Future extensions of the model with non-binary
discrete or continuous states are worthy of investigation.
The literature on social influence has highlighted sub-
stantial differences between opinion dynamics on binary,
continuous, and nominal scales [54].

Another interesting task for future research is to in-
vestigate two or three types of limitations on spreading
acting simultaneously. Their relative importance can be
thought of as points in a multi-dimensional parameter
space, in which we have so far only investigated special
cases when two out of three processes (sending, receiving,
and transmitting) occur at infinite rates.

We acknowledge that the network model presented in
this study is not spatially explicit. However, it would
be straightforward to replace the non-spatial stochastic
block model with a model for modular spatial networks
(e.g., the model proposed by Gross et al. [55]). Equation-
based results are difficult to obtain for spatially explicit
models; however, Monte Carlo simulations are certainly
possible.

In summary, we studied three different agent-based
models of neutral competition using equation-based and
numerical techniques. The update rules of the models
assumed that either the senders, recipients, or channels
of transmission were the bottlenecks in the spread of the
states from one vertex to another. While we acknowledge
that our update rules and network models are highly
simplified compared to real-world applications, we be-
lieve that our results provide a basis for future studies of
agent-based competition in modular networks.
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Appendix A: Effect of a non-polarized initial
condition

All numerical results in the main text were obtained
using polarized initial states. In this appendix, we com-



10

T

X
in

te
rs

ec
t

(a)

T

(b) P1 = 0.5, P2 = 0.02

P1 = 0.1, P2 = 0.2

100 101 102 103 104 105

1000

3000

10000

300

1000

3000

X

Process

SLP

RLP

CLP

N1 = 200, N2 = 800

FIG. 4. Mean consensus time T as a function of the num-
ber of inter-community edges X for a non-polarized initial
state: ρ1 = ρ2 = 0.5. The parameters N1, N2, P1 and P2 are
the same as in Fig. 3. Point symbols represent Monte Carlo
simulations. The curves represent numerical solutions of the
diffusion approximation (Eqs. 13 and B1), obtained using the
method described in Appendix C. The dashed lines show the
approximation of Eq. (B9) for X � min(N1, N2).

pare those results with the outcomes of Monte Carlo
simulations for an illustrative non-polarized initial state:
ρ1 = ρ2 = 1/2. We randomly assign an initial color (red
or blue) to each vertex with probability 1/2. In this case,
Eq. (7) predicts R = 1/2 for all X and for all three pro-
cesses (SLP, RLP, and CLP). Thus, if both communities
initially have an equal number of vertices of both col-
ors, then both colors are equally likely to win regardless
of the number of inter-community links and the process.
We confirmed this prediction with Monte Carlo simula-
tions.

Unlike R, the mean consensus time T depends on X
and the type of process (Fig. 4). In Appendix B, we
present an analytic technique that can approximate T as
a function of X. This approximation is applicable for all
initial conditions. In Fig. 4, we represent the approxima-
tion by the solid curves. The approximation is in good
agreement with Monte Carlo simulations (represented by
point symbols in Fig. 4). In the limit of smallX, it follows

from Eqs. (B8) and (B9) that the mean consensus time
in the non-polarized case is half of that in the polarized
case; thus, the rankings of the processes in this limit are
the same for both types of initial conditions (polarized
and non-polarized with ρ1 = ρ2 = 1/2). For larger val-
ues of X, however, there are no simple rules that would
relate the mean consensus time to the initial conditions.

Appendix B: Mean consensus time for sparse
inter-community connectivity

The diffusion approximation for the three processes un-
der investigation (SLP, RLP, and CLP) has the following
general form:

f1(ρ1, ρ2)
∂2T

∂ρ21
+ f2(ρ1, ρ2)

∂2T

∂ρ22
(B1)

+ g1(ρ1, ρ2)
∂T

∂ρ1
+ g2(ρ1, ρ2)

∂T

∂ρ2
= −1

with functions fi(ρ1, ρ2) and gi(ρ1, ρ2) which differ be-
tween the processes. These functions are listed in Ta-
ble II. If X = O[min(N1, N2)], the leading-order terms of
Eq. (B1) are

H1 ρ1(1− ρ1)
∂2T

∂ρ21
+H2 ρ2(1− ρ2)

∂2T

∂ρ22
(B2)

+ I1X(ρ2 − ρ1)
∂T

∂ρ1
+ I2X(ρ1 − ρ2)

∂T

∂ρ2
= −1,

where the parameters Hi and Ii are dependent on the
process. Their values are listed in Table II.

ForX � min(N1, N2), we obtain the approximate con-
sensus time Tsparse for all three update rules (SLP, RLP,
and CLP) by assuming that Tsparse can be approximated
by the truncated power series in Eq. (15). For the SLP,
we insert Eq. (15) into Eq. (14) and compare the con-
stant terms on the left-hand and right-hand sides of the
equation. The result is

N1c02 +N2c20 = −2N1N2. (B3)

Because the blue consensus is an absorbing state, we
must have T (0, 0) = 0. By inserting this condition into
Eq. (15), we obtain the condition

16c00 + 4(c02 + c11 + c20) + c22 = 0. (B4)

Apart from Eq. (B3) and Eq. (B4), there are three more
conditions on the coefficients cij that follow from eval-
uating Eq. (15) in the polarized corner (ρ1, ρ2) = (1, 0)
and along the edges of the parameter space: (ρ1, 0) with
ρ1 /∈ {0, 1} and (0, ρ2) with ρ2 /∈ {0, 1}. We can combine
all the conditions on cij into the matrix equation

MSLP cSLP = vSLP

with cSLP = (c00, c02, c11, c20, c22)>,
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TABLE II. Functions and parameters that appear in the diffusion approximation (Eqs. B1 and B2).

Function sender-limited recipient-limited connection-limited

f1(ρ1, ρ2)
N1P1 ρ1(1−ρ1)

2E1+X
+ N2X(ρ1+ρ2−2ρ1ρ2)

2N2
1 (2E2+X)

2N2
1 P1 ρ1(1−ρ1)+X(ρ1+ρ2−2ρ1ρ2)

2N1(2E1+X)
NP1 ρ1(1−ρ1)
2(E1+E2+X)

+ NX(ρ1+ρ2−2ρ1ρ2)

4N2
1 (E1+E2+X)

f2(ρ1, ρ2)
N2P2 ρ2(1−ρ2)

2E2+X
+ N1X(ρ1+ρ2−2ρ1ρ2)

2N2
2 (2E1+X)

2N2
2 P2 ρ2(1−ρ2)+X(ρ1+ρ2−2ρ1ρ2)

2N2(2E2+X)
NP2ρ2(1−ρ2)
2(E1+E2+X)

+ NX(ρ1+ρ2−2ρ1ρ2)

4N2
2 (E1+E2+X)

g1(ρ1, ρ2)
N2X(ρ2−ρ1)
N1(2E2+X)

X(ρ2−ρ1)
2E1+X

NX(ρ2−ρ1)
2N1(E1+E2+X)

g2(ρ1, ρ2)
N1X(ρ1−ρ2)
N2(2E1+X)

X(ρ1−ρ2)
2E2+X

NX(ρ1−ρ2)
2N2(E1+E2+X)

H1 N−1
1 N−1

1
NP1

N2
1P1+N

2
2P2

H2 N−1
2 N−1

2
NP2

N2
1P1+N

2
2P2

I1 (N1N2P1)
−1 (N2

1P1)
−1 N

N1(N
2
1P1+N

2
2P2)

I2 (N1N2P2)
−1 (N2

2P2)
−1 N

N2(N
2
1P1+N

2
2P2)

MSLP =


0 N1 0 N2 0
16 4 4 4 1
0 −4P2X 2(P1 + P2)X −4P1X −(P1 + P2)X
0 −4P2X 2P1X 4N2P1P2 N2P1P2

0 4N1P1P2 2P2X −4P1X N1P1P2

 , and vSLP = −2N1N2


1
0

2P1P2

4P1P2

4P1P2

 .

The corresponding matrix equations for the other two processes, MRLP cRLP = vRLP and MCLP cCLP = vCLP, can
be found in a similar manner. In these cases, the matrices and vectors are

MRLP =


0 N1 0 N2 0
16 4 4 4 1
0 −4N2

1P1X 2(N2
1P1 +N2

2P2)X −4N2
2P2X −(N2

1P1 +N2
2P2)X

0 −4N2
1P1X 2N2

2P2X 4N1N
2
2P1P2 N1N

2
2P1P2

0 4N2
1N2P1P2 2N2

1P1X −4N2
2P2X N2

1N2P1P2

 , vRLP = −2N1N2


1
0

2N1N2P1P2

4N1N2P1P2

4N1N2P1P2

 ,

MLD =


0 NP2 0 NP1 0
16 4 4 4 1
0 −4NN1X 2N2X −4NN2X −N2X
0 −4NN1X 2NN2X 4NN1N2P1 NN1N2P1

0 4NN1N2P2 2NN1X −4NN2X NN1N2P2

 , and vLD = −2(N2
1P1 +N2

2P2)


1
0

2N1N2

4N1N2

4N1N2

 .

It is possible to express the solutions of MSLP cSLP =
vSLP, as well as the corresponding equations for the other
two processes, in a closed form. We use these exact solu-
tions for the interpolation shown as solid curves in Fig. 3.
The expressions are long and not immediately insightful;
thus, we omit them here. However, one can easily infer
the leading-order terms in the limit X

min(N1,N2)
→ 0 of cij

from the general form of the matrices MSLP, MRLP, and
MCLP, and the vectors vSLP, vRLP, and vCLP. We find

c11,SLP → −
2N1N2P1P2

(P1 + P2)X
, (B5)

c11,RLP → −
2N2

1N
2
2P1P2

(N2
1P1 +N2

2P2)X
, (B6)

c11,CLP → −
2N1N2(N2

1P1 +N2
2P2)

N2X
. (B7)

In the special case of a polarized initial condition (i.e.,
ρ1 = 1 and ρ2 = 0), we can simplify Eq. (15) using
Eq. (B4),

Tsparse(1, 0) = c00 +
1

4
(c02 − c11 + c20) +

1

16
c22

= −1

2
c11. (B8)

The combination of Eqs. (B5)–(B8) explains Eq. (16) in
the main text. For the non-polarized initial state ρ1 =
ρ2 = 1/2, which we consider in Appendix A, we obtain

Tsparse

(
1

2
,

1

2

)
= c00 = −1

4
c11. (B9)
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Appendix C: Approximate mean consensus time for
arbitrary inter-community connectivity

If X � min(N1, N2), we observe in agent-based simu-
lations that ρ1 ≈ ρ2 after a short transient; thus, the two-
dimensional parameter space (ρ1, ρ2) effectively becomes
one-dimensional. The random variable R(ρ1, ρ2) from
Eq. (7) is a convenient choice to turn the two-dimensional
input into a one-dimensional random variable because
ρ1 ≈ ρ2 implies ρ1 ≈ ρ2 ≈ R(ρ1, ρ2). Similar adiabatic
approximations have also been applied in earlier stud-
ies [16, 27, 29, 56–58].

With this approximation, the functions g1 and g2
in Table II are zero, and the partial differential equa-
tion (B1) becomes the ordinary differential equation

R(1−R)

J

d2T

dR2
= −1, (C1)

where J is a process-dependent parameter,

J =


(2E1+X)(2E2+X)(r12+r21)

2

s12+s21
SLP,

4N1N2(E1+E2+X)2

N1(2E2+X)2+N2(2E1+X)2 RLP,

N CLP

(C2)

with

rij = N2
i (2Ej +X),

sij = N2
i (2Ej +X)2[N3

i Pi(2Ej +X) +NjX(2Ei +X)].

We denote the solution to Eq. (C1) by Tdense. The
subindex “dense” expresses that we obtained the equa-
tion under the assumption that X � min(N1, N2). The
unique solution, subject to the absorbing boundary con-
dition Tdense(0) = Tdense(1) = 0, is

Tdense(R) = −J [R lnR+ (1−R) ln(1−R)]. (C3)

The comparison of Tdense with numerical results ob-
tained using Monte Carlo simulations, shows that the fit
is excellent if communities are densely interwoven. How-
ever, Tdense is a poor fit if the inter-clique connectivity
is sparse because, under this condition, there can be a
long transient after the initial state during which the as-
sumption ρ1 ≈ ρ2 is invalid. For sparse inter-clique con-
nectivity, the approximation Tsparse of Eq. (B8) is more
accurate. By interpolating between Tsparse and Tdense, we
can construct a function Tinterp that takes advantage of a
better approximation in the respective parameter range.

As a first step toward the interpolation, we calculate
the difference ∆ between Tsparse for a fixed value of X
and the asymptotic value of Tsparse in the limit of dense
inter-community connectivity,

∆(ρ1, ρ2, X) = (C4)
Tsparse(ρ1, ρ2, X)− lim

X′→∞
Tsparse(ρ1, ρ2, X

′).

Here, we explicitly include the dependence on X in the
list of function arguments. We then obtain the interpo-
lation by adding ∆ as a correction term to Tdense:

Tinterp(ρ1, ρ2, X) = (C5)
Tdense[R(ρ1, ρ2, X), X] + ∆(ρ1, ρ2, X).

The solid curves in Fig. 3 represent Tinterp for different
processes and parameters. The interpolation technique
was proposed by Gastner and Ishida [29] for the special
case of the RLP, where both communities were assumed
as cliques. Figure 3 reveals that Tinterp also provides a
good fit for more general two-community networks and
for different processes. This analytic method allows the
exploration of the parameter space more efficiently than
time-consuming Monte Carlo simulations.
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