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Rigidity for circle diffeomorphisms with breaks
satisfying a Zygmund smoothness condition 1

H. A. Akhadkulov2, A. A. Dzhalilov3 and K. M. Khanin4

Abstract

Let f and f̃ be two circle diffeomorphisms with a break point, with the same
irrational rotation number of bounded type, the same size of the break c and satisfying
a certain Zygmund type smoothness condition depending on a parameter γ > 2. We
prove that under a certain condition imposed on the break size c, the diffeomorphisms
f and f̃ are C1+ωγ -smoothly conjugate to each other, where ωγ(δ) = | log δ|−(γ/2−1).

1 Introduction

The problem of smoothness of a conjugacy between two circle diffeomorphisms is a clas-
sical problem in one-dimensional dynamics. Arnol’d [2] proved that any analytic circle
diffeomorphism with a Diophantine rotation number, sufficiently close to the rigid rota-
tion fρ → x + ρ is analytically conjugate to fρ. First significant extension of Arnol’d’s
result was obtained by Herman [4]. He proved that C∞-smooth circle diffeomorphism
with a Diophantine rotation number is C∞-conjugate to fρ. Last forty years Herman’s re-
sult was developed by Yoccoz [21], Khanin and Sinai [11], Katznelson and Ornstein [5, 6],
and Khanin and Teplinsky [14] in virtue of their great discoveries, new ideas, methods,
and phenomena. Summarising thus far, if f is C2+ν and the rotation number satisfies a
certain Diophantine condition, then the conjugacy is C1+α for some 0 < α < ν. Moreover,
in [6], the authors considered a class of circle diffeomorphismsm bigger than C2+ν . They
proved that if Df absolutely continuous and D logDf ∈ Lp, for some p > 1 then the con-
jugacy is is absolutely continuous provided its rotation number is bounded type. One of
the last results on the progression of the regularity of conjugacy of circle diffeomorphisms
have been contributed by Akhadkulov et al [1] by extending previous results for circle
diffeomorphisms satisfying a certain Zygmund-type smoothness condition depending on
a parameter γ > 0. It was shown that, if a circle diffeomorphism satisfies the Zygmund
condition for γ > 1/2 then there exists a subset of irrational numbers of unbounded type
such that the conjugacy is absolutely continuous provided its rotation number belongs to
the above set. Moreover, if γ > 1 then the conjugacy is C1-smooth for almost all irrational
rotation numbers. It is important to remark that, in the case of diffeomorphisms, rigidity
is guaranteed only when the rotation numbers satisfy a certain Diophantine condition.
Recently, Khanin and Teplinsky [12] showed that in the presence of critical points or break
points points the rigidity may be stronger, i.e., valid for a ”large” set of rotation numbers.
They have showed that for the diffeomorphisms of a circle with a single critical point, the
robust rigidity holds, that is, the rigidity holds without any Diophantine conditions. The
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robust rigidity result depends on exponential convergence of renormalizations so called
renormalization problem. The renormalization problem was proved by de Faria and de
Melo for C∞-smooth critical circle maps with irrational rotation numbers of bounded
type [16, 17], and extended, in the analytic setting, by Yampolsky [18] to cover all irra-
tional rotation numbers. Recently, a remarkable rigidity results also have been obtained
by Guarino and de Melo [19] and Guarino et al [20] in the case of lower smoothness of
critical circle maps. In [19], it was proven a C1+α (for a universal α > 0) rigidity result
for any two C3 critical circle maps with the same irrational rotation number of bounded
type and the same odd criticality. In the case of the class is C4, C1-rigidity holds for
any irrational rotation number and C1+α- rigidity holds for a full Lebesgue measure set
of rotation numbers as shown in [20].

In the case of a break type singularity, the first rigidity results for C2+α circle diffeo-
morphisms were obtained by Khanin and Khmelev [7], and Khanin and Teplinsky [13]. In
[7], rigidity theorem was proved for irrational rotation numbers with periodic partial quo-
tients and in [13], for half bounded (see the definition below) irrational rotation numbers.
Note that the robust rigidity does not hold for circle diffeomorphisms with breaks. Indeed,
as shown in [8], there are irrational rotation numbers, and pairs of analytic circle diffeo-
morphisms with breaks, with the same rotation number and the same size of the break, for
which any conjugacy between them is not even Lipschitz continuous. The most remark-
able results in this direction were obtained by Khanin and Kocic̀ [9] and Khanin et al [10].
In [9], it was shown that the renormalizations of any two C2+α-smooth circle diffeomor-
phisms with a break point, with the same irrational rotation number and the same size of
the break, approach each other exponentially fast in the C2-topology. This result implies
that for almost all irrational numbers, any two C2+α-smooth circle diffeomorphisms with
a break, with the same rotation number and the same size of the break, are C1-smoothly
conjugate to each other as shown in [10]. The interesting problems of circle maps are the
rigidity and renormalizations problems on the less regularities, for instance these problems
are open for C2+α-smooth critical circle maps and for circle diffeomorphisms with break
points satisfying a Zygmund condition, even for bounded combinatorics. The renormal-
izations problem for circle diffeomorphisms with a break satisfying a certain Zygmund
condition is partially solved in [3].

In this paper we study the rigidity problem of two circle diffeomorphisms f and f̃ with
a break point, with the same irrational rotation number of bounded type, the same size
of the break c and satisfying a certain Zygmund type smoothness condition depending
on a parameter γ > 2. We prove that under a certain condition imposed on the break
size c, the diffeomorphisms f and f̃ are C1+ωγ -smoothly conjugate to each other, where
ωγ(δ) = | log δ|−(γ/2−1). The rest of this paper is organized as follows. In Section 2, the
main notions and statement of main theorem are given. In Section 3, we show the existence
of a solution of a cohomological equation for the break-equivalent diffeomorphisms. In
Section 4, some universal estimates for the ratio of the lengths of the segments of dynamical
partition are obtained. Sections 5 and 6 are devoted to study the renormalizations and
closeness of rescaled points. Finally, in Section 7, the proof of main theorem is given.
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2 General settings and statement of main Theorem

2.1 Dynamical partition

In this section, first we present some of the basic notations of circle maps and then we
estimate the ratio of lengths of elements of the dynamical partition. Denote by S

1 = R/Z
unit circle. Let f : S1 → S

1 be a circle homeomorphism we denote its rotation number by
ρ(f). It can be expressed as a continued fraction

ρ(f) = 1/(k1 + 1/(k2 + ...)) := [k1, k2, ..., kn, ...).

The sequence of positive integers (kn) with n ≥ 1 called partial quotients and it is infinite if
and only if ρ(f) is irrational. We call ρ := ρ(f) is bounded type if s(ρ) := sup kn < ∞. Let
pn/qn = [k1, k2, ..., kn] be the sequence of rational convergents of ρ. The coprime numbers
pn and qn satisfy the recurrence relations

pn = knpn−1 + pn−2, and qn = knqn−1 + qn−2

for n ≥ 1, wherep0 = 0, q0 = 1 and p−1 = 1, q−1 = 0. Let ξ0 ∈ S
1. Define nth fundamental

segment ∆
(n)
0 := ∆

(n)
0 (ξ0) as the circle arc [ξ0, f

qn(ξ0)] if n is even and [f qn(ξ0), ξ0] if n is

odd. We shall also use the notations ∆̂
(n−1)
0 = ∆

(n)
0 ∪∆

(n−1)
0 and ∆̌

(n−1)
0 = ∆

(n−1)
0 \∆

(n+1)
0 .

Certain number of images of fundamental segments ∆
(n−1)
0 and ∆

(n)
0 , under the iterates of

f, cover whole circle without overlapping beyond the endpoints and form nth dynamical
partition of the circle S

1

Pn := Pn(ξ0, f) =
{
∆

(n)
j := f j(∆

(n)
0 ), 0 ≤ j < qn−1

}⋃{
∆

(n−1)
i := f i(∆

(n−1)
0 ), 0 ≤ i < qn

}
.

The partition Pn+1 is a refinement of the partition Pn. Indeed, the segments of order n

belong to Pn+1 and each segment ∆
(n−1)
i , 0 ≤ i < qn is partitioned into kn+1+1 segments

belonging to Pn such that

(1) ∆
(n−1)
i = ∆

(n+1)
i ∪

kn+1−1⋃

s=0

∆
(n)
i+qn−1+sqn

.

One can easily see that the endpoints of the segments from Pn form the set

Ξn = {ξi := f i(ξ0), 0 ≤ i < qn + qn−1}.

We shall also use the extended set Ξ∗
n = Ξn ∪ {ξqn+qn−1}. Now we formulate a lemma

which will be used in the sequel.

Lemma 2.1. For every m > n, we have the following decomposition

(2) Ξm ∩ ∆̌
(n−1)
0 =

⋃

ξl∈Ξm∩∆
(n)
0 \{ξqn}

kn+1−1⋃

s=0

ξl+sqn+qn−1 .

Furthermore, for every ξl ∈ Ξm∩∆
(n)
0 \{ξqn} we have ξl+kn+1qn+qn−1 = ξl+qn+1 ∈ Ξ∗

m∩∆̂
(n)
0 .

Proof. The proof of the lemma follows directly from the properties of dynamical partition.
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2.2 Circle diffeomorphisms with a break and Zygmund class

We recall the following definition.

Definition 2.2. f : S1 → S
1 is called a circle diffeomorphism with a single break point ξ0

if the following conditions are satisfied:

(i) f ∈ C1([ξ0, ξ0 + 1]);

(ii) infξ 6=ξ0 Df(ξ) > 0;

(iii) f has one-sided derivatives Df(ξ0 ± 0) > 0 and

c := cf (ξ0) =

√
Df(ξ0 − 0)

Df(ξ0 + 0)
6= 1.

The number c is called the size of break of f at ξ0. Circle diffeomorphisms with a
break were first studied by Khanin & Vul in [15]. It was proven that the renormalizations
circle diffeomorphisms with a break approximate fractional linear transformations. Next
we define a class of circle diffeomorphisms with breaks satisfying a Zygmund condition.
Consider the function Zγ : [0, 1) → [0,+∞) defined as

Zγ(x) = | log x|−γ , for x ∈ (0, 1)

and Zγ(0) = 0, where γ > 0. Let f be a circle diffeomorphism with the break point ξ0.
Denote by ∇2f(ξ, τ) the second symmetric difference of Df, that is

∇2f(ξ, τ) = Df(ξ + τ) +Df(ξ − τ)− 2Df(ξ)

where ξ ∈ S
1 \ {ξ0} and τ ∈ [0, 12 ]. Suppose that there exists a constant C > 0 such that

(3) ‖∇2f(·, τ)‖L∞(S1) ≤ CτZγ(τ).

In this work we study the class of circle diffeomerphisms f with break point ξ0, whose
derivatives Df have bounded variation and satisfy the inequality (3). We denote this class
by D1+Zγ (S1 \ {ξ0}).

Remark 2.3. Note that the class D1+Zγ (S1 \ {ξ0}) is bigger than C2+ǫ(S1 \ {ξ0}) for any
positive γ and ǫ.

2.3 Statement of the main theorem

In this section we formulate our main theorem. For this, let us first define some necessary
facts. Let m ∈ N. Define

D(1)
m = {c ∈ R+ \ {1} : c4m − c2 < 1}; D(2)

m = {c ∈ R+ \ {1} : c4m+2 + c4m > 1}.

The following is our main theorem.

Theorem 2.4. Let γ > 2 and m ∈ N. Let f and f̃ be two circle diffeomorphisms with a
break satisfying the following conditions:

(a) f, f̃ ∈ D1+Zγ (S1 \ {ξ0});
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(b) f and f̃ have the same irrational rotation number ρ of bounded type such that s(ρ) =
m;

(c) f and f̃ have the same size of the break c ∈ R+ \ {1};

(d) c ∈ D
(1)
m in case of c > 1 or c ∈ D

(2)
m in case of 0 < c < 1.

Then there exists a C1-smooth circle diffeomorphism h and a constant A > 0 such that
h ◦ f = f̃ ◦ h and

|Dh(x)−Dh(y)| ≤ Aωγ(|x− y|)

for any x, y ∈ S
1 such that x 6= y.

Remark 2.5. The reason for the restriction c in condition (d) is purely technical. It enables
us to get an algebraic estimate for the ratio of lengths of segments ∆n+ℓ and ∆n satisfying
∆n+ℓ ⊂ ∆n of the dynamical partition Pn while ℓ has a form of the logarithm of n. We
do not know if the statement of Theorem 2.4 holds when the restriction is removed.

3 Cohomological equation for the break-equivalent diffeo-

morphisms

In this section we show the existence of a solution of a cohomological equation for the
break-equivalent diffeomorphisms. We begin from the following definition.

Definition 3.1. We say that two circle diffeomorphisms f and f̃ with a break ξ0 are break-
equivalents if there exists a topological conjugacy h such that h(ξ0) = ξ0 and cf (ξ0) =
cf̃ (h((ξ0))).

Consider two break-equivalent circle diffeomorphisms f and f̃ with irrational rotation
number. Let h : S1 → S

1 be the conjugacy between f and f̃ , that is,

(4) h ◦ f = f̃ ◦ h.

The cohomological equation associated to (4) is

(5) ζ ◦ f − ζ = logDf̃ ◦ h− logDf

where ζ : S1 → R is called the solution of (5) if it exists. Note that here Df̃(h(x)) means
the derivative of f̃ at h(x). Define

Λn(x) = logDf qn(x)− logDf̃ qn(h(x)), x ∈ ∆̂
(n−1)
0 .

Since f and f̃ are break-equivalents one-side limits of Λn at the break point ξ0 are equal

that is, Λn(ξ0 − 0) = Λn(ξ0 + 0). Therefore Λn is continuous on ∆̂
(n−1)
0 and it can be

decomposed as

Λn(x) =

qn−1∑

s=0

logDf(f s(x))− logDf̃(h ◦ f s(x)), x ∈ ∆̂
(n−1)
0 .

Denote Λn = max
x∈∆̂

(n−1)
0

|Λn(x)|. The following theorem will be used in the proof of main

theorem.
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Theorem 3.2. Let f and f̃ be two break-equivalent circle diffeomorphisms with a break
and with identical irrational rotation number ρ = [k1, k2, ..., kn, ...]. If

∞∑

n=0

kn+1Λn < ∞

then the cohomological equation (5) has a continuous solution.

Proof. Let in : S1 → N0 be the first entrance time of x in ∆̂
(n−1)
0 ; that is,

in(x) = min{i ≥ 0 : f i(x) ∈ ∆̂
(n−1)
0 }.

Define ζn : S1 → R as follows

ζn(x) =

in(x)−1∑

s=0

logDf(f s(x))− logDf̃(h ◦ f s(x)).

Next we show that ζn is a Cauchy. For this, first we estimate ‖ζn+1 − ζn‖∞. To estimate
this we distinguish the following three cases:
Case I. Suppose x ∈ S

1 \ Ξn+1. By the definition of in we have

in(x) =





0, if x ∈ ∆̂
(n−1)
0

qn−1 − j, if x ∈ ∆
(n)
j

qn − i, if x ∈ ∆
(n−1)
i

where 0 < j < qn−1 and 0 < i < qn. Using the properties of dynamical partition we can
show that

in+1(x)− in(x) =





0, if x ∈ ∆̂
(n)
0 ∪∆

(n+1)
i

kn+1qn, if x ∈ ∆
(n)
j

(kn+1 − ℓ− 1)qn, if x ∈ ∆
(n)
i+qn−1+ℓqn

where 0 < j < qn−1, 0 < i < qn and 0 ≤ ℓ < kn+1. Therefore |ζn+1(x) − ζn(x)| = 0 if

x ∈ ∆̂
(n)
0 ∪∆

(n+1)
i , 0 < i < qn and

|ζn+1(x)− ζn(x)| =
∣∣∣
in+1(x)−1∑

s=in(x)

logDf(f s(x)) − logDf̃(h ◦ f s(x))
∣∣∣

=
∣∣∣
in+1(x)−in(x)−1∑

s=0

logDf(f s(xin)− logDf̃(h ◦ f s(xin))
∣∣∣

≤
∣∣∣
qn−1∑

s=0

logDf(f s(xin)− logDf̃(h ◦ f s(xin))
∣∣∣

+
∣∣∣
2qn−1∑

s=qn

logDf(f s(xin)− logDf̃(h ◦ f s(xin))
∣∣∣

...

+
∣∣∣

in+1(x)−in(x)−1∑

s=in+1(x)−in(x)−qn

logDf(f s(xin)− logDf̃(h ◦ f s(xin))
∣∣∣

(6)
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if x ∈ ∆
(n)
j , 0 < j < qn+1 where xin = f in(x)(x). Clearly f in maps S1 into ∆̂

(n−1)
0 and the

points xin , f
qn(xin), ..., f

in+1(x)−in(x)−qn(xin) lie in the interval ∆̂
(n−1)
0 . Therefore the right

hand side of (6) can be estimated as follows

|ζn+1(x)− ζn(x)| ≤

in+1(x)−in(x)−qn∑

s=0

∣∣∣Λn

(
f sqn(xin)

)∣∣∣ ≤ kn+1Λn.

Hence

(7) ‖ζn+1 − ζn‖∞ ≤ kn+1Λn.

Case II. Suppose x = ξi ∈ Ξn. For i = 0, it is clear that |ζn+1(ξ0)− ζn(ξ0)| = 0. For i ≥ 1,
one can easily see

in(ξi) =





qn−1 − i, if 1 ≤ i ≤ qn−1

qn − i, if qn−1 < i ≤ qn
qn + qn−1 − i, if qn < i < qn + qn−1.

Consequently, we get

in+1(ξi) =

{
qn − i, if 1 ≤ i ≤ qn
qn+1 − i, if qn < i < qn + qn−1.

Therefore

in+1(ξi)− in(ξi) =





qn − qn−1, if 1 ≤ i ≤ qn−1

0, if qn−1 < i ≤ qn
(kn+1 − 1)qn, if qn < i < qn + qn−1.

This and by the definition of ζn we have |ζn+1(ξi)− ζn(ξi)| = 0 if qn−1 < i ≤ qn, and

(8) |ζn+1(ξi)− ζn(ξi)| = |Λn(ξ0)− Λn−1(ξ0)| ≤ Λn + Λn−1

if 1 ≤ i ≤ qn−1 and

(9) |ζn+1(ξi)− ζn(ξi)| =
∣∣∣
kn+1−1∑

s=1

Λn(ξsqn+qn−1)
∣∣∣ ≤ kn+1Λn.

if qn < i < qn + qn−1.

Case III. Suppose x = ξi ∈ Ξn+1 \ Ξn. In this case we consider the following sub-cases:

a) i ∈Ln := {ℓqn + qn−1, 1 ≤ ℓ < kn+1}, b) i ∈(qn + qn−1, qn+1) \ Ln,

c) i =qn+1, d) i ∈(qn+1, qn+1 + qn).

It is easy to check that in(ξi) = 0 and in+1(ξi) = (kn+1 − ℓ)qn in the sub-case of a). Thus
one gets

(10) |ζn+1(ξi)− ζn(ξi)| =
∣∣∣
kn+1−1∑

s=ℓ

Λn(ξsqn+qn−1)
∣∣∣ ≤ kn+1Λn.
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Consider the sub-case b). It is clear that i can be written as i = ℓ1qn + qn−1 + i1 for some
1 ≤ ℓ1 < kn+1 and 1 ≤ i1 < qn. By the definition of in we have in(ξi) = qn − i1 and
in+1(ξi) = qn+1 − i = (kn+1 − ℓ1)qn − i1. It implies

(11) |ζn+1(ξi)− ζn(ξi)| =
∣∣∣
kn+1−1∑

s=ℓ1

Λn(ξsqn+qn−1)
∣∣∣ ≤ kn+1Λn.

The sub-case c) is clear because of both functions Λn and Λn+1 are zero at ξi. Finally,
consider the sub-case d). In this case i can be written as i = qn+1+i1 for some 1 ≤ i1 < qn.
One can easily see in(ξi) = qn− i1 and in+1(ξi) = qn+1+ qn− i = qn+1+ qn− (qn+1+ i1) =
qn − i1 which implies

(12) |ζn+1(ξi)− ζn(ξi)| = 0.

Combining the inequalities (7)-(12) we obtain, finally,

(13) ‖ζn+1 − ζn‖∞ ≤ knΛn−1 + kn+1Λn.

From this it follows that

(14) ‖ζn+p − ζn‖∞ ≤ 2

n+p∑

m=n

kmΛm−1.

Thus ζn is a Cauchy. Let ζ(x) = limn→∞ ζn(x). Next we show that the function ζ : S1 → R

is continuous and satisfies the cohomological equation (5). First we show that ζ satisfies
(5). It is easy to see that for any x ∈ S

1 \ {ξ0} there exists n0 := n0(x) such that
in(f(x)) = in(x)− 1 for all n ≥ n0. This and by the definition of ζn we get

ζn ◦ f − ζn = logDf̃ ◦ h− logDf

for all n ≥ n0. Taking the limit as n → ∞ we get (5). Let x = ξ0. It is easy to see that
ζn(ξ0) = 0 and

ζn(f(ξ0)) =

in(f(ξ0))−1∑

s=0

logDf(f s+1(ξ0))− logDf̃(h ◦ f s+1(ξ0))

=

qn−1−2∑

s=0

logDf(f s+1(ξ0))− logDf̃(h ◦ f s+1(ξ0))

= Λn−1(ξ0) + logDf̃(h(ξ0))− logDf(ξ0).

(15)

Taking the limit as n → ∞ we again get (5). Next we show that ζ is continuous at x = ξ0.

Since ζn(ξ0) = 0 for all n ≥ 1 we have ζ(ξ0) = 0. Take any z ∈ ∆̂
(n−1)
0 . It is obvious that

ij(z) = 0 for every j ≤ n, so ζj(z) = 0 for every j ≤ n. In particular

ζn+p(z) =

p−1∑

m=0

ζn+m+1(z) − ζn+m(z).

This and relation (13) imply

|ζn+p(z)| ≤ 2

n+p∑

m=n

kmΛm−1.
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Consequently
lim
n→∞

sup
z∈∆̂

(n−1)
0

|ζ(z)| = 0.

Hence ζ is continuous at x = ξ0. Denote by Ξ = {ξi := f i(ξ0), i ∈ N} the positive
trajectory of ξ0. Since ζ is continuous at x = ξ0 and logDf̃ ◦ h− logDf is continuous on
S
1, by

ζ ◦ f − ζ = logDf̃ ◦ h− logDf

it implies that ζ is continuous on Ξ. Note that in : S1 → R is continuous in the interior
of each element of the partition Pn for every n ≥ 1. As a consequence ζn is continuous in
the interior of each element of the partition Pn for every n ≥ 1. Thus the limit function ζ
is continuous on x ∈ S

1 \ Ξ.

Remark 3.3. It is important to remark that Theorem 3.2 holds true for any two break-
equivalent circle diffeomorphisms with any countable number of break points.

4 Renormalizations of circle diffeomorphisms with a break

In this section we will discuss on convergence of renormalizations of two circle diffeomor-
phisms with a break. Let us recall first the definition of renormalization of circle maps.

The segment ∆̂
(n−1)
0 is called the nth renormalization neighborhood of ξ0. On ∆̂

(n−1)
0 we

define the Poincaré map πn = (f qn , f qn−1) : ∆̂
(n−1)
0 → ∆̂

(n−1)
0 as follows

πn(ξ) =

{
f qn(ξ), if ξ ∈ ∆

(n−1)
0 ,

f qn−1(ξ), if ξ ∈ ∆
(n)
0 .

Next we define the renormalization of f as follows. Let An : R → S
1 be an affine covering

map such that An([−1, 0]) = ∆
(n−1)
0 , with An(0) = ξ0 and An(−1) = f qn−1(ξ0). We

define an ∈ R to be a positive number such that An(an) = f qn(ξ0). It is obvious that

An : [0, an] → ∆
(n)
0 and An : [−1, 0] → ∆

(n−1)
0 . A pair of functions (fn, gn) : [−1, an] →

[−1, an] defined by (fn, gn) = A−1
n ◦ πn ◦ An, is called the nth renormalization of f, where

A−1
n is the inverse branch that maps ∆̂

(n−1)
0 onto [−1, an]. Define the following Möbius

transformation

Fn := Fan,vn,cn : z →
an + cnz

1− vnz

where cn = c if n is even, cn = c−1 if n is odd, and

an =
|∆

(n)
0 |

|∆
(n−1)
0 |

, vn =
cn − an − bn

bn
, bn =

|∆
(n−1)
0 | − |∆

(n)
qn−1 |

|∆
(n−1)
0 |

.

The following theorem has been proved in [3].

Theorem 4.1. Let f ∈ D1+Zγ (S1 \ {ξ0}) and γ > 1. Suppose the rotation number of f is
irrational. There exists a constant C = C(f) > 0 and a natural number N0 = N0(f) such
that

‖fn − Fn‖C1([−1,0]) ≤
C

nγ
, ‖D2fn −D2Fn‖C0([−1,0]) ≤

C

nγ−1

for all n ≥ N0.
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The following lemma will be used in the subsequent sections.

Lemma 4.2. Let f ∈ D1+Zγ (S1 \ {ξ0}) and γ > 1. Suppose the rotation number of f is
irrational. There exists a constant Q = Q(f) > 0 such that

‖fn‖C2([−1,0]) ≤ Q.

Proof. The proof of the lemma implies from Theorem 4.1 and Proposition 7.1 stated in
[3].

Half-bounded rotation numbers. The half-bounded rotation numbers were defined by
Khanin and Teplinsky in [13] as follows. Denote by Mo and Me the class of all irrational
rotation numbers ρ = [k1, k2, ...), such that

Mo = {ρ : (∃C > 0) (∀m ∈ N) k2m−1 ≤ C}, Me = {ρ : (∃C > 0) (∀m ∈ N) k2m ≤ C}.

Let us formulate the following theorem borrowed from [13].

Theorem 4.3. Let f and f̃ be two C2+ν-smooth circle diffeomorphisms with breaks of the
same size c and the same rotation number ρ ∈ Me in case of c > 1, or ρ ∈ Mo in case of
0 < c < 1. There exist constants C = C(f, f̃) > 0 and µ ∈ (0, 1) such that

‖fn − f̃n‖C2([−1,0]) ≤ Cµn.

This theorem was extended by Khanin and Kocić [10] for all irrational rotation numbers
and for the class of D1+Zγ (S1 \ {ξ0}) by Akhadkulov et al [3]. More precisely, in [3], it
was proven the following

Theorem 4.4. Let f, f̃ ∈ D1+Zγ (S1 \ {ξ0}) and γ > 1. Assume that f and f̃ have the
same break size c and the same rotation number ρ ∈ Me in the case of c > 1, or ρ ∈ Mo

in the case of 0 < c < 1. There exists a constant C = C(f, f̃) > 0 and a natural number
N0 = N0(f, f̃) such that

‖fn − f̃n‖C1([−1,0]) ≤
C

nγ
, ‖D2fn −D2f̃n‖C0([−1,0]) ≤

C

nγ−1

for all n ≥ N0.

An estimate of Dfn. The following set plays an important role in the investigations of
renormalizations of comuting pairs of Möbius transformations (see [13]).

Φε
c = {(a, v) : ε < a < c− ε, ε <

v

c− 1
< 1− ε, v + a− c+ 1 > ε}, ε > 0.

Lemma 4.5. Let f ∈ D1+Zγ (S1 \ {ξ0}), γ > 1 be a circle diffeomorphism with irrational
rotation ρ and the break size c. Assume that ρ ∈ Me if c > 1 or ρ ∈ Mo if 0 < c < 1. There
exists a constant ε = ε(f) > 0 and a natural number N0 = N0(f) such that the projection
(an, vn) of the renormalization (fn, gn) belongs to Φε

cn for all n ≥ N0.

Proof. The proof follows from Proposition 7.1 in [3].
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Lemma 4.6. Let f ∈ D1+Zγ (S1 \ {ξ0}), γ > 1 be a circle diffeomorphism with irrational
rotation ρ and the break size c. Assume that ρ ∈ Me if c > 1 or ρ ∈ Mo if 0 < c < 1.
There exists a constant ε = ε(f) > 0 and a natural number N0 = N0(f) such that, for all
n ≥ N0, we have

cn
(cn + ε(1 − cn))2

−
C

nγ
≤ Dfn(z) ≤ c2n − ε(c2n − 1− ε(cn − 1)) +

C

nγ

if cn > 1 and

c2n − ε(c2n − 1− ε(cn − 1))−
C

nγ
≤ Dfn(z) ≤

cn
(cn + (1− cn)ε)2

+
C

nγ

if cn < 1.

Proof. It is easy to see that DFn(z) = (cn + anvn)(1 − vnz)
−2. Let cn > 1. Lemma 4.5

implies (cn − 1)ε < vn < (cn − 1)(1− ε) and hence 1+ (cn − 1)ε < 1+ vn < cn − ε(cn − 1).
Using these inequalities we get

(16) DFn(z) ≤ cn + anvn < cn + (cn − ε)(cn − 1)(1 − ε) = c2n − ε(c2n − 1 − ε(cn − 1))

and

(17) DFn(z) ≥
cn + anvn
(1 + vn)2

>
cn + ε2(cn − 1)

(cn + ε(1− cn))2
>

cn
(cn − ε(cn − 1))2

.

Assume cn < 1. By Lemma 4.5 we have (cn − 1)(1 − ε) < vn < (cn − 1)ε, which implies
that cn + (1− cn)ε < 1 + vn < 1 + (cn − 1)ε and (1− vnz)

2 > (1 + vn)
2. Hence we have

(18) DFn(z) ≤
cn + anvn
(1 + vn)2

<
cn − (1− cn)ε

2

(cn + (1− cn)ε)2
<

cn
(cn + (1− cn)ε)2

and

(19) DFn(z) ≥ cn + anvn > cn + (cn − ε)(cn − 1)(1 − ε) = c2n − ε(c2n − 1− ε(cn − 1)).

The proof of the lemma now follows from (16)-(19) and Theorem 4.1.

Denote c = max{c, c−1}. It follows from Lemma 4.6 the following

Corollary 4.7. Let f ∈ D1+Zγ (S1 \{ξ0}), γ > 1 be a circle diffeomorphism with irrational
rotation ρ and the break size c. Assume that ρ ∈ Me if c > 1 or ρ ∈ Mo if 0 < c < 1.
There exists a natural number N0 = N0(f) such that

1

c2
−

C

nγ
≤ Dfn(z) ≤ c2 +

C

nγ

for all n ≥ N0.
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5 Universal estimates for the segments of Pn

In this section we estimate the ratio of lengths of segments of dynamical partition of circle
diffeomorphisms satisfying in the setting of rotation number is bounded type.

Lemma 5.1. Let f ∈ D1+Zγ (S1\{ξ0}), γ > 1 be a circle diffeomorphism with the break size
c and irrational rotation number ρ of bounded type such that s(ρ) = m. Let ∆(n+k) ∈ Pn+k

such that ∆(n+k) ⊂ ∆̂
(n−1)
0 where k ≥ 1. There exists a constant C = C(f) > 0 and a

natural number N0 = N0(f) such that

|∆(n+k)|

|∆̂
(n−1)
0 |

≤ Cλk
(
1 +

1

nγ−1

)

for all n ≥ N0, where λ =
√

c2

c2+1
.

Proof. First we show that

(20)
|∆

(n+1)
0 |

|∆
(n−1)
0 |

≤ λ2 +
C

nγ

for large enough n. One can verify that ∆
(n+1)
0 ⊂ ∆

(n)
kn+1qn+qn−1

. By (1) and Corollary 4.7
we have

|∆
(n+1)
0 |

|∆
(n−1)
0 |

≤
1

1 +
|∆

(n)
(kn+1−1)qn+qn−1

|

|∆
(n+1)
0 |

≤
1

1 +
|∆

(n)
(kn+1−1)qn+qn−1

|

|∆
(n)
kn+1qn+qn−1

|

≤
1

1 + (Df qn(ξ̂))−1
=

1

1 + (Dfn(ẑ))−1
≤

c2

c2 + 1
+

C

nγ

(21)

where ξ̂ ∈ ∆
(n)
(kn+1−1)qn+qn−1

and ẑ ∈ (−1, 0) such that An(ẑ) = ξ̂. Inequality (21) yields

|∆
(n+2l+1)
0 |

|∆
(n−1)
0 |

≤ exp

(
l∑

s=0

ln
(
λ2 +

C

(n+ 2s)γ

))
≤ λ2(l+1)

(
1 +

C

nγ−1

)
.(22)

Since the rotation number is bounded type we have

(23)
|∆

(n+k)
0 |

|∆̂
(n−1)
0 |

≤ Cλk
(
1 +

1

nγ−1

)

for any k ≥ 1 and for n large. Let ∆(n+k) be any interval satisfying ∆(n+k) ∈ Pn+k and

∆(n+k) ⊂ ∆̂
(n−1)
0 where k ≥ 1. There exists i0 such that f i0(∆

(n+k)
0 ) = ∆(n+k). We claim

that the length of intervals ∆
(n+k)
0 and f i0(∆

(n+k)
0 ) are comparable, that is, there exists

a constant C > 1 such that C−1 ≤ |∆
(n+k)
0 |/|f i0(∆

(n+k)
0 )| ≤ C. Indeed, due to Finzi’s

inequality we have

(24) e−v ≤
|∆

(n+k)
0 |

|f i0(∆
(n+k)
0 )|

|f i0(∆̂
(n−1)
0 )|

|∆̂
(n−1)
0 |

≤ ev.
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where v is the total variation of logDf.On the other hand the length of intervals f i0(∆̂
(n−1)
0 )

and ∆̂
(n−1)
0 are (2ev + 1)-comparable since

f i0(∆̂
(n−1)
0 ) ⊂ f−qn−1(∆̂

(n−1)
0 ) ∪ ∆̂

(n−1)
0 ∪ f qn−1(∆̂

(n−1)
0 )

and
∆̂

(n−1)
0 ⊂ f−qn−1+i0(∆̂

(n−1)
0 ) ∪ f i0(∆̂

(n−1)
0 ) ∪ f qn−1+i0(∆̂

(n−1)
0 ).

Therefore the length of intervals ∆
(n+k)
0 and f i0(∆

(n+k)
0 ) are comparable. This and in-

equality (23) imply
|∆(n+k)|

|∆̂
(n−1)
0 |

≤ Cλk
(
1 +

1

nγ−1

)

for k ≥ 1 and large enough n.

6 Closeness of rescaled points

Our aim in this section is to show the closeness of rescaled points of ξ and h(ξ). Let f
be a circle diffeomorphism with a break. Let An be the affine covering map of f. Denote

by rn : ∆̂
(n−1)
0 → [−1, an] the inverse of An. The point rn(ξ) is called rescaled point of

ξ. Next consider two circle diffeomorphisms f and f̃ with a break and with the identical
irrational rotation number. Define the distance between appropriately rescaled points of
ξ and h(ξ) :

dn(ξ) = |rn(ξ)− r̃n(h(ξ))|.

We have

Lemma 6.1. Let f and f̃ satisfy the assumptions of Theorem 2.4. Then for any α ∈ (0, γ)
there exist κ = κ(f, f̃) > 1, C = C(f, f̃) > 0 and N0 = N0(f, f̃) ∈ N such that

dn(ξ) ≤
C

nγ−α

for all ξ ∈ Ξ∗
ℓ ∩ ∆̂

(n−1)
0 provided n ≤ ℓ ≤ n+ [α logκ n] for n ≥ N0 where [·] is the integer

part of a number.

Proof. It is easy to verify that Ξ∗
ℓ ∩ ∆̂

(n−1)
0 = {ξqn−1 , ξqn+qn−1 , ξ0, ξqn} for ℓ = n. One can

easily see that dn(ξqn−1) = dn(ξ0) = 0, dn(ξqn+qn−1) = |fn(−1) − f̃n(−1)| and dn(ξqn) =

|fn(0)− f̃n(0)|. Hence by Theorem 4.4 we get

(25) max
ξ∈Ξ∗

n∩∆̂
(n−1)
0

dn(ξ) ≤
C

nγ

for large enough n. For fixed ℓ > n let us denote qn = max
ξ∈Ξ∗

ℓ
∩∆̂

(n−1)
0

dn(ξ). The obvious

equality dn(ξ) = |fn(0)rn+1(ξ)− f̃n(0)r̃n+1(h(ξ))| and Theorem 4.4 imply

(26) dn(ξ) ≤ andn+1(ξ) +
C

nγ

if ξ ∈ Ξ∗
ℓ ∩ ∆̂

(n)
0 and n is large, where an = fn(0) = |∆

(n)
0 |/|∆

(n−1)
0 |. Let ξ ∈ Ξℓ ∩ ∆̌

(n−1)
0 .

Consider an arbitrary thread in the decomposition (2) and denote ηs = rn(ξl+sqn+qn−1),
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η̃s = r̃n(ξ̃l+sqn+qn−1), for 0 ≤ s ≤ kn+1, so that dn(ξl+sqn+qn−1) = |ηs − η̃s| where

ξ̃l+sqn+qn−1 = h(ξl+sqn+qn−1). It is easy to see that ηs+1 = fn(ηs) and η̃s+1 = f̃n(η̃s).
First we consider the case s = 0. In this case, it is a simple matter to verify that

dn(ξl+qn−1) = |η0 − η̃0| =
∣∣∣
rn−1(ξl+qn−1)

fn−1(0)
−

r̃n−1(ξ̃l+qn−1)

f̃n−1(0)

∣∣∣

≤
dn−1(ξl+qn−1)

fn−1(0)
+
∣∣∣ 1

fn−1(0)
−

1

f̃n−1(0)

∣∣∣
∣∣∣̃rn−1(ξ̃l+qn−1)

∣∣∣,

dn−1(ξl+qn−1) = |fn−1(rn−1(ξl))− f̃n−1(r̃n−1(ξ̃l))|

≤ Dfn−1(r
0)dn−1(ξl) + |fn−1(r̃n−1(ξl))− f̃n−1(r̃n−1(ξl))|,

dn−1(ξl) = |fn−1(0)fn(0)rn+1(ξl)− f̃n−1(0)f̃n(0)r̃n+1(ξ̃l)|

≤ fn−1(0)fn(0)dn+1(ξl) + |fn−1(0)fn(0)− f̃n−1(0)f̃n(0)||̃rn+1(ξ̃l)|,

(27)

where r0 is a point between rn−1(ξl) and r̃n−1(ξ̃l) such that |fn−1(rn−1(ξl))−fn−1(r̃n−1(ξ̃l))| =
Dfn−1(r

0)|rn−1(ξl) − r̃n−1(ξ̃l)|. Since the rotation number is bounded type, Theorem 4.4
and inequalities (20) and (27) imply that

dn(ξl+qn−1) = |η0 − η̃0| ≤ anDfn−1(r
0)dn+1(ξl) +

C

nγ
(28)

for n large. Now consider the case 0 < s < kn+1. Let r
s be a point between ηs−1 and η̃s−1

such that |fn(ηs−1)− fn(η̃s−1)| = Dfn(r
s)|ηs−1 − η̃s−1|. Then we have

dn(ξl+sqn+qn−1) = |ηs − η̃s| ≤ Dfn(r
s)|ηs−1 − η̃s−1|+

C

nγ

for n large. Iterating into it we get

(29) dn(ξl+sqn+qn−1) = |ηs − η̃s| ≤
s∏

i=1

Dfn(r
i)|η0 − η̃0|+

(
1 +

s∑

j=2

s∏

i=j

Dfn(r
i)
) C

nγ

Since the rotation number is bounded type the expressions
(
1+

∑s
j=2

∏s
i=j Dfn(r

i)
)
and

∏s
i=1 Dfn(r

i) are bounded above by a universal constant. This and relations (28) and (29)
imply

(30) dn(ξl+sqn+qn−1) ≤
s∏

i=1

Dfn(r
i)
(
anDfn−1(r

0)
)
dn+1(ξl) +

C

nγ

for n large. Finally, consider the case s = kn+1. In this case, it is easy to see that

dn(ξl+qn+1) =
∣∣∣rn(ξl+qn+1)− r̃n(ξ̃l+qn+1)

∣∣∣

= |fn(0)fn+1(rn+1(ξl))− f̃n(0)f̃n+1(r̃n+1(ξl))|

≤ anDfn+1(r
kn+1)dn+1(ξl) +

C

nγ

(31)

for large enough n, where rkn+1 is a point between rn+1(ξl) and r̃n+1(ξ̃l) such that |fn+1(rn+1(ξl))−
fn+1(r̃n+1(ξ̃l))| = Dfn+1(r

kn+1)|rn+1(ξl)−r̃n+1(ξ̃l)|. Combining Lemmas 4.5 and 4.6 we can
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easily obtain that anDfn−1(r
0), anDfn+1(r

kn+1) ≤ c2n +Cn−γ if cn > 1 and anDfn−1(r
0),

anDfn+1(r
kn+1) ≤ c−1

n + Cn−γ if cn < 1 and

(32)

s∏

i=1

Dfn(r
i)
(
anDfn−1(r

0)
)
≤

{
c
2(s+1)
n + Cn−γ, if cn > 1

c
−(s+1)
n + Cn−γ, if cn < 1

for n large. Let us denote c = max{c, c−1} and κ := κ(c,m) = c2m. It follows from the
relations (26), (28), (30),(31) and (32) that

(33) qn ≤ κqn+1 +
C

nγ

for n large. Iterating (33) we get

qn ≤ κℓ−nqℓ + C

ℓ−1∑

j=n

κj−n

jγ

for n large. Inequality (25) implies qℓ ≤ Cℓ−γ. Hence

(34) qn ≤ C

ℓ∑

j=n

κj−n

jγ
≤

Cκℓ−n

nγ
.

The condition n ≤ ℓ ≤ n+ [α logκ n] makes it obvious that

qn ≤
C

nγ−α

for large enough n. Lemma 6.1 is proved.

7 Proof of main theorem

In this section we prove our main theorem. For this, first we prove a preparatory lemma
and then we prove C1-smoothness of the conjugacy. Finally, we prove C1+ωγ -smoothness
of the conjugacy.

7.1 Preparatory lemma

We begin by proving the following lemma.

Lemma 7.1. Let f and f̃ satisfy the assumptions of Theorem 2.4. Then there exists a
constant C := C(f, f̃) > 0 and a natural number N0 := N0(f, f̃) such that

Λn ≤
C

n
γ
2

for all n ≥ N0.

Proof. One can see that

|Λn(ξ)| = | logDf qn(ξ)− logDf̃ qn(h(ξ))| = | logDfn(rn(ξ)) − logDf̃n(r̃n(ξ̃))|

≤ | logDfn(rn(ξ)) − logDfn(r̃n(ξ̃))| + | logDfn(r̃n(ξ̃))− logDf̃n(r̃n(ξ̃))|

≤ ‖D logDfn‖C0([−1,0])dn(ξ) +
1

infDf̃n
‖Dfn −Df̃n‖C0([−1,0]).

(35)
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By Lemma 4.2 we have ‖D logDfn‖C0([−1,0]) ≤ Q.Denjoy’s inequality implies (inf Df̃n)
−1 ≤

evf . From Theorem 4.4 it follows that ‖Dfn − Df̃n‖C0([−1,0]) ≤ Cn−γ for n large. Next

we estimate dn(ξ) on ∆̂
(n−1)
0 . First we assume that ξ ∈ Ξ∗

n+[ γ
2
logκ n]

∩ ∆̂
(n−1)
0 . Then, if we

choose α = γ/2 in Lemma 6.1 then for large enough n, the function dn(ξ) can be estimated
as follows

(36) dn(ξ) ≤
C

n
γ
2

.

Let ξ be any point of ∆̂
(n−1)
0 . Denote by ∆(n+[ γ

2
logκ n])(ξ) the segment of Pn+[ γ

2
logκ n]

containing the point ξ and rn(ξ) := rn+[ γ
2
logκ n](ξ) the right endpoint of ∆(n+[ γ

2
logκ n])(ξ).

A trivial reasoning shows that

dn(ξ) = |rn(ξ)− r̃n(h(ξ))|

≤
∣∣∣ξ − rn(ξ)

|∆
(n−1)
0 |

−
h(ξ) − h(rn(ξ))

|∆̃
(n−1)
0 |

∣∣∣+ dn(rn(ξ))

≤
|∆(n+[ γ

2
logκ n])(ξ)|

|∆
(n−1)
0 |

+
|∆̃(n+[ γ

2
logκ n])(h(ξ))|

|∆̃
(n−1)
0 |

+ dn(rn(ξ))

(37)

where ∆̃(n+[ γ
2
logκ n])(h(ξ)) the segment of P̃n+[ γ

2
logκ n] := P̃n+[ γ

2
logκ n](h(ξ0), f̃) containing

the point h(ξ). By (36) we have

(38) dn(rn(ξ)) ≤
C

n
γ
2

.

It follows easily from Lemma 5.1 that

(39)
|∆(n+[ γ

2
logκ n])(ξ)|

|∆
(n−1)
0 |

≤ Cλ
γ
2
logκ n

(
1 +

1

nγ−1

)
,

and

(40)
|∆̃(n+[ γ

2
logκ n])(h(ξ))|

|∆̃
(n−1)
0 |

≤ Cλ
γ
2
logκ n

(
1 +

1

nγ−1

)
.

One can see that

(41) λ
γ
2
logκ n =

( 1

n
γ
2

)logκ 1
λ

Hypothesis (d) of Theorem 2.4 implies that λ−1 > κ. Hence

logκ
1

λ
> 1.

This implies

(42) λ
γ
2
logκ n ≤

1

n
γ
2

Combining (35)-(43) we conclude that

Λn ≤
C

n
γ
2

for large enough n. Lemma 7.1 is proved.
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7.2 C1-smoothness of conjugacy

By the hypotheses of Theorem 2.4 the rotation number of f and f̃ is bounded type and
γ > 2. Lemma 7.1 implies that

∞∑

n=0

kn+1Λn < ∞.

Therefore, it follows from Theorem 3.2 that the cohomological equation (5) has a contin-
uous solution ζ. Next we prove the following lemma.

Lemma 7.2. There exists β > 0 such that

Dh(ξ) = βeζ(ξ), for all ξ ∈ S
1.

Proof. Denote by βn = |∆̃
(n)
0 |/|∆

(n)
0 |. Since the rotation number of f and f̃ is bounded

type, Theorem 4.4 and inequality (20) imply that

(43) | ln βn − lnβn−1| = | ln fn(0) − ln f̃n(0)| ≤
1

Lm(v̂)
|fn(0)− f̃n(0)| ≤

C

nγ
.

Since γ > 2 the sequence (ln βn)n and as well as (βn)n is convergent. Let β = limn→∞ βn.
It follows from

lim
n→∞

|∆̃
(n)
0 |

|∆
(n)
0 |

= lim
n→∞

|h(∆
(n)
0 )|

|∆
(n)
0 |

= Dh(ξ0)

and ζ(ξ0) = 0 that Dh(ξ0) = βeζ(ξ0). From this and the equality h ◦ f = f̃ ◦ h we deduce

(44) logDh(ξi)− logDh(ξi−1) = logDf̃(h(ξi−1))− logDf(ξi−1).

for any ξi ∈ Ξ where ξi = f i(ξ0), i ≥ 1. The cohomological equation (5) implies that

(45) ζ(ξi)− ζ(ξi−1) = logDf̃(h(ξi−1))− logDf(ξi−1).

Combining (44) and (45) we get

logDh(ξi)− ζ(ξi) = logDh(ξi−1)− ζ(ξi−1)

which implies
logDh(ξi)− ζ(ξi) = logDh(ξ0)− ζ(ξ0).

Hence

(46) Dh(ξi) = βeζ(ξi)

for any ξi ∈ Ξ. Since ζ is continuous and Ξ is dense in S
1 the function Dh can be continu-

ously extended to the whole of S1 verifying the equality (46). This proves Lemma 7.2 and
concludes the C1-smoothness of the conjugacy.
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7.3 C1+ωγ -smoothness of conjugacy

It follow from C1-smoothness of conjugacy and the equality h ◦ f = f̃ ◦ h that

(47) logDh ◦ f − logDh = logDf̃ ◦ h− logDf.

Consider the points ξi and ξi+qn−1+sqn where 1 ≤ s ≤ kn+1. It is clear that ξi, ξi+qn−1+sqn ∈

∆
(n−1)
i . The relation (47) implies

| logDh(ξi+qn−1+sqn)− logDh(ξi)| ≤ sΛn + Λn−1.

Consequently, for any ξj ∈ Ξ ∩ ∆̌
(n−1)
i we have

| logDh(ξj)− logDh(ξi)| ≤ C

∞∑

ℓ=n

kℓ+1Λℓ.

Since kℓ+1 is bounded from Lemma 7.1 it implies that

(48) | logDh(ξj)− logDh(ξi)| ≤ C

∞∑

ℓ=n

1

ℓ
γ
2

≤
C

n
γ
2
−1

.

It is obvious that

(49) |∆
(n+1)
i | ≤ |ξj − ξi| ≤ |∆

(n−1)
i |.

Lemma 5.1 implies that there exist µ1, µ2 ∈ (0, 1) verifying µ1 < µ2 such that

(50) µn
1 ≤ |∆(n)| ≤ µn

2

for any ∆(n) ∈ Pn. Relations (49) and (50) imply

(51) n = O
( 1∣∣ log |ξj − ξi|

∣∣
)
.

Combining (48) with (51) we can assert that

(52) | logDh(ξj)− logDh(ξi)| ≤
C

∣∣ log |ξj − ξi|
∣∣ γ2−1

.

Since Ξ is dense in S
1, the function Dh can be continuously extended to the whole of S1

verifying the inequality (52). This proves C1+ωγ -smoothness of the conjugacy. Theorem
2.4 is proved.
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