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Abstract

In a 2006 paper, Jan Lorenz observed a curious behaviour in numer-
ical simulations of the Hegselmann-Krause model: Under some circum-
stances, making agents more closed-minded can produce a consensus
from a dense configuration of opinions which otherwise leads to frag-
mentation. Suppose one considers initial opinions equally spaced on
an interval of length L. As first observed by Lorenz, simulations sug-
gest that there are three intervals [0, L1), (L1, L2) and (L2, L3), with
L1 ≈ 5.23, L2 ≈ 5.67 and L3 ≈ 6.84 such that, when the number
of agents is sufficiently large, consensus occurs in the first and third
intervals, whereas for the second interval the system fragments into
three clusters. In this paper, we prove consensus for L ≤ 5.2 and for
L sufficiently close to 6. These proofs include large computations and
in principle the set of L for which consensus can be proven using our
approach may be extended with the use of more computing power. We
also prove that the set of L for which consensus occurs is open. More-
over, we prove that, when consensus is assured for the equally spaced
systems, this in turn implies asymptotic almost sure consensus for the
same values of L when initial opinions are drawn independently and
uniformly at random. We thus conjecture a pair of phase transitions,
making precise the formulation of Lorenz’s “consensus strikes back”
hypothesis. Our approach makes use of the continuous agent model
introduced by Blondel, Hendrickx and Tsitsiklis. Indeed, one con-
tribution of the paper is to provide a presentation of the relationships
between the three different models with equally spaced, uniformly ran-
dom and continuous agents, respectively, which is more rigorous than
what can be found in the existing literature.

1

ar
X

iv
:2

10
7.

12
90

6v
1 

 [
m

at
h.

D
S]

  2
6 

Ju
l 2

02
1



1 INTRODUCTION

1 Introduction

In the classical Hegselmann-Krause model (the HK-model for short) in
opinion dynamics, each agent i in a set of agents indexed by integers
1, 2, 3, ..., n possesses an opinion ft(i) at time t. All agents then simul-
taneously update their opinion at the next time step according to the
rule

ft+1(i) =
1

|Ni|
∑
j∈Ni

ft(j) (1.1)

where Ni = {j ∈ [n] : |ft(j)− ft(i)| ≤ 1}, and [n] = {1, 2, ..., n}.
The paper normally cited in connection to this model is [5], which

presents simulations and some important basic results. Strictly speak-
ing, [5] gives a slightly different definition where the 1 in the expression
for Ni is replaced by a confidence radius r. We note that simultane-
ously scaling r along with all opinions does not change the qualitative
behaviour of the model, and the formulation given here, referred to as
the normalised model, is common. When discussing the HK-model, it
is useful to employ the concept of the connectivity graph, which takes
as nodes the agents and connects the agents i and j precisely when
j ∈ Ni.

Perhaps the most basic observation is that if two agents hold opin-
ions separated by more than 1, and no other agents holds an opinion
in between, the two will never interact. A second, slightly less ob-
vious, observation is that even if the current state has a connected
connectivity graph, that of the updated state might be disconnected,
as may be readily verified by assigning the opinions 0, 0, 1, 2, 3 and 3
to six agents and computing the update. Breaking of the connectivity
graph, which by the first observation is irreversible, is referred to as
fragmentation. A third observation of [5], which requires a little more
mathematical work to verify, is that for each possible initial choice of
opinions, there is some finite number T such that after updating the
system T times, the opinion profile reaches a fixed point which is not
changed by subsequent updates. When we reach such a fixed point, we
say that the system freezes1, and it is not hard to verify that a frozen
state must consist of a set of clusters, where agents in a cluster are in
agreement and clusters are pairwise separated by strictly more than 1.
A configuration consisting of a single cluster is called a consensus.

The HK-model has received considerable attention, and the original
paper [5] has close to 3000 citations on Google Scholar at the time of
writing. Most of the citing papers present simulations of all sorts of

1The study of the time needed for freezing in the Hegselmann-Krause model has
spawned at least half a dozen papers by about as many authors. State of the art re-
sults can be found in [2], [8] and [10].
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1 INTRODUCTION

variations on the original model. There are, to date, only a handful
of papers with rigorous mathematical results for the basic model, e.g.:
[2], [8], [10], [4], [3].

In many instances, interesting hypotheses have first arisen from
simulations. One particularly nice example of this concerns the ques-
tion of what the final configuration typically looks like when the model
is initiated with a large number n of agents equidistributed on the in-
terval [0, L], for some fixed L. In a seminal 2006 paper [7], Lorenz
approached this problem in two ways, the first of which was to simply
simulate the dynamics of (1) for equally spaced agents on various in-
tervals, including half-infinite ones. The second way was to devise a
clever interactive Markov chain (IMC) model where the opinion space
is discretised and the agents change sections according to a stochastic
matrix chosen so as to mimic the original behaviour of the model, ar-
guing that the models should, intuitively, be equal in the limit when
the discretisation is refined. In this way, he produced an early way
of simulating not the dynamics of the actual agents, but rather that
of their distribution. The point is that this, at least morally, should
hint at the typical behaviour of the actual model for large numbers of
agents.

The paper contains no mathematical proofs, but various interesting
observations and remarks on the presented simulations.

One of Lorenz’s observations, which gave the paper its title, is
that, in his IMC model, the resulting configuration of clusters behaves
unexpectedly when the radius of confidence is varied. Adhering to the
convention of using a normalised radius, which we will keep throughout
this paper, his finding translates to the following. When opinions are
spread on an interval of length L < 1, all agents reach a consensus,
and this remains true for a while when L grows larger than 1. At
around L ≈ 5, the final configuration undergoes a bifurcation, and
changes from one to three clusters. What is even more interesting is
that around L ≈ 6 the system undergoes another bifurcation, and the
final state returns to consisting of a single cluster. In the words of
Lorenz, consensus “strikes back”!

The following conjecture is implicit in Lorenz’s paper:

Conjecture 1.1. Denote by CUni(L, n) the random final number of
clusters reached by updating according to (1.1) when starting from
n agents whose opinions are drawn uniformly and independently at
random from the interval [0, L].

Then the limit CUni(L) = limn→∞ CUni(L, n) exists as a random
variable and there exist numbers 0 < L1 < L2 < L3, such that:

(i) If 0 ≤ L < L1, then CUni(L) = 1 almost surely.

(ii) If L1 < L < L2, then CUni(L) = 3 almost surely.

(iii) If L2 < L < L3, then CUni(L) = 1 almost surely.
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1 INTRODUCTION

Lorenz discusses his observation in relation to a 2004 conjecture by
Hegselmann, stating that for any L there might be a number n such
that n equally spaced agents on an interval of length L must eventually
reach a consensus, a conjecture that is still not disproven rigorously.

A step forward in our understanding of equidistributed agents on
an interval of length L was taken in a 2007 paper of Blondel, Hendrickx
and Tsitsiklis [3]. The authors choose another approach for studying
the dynamics of the distribution of agents, namely to consider a con-
tinuum of agents and index them not by a set of natural numbers, but
by an interval I of real numbers. Replacing the sum in (1.1) by an
integral, the analogue of (1.1) is then that for every agent α ∈ I, its
updated opinion is given by

ft+1(α) =
1

µ(Nα)

∫
Nα

ft(β)dβ (1.2)

where Nα = {β ∈ I : |ft(α)− ft(β)| ≤ 1}.
In contrast to the IMC model of Lorenz this formulation doesn’t

require a finite discretisation of the opinion space. The downside is
that it is hard to use for actual formal computations, but it is very
useful from a theoretical point of view.

The three chief contributions in this paper are

(i) to develop techniques for finding rigorous bounds on how much
the evolution of a finite number n of equally spaced agents on
an interval of length L may differ from the limiting case when n
goes to infinity,

(ii) to give a rigorous presentation of the relationships between the
three different models with equally spaced, uniformly random
and continuous agents, respectively,

(iii) using (i) and (ii), to prove the following theorem and corollary:

Theorem 1.2. Denote by CEq(L, n) the final number of clusters reached
by updating according to (1.1) when starting from n agents whose opin-
ions are equally spaced on the interval [0, L], and let

CEq(L) = lim
n→∞

CEq(L, n),

whenever the limit exists, i.e. when CEq(L, n) is constant for all suffi-
ciently large n.

(i) {L > 0 : CEq(L) = 1} is an open set.

(ii) If L′1 = 5.2, L′2 = L′3 = 6, there exists some number T such that,
if L ∈ [0, L′1]∪ [L′2, L

′
3] then, for all sufficiently large n, the T ’th

update of the corresponding equally spaced profile is a consensus.
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1 INTRODUCTION

Hence, there exist numbers 5.2 < L1 < L2 < 6 < L3 such that if
L ∈ [0, L1) ∪ (L2, L3) then CEq(L) = 1.

Corollary 1.3. Denote by CUni(L, n) the random final number of
clusters reached by updating according to (1.1) when starting from
n agents whose opinions are drawn uniformly and independently at
random from the interval [0, L], and let

CUni(L) = lim
n→∞

CUni(L, n),

whenever the limit random variable exists. Then

(i) {L > 0 : CUni(L) = 1} is an open set.

(ii) With the same numbers Li, L
′
i and T as in Theorem 1.2 we

have that, if L ∈ [0, L1) ∪ (L2, L3), then CUni(L) = 1 and, if
L ∈ [0, L′1] ∪ {6} then, as n → ∞, the (T + 2)’th update of the
corresponding uniformly random profile is a consensus asymptot-
ically almost surely.

We will build on the results of [3] in several ways, and refer to that
paper for some proofs and additional background.

The rest of the paper will be structured as follows:
Section 2 will serve as a theoretical foundation. Here, we will

develop a rigorous theory of opinion profiles, both in the traditional
discrete case, i.e. when the number of agents is finite, and in that of
an agent continuum, as well as tools to relate the two. In particular,
we will introduce the concepts of refining and coarsening, which will
be used heavily to handle and relate different deterministic samples
from the same distribution. This section also presents, and in some
cases strengthens, some previously known results that will be used. An
important result (Proposition 2.25) is that the updating operation (1.2)
is continuous, with respect to the infinity norm, at so-called regular
profiles (Definition 2.20). At the end of the section, we prove part (i)
of Theorem 1.2 and show how Corollary 1.3 follows from Theorem 1.2.

We are then left to prove part (ii) of Theorem 1.2 in subsequent
sections. Our basic strategy is to reduce the proof to a finite compu-
tation2. To do so, we need to go beyond the general theory of Section
2 and develop explicit quantitative bounds when comparing the up-
dates of a discrete profile and small perturbations of it. In particular,
we compare updates of a discrete profile and its refinements. This
material is presented in Section 3.

In Sections 4 and 5, we apply the results of Section 3 to the case
of equally spaced opinions. In order to ensure that the resulting finite

2What we mean by this is a computation that is certainly finite and, if it produces a
certain result, allows us to deduce the theorem.

Friday 10th December, 2021 5



2 DEFINITIONS AND RESULTS

computations are manageable, we will also use a result from Section 2
(Corollary 2.29).

In Section 4 we prove the existence of L′1. This involves a large
but manageable number of computations for a grid of L-values up
to L = 5.2. In principle we could push beyond 5.2, but as one gets
closer to the conjectured phase transition at about 5.23 the amount of
computing power needed increases drastically.

Consensus at L = 6 is proven in Section 5. This time, to reduce
the proof to a manageable computation requires more than just ap-
plying the theory from Section 3. Lorenz already observed that the
mechanism by which consensus is reached after it strikes back is differ-
ent than for smaller values of L. The profile quickly settles into a state
where most agents reside in 5 groups and from there the span of opin-
ions shrinks very slowly. The error analysis from Section 3 is no longer
practical over such time scales. Hence, we prove a theorem (Theorem
5.2) saying, informally, that a certain class of profiles in which most
agents reside in 5 groups must evolve to consensus. This effectively
means that we just need to compute the updates of a single profile
until the conditions in the theorem are satisfied, and then use the er-
ror analysis from Section 3. This turns out to lead to a manageable
computation.

All our computations are carried out in the high precision ball arith-
metic of the package Arb[6]. All code is written in Julia[1].

Section 6 contains a discussion of our results and of possible future
work.

2 Definitions and results

In what follows, we will find it convenient to adopt a notation that
differs slightly from (1.1). Still, we consider a set [n] = {1, 2, ..., n}
of agents, and their “opinions” f(1), ..., f(n). For the updates we will
follow the notation of [3] which uses the updating operator U , defined
as

Uf(i) =
1

# (Ni(f))

∑
j∈Ni(f)

f(j) (2.1)

where Ni(f) = {j : |f(j)− f(i)| ≤ 1}.
This formulation, clearly equivalent with that given by (1.1), will

be referred to as the traditional model, and we will frequently describe
results and procedures in terms of this, although the setting formally
will be more general.

We begin by introducing some notation: Let 〈A(i)〉i∈B denote the
average of a function A with values taken from a non-empty set B.

Friday 10th December, 2021 6



2 DEFINITIONS AND RESULTS

With this notation, (2.1) is condensed to

Uf(i) = 〈f(j)〉j∈Ni(f). (2.2)

In what follows, we will use a more general formalism, largely fol-
lowing [3]. This is to be better able to compare the behaviour of the
model for different values of n, and to relate this to the resulting be-
haviour if we let n→∞.

Definition 2.1. If, for two bounded and Lebesgue measurable func-
tions f, g : [0, 1] → R, there exists a measure preserving bijection
σ : [0, 1]→ [0, 1] such that f = g ◦ σ, we say that f and g are permu-
tation equivalent and write f ∼ g.

Observation 2.2. If two functions f and g are permutation equiv-
alent, it follows that µ

(
f−1 ((−∞, x])

)
= µ

(
g−1 ((−∞, x])

)
for all

x ∈ R.

It is easy to check that ∼ is an equivalence relation.

Definition 2.3. An (opinion) profile f is a non-decreasing function
[0, 1]→ R.

An element α of the unit interval will be referred to as an agent,
and f(α) will be referred to as the opinion of the agent α.

The set of opinion profiles is denoted by O.

These profiles will be updated according to the following adaptation
of the rule (2.2):

Definition 2.4. The updating operator U : O → O takes a profile f
to its update Uf according to the rule

Uf(α) =

{
〈f(β)〉β∈Nα(f), if µ(Nα(f)) > 0

f(α), otherwise,

where Nα(f) = {β : |f(β) − f(α)| ≤ 1}. The average 〈·〉 over an
interval A of positive Lebesgue measure |A| is given by

〈f(β)〉β∈A =
1

|A|

∫
A

f(β)dβ.

Observation 2.5. It is easy to check that if f is non-decreasing so is
Uf , so for any profile f and any natural number t the t-fold update
U tf is well defined.

Observation 2.6. From the definition, we see immediately that U is
translation invariant, in the sense that

U(f + C) = Uf + C

for any profile f and any C ∈ R.

Friday 10th December, 2021 7



2 DEFINITIONS AND RESULTS

Observation 2.7. Though the operator U will mainly be used for
profiles, the same definition can be made for all measurable functions.
With this in mind, we will occasionally without comment let U act
on a measurable function without checking whether or not it’s non-
decreasing. In particular, note that for any profile g and any measur-
able function h, we have g ∼ h =⇒ Ug ∼ Uh.

For an agent α and a profile f , we will refer to the set Nα(f) as the
neighbourhood of α, and to the members of said set as the neighbours
of α. For two agents α and β, we will also say that α can see β, or
that β is within sight of α, if and only if β ∈ Nα(f).

The following definition lets us use this formalism to emulate the
traditional model:

Definition 2.8. A discrete pre-profile on n agents is a function [0, 1]→
R which, for every integer 2 ≤ i ≤ n, is constant on the interval
( i−1
n , i

n ], as well as on the interval [0, 1
n ].

A discrete profile on n agents is a profile which is also a discrete
pre-profile on n agents.

For a discrete profile g on n agents, we will let the term agent refer
to an interval of the form ( i−1

n , i
n ], for 2 ≤ i ≤ n, or [0, 1

n ] .
The set of discrete profiles on n agents is denoted by On.

For discrete profiles, we will abuse notation by referring to agents
by their index, and often adopt the shorthand notation of writing g(i)
instead of g( in ) andNi instead ofN i

n
when there is no risk of confusion.

It should be clear from the context which of the two notations is
being used, but as a rule we will use the Latin indices i, j, n and so on
to denote integers, whenever the shorthand is used, and Greek letters
or fractions otherwise.

As observed in Section 1, a well known property of the traditional
Hegselmann-Krause model is that any profile with a finite number of
agents must freeze, that is reach a fixed point, in finite time. This can
be summarised as follows.

Observation 2.9. Let f be a discrete profile. Then there exists T ∈
N ∪ {0} such that UT f = UT+tf for any t ∈ N. The smallest such T
is called the freezing time of f .

Definition 2.10. For a profile f , let U∞f denote the pointwise limit
limt→∞ U tf , whenever the limit exists.

By Observation 2.9, U∞f is well defined for any discrete profile f .
It would follow from Conjecture 2 in [3] that it is well defined for any
profile f , but this fundamental problem remains unsolved.

On the way to freezing, the agents in a profile will typically agregate
into clusters, and we make the following definition.

Friday 10th December, 2021 8



2 DEFINITIONS AND RESULTS

Definition 2.11. In a profile f , a maximal set of agents which share
the same opinion, that is, a maximal set of agents {α : f(α) = x} for
some x, is called a cluster.

A profile where all agents lie in a single cluster, i.e. a constant
profile, is referred to as a consensus, and, given a time t, a profile
f such that U tf consists of a single cluster is said to have reached a
consensus at time t.

To have a formal way of manipulating profiles, we make the follow-
ing definition.

Definition 2.12. Given a discrete profile f on n agents, moving an
agent i ∈ {1, 2, ..., n} will refer to the act of changing the value of f(α)
for all α in the interval corresponding to the index i to some common
value, and replacing the resulting function f2 with a profile f3 such
that we have the equivalence f2 ∼ f3 with the relation from Definition
2.1. The amount by which f(α) is changed will be referred to as the
amount by which α was moved.

We note that, in this definition, we will have f2 = f3 if the initial
change in value preserves the non-decreasing quality of f .

The following definitions present the new notions of coarsening and
regular refinement of profiles, which will be central in the proofs to
come.

Definition 2.13. Given a discrete profile f on n agents and k ∈ N,
a k-regular refinement of f is a profile g on n+ (n− 1)k agents, such

that f( in ) = g( i+(i−1)k
n+(n−1)k ) for any i = 1, 2, ..., n.

If g is a k-regular refinement of f for some k it will sometimes be
referred to as just a regular refinement, without specifying for which
k.

Definition 2.14. Given a discrete profile f on n agents, the canonical
k-regular refinement f (k) is the k-regular refinement of f for which the

sequence
(
f (k)( i+(i−1)k+j

n+(n−1)k )
)k+1

j=0
constitutes an arithmetic progression

for each i = 1, 2, ..., n− 1.

In terms of the traditional model, regularly refining a profile means
adding some fixed number k of new agents between every existing pair
of consecutive agents.

The canonical k-regular refinements are those which, in some sense,
are the most spread out. They represent a linear interpolation of the
opinions in a discrete profile.

Definition 2.15. For any function g : [0, 1] → R, n ≥ 1 and k ≥ 0,
we define the k-coarsening of g, Bnk (g), as the discrete pre-profile on n

agents which satisfies Bnk (g)( in ) = g( i+(i−1)k
n+(n−1)k ) for each i ∈ [n]. When

Friday 10th December, 2021 9



2 DEFINITIONS AND RESULTS

the k is not specified, or otherwise where there is no risk of confusion,
we will simply refer to coarsenings.

Further, we define the limit coarsening of g, Bn∞(g), as the discrete
pre-profile on n agents which satisfies Bn∞(g)( in ) = g( i−1

n−1 ) for each
i ∈ [n].

The way to think about Definition 2.15 is that, given any discrete
profile f on n agents, the operator Bnk takes any k-regular refinement
of f and returns f . For instance, for any discrete profile f on n agents
and any k ≥ 0 we have that Bnk (f (k)) = f . Also note that a coarsening
of a profile is always a profile.

As for the limit coarsening, it should be thought of mainly as an
operator to use on regular profiles, defined below. It can for instance
be instructive to note that if we define f (∞) = limk→∞f

(k) as the
pointwise limit of the k-regular refinements of f , then Bn∞(f (∞)) = f .

For a reader familiar with signal processing, yet another way to
view the concepts of refining and coarsening is to consider profiles as
signals. The two then roughly correspond to (admittedly degenerate)
upsampling and downsampling, respectively.

Definition 2.16. For a positive real number L, we define the canonical
linear profile of diameter L by fL(α) = Lα.

For n ∈ N, the limit coarsening Bn∞(fL) := fn,L will be called the
canonical equally spaced profile on n agents with diameter L. Thus,
fn,L consists of n agents equally spaced on the interval [0, L], i.e.:

fn,L(i) = (i−1)L
n for i = 1, ..., n.

We note that, for any k ≥ 0, (fn,L)(k) = fn+(n−1)k,L.

The following three definitions will be much employed throughout
the whole paper. The third is an essential cornerstone in the theory
we need to prove Theorem 1.2.

Definition 2.17. Given c ∈ R, a profile f is said to be symmetric
about c if f(α) + f(1− α) = c for almost every3 α ∈ [0, 1].

We do not require f(α) + f(1 − α) = c everywhere, as this would
not allow us to speak of symmetric discrete profiles.

Observation 2.18. If f is symmetric about c, then so is U tf for any
t ≥ 0.

Definition 2.19. The diameter of a profile f is defined as D(f) =
f(1)− f(0).

Definition 2.20. Given a set S ⊆ [0, 1], an injective function f : S → R
is said to be regular on S if there exist strictly positive real numbers

3That is, outside of a set of measure zero.
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m and M , such that

m ≤ |f(α)− f(β)|
|α− β|

≤M

for any distinct α, β ∈ S.
A function that is regular on the whole set [0, 1] is simply called

regular, and the term (m, M)-regular is used when there are specific
numbers m and M which satisfy the above inequalities.

We stress that these parameters m and M are not defined in the
same way as in [3]. Our m and M correspond to 1

M and 1
m in [3].

In this paper all regular functions will be non-decreasing. In this
case, another way of phrasing the definition is that m and M act as
lower and upper bounds, respectively, on the derivative f ′ of f wherever
it is defined. Yet another way is to say that M and 1

m are Lipschitz
constants for f and f−1, respectively.

Evidently, a discrete profile cannot be regular, but any regular pro-
file must instead be continuous.

Remark 2.21. A reader might ask: “In order to prove Theorem 1.2,
why don’t you just compute explicit formulas for U tfn,L, alternatively
U tfL, for general t, n and L?” The short answer is that, though it
might be possible in principle, the calculations quickly become messy
as t increases.

Consider an arbitrary regular profile f and an agent α. If f is
differentiable at the three agents α, f−1(α − 1) and f−1(α + 1), then
Uf(α) is also differentiable. If f has a corner at exactly one of the
three agents, however, Uf will have a corner at α. Heuristically, each
corner should have three opportunities, or two if its opinion is close to
that of an extremist, to beget another corner. Counting the endpoints
as corners, we conclude that the number of corners of U tfL should lie
between 2t and 3t.

To even further complicate the matter, the expression on each piece
quickly grows unmanageable as well, and already after a few updates
it’s nontrivial to write them in terms of elementary functions.

Similar remarks apply to the discrete profiles U tfn,L. In Appendix
A we present formulas for t = 1, 2. By studying these formulas, we
think it is clear that this is not a fruitful strategy for general t.

A central topic in this text is that of random profiles, by which
we mean profile-valued random variables. These will be generated by
drawing a number n of opinions independently at random from some
probability distribution, sorting them, and creating a profile with n
agents holding the drawn opinions. In working with these random
profiles, we will use the following, very helpful, lemma:

Friday 10th December, 2021 11



2 DEFINITIONS AND RESULTS

Lemma 2.22 (Glivenko–Cantelli (see for instance [9], p 266)). Let F
be the cumulative distribution function of some real valued random
variable and let Fn be the empirical distribution function for a sample
of size n. Then

||Fn − F ||∞ → 0

asymptotically almost surely (a.a.s.), i.e. almost surely when n→∞.

Note that, if the random variable in question is bounded, the quan-
tile function given by

QF (α) =

{
inf{x : F (x) ≥ α} if α > 0

limα→0QF (α) if α = 0

is a profile. Further, the empirical quantile function for a sample of
size n, given by

fn(α) = QFn(α) (2.3)

is a discrete profile with n agents.
The following is immediate.

Corollary 2.23. With F as in Lemma 2.22, if F is regular, then

||QF − fn||∞ → 0

a.a.s. as n→∞.

Proof. See for instance [9] p. 305.

For any profile f the set N0(f) ∩ N1(f) is an interval, which is
non-empty if and only if D(f) ≤ 2.

Definition 2.24. Let f be a profile and suppose there exists a closed
(possibly empty) subinterval S ofN0(f)∩N1(f) such that the following
hold.

(i) f is (m, M)-regular on [0, 1] \ S.

(ii) f is constant on S.

(iii) If D(f) ≤ 2, then neither endpoint of N0(f) ∩ N1(f) is an end-
point of S.

Then f is said to be (m, M)-weakly regular.

Proposition 2.25. The operator U is continuous at any weakly reg-
ular profile f , with respect to the norm || · ||∞. In particular, U is
continuous at any regular profile.

Proof. This result was essentially proven as Proposition 4 in [3], but
in their formulation f was assumed to be regular on all of [0, 1]. We
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2 DEFINITIONS AND RESULTS

show that the proof goes through for this stronger formulation, which
we will need later.

Let f be a weakly regular profile, with regularity bounds m and M
on [0, 1] \ S.

Choose 0 < δ ≤ 1
4 such that, if D(f) < 2 then the distance between

an endpoint of N0(f)∩N1(f) and an endpoint of S is greater than 2δ
m .

We will show that, if g is a profile such that ||f − g||∞ ≤ δ, then

||Uf − Ug||∞ ≤
17M

m
δ.

Fix such a profile g. Fix some agent α and define the following sets:

Sfg =Nα(f) ∩Nα(g),

Sf\g =Nα(f) \ Nα(g),

Sg\f =Nα(g) \ Nα(f).

From Definition 2.4, we get the following:

Uf(α) =〈f〉Sfg +
|Sf\g|

|Sfg|+ |Sf\g|
(
〈f〉Sf\g − 〈f〉Sfg

)
(2.4)

Ug(α) =〈g〉Sfg +
|Sg\f |

|Sfg|+ |Sg\f |
(
〈g〉Sg\f − 〈g〉Sfg

)
. (2.5)

As both Sfg and Sf\g are subsets of Nα(f), the absolute value of
the last parenthesis in (2.4) can be at most 2, and the same holds for
the parenthesis in (2.5). Using the triangle inequality we get that

|Uf(α)− Ug(α)| ≤ |〈f〉Sfg − 〈g〉Sfg |+ 2
|Sg\f |+ |Sf\g|

|Sfg|
(2.6)

Since ||f − g||∞ ≤ δ, it is obvious that |〈f〉Sfg − 〈g〉Sfg | ≤ δ.
We now note that the third condition for being weakly regular

and the definition of δ imply that neither of the sets Sg\f and Sf\g
intersect S, and hence f is regular on both. Thus |Sg\f | and |Sf\g| are
each bounded by the measure of the set of agents which may be added
to or removed from Nα(f) by moving each agent at most δ, which, by
regularity, is at most 2δ

m .

Similarly, Sfg ⊇ {β : |f(β)−f(α)| ≤ 1−2δ}. Hence |Sfg| ≥ 1−2δ
M ≥

1
2M , since δ ≤ 1

4 .
The bounds from the previous paragraphs may be put into (2.6),

to give us

|Uf(α)− Ug(α)| ≤ δ +
16Mδ

m
≤ 17

M

m
δ.
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Lemma 2.26. Let f be a regular profile and define

u(α) =

{
0 if f(α) ≤ f(0) + 1

f−1(f(α)− 1) otherwise,

v(α) =

{
1 if f(α) ≥ f(1)− 1

f−1(f(α) + 1) otherwise,

w(α) = |Nα(f)| = v(α)− u(α).

In words, u(α) and v(α) are the leftmost and rightmost agents, respec-
tively, that interact with a given agent α when the profile is updated
by U , and w(α) is the length of the set of neighbours of α.

Then the derivative of Uf , where it exists, is given by

d

dα
Uf(α) =

1

w(α)
(u′(α) · (1 + Uf(α)− f(α)) + v′(α) · (1 + f(α)− Uf(α))),

where the primes denote derivatives.

Proof. See Lemma 2.5 in [4]. The statement of that lemma assumes
D(f) > 2, but the proof goes through even without this assumption.

The following lemma was proved for regular profiles in [3] using a
different technique, yielding weaker regularity bounds than those given
here.

Proposition 2.27. Let f be an (m, M)-weakly regular profile.
Then Uf is constant on the closed interval N0(f) ∩ N1(f) and

( m
2M2 , 2M

2

m )-regular on [0, 1] \ (N0(f) ∩N1(f)).
In particular, if f is weakly regular then Uf is either weakly regular

or a consensus, and if f is regular and D(f) ≥ 2 then Uf is regular.

Proof. First note that the second statement is a direct consequence of
the first, so it suffices to prove the first statement.

It is clear that Uf is constant on N0(f) ∩ N1(f), so for the rest
of the proof we will assume D(f) > 1 and only consider α ∈ [0, 1] \
(N0(f) ∩N1(f)) := R.

One readily verifies that almost everywhere differentiability on R
along with uniform upper and lower bounds on the derivative imply
regularity with the same bounds. We prove the theorem by providing
such bounds for Uf .

Since f is monotone and regular on R, for almost every α ∈ R the
derivatives f ′(α), f ′(α), u′(α), u′(α) and w′(α) all exist, by Lebesgue’s
theorem.
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For any such α, by Lemma 2.26,

d

dα
Uf(α) =

1

w(α)
[u′(α) (1 + (Uf(α)− f(α))) + v′(α) (1− (Uf(α)− f(α)))] .

(2.7)
We first prove the upper regularity bound for Uf .
Applying the chain rule to v, we find that, if f(α) < f(1)− 1 then

v′(α) =
d

dα
(f−1)(f(α) + 1) =

f ′(α)

f ′(f(α) + 1)
≤ M

m
,

where the inequality follows from the regularity bounds on f . If α is
large enough for v(α) to be constantly 1, the derivative is 0, so the
inequality remains true. In the same way we have u′(α) ≤ M

m .
As we assume D(f) > 1, w(α) ≥ 1

M .
We also have the trivial bound |Uf(α)− f(α)| ≤ 1. Note also that

the two parentheses (1 + (Uf(α)− f(α))) and (1− (Uf(α)− f(α)))
in (2.7) sum to 2.

Together, the observations from the previous paragraphs may be
inserted into (2.7) to get that

d

dα
Uf(α) ≤M

(
2
M

m

)
= 2

M2

m
.

As for the lower regularity bound, we first note the trivial bound
w(α) ≤ 1 is the best we can do.

Second, we note that, as we assume α 6∈ N0(f)∩N1(f), we cannot
have u′(α) = v′(α) = 0. We will here assume v′(α) 6= 0, and note that
the other case is completely analogous. Using the chain rule, as above,
we see that

v′(α) =
d

dα
(f−1)(f(α) + 1) =

f ′(α)

f ′(f(α) + 1)
≥ m

M
.

To finish the proof, it is enough to prove that

Uf(α)− f(α) ≤ 1− 1

2M
.

Intuitively, to make Uf(α)− f(α) as large as possible, we want to
pack as many neighbours of α as far to the right as possible, while
having as few neighbours as possible in the rest of the neighbourhood.

To formalise this, consider the profile g such that

g(γ) =

{
Mγ if 0 ≤ γ ≤ 1

M

1 otherwise.
(2.8)
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2 DEFINITIONS AND RESULTS

The assumptions on f imply that

Uf(α)− f(α) ≤ Ug(0)− g(0) = Ug(0) =
1
2

1
M +

(
1− 1

M

)
· 1

1
= 1− 1

2M
,

which finishes the proof.

Remark 2.28. For regular profiles, including any weakly regular pro-
file with diameter above 2, the lower regularity bound of Proposition
2.27 could be improved by exchanging the constant segment of the aux-
iliary profile g in (2.8) by a segment of slope m. We content ourselves
with the current version as the extended proof is technical and the im-
provement is slight. When iterated, either version of the proposition
results in the quotient Mt

mt
asymptotically growing like eΘ(3t). As these

results will not be used we leave out the proofs.

We are now ready to prove part (i) of Theorem 1.2 and deduce
Corollary 1.3 from Theorem 1.2.

Proof. For the deduction of Corollary 1.3, it clearly suffices to prove
the statement about the numbers L′i.

Fix L ∈ [0, L′1] ∪ {6} and let T , as in Theorem 1.2, be an upper
bound on the freezing time for equally spaced profiles with diameter
L.

Recall that fn,L denotes the canonical equally spaced profile on n
agents with diameter L and that fL denotes the canonical linear profile
with diameter L. Let fLn denote the empirical quantile function (see
(2.3)) of a sample of size n from the uniform distribution on [0, L]. The
results in this section then give the following chain of implications:

UT fn,L is a consensus for all n� 0
2.25, 2.27

=⇒ D(UT fL) < 1
=⇒ UT+1fL is a consensus

2.25, 2.27
=⇒ ∃ε > 0 : D(UT+1(g)) < 1 if ||fL − g||∞ < ε.

From this last statement we deduce in turn the following.

• On the one hand, if L′ is sufficiently close to L, then UT+2fL
′

is a
consensus and, by a further application of Propositions 2.25 and
2.27, UT+3fn,L

′
is a consensus for all n sufficiently large. This

proves part (i) of Theorem 1.2.

• On the other hand, by Corollary 2.23, UT+2fLn is a consensus
a.a.s. This proves that Corollary 1.3 follows from Theorem 1.2.

By observing the proof just presented, it is clear that for some fixed
L the following three statements are equivalent:
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t mt Mt Kt

0 1 1 1
1 0.25 2 40
2 4.1 · 10−3 32 3.9 · 105

3 2.9 · 10−9 5.0 · 105 8.6 · 1014

4 6.4 · 10−31 1.7 · 1020 1.4 · 1051

5 7.2 · 10−107 9.4 · 1070 6.5 · 10177

6 7.7 · 10−373 2.4 · 10248 1.6 · 10621

Table 1: The constants grow too fast to be of practical use.

(i) There is some T1 such that UT1fn,L is a consensus for all n� 0.

(ii) There is some T2 such that UT2fL is a consensus.

(iii) There is some T3 such that UT3fLn is a consensus a.a.s. as n→∞.

If we would have access to unlimited computing power, the the-
ory developed this far would actually be enough to finish the proof of
Theorem 1.2 in a few lines using the following strategy:

Choose a really large n so that ||fn,L − fL||∞ < δ for some δ.
Using Propositions 2.25 and 2.27 we can compute constants Kt for
every t ≥ 0 such that ||U tfn,L − U tfL||∞ < Ktδ. We calculate the
updates U tfn,L explicitly. If we find that U t1fn,L is a consensus we
check that Kt1δ ≤ 1

2 , which must be true if n is chosen large enough.
We could then deduce that U t1+1fL is a consensus as well, and the
rest would follow as above.

The problem with this strategy is that, as was hinted at in Re-
mark 2.28, the constant Kt grows ridiculously fast as t increases, so we
would end up with n needing to be much larger than can actually be
simulated. Table 1 illustrates this.

To get around this, we introduce a fourth statement.

(iv) There is some T4 such that UT4fni,L is a consensus for some
infinite sequence n1 < n2 < n3 < ....

It is straightforward to check that this is also equivalent to the earlier
three, and we will devote Sections 4 and 5 to prove (iv). The following
corollary of Proposition 2.27 will be used in both sections.

Corollary 2.29. Let f be a symmetric regular profile. If D(U t1f) ≤ 2
for some t1, then U t2f is a consensus for some t2. Moreover, t2 depends
only on t1 and the regularity bounds for f .

Proof. Without loss of generality, suppose f is symmetric about 0. By
Observation 2.18, the same is true of U tf for any t ≥ 0.
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If D(f) ≥ 2 then Proposition 2.27 tells us that Uf is regular. By
iterating this we see that either D(U tf) > 2 for all t, in which case
we are done, or there is some first time t1 such that D(U t1f) ≤ 2, in
which case U t1f is regular.

Set t3 = t1 if D(U t1f) < 2 or t3 = t1 + 1 if D(U t1f) = 2.
Then, by Proposition 2.27, U t3f is still regular and, clearly,

D(U t3f) < 2.
By regularity and Proposition 2.27, there is some Mt3 , depending

only on t3 and the regularity bounds for f , such that

|N0(U t3f) ∩N1(U t3f)| ≥ 2−D(U t3f)

Mt3

> 0.

By symmetry, U t3+1f must be constantly equal to 0 on N0(U t3f) ∩
N1(U t3f). In fact, it is easy to see that U tf must be constantly equal
to 0 on this interval for any t > t3. Hence one can check that, as long
as the diameter is above 1, each extremist must change its opinion by

at least 2−D(Ut3f)
2Mt3

at each time step. Thus the diameter must be at

most 1 after at most
2Mt3

2−D(Ut3f) additional time steps.

This finishes the proof with t2 = t3 +
2Mt3

2−D(Ut3f) + 1.

3 Propagation of errors due to refinements

In the previous section we investigated the updating operator U and, in
particular, we noted that it is continuous at regular profiles. As we saw,
the continuity by itself is not very helpful. In this section, we will shift
our focus away from regular profiles back to discrete ones. Specifically,
we will investigate the updates of profiles that have been perturbed, by
movement or refinement, and derive bounds for the difference between
these and the updates of the unperturbed profiles. All the profiles in
this section are discrete.

As we have seen, by definition, if f is a profile with n agents,
and g is a k-regular refinement of f , we have f = Bnk (g), and thus
Uf = UBnk (g). We will begin by comparing UBnk (g) to Bnk (Ug). Thus,
one could, informally, say that the following lemma bounds the com-
mutator of the two operators U and Bnk .

Lemma 3.1. Let f be a discrete profile with n agents, and let g be
any k-regular refinement of f . For any agent i ∈ [n]

|Uf(i)−Bnk (Ug)(i)| ≤ 2

#(Ni(f))
.
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3 PROPAGATION OF ERRORS DUE TO REFINEMENTS

Proof. Fix an agent i ∈ [n]. We will proceed by constructing a k-
regular refinement g∗ of f which maximises Bnk (Ug∗)(i), in the sense
that Bnk (Ug)(i) ≤ Bnk (Ug∗)(i) for any k-regular refinement g of f .

It is clear that, to maximise Bnk (Ug∗)(i), one may simply begin
with f and place all inserted opinions at the rightmost end of their
interval, except for those in the interval containing the opinion f(i)+1
who are placed there, and those in the interval immediately to the left
of the leftmost neighbour of i who are placed out of sight, i.e. below
f(i) − 1. We observe that, following this procedure, Bnk (Ug∗)(i) is
increasing with k and is bounded by what is obtained if one changes
the opinion of the leftmost neighbour of i to f(i) + 1 before updating
f . In other words,

Bnk (Ug)(i) ≤ Uf+
i (i),

where f+
i denotes the profile obtained from taking f and moving the

leftmost neighbour of i to f(i) + 1.
Now, note that moving one out of at least ni := #(Ni(f)) opinions

a distance at most 2 cannot affect the updated opinion by more than
2
ni

.
We finally note that the reasoning is completely analogous for find-

ing a lower bound for Bnk (Ug)(i).

The difference e = g− f between two discrete profiles f and g with
the same number n of agents is a pre-profile with n agents. On the
other hand, for an arbitrary pre-profile e, f + e need not be a profile.
In what follows we will use the term deviation instead of pre-profile
when thinking in terms of e as a small perturbation of a given profile
f . We will adopt the same shorthand for deviations as for profiles, and
write e(i) instead of e

(
i
n

)
when there is no risk of confusion.

Definition 3.2. A deviation e is called consistent with respect to a
discrete profile f on n agents if f + e is a profile, i.e. if

f(i− 1) + e(i− 1) ≤ f(i) + e(i)

for all i ∈ 2, ..., n− 1.
For a deviation e on n agents, we will refer to positive deviations el

and er on n agents as left and right bounds on e, respectively, if they
satisfy

f(i)− el(i) ≤ f(i) + e(i) ≤ f(i) + er(i)

for any i ∈ [n].

For any profile f on n agents and any k, t ∈ N we get

Bnk (U tf (k)) = U tf + etk

where etk is clearly a consistent deviation. By Lemma 3.1, ||e1
k||∞ is

uniformly bounded in k. If we want to iteratively obtain bounds for
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etk, we need to compare Ug to U(g+e) for generic g and e. We will not
aim for bounds in || · ||∞, instead our bounds will depend on the agent
i. However, the bounds will still be uniform in k for each t, which is
the crucial point.

Adding a deviation to a profile may cause the neighbourhoods of its
agents to change and we start by introducing some notation to handle
these changes.

Definition 3.3. Given a profile f on n agents and a deviation with
bounds el and er, we define the sets

~N+
i (f) ={j > i : f(i) + 1 < f(j) ≤ f(i) + 1 + er(i) + el(j)} (3.1)

~N−i (f) ={j < i : f(i)− 1 ≤ f(j) < f(i)− 1 + er(i) + el(j)} (3.2)

~N+
i (f) ={j < i : f(i)− 1− el(i)− er(j) ≤ f(i) < f(i)− 1} (3.3)

~N−i (f) ={j > i : f(i) + 1− el(i)− er(j) < f(j) ≤ f(i) + 1}. (3.4)

In words, ~N+
i (f) contains precisely the agents that may be added

on the right side of the neighbourhood of i by a perturbation bounded
by el and er, and ~N−i (f) contains those that may be removed on the
left. The right arrow above the N indicates that the average opinion
of i’s neighbours is increased. The sets denoted with left arrows are
defined analogously.

Lemma 3.4. Let f be a profile with n agents, and let e be a consistent
deviation bounded by some el and er. Then

U(f + e)(i) ≤〈f(j) + er(j)〉j∈Ni(f)\ ~N−i (f) +
2| ~N+

i (f)|
|Ni(f)|+ | ~N+

i (f)| − | ~N−i (f)|
,

(3.5)

U(f + e)(i) ≥〈f(j)− el(j)〉j∈Ni(f)\ ~N−i (f) −
2| ~N+

i (f)|
|Ni(f)|+ | ~N+

i (f)| − | ~N−i (f)|
.

Proof. As the proofs of the two inequalities are completely analogous,
we only treat the first.

Fix a profile f , bounds el and er, and an agent i ∈ [n].
We will bound the maximum maxe U(f + e)(i) over all consistent

deviations e within the given bounds by constructing a “worst case
scenario” e∗, where all agents work to push the opinion of i as far to
the right as possible.

Before continuing we recall that, since we assume consistency, e
does not change the order of the agents. This is important: If the
leftmost neighbour of i is not moved out of sight of i it remains the
leftmost neighbour, and thus its opinion cannot exceed the average
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opinion of the remaining neighbours. We thus want any left-removable
neighbour to be removed, and each addable neighbour to the right to
indeed end up so.

We thus proceed as follows.

• For each agent j ∈ ~N−i (f), let e∗(j) = el(j).

• For each agent j ∈ ~N+
i (f), choose e∗(j) so that f(j) + e∗(j) =

f(i) + er(i) + 1.

• For each agent j ∈ Ni(f) \ ~N−i (f), choose e∗(j) so that

f(j) + e∗(j) = min{f(j) + er(j), f(i) + er(i) + 1}.

• For each other j, choose e∗(j) so that j ends up out of sight of i.

For a deviation e∗ constructed in this way we have

U(f + e∗)(i) =

〈f(j) + e∗(j)〉Ni(f)\ ~N−i (f)(|Ni(f)| − | ~N−i (f)|) + (f(i) + er(i) + 1)| ~N+
i (f)|

|Ni(f)|+ | ~N+
i (f)| − | ~N−i (f)|

≤

〈f(j) + er(j)〉Ni(f)\ ~N−i (f)(|Ni(f)| − | ~N−i (f)|) + (f(i) + er(i) + 1)| ~N+
i (f)|

|Ni(f)|+ | ~N+
i (f)| − | ~N−i (f)|

.

Let f̄ = 〈f(j)+er(j)〉j∈Ni(f)\ ~N−i (f), and note that, by definition of the

set ~N−i (f), for any j ∈ Ni(f) \ ~N−i (f) one has

f(i) + er(i) ≤ 1 + f(j)− el(j) ≤ 1 + f(j) + er(j).

Hence f(i) + er(i) + 1 ≤ f̄ + 2 and thus

U(f + e∗)(i) ≤
f̄(|Ni(f) \ ~N−i (f)|) +

(
f̄ + 2

)
| ~N+

i (f)|
|Ni(f)|+ | ~N+

i (f)| − | ~N−i (f)|

= f̄ +
2| ~N+

i (f)|
|Ni(f)|+ | ~N+

i (f)| − | ~N−i (f)|
,

which proves the inequality (3.5).

Theorem 3.5. Let f be a discrete profile with n agents, and let e = e0

be a consistent deviation of f with right and left bounds e0
r and e0

l .
Now, let g be a k-regular refinement of f , and let e′ be a consistent

deviation of g such that Bnk (e′) = e.
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Then, bounds for the deviation eT = Bnk (UT (g + e′)) − UT f may
be found iteratively by defining

et+1
r (i) =〈U tf(j) + etr(j)〉j∈Ni(Utf)\ ~N−i (Utf)+

+
2| ~N+

i (U tf)|
|Ni(U tf)|+ | ~N+

i (U tf)| − | ~N−i (U tf)|
− U t+1f(i) +

2

nti

(3.6)

et+1
l (i) =− 〈U tf(j)− etl(j)〉j∈Ni(Utf)\ ~N−i (Utf)−

− 2| ~N+
i (U tf)|

|Ni(U tf)|+ | ~N+
i (U tf)| − | ~N−i (U tf)|

+ U t+1f(i) +
2

nti
,

(3.7)

where all sets ~N+
i (U tf), ~N−i (U tf), ~N+

i (U tf) and ~N−i (U tf) are
defined as in (3.1)–(3.4) using the bounds etl and etr, and

nti = |Ni(U tf)| − | ~N−i (U tf)| − | ~N−i (U tf)|

is a lower bound on the number of neighbours of an agent inBnk (U t(g + e′)).

Proof. The proof is an immediate application of Lemmas 3.1 and 3.4.

4 The case L ≤ 5.2

In this section we will prove part of Theorem 1.2. Because of the
equivalences (i) and (ii) at the end of Section 2, it suffices to show that
there exists a T such that, for L ∈ [0, 5.2], UT fL is a consensus.

Fix 0 < ε < 1
2 and an odd number n ≥ 3. Let

(
fn,Lj

)p
j=1

denote

a finite family of canonical equally spaced profiles, all with n agents
and increasing diameters Lj chosen such that Lj+1 − Lj ≤ 2ε for any
j ∈ [p − 1]. For each such fn,Lj , define the following left and right
deviation bounds:

e0
l,j(i) = e0

l (i) =

{
n+1−2i
n−1 ε if 1 ≤ i < n+1

2

0 if n+1
2 ≤ i ≤ n

e0
r,j(i) = e0

r(i) =

{
0 if 1 ≤ i ≤ n+1

2
2i−n−1
n−1 ε if n+1

2 < i ≤ n.

Note that e0
l (
n+1

2 ) = e0
r(
n+1

2 ) = 0 and e0
l (1) = e0

r(n) = ε.

Proposition 4.1. With
(
fn,Lj

)p
j=1

, e0
l,j and e0

r,j defined as above,

assume there is a time T > 0 such that for each j ∈ [p]

D(UT fn,Lj ) + eTl,j(1) + eTr,j(n) < 2, (4.1)
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where eTl,j and eTr,j are determined recursively as in Theorem 3.5.

Then there is a time T ′ such that UT
′
fL is a consensus for every

L ∈ [L1, Lp].

Proof. The definitions of e0
l and e0

r imply that if, for every L ∈ [L1, Lp],
the profile fn,L is shifted to the interval [−L2 ,

L
2 ], then for each L there

exists a j ∈ [p] such that fn,Lj can be transformed into fn,L by adding
a deviation within these bounds.

Hence, Theorem 3.5 and (4.1) imply that there exists δ > 0 such
that, for any k ≥ 0 and any L ∈ [L1, Lp], one has D(UT fn+(n−1)k,L) <
2 − 2δ. Then Proposition 2.25 implies that D(UT fL) < 2 for any
L ∈ [L1, Lp]. Hence the proposition follows from Corollary 2.29, since
L ∈ [2, 5.2] and so we can choose regularity bounds for fL which are
independent of L.

k [ak, bk] pk nk Tk Runtime

1 [2, 23
6 ] 100 501 3 4.1 seconds

2 [236 , 4.5] 100 1003 4 6.6 seconds

3 [4.5, 4.9] 800 5001 5 109 seconds

4 [4.9, 5] 200 10 001 6 66 seconds

5 [5, 5.1] 800 40 001 6 19 minutes

6 [5.1, 5.15] 1000 60 001 7 41 minutes

7 [5.15, 5.17] 480 120 001 7 41 minutes

8 [5.17, 5.185] 500 180 001 7 67 minutes

9 [5.185, 5.193] 420 240 001 7 97 minutes

10 [5.193, 5.197] 480 240 001 7 108 minutes

11 [5.197, 5.2] 360 300 001 7 102 minutes

Table 2: The parameters used to check (4.2) and thus prove Corollary 4.2.
The runtime given is the time it took us to complete the calculations using
40 threads running in parallel. With a total CPU time of almost 270 hours
some sort of cluster is thus necessary to check the full proof, but checking
it up to L = 5 should be feasible on any modern computer.

Proposition 4.1 reduces the proof of Theorem 1.2 for L ∈ [0, 5.2]
to a finite computation.

Corollary 4.2. There is a time T such that UT fL is a consensus for
every L ≤ 5.2.
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Proof. That such a T exists for L ≤ 2 follows from4 Corollary 2.29.
Hence, we may henceforth assume that5 L ∈ [2, 5.2].

We divide the interval [2, 5.2] into smaller subintervals [ak, bk] and
apply Proposition 4.1 to the individual subintervals. For each subinter-
val [ak, bk] we choose numbers pk, nk, and let the diameters (Lj)

pk
j=1 be

spread equidistantly over the subinterval so that L1 = ak and Lpk = bk.
We use ε = bk−ak

pk−1 .
For each k we then use the Julia code in the ancillary file

L up to 5 2 parallel.jl to find a Tk such that, for each j ∈ [pk] we
have

D(UTkfnk,Lj ) + eTkl,j (1) + eTkr,j(nk) < 2. (4.2)

The data is presented in Table 2, which proves the corollary.

5 The case L = 6

Because of the discussion at the end of Section 2, in order to complete
the proof of Theorem 1.2, it suffices to show that there is an n and
some bounded time T such that UT fn+(n−1)k,6 is a consensus for any
k ∈ N.

One could imagine trying the approach of the previous section, to
simply choose some large n and calculate consecutive updates U tfn,6

until the diameter shrinks below 2, thereafter applying Corollary 2.29.
However, as observed by Lorenz and already mentioned in the introduc-
tion, the evolution in this case passes through a kind of “quasi-stable”
state where most agents are clustered into 5 groups, after which the
diameter decreases very slowly. Our computations suggest that for
large n we would have to update approximately 780 times before the
diameter goes below 2. Over such time scales the error analysis from
Section 3 becomes impractical on its own.

Another approach is necessary.
The figure below compares the evolution of two profiles fn,5 and

fn,6 for n = 10 000. As discussed in the previous paragraph, one finds
that the respective mechanisms behind reaching a consensus are quite
different. In both profiles the agents at the edges first move inwards, so
that the agent-per-opinion density increases at the edges. This causes
the agents further in to move outwards, leaving comparatively empty
spaces which in turn make the remaining agents clump together at the
centre.

4It’s trivial that UfL is a consensus for any L ≤ 1 and it is easy to show that
L ≤ 2 =⇒ D(UfL) ≤ 1 =⇒ U2fL is a consensus.

5In fact, for L ≤ 23
6

, Corollary 4.2 follows from the explicit formula for U2fn,L in
Appendix A. See Remark A.4. We start our computations at L = 2 anyway, as it only
adds a couple of seconds to the runtime.
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Figure 1: First 9 updates of fn,L with L = 5, respectively L = 6 and
n = 10 000.
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When L = 5 it only takes five updates for the extremists to move
enough to see past the centre (see Table 2: there T4 = 6 because it
takes one further timestep for (4.1) to hold) so even though the central
clique is small and it takes many updates to reach a consensus, we may
use Corollary 2.29 to assert consensus in bounded time.

When L = 6, the clique of agents at the centre is larger but the
profile is so wide that this clique is far out of sight of the extremists.
However, there are a few agents that seem to get stuck in between. We
will refer to the set of in-between agents as a microcluster. The agents
in the microcluster see both the central and extremal groups, but as
the groups are of similar size the updates keep the microcluster agents
within sight of both. Thus the microclusters will, so to speak, exert
a tiny force on the extremists, and very slowly pull them towards the
centre. It takes several hundred updates even before the extremists see
the centre.

We will now formalise the content of the previous paragraphs and
find a criterion for profiles which guarantees consensus (Theorem 5.2).
We will then use the error analysis from Section 3 to show that
U8fn+(n−1)k,6 satisfies this criterion for n = 80 005 and any k ≥ 0
(having n ≡ 1 (mod 6) simplifies the code used).

Definition 5.1. Let f be a symmetric, discrete profile on n ≥ 3 agents
with D(f) ≤ 4. A family A, B, C, D and E of of subsets of [n] is said
to be good if the following conditions hold:

(i) Each of A, B, C, D, E is an interval.

(ii) The intervals are pairwise disjoint and adjacent, by which we
mean minB = maxA+ 1 etc.

(iii) 1 ∈ A.

(iv) E is non-empty and maxE + minE = n+ 1, i.e. E is symmetric
about the midpoint of the profile.

(v) C = {i ∈ B ∪ C ∪D : A ∪ E ⊆ Ni(f)}
In words, C consists of the agents in between A and E who in f see
both in their entirety, while B and D contain the agents left over on
either side of C.

In what follows, we will denote Lt = D(U tf) and, for a set X of
agents, write spant(X) := U tf(maxX) − U tf(minX) to denote the
span of opinions within X at time t. The size of a set X of agents will
be denoted |X|.

We are now ready to state the new consensus criterion:

Theorem 5.2. Let f be a symmetric discrete profile on n ≥ 3 agents,
where n is odd, with D(f) ≤ 4.
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5 THE CASE L = 6

Assume there is a choice of good sets A0, B0, C0, D0, E0 such
that A0 and E0 are out of sight of one another, i.e. f(maxA0) + 1 <
f(minE0), and such that the following conditions hold:

C0 6= ∅. (5.1)

n− 2|A0|
n− |A0|

L0

2
≤ 1 (5.2)

n− |E0|
n+ |E0|

L0

2
+

2|B0|
n− 2|A0| − |B0|

≤ 1 (5.3)

2|B0|
n− 2|A0| − |B0|

+
4|D0|
n− |E0|

≤ 2|C0||E0|
(|A0|+ |B0|+ |C0|)(n+ |E0|)

. (5.4)

Then UT f is a consensus for some T which only depends on L0

and the relative sizes |A0|
n , |C0|

n and |E0|
n of the non-empty sets A0, C0

and E0.

Remark 5.3. The set C0 plays the role of what we in the beginning
of this section called a microcluster. The idea of the proof is to show
that this is large enough and exerts enough force to eventually bring
the extremists in A0 into contact with the central agents in E0 before
either set fragments and thereby reach a consensus.

Proof of Theorem 5.2. Recursively, for every t > 0, set

At := A0

Et := E0

Ct := {i ∈ B0 ∪ C0 ∪D0 : A0 ∪ E0 ⊆ Ni(U tf)}
Bt := B0 \ Ct
Dt := D0 \ Ct.

We divide the proof into three steps.

Step 1: For each t ≥ 0, define the following conditions.

It: C0 ⊆ C1 ⊆ ... ⊆ Ct.
IIt: spant(A0) ≤ 4|D0|

n−|E0| := wA and spant(E0) ≤ 4|B0|
n−2|A0|−|B0| := wE .

IIIt: U
tf(minC0)− U tf(1) ≥ 2|E0|

n+|E0| .
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We will show that

It

NmaxA0
(U tf) ∩ E0 = ∅

}
=⇒


It+1

IIt+1

IIIt+1 or Lt+1 < 2.

Intuitively, for as long as A0 and E0 remain out of sight, the sets Ct
continue to grow and the spans of opinions in A0 and E0 don’t exceed
some fixed small amount. Note that IIt is not assumed to hold at
t = 0, rather the structure of the profile causes the agents in A0 and
E0 to already become more clustered at the first time step.

First, we show that the two assumptions imply IIt+1.
Since, per definition, all agents in A0 can see all agents in Ct and

we assume E0 is out of sight of A0, the case that pulls the two ends
of A0 as far apart as possible is that where the set difference of their
respective neighbour sets is all of Dt, and where all agents in Dt are
placed at U tf(maxA0) + 1. We obtain the bound

spant+1(A0) ≤ |Dt|(1 + spant(A0))

|A0|+ |B0|+ |C0|+ |D0|
=
|Dt|(1 + spant(A0))

(n− |E0|)/2
.

Since, by It and (5.1), Ct is nonempty, we have the trivial bound
spant(A0) ≤ 1. Hence

spant+1(A0) ≤ 2|Dt|
(n− |E0|)/2

It
≤ 4|D0|
n− |E0|

,

as desired.
Similarly we see that, by definition, NminE0

(U tf)\NmaxE0
(U tf) ⊆

Bt. Hence, in the next time step, it is impossible to separate the two
ends of E0 more than if all of Bt is visible to the agent minE0, while
none of Bt is visible to the agent maxE0. Further, since f is symmetric
and E0 is symmetric around the midpoint, all of E0 can see a mirror
image of Ct and Dt to the right. By the same argument as before,
spant(E0) ≤ 1. We obtain the bound

spant+1(E0) ≤ 2
|Bt|(1 + spant(E0))

|Bt|+ 2|Ct|+ 2|Dt|+ |Et|
≤ 4|Bt|
n− 2|A0| − |Bt|

It
≤ 4|B0|
n− 2|A0| − |B0|

,

as desired. This proves IIt+1.
Next we deduce It+1. We will see that Ct+1 ⊇ Ct by checking that

every agent in A0 ∪ E0 remains in sight of every agent in Ct after the
update.
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Since A0 and E0 remain out of sight at time t, an agent in Ct cannot
see the mirror image of A0, but could a priori see every other agent.
Since the profile is symmetric

U t+1f(maxCt) ≤
(Lt2 + U tf(1))(n− 2|A0|) + |A0|〈U tf(i)〉i∈A0

n− |A0|
.

Since, as already noted, spant(A0) ≤ 1, it is clear that U tf(1) ≤
〈U tf(i)〉i∈A0

≤ U t+1f(1). Hence,

U t+1f(maxCt)− U t+1f(1) ≤
Lt
2 (n− 2|A0|)
n− |A0|

≤ L0

2

n− 2|A0|
n− |A0|

≤ 1,

where the last inequality holds by (5.2). This shows that every agent
in A0 remains in sight of every agent in Ct after the update.

We proceed similarly to prove retained contact with E0. To simplify
the notation, we assume without loss of generality that the profile is
shifted to be symmetric around 0, so that f(1) + f(n) = 0. A lower
bound on the opinion of agent minCt at time t + 1 is obtained by
placing all agents in A0 ∪ Bt ∪ Ct ∪Dt = A0 ∪ B0 ∪ C0 ∪D0 at −Lt2
and assuming this agent cannot see beyond E0. This gives

U t+1f(minCt) ≥ −
|A0| ∪ |B0| ∪ |C0| ∪ |D0|

(n+ |E0|)/2
Lt
2
≥ −n− |E0|

n+ |E0|
L0

2
.

Hence,

U t+1f(maxE0)− U t+1f(minCt) ≤
spant+1(E0)

2
+
n− |E0|
n+ |E0|

L0

2
≤ 1,

where the last inequality holds by IIt+1 and (5.3). This establishes
It+1.

Finally, we deduce that either Lt+1 < 2 or IIIt+1 holds. By defini-
tion of Ct,

U t+1f(1) = 〈U tf(i)〉i∈A0∪Bt∪Ct . (5.5)

On the other hand, as the agent minCt can see at least all of E0,

U t+1f(minCt) ≥
(|A0|+|Bt|+|Ct|)〈U tf(i)〉i∈A0∪Bt∪Ct+|Dt|〈U tf(i)〉i∈Dt+|E0|〈U tf(i)〉i∈E0

|A0 ∪B0 ∪ C0 ∪D0 ∪ E0|
.

Hence,

U t+1f(minCt)− U t+1f(1) ≥ 2|E0|
n+ |E0|

(
〈U tf(i)〉i∈E0

− 〈U tf(i)〉i∈A0∪Bt∪Ct
)

(5.5)
=

2|E0|
n+ |E0|

Lt+1

2
.
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This proves that either Lt+1 < 2 or IIIt+1 holds.

Step 2: We show that

It

IIIt

}
=⇒ U t+1f(1)− U tf(1) ≥ s ≥ wA +

wE
2

where s > 0 is bounded away from 0, independent of t, by some func-

tion which only depends on the relative sizes |C0|
n and |E0|

n .
By definition, at time t, the left extremist can see all agents in

A0 ∪Bt ∪Bt. Hence,

U t+1f(1) = 〈U tf(i)〉i∈A0∪Bt∪Ct
It
≥ 〈U tf(i)〉i∈A0∪B0∪C0

IIIt
≥

U tf(1)|A0 ∪B0|+
(
U tf(1) + 2|E0|

n+|E0|

)
|C0|

|A0 ∪B0 ∪ C0|

= U tf(1) +
2|C0||E0|

(|A0|+ |B0|+ |C0|)(n+ |E0|)

=⇒ U t+1f(1)− U tf(1) ≥ 2|C0||E0|
(|A0|+ |B0|+ |C0|)(n+ |E0|)

:= s.

By (5.1) and the fact that |A0|+ |B0|+ |C0| ≤ n−|E0|
2 , s is bounded

away from 0, independent of t, by some function which only depends

on the relative sizes |C0|
n and |E0|

n .
Finally, by (5.4) and the definitions of wA and wE in IIt, we have

s ≥ wA + wE
2 as desired.

Step 3: By Steps 1 and 2 there is some t∗, depending only on the

relative sizes |C0|
n and |E0|

n , such that A0 and E0 can first see each other
at time t∗.

We claim that Lt∗+1 ≤ 2. If Lt∗ ≤ 2 this is trivial, as the diameter
Lt is a non-increasing function of time. If Lt∗ > 2 then, since A0 and
E0 can see each other, we must have

Lt∗ ≤ 2 + 2

(
spant(A0) +

spant(E0)

2

)
.

Since IIt∗ holds, Step 2 will imply that Lt∗+1 ≤ 2.
Finally, since E0 is symmetric about the midpoint and visible to

all agents, consensus must follow in a time that is still bounded by

some function of the relative sizes |A0|
n , |C0|

n and |E0|
n , by an argument

similar to that in the proof of Corollary 2.29.
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Corollary 5.4. Let k ≥ 0 and n ≥ 3 where n is odd. Let f be a
symmetric profile on n agents and let g be a profile on n + (n − 1)k
agents such that e0 := Bnk (g)− f is a consistent deviation.

Assume there exists a time t0 such that the following hold:

(i) Lt0 + et0l (1) + et0r (n) ≤ 4, where et0l and et0r are computed recur-
sively acording to (3.6) and (3.7) in Theorem 3.5.

(ii) There is, for the profile U t0f , a choice of subsets At0 , Bt0 , Ct0 ,
Dt0 , Et0 of [n] such that

• parts (i)-(iv) of Definition 5.1 are satisfied,

• min{|At0 |, |Ct0 |, |Et0 |} ≥ 2,

• the following inequalities hold, where we denote X− :=
|Xt0 | − 1, X+ := |Xt0 | + 1 and X0 := |Xt0 | for X =
A,B,C,D,E:

n− 2A−

n−A−
Lt0
2
≤ 1

n− E−

n+ E−
Lt0
2

+
2B+

n− 2A0 −B+
≤ 1

2B+

n− 2A0 −B+
+

4D+

n− E−
≤ 2C−E−

(A− +B0 + C−)(n+ E−)
.

(iii) U t0f(maxCt0) + et0r (maxCt0) ≤ U t0f(1)− et0l (1) + 1.

(iv) U t0f(minCt0)−et0l (minCt0) ≥ U t0f(maxEt0)+et0r (maxEt0)−1.

(v) U t0f(maxAt0)+et0r (maxAt0) < U t0f(minEt0)−et0l (minEt0)−1.

Then there is some T , depending only on t0 and the relative sizes
|At0 |
n ,

|Ct0 |
n and

|Et0 |
n , such that UT g is a consensus. In particular, T

is otherwise independent of k and g.

Proof. Suppose the conditions (i)-(v) hold for f . We claim that the
hypotheses of Theorem 5.2 hold for U t0g, with A0 and E0 chosen such
that their respective coarsenings are At0 and Et0 . For if C0 is defined as
in Definition 5.1(v), then conditions (iii)-(v) guarantee that its coars-
ening contains Ct0 . By condition (ii), this is enough, since (5.1)-(5.4)
continue to hold if the size of C0 is increased at the expense of B0 and
D0. Note that, since refining leads to changes in the relative sizes of
the sets, the condition (ii) is what is needed for (5.2)-(5.4) to hold.

Corollary 5.5. There is a time T such that UT f6 is a consensus.
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Proof. We apply Corollary 5.4 with

n = 80 005

f = fn,6

g = (fn,6)(k)

e0
l = e0

r ≡ 0

t0 = 8.

The computation (see the ancillary file L6.jl for the code) shows
that the conditions of Corollary 5.4 are then satisfied for good sets
with sizes

|A8| = 31 537 |B8| = 0 |C8| = 40 |D8| = 3 |E8| = 16 845.

6 Final remarks

The two mechanisms behind achieving consensus discussed in Sections
4 and 5 are quite different, and the case L = 6 is clearly the harder
one.

One aspect of this is that consensus at L = 6 seems to be much
harder to detect if one simulates random profiles instead of equally
spaced ones. In our own experiments, we only detect the consen-
sus strikes back phenomenon for random profiles when the number
of agents simulated was in the milions. A heuristic explanation for
this is that the structure with microclusters is more sensitive to the
noise that comes if the initial opinions are chosen randomly. Even if
the initial profile is quite uniform at t = 0, the HK-updating operator
tends to amplify what little unevenness there is, so that even if some
update of the profile has approximately the right structure, the sizes
of the “clusters” meant to correspond to A, B, C, D and E might vary
more than one might first guess. In particular, the absence of guaran-
teed symmetry in a random profile is problematic. There are then two
things that can go wrong on the way to consensus. The first is that
one microcluster ends up significantly larger than the other, in which
case the extremists on one side will be pulled faster towards the centre
and the centre in turn will be drawn to this side. The second is that,
even if the microclusters end up about the same size, fragmentation
might follow if the sizes of the extremist clusters are too different. The
smaller one will be more easily affected by its microcluster, which will
also place itself further away, and might thus win the race to the centre
and steal away the central cluster.

The only chance for a uniformly random profile with L = 6 to reach
consensus is to have the two extremist clusters see the centre at exactly
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the same time, and fragmentation of uniformly random profiles might
happen even for n in the millions.

Two possible lines of further research are

• To understand what happens when L ∈ [L1, L2].

• To apply our method of comparing a profile to its refinements to
distributions other than the uniform.
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Appendix A: Explicit formulas for the first
two updates of an equally spaced profile

Definition A.1. For an equally spaced profile f , the difference in
opinion between two consecutive agents will be referred to as the sep-
aration parameter, or just separation, of f , and will be denoted by d.
When used about updates of equally spaced profiles, it refers to the
parameter of the original profile.

Proposition A.2. Let f = fn,L such that 1
d is an integer and L ≥ 2.

Then the symmetric profile Uf is given, for i ≤ n
2 , by

Uf(i) =
d(i− 1) + 1

2
if i ≤ 1

d
+ 1

Uf(i) =f(i) = d(i− 1) if i ≥ 1

d
+ 1.

Note in particular that, for any k ≥ 0, Bnk (Uf (k)) = Uf .

Proof. First assume i ≤ 1
d + 1. Then, the leftmost neighbour of i

has opinion 0 and, since 1
d is an integer and L ≤ 2, its rightmost

neighbour has opinion f(i) + 1. Let m = i+ 1
d denote its total number

of neighbours. Then,

Uf(i) =
1

m

m−1∑
j=0

jd = d

 1

m

m−1∑
j=0

j

 = d

(
1

m

(m− 1)m

2

)

=
d(m− 1)

2
=
d(i− 1) + 1

2
,

as stated.
If 1

d + 1 ≤ i ≤ n
2 then, since L ≥ 2, i has the same configuration of

neighbours on both sides, and hence its opinion won’t change.

Proposition A.3. Let f = fn,L with L ≥ 4 and such that 1
d = n−1

L
is an even integer.

Then the symmetric profile U2f is given, for i ≤ n
2 , by

U2f(i) =
di2 + 6i+ 11

d − d+ 2

4
(
i+ 3

d + 1
) if i ≤ 1

d
+ 1 (A.1)

U2f(i) =
di2 + 2i− di+ 3

2d −
1
2

2
d + 2i

if
1

d
+ 1 ≤i ≤ 3

2d
+ 1 (A.2)

U2f(i) =
−di2 + 6i+ 4di− 3d− 6

2
(

4
d + 2− i

) if
3

2d
+ 1 ≤i ≤ 2

d
+ 1 (A.3)

U2f(i) =(i− 1)d if
2

d
+ 1 ≤i ≤ n

2
, (A.4)
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where i = 2
⌊
i−1

2

⌋
+ 1 is used to denote rounding down to the nearest

odd integer.

Proof. First note that, since L ≥ 4, (A.4) follows immediately from
Proposition A.2 which says that, for any neighbour j of any agent i
such that 2

d + 1 ≤ i ≤ n
2 , we have Uf(j) = f(j).

The proofs of (A.1)-(A.3) are a straightforward if messy computa-
tion.

For each agent i ≤ 2
d + 1, we define sets

a) S−i = {j ∈ Ni(Uf) : f(j) ≤ 1}
b) S+

i = {j ∈ Ni(Uf) : f(j) ≥ 1}.
Since, by Proposition A.2, Uf( 2

d + 1) = 2, both sets are non-empty for
each i. Denote

m−i = |S−i |, m+
i = |S+

i |
a−i = 〈Uf(j)〉j∈S−i , a+

i = 〈Uf(j)〉j∈S+
i
.

Then

U2f(i) =
m−i a

−
i +m+

i a
+
i − 1

m−i +m+
i − 1

, (A.5)

where the subtracted ones serve to compensate for the fact that we
count the agent with opinion 1 twice.

By Proposition A.2, the profile Uf is equally spaced above 1, with
separation d. Hence

m+
i =

⌊
Uf(i)

d

⌋
+ 1,

a+
i =

2 + d
⌊
Uf(i)
d

⌋
2

.

If an agent i can see the left extremist in Uf , Proposition A.2 implies
that m−i = 1

d + 1 and a−i = 3
4 .

In completing the calculation of U2f(i) for i ≤ 2
d + 1, we can now

distinguish three cases depending on i.
Case 1: i ≤ 1

d + 1.

We have Uf(i) = 1
2 + d

(
i−1

2

)
, so

m+
i =

⌊
1

2d
+
i− 1

2

⌋
+ 1

1
d even

=
1

2d
+

⌊
i− 1

2

⌋
+ 1 =

1

2

(
1

d
+ 1 + i

)
,

and a+
i = 1

4 (5 + (i− 1)d). Further, m−i = 1
d + 1 and a−i = 3

4 .
Inserting these into (A.5) gives (A.1).
Case 2: 1

d + 1 ≤ i ≤ 3
2d + 1.
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By Proposition A.2, i can still see the extremist, so m−i = 1
d +1 and

a−i = 3
4 . Further, Uf(i) = (i−1)d, so m+

i = i and a+
i = 1

2 (2 + id− d).
Inserting these into (A.5) gives (A.2).
Case 3: 3

2d + 1 ≤ i ≤ 2
d + 1.

We have m+
i = i and a+

i = 1
2 (2 + id− d) as above. Starting from

i = 3
2d + 1, every step inwards removes two neighbours to the left and

increases a−i by d
2 , so

m−i =
1

d
+ 1− 2

(
i−
(

3

2d
+ 1

))
a−i =

3

4
+
d

2

(
i−
(

3

2d
+ 1

))
=

(i− 1)d

2
.

Inserting these into (A.5) gives (A.3).

Remark A.4. If we only care about calculating the opinions of the
first 1

d + 1 agents, the assumption of L ≥ 4 in Proposition A.3 can be
relaxed to L ≥ 3 without affecting the proof of (A.1). Substituting
i = 1 into (A.1) shows that U2fL(1) ≥ 11

12 . Fix a rational L ≤ 23
6 .

There must exist an infinite increasing sequence (ni)
∞
i=1 such that all

fni,L satisfy the conditions in the proposition, and using symmetry we
get that D(U2fni,L) ≤ 23

6 − 2 11
12 = 2 for all such ni.

By Proposition 2.25, L ≤ 23
6 =⇒ D(U2fL) ≤ 2. Hence, by

Corollary 2.29 there exists a bounded T such that UT fL is a consensus
for all L ≤ 23

6 .
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