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Abstract

In this paper we obtain C?-open sets of dissipative, partially hyperbolic skew products
having a unique SRB measure with full support and full basin. These partially hyperbolic
systems have a two dimensional center bundle which presents both expansion and contraction
but does not admit any further dominated splitting of the center. These systems are non
conservative perturbations of an example introduced by Berger-Carrasco.

To prove the existence of SRB measures for these perturbations, we obtain a general mea-
sure rigidity result for u-Gibbs measures for partially hyperbolic skew products. This is an
adaptation to the partially hyperbolic setting of a measure rigidity result by A. Brown and
F. Rodriguez Hertz for stationary measures of random product of surface diffeomorphisms. In
particular, we classify all the possible u-Gibbs measures that may appear in a neighborhood of
the example. Using this classification, and ruling out some of the possibilities, we obtain open
sets of systems, in a neighborhood of the example, having a unique u-Gibbs measure which is

SRB.
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1 Introduction

In dynamics one usually tries to understand the asymptotic behavior of the orbit of many points.
In this direction, it is natural to try to understand properties, and the existence, of certain invariant
measures that capture the statistical behavior of a set of points that is relevant for the Lebesgue
measure. Let us make this more precise. In what follows, we refer the reader to section [2] for the
definitions of the dynamical objects that appear in this section.

Let f be a diffeomorphism of a closed, compact, connected, orientable manifold M. Given an
invariant ergodic probability measure u, its basin is defined as

1n—1 oo
B(u) = p6M¢EZ5fj<p>;>M ;
j=0

where ¢, is the dirac measure on p and the convergence is for the weak*-topology. The measure u
is physical if its basin has positive Lebesgue measure. In other words, physical measures are the
measures that capture the asymptotic behavior of many points in the Lebesgue point of view.

In the 1970s, Sinai, Ruelle and Bowen [Si72, [Ru76, Bow75] proved that C'** uniformly hy-
perbolic systems have finitely many physical measures that describes the statistical behavior of
Lebesgue almost every point. Nowadays, the measures they constructed are called SRB measures
(SRB for Sinai-Ruelle-Bowen), see Definition These measures have an important geometrical
property: they admit conditional measures along unstable manifolds which are absolutely continu-
ous with respect to the volume of the unstable manifolds. After the work of Ledrappier in [Le84],
there is a well developed ergodic theory for these measures. The hyperbolic SRB measures form an
important class of physical measures.

We remark that in the hyperbolic setting there are uniform expansion/contraction, and a dom-
inated splitting (which implies that the angle between the expanding/contracting directions is
uniformly bounded from below). These two points are important to carry the constructions of such
measures.

There are many works that study conditions that guarantee the existence of hyperbolic SRB
measures outside the uniformly hyperbolic setting, see for instance [Yo98|
BOv21]. We also refer the reader to the recent survey for a discussion on the
different methods of construction of such measures (with a focus on the geometrical method). We
now mention some of the examples of systems admitting hyperbolic SRB measures.

e Some derived from Anosov examples, in particular the ones introduced by Bonatti-Viana in
[BVO0]: these examples have a dominated splitting, and nonuniform expansion, or contraction
(also known as mostly contracting, or mostly expanding), see also [Ta04]. Tt gives
open sets of systems having an unique hyperbolic SRB measure.



e Hénon maps: in [BY93] it is proved that for a set of positive Lebesgue measure of parameters
(a,b) with b > 0 small, the map

ha,b(xvy) = (xQ + Yy + a, —b(ﬁ),

admits a hyperbolic SRB measure. This example has non-uniform expansion/contraction, it
is dissipative (it does not preserve the Lebesgue measure), and it does not admit a dominated
splitting. However, it is not guaranteed the existence of an SRB measure for an open set of
parameters (a,b).

e Some robustly non-uniformly hyperbolic volume preserving diffeomorphisms whose Oseledec’s
splitting is not dominated: by the absolute continuity of the unstable partition after the work
of Pesin (see [Pe77]), in the volume preserving scenario, the existence of a hyperbolic SRB
measure is equivalent to prove non-uniform hyperbolicity. Let us mention a few of such ex-
amples. The Berger-Carrasco’s example in [BCI4] (which we will study in more detail in this
work). We also mention Avila-Viana in [AVI0], and Liang-Marin-Yang in [LMYT§|, where
they obtain C2-open sets of symplectomorphisms which are non-uniformly hyperbolic. These
examples are conservative, they have non-uniform expansion/contraction, and the expand-
ing/contracting directions are not dominated.

e Some “large local” perturbations of Axiom A systems, which appeared in [CDP16]: these
examples also present non-uniform expansion/contraction, and no dominated splitting. But
the proof of the existence of a hyperbolic SRB measure does not guarantee the robust existence
of a hyperbolic SRB measure.

We remark that the list above is not a complete list of examples, but they represent well the
examples according to the presence of non-uniform expansion/contraction, domination, and volume
preserving or not.

In this work we give examples of open sets of dissipative systems having a unique SRB measure
in the presence of non-uniform expansion/contraction and “no domination” between expanding and
contracting directions. These properties create many difficulties in the study of the existence and
uniqueness of SRB measures.

The example we will study was introduced in [BCI4] by Berger-Carrasco. It is a partially
hyperbolic system, with two dimensional center, and such that among the volume preserving systems
it is robustly non-uniformly hyperbolic with both expansion/contraction along the center and it
does not admit a decomposition of the center in dominated directions.

In [Ob20], the author proves that the Berger-Carrasco’s example and any CZ-small volume
preserving perturbation of it is ergodic. In this work we study dissipative perturbations of this
example. In particular, we will find an open set of systems having a unique hyperbolic SRB
measure with full basin, and each system in this open set has non-uniform expansion/contraction
whose angle between the expanding/contracting directions is not bounded away from zero.

The example and precise statement of the results

For N € R we denote by sy(z,y) = (20 — y + N sin(z), z) the standard map on T? := R?/27Z2.
For every N the map sy preserves the Lebesgue measure induced by the usual metric of T2. This
map is related to several physical problems, see for instance [Ch79], [z80] and [SS95].



It is conjectured that for N # 0 the map sy has positive entropy for the Lebesgue measure,
see [Si94] page 144. By Pesin’s entropy formula, see [Pe77] Theorem 5.1, this is equivalent to the
existence of a set of positive Lebesgue measure, whose points have a positive Lyapunov exponent.
The existence of those sets is not known for any value of N. See [BXY17, [Ch20, Du94, [Go12| for
some results related to this conjecture.

In what follows we refer the reader to Section [2] for some basic definitions regarding partially
hyperbolic dynamics. Let A € SL(2,7Z) be a hyperbolic matrix that defines an Anosov diffeomor-
phism on T2, let P, : T? — T? be the projection on the first coordinate of T?, this projection is
induced by the linear map of R?, which we will also write P, given by P,(a,b) = (a,0).

Consider the torus T* = T? x T? and represent it using the coordinates (x,y,z,w), where
x,y,z,w € [0,27). We may naturally identify a point (z,w) on the second torus with a point (x,y)
on the first torus by taking z = z and y = w. For each N € N define

v o TZxT2 — T2 x T?
(3371/72710) = (SN(.%',y)+PIOAN(Z7U}),A2N(Z7U))).

This diffeomorphism preserves the Lebesgue measure. For N large enough it is a partially
hyperbolic diffeomorphism, with two dimensional center direction given by E¢ = R? x {0}. This
type of system was considered by Berger-Carrasco in [BCI14], where they proved that for N large
enough fy is C2-robustly non-uniformly hyperbolic among the volume preserving diffeomorphisms.

For r > 1 we consider Diff"(T*) to be the set of C"-diffeomorphisms of T*. Inside Diff" (T*), we
may consider the subspace Sk”(T? x T?) of skew products, which is the set of C"-diffeomorphisms
g of the form

g(x, Y, %, IU) = (g1($, Y, z, w)).g?(zv ’U))),
where ga(., .) is a C"-diffeomorphism of T2, and for each (z,w) € T2, g1(., ., z, w) is a C"-diffeomorphism
of T2 as well. Observe that fy € Sk*(T? x T2). We also remark that for N large enough, if g is
a skew product C'-close enough to fx, then go is an Anosov diffeomorphism, and g is partially
hyperbolic.

We recall that for a map g, a g-invariant measure p is Bernoulli if the system (g, ) is measur-
ably conjugated to a Bernoulli shift.

Our main result is the following:

Theorem A. Let a € (0,1). For N large enough, there exist Uzt a C?-neighborhood of fx
contained in Skz(’ﬂ‘2 x T?), and V a C?-open and C?-dense subset of USF such that for any g € V
having reqularity C**, there exists a unique g-invariant measure p, with the following properties:

1. pg is a hyperbolic SRB measure and Bernoulli;
2. Leb(Buy)) = 1;

3. supp(ug) = T*.

The proof of Theorem[A]is based in the study of the so called u-Gibbs measures, see Definition
[2:21] These measures play a key role in the study of ergodic properties of partially hyperbolic
systems. Indeed, they capture the asymptotic statistical behavior of Lebesgue almost every point,
see Theorem w For a partially hyperbolic diffeomorphism g, we write Gibbs"(g) as the set of
u-Gibbs measures for g.

To prove Theorem [A] we will first classify all the ergodic u-Gibbs measures that may appear in
a neighborhood of fy. This is given in the following theorem:



Theorem B. Let a € (0,1). For N large enough, there exists UsF a C%-neighborhood of fn
contained in Sk*(T? x T?), such that for g € U having regularity C**, if u € Gibbs"(g) is
ergodic, then either:

1. p is a hyperbolic SRB measure, or

2. there exists a finite number of C' two dimensional tori Tl}, e ,T[L C T* such that each of
them is tangent to E;° ® Ey", and supp(u) = Uéleﬂ.

The proof of Theorem |B| uses an adaptation to the partially hyperbolic skew product setting of
a recent result by Brown-Rodriguez Hertz in [BRHI7]. In their paper they classify all the ergodic,
hyperbolic stationary measures for random products of surface C?-diffeomorphisms. Their proof
is inspired in ideas from Benoist-Quint [BQ11] and Eskin-Mirzakhani [EMI18]. In the partially
hyperbolic skew product setting, we can actually get a result more general than Theorem [B] see
Theorem [D] below.

We remark that there are also some recent works that “push” the ideas from [BQ11},[EM18| [ET
BRHI1T] to different settings. There is the work of Cantat-Dujardin in [CD20] which attempts to
classify stationary measures of random products of automorphisms of real and complex projective
surfaces. There is also the work of Katz, [Ka23|, which pushes the ideas of [EMIS| [EL] to prove
rigidity of “u-Gibbs measures” of Anosov flows under a technical hypothesis called QNI (quantified
non-integrability).

The uniqueness of the SRB measure, and some other properties that appear in the statement
of Theorem [A] will be a consequence of the following theorem:

Theorem C. For N large enough, there exists Uy a C?-neighborhood of fn in Diffz(T4) such that
if g € Un, then g has at most one SRB measure. Moreover, if jig is an SRB measure for g, then
supp(ug) = T4, it is Bernoulli and hyperbolic.

Remark 1.1. Theorems [4] and [B| hold for a neighborhood of fn inside the set of skew product
diffeomorphisms, Sk* (T? x T?). Theorem |C| guarantees that there exists at most one SRB measure
in a neighborhood of fn inside Diffz(']I“l). However, it does not guarantee the existence of an SRB
measure.

As we mentioned before, the proof of Theorem [B] uses the following theorem, which holds for
more general partially hyperbolic skew products and not only perturbations of Berger-Carrasco’s
example. Let S be a compact surface. We can define Sk” (S x T?) as the set of C"-diffeomorphisms
g of the form

SxT? — S x T?

(p1,p2) — (91(P1,p2),92(p2))

such that go(.) is a C"-diffeomorphism of T? and for each py € T2, g1 (., p2) is a C"-diffeomorphism

of S. We say that g is a partially hyperbolic skew product of S x T2 if g is partially hyperbolic

and g, is an Anosov diffeomorphism of T2. Let g be a partially hyperbolic skew product of S x T2.

In what follows we write || Dg = sup [ Dg(p) and m(Dg|ge) ;== inf m(Dg(p)|ge),
peESXT?2 peESXT?2

where m(Dg(p)|ge) := || (Dg(p)|ge) " ||~* is the co-norm of Dg(p)

FEss Ess

FEc.

Theorem D. Let S be a compact surface and let ., € (0,1) be two constants. Let g € Sk*T(S x
T?) be a partially hyperbolic skew product such that:



(a) g is (2,a)-center bunched (see for the definition) ;
(b) E" is -Hélder and |Dg|gss||? < m(Dg|g-).

If u € Gibbs“(g) is an ergodic measure having one positive and one negative Lyapunov exponent
along the center direction, then either:

1. p is an SRB measure;

2. the Oseledets direction E~ is invariant by linear unstable holonomies (see item 2 of Theorem

for a precise definition);

3. there exist a finite number of two dimensional su-tori Tl},--- ,TL, such that supp(u) =
Uk_, T3,

This theorem will be a direct consequence of the combination of Theorems and below
(see also Remark [8.2).

We remark that Theorem |D| has its own interest, since it gives a good “general” strategy to
approach the problem of existence of SRB measures for partially hyperbolic skew products with
two-dimensional fibers.

Discussion on the techniques and strategy of the proofs

Theorem [A] is an easy consequence of Theorems [B] [C] and of some recent results on accessibility
classes for skew products with two dimensional fibers from [HSI7], given by Theorem below.

Using the calculations to prove non-uniform hyperbolicity of fy from [BCI4], and the adapta-
tions made in [Ob20], we prove that in a neighborhood of fy in Diff?(T*), every u-Gibbs measure
is hyperbolic with both a positive and a negative Lyapunov exponent along the center.

The proof of Theorem |C|is based on the techniques developed by the author in [Ob20]. Using
such techniques we can prove that any u-Gibbs measure has a set of large measure, whose points
have “large” stable and unstable manifolds. Furthermore, we can obtain precise control on the
“geometry” of these invariant manifolds. This allows us to prove that any two u-Gibbs measures
are homoclinically related (see Definition and Theorem [5.1). Hence, we conclude that in a
neighborhood of fy (inside Diff?(T*)) there exists at most one SRB measure. The techniques will
also allow us to conclude that such a measure is Bernoulli. Using some arguments from the recent
work [CO21] of the author with P. Carrasco, we prove that if there exists an SRB measure then it
has full support. A key point in this proof is a quantified version of Pesin theory that appeared in
[CP1§]. We remark that this type of strategy using this quantified Pesin theory allowed the author
to prove the uniqueness of the measure of maximal entropy for the standard map itself (see [Ob21]).

One of the key ingredients in the proof of Theorem [Blis an adaptation for the partially hyperbolic
skew product setting of the main results from [BRHI7]. There are two parts in this adaptation,
which are given by Theorems and To prove Theorem we show that for ¢ sufficiently
close to fy and for an ergodic u-Gibbs measure p, after a measurable change of coordinates using
the unstable holonomies, we are in the setting of Theorem 4.10 from [BRHI7]. To justify that
the change of coordinates mentioned above take us to the setting of Brown-Rodriguez Hertz’s
rigidity result, we use the version of the invariance principle by Tahzibi-Yang in [TY19]. We then
obtain that there are only three possibilities for an ergodic u-Gibbs measure: either it is an SRB
measure; or it has atomic disintegrations along the center foliation; or the Oseledets direction for



the negative center Lyapunov exponent is invariant by the derivative of unstable holonomies. Using
some estimates from [BC14], we prove that the third case never happens (see proposition .
We are left to deal with the u-Gibbs measures having an atomic disintegration along the center
foliation. This is done with Theorem [B11

Theorem corresponds to the adaptation of Theorem 4.8 from [BRHI17]. The proof of this
theorem is done in Sections [8 and 0] If the u-Gibbs measure has atomic disintegration along the
center foliation and the stable Oseledets direction is not invariant by the derivative of unstable
holonomies, we prove that the center disintegration is invariant by stable and unstable holonomies.
Since the system also verifies a condition called center bunching (see Definition , using some
results on accessibility classes (see Theorem, we may conclude the existence of the tori tangent
to the strong stable and unstable directions (see Theorem which contain the support of the
measure.

Let us finish with a remark on item (b) in the hypothesis of Theorem [D] This condition states
that we need E** to be “Holder enough” to apply the theorem. It is well known that the invari-
ant directions of a partially hyperbolic diffeomorphism are usually Hélder. Let g be a partially
hyperbolic skew product. If § € (0,1) is a number such that

Dg(p)| -]

m(Dg(p)|guu) < m(Dg(p)|g=-)’,

for every point p € S x T?, then E*“ is §-Hélder (see Section 4 from [PSW12]). This condition
gives an upper bound on . Indeed, we obtain that

{1ogm(Dg(p)|Euu) —log [ Dg(p)| 5| } .

0 < inf
—logm(Dg(p)|gss)

peES X T2

On the other hand, to obtain condition (b) in the hypothesis of Theorem @ we need that
| Dglgss||® < m(Dg|g<), which implies

logm(Dg|g-)
log || Dg| =

Thus, a sufficient condition to obtain the hypothesis (b) is that

logm(DglEc)< it {1ogm(Dg(p)|Ew)—logIIDg(p)IEc}
log || Dg pES X T2 —logm(Dg(p)|gss)

Ess

Further remarks and questions

The « that appears in the statements of Theorems [A] and [B] and only appears because in
the statement of the main result from [BRHI1T7], the surface diffeomorphisms they consider have
regularity C2. If one obtains a version of their result for C1*#-diffeomorphisms, then one could
remove the « from the statement (see section @

Let us make a few remarks about the skew product hypothesis in the statement Theorems[A]
and |D| This condition implies that the center foliation is smooth. This is used to prove Proposition
2.28] which states that we may use the invariance principle (see also Corollary . We also use
the smoothness of the center foliation to prove that an u-Gibbs measure projects to the unique
SRB measure for the C2-Anosov diffeomorphism on the basis (see Lemma . This is important




in our proof because SRB measures for a C?-Anosov diffeomorphism have a property called local
product structure (see Section . This local product structure is a key property used to obtain
Lemma [84] which is used in the proof of the existence of the su-tori in item 2 of the statement of
Theorem [B| (and item 3 of Theorem @ It is an interesting question to know if one can remove the
skew product condition in the hypothesis to work with more general partially hyperbolic systems
with two dimensional center.

An important notion in the study of dynamical properties of partially hyperbolic systems is
accessibility (see Section [2] for the definition). It is not known if fy is accessible or not. If it were,
we would obtain several interesting consequences, such as:

e fx would be C'-stably ergodic (we refer the reader to [Ob20] for the definition and discussion
on stable ergodicity);

e for N large and Z/{Iifk small enough such that Theorem [B| is satisfied, for any g € L[]‘i,k N
Diff***(T*), there would be an unique SRB measure g, which is Bernoulli, it has full
support and full basin. Furthermore, this measure would be the unique u-Gibbs measure for
g-

We emphasize the question made by Berger-Carrasco in [BCT4]:
Question 1.2. For every L > 0, does it exist N € [L,+00) such that fy is accessible?

An interesting strategy to prove the existence of an SRB measure in a neighborhood of fy
inside Diff?(T*) is to use the results from [CDPI6]. In order to do that, one needs to prove that the
condition called effective hyperbolicity is satisfied (see Section 1.2 in [CDP16]). This condition
seems hard to prove, however it could give the existence of SRB measures outside the fibered case.

Question 1.3. For N large enough, for any diffeomorphism g which is sufficiently C2-close to f,
does it hold that g is effective hyperbolic?

In [Vi97], Viana introduced two examples of systems (sometimes called Viana maps), which
exhibit non-uniformly hyperbolic attractors . The first one is an endomorphism (see Theorem A
in [Vi97]), which is an skew product over an expanding map of the circle (on the basis), and the
dynamics on the fiber is based on the quadratic family. For this example there were several works
that studied its ergodic properties, in particular the existence of SRB measure, see for instance
[Al01l, [Al00) [AV02] [BST03].

The second example introduced by Viana is a diffeomorphism on a 5-dimensional manifold (see
Theorem B in [Vi97]). It is an skew product with a solenoid on the basis, and the dynamics on the
fiber is based on the Hénon maps (which are dissipative). Viana proved that Lebesgue almost every
point has a positive Lyapunov exponent along the fiber. This example is not well understood. In
particular, nothing has been done regarding the existence of SRB measures for this type of Viana
maps.

Question 1.4. Can the same strateqgy we use to study SRB measures be applied to study the
existence of SRB measure for the second type of Viana maps?

Organization of the paper

In Section [2] we review several tools that we will use in this work. In particular, results on
partially hyperbolic systems and accessibility classes, u-Gibbs and SRB measures, and the invariance



principle. In section [3] we prove Theorem [A] assuming Theorems [B] and [C] Sections [] and [] are
dedicated to prove Theorem [C| In these sections we show how the techniques from [Ob20], and
[BC14], are used to obtain precise control on the center Lyapunov exponents of u-Gibbs measures,
and how to obtain the uniqueness of the SRB measure.

In Section |§| we state Theorem 4.10 from [BRHI17], and we show how after a measurable change
of coordinates of our systems we are in the setting of their result. In Section [7] we prove that
in a neighborhood of Berger-Carrasco’s example, the Oseledets direction for the negative center
Lyapunov exponent is not invariant by the derivative of unstable holonomies, for any u-Gibbs
measure.

In Sections [§ and [9] we deal with the case where a u-Gibbs measure has atomic center disin-
tegration. This is done by using the invariance principle and adapting the proof of Theorem 4.8
from [BRHIZ7]. In the appendix we prove that with some stronger bunching condition the strong
unstable holonomy between center manifolds has regularity C?, this is used in the proof of Theorem

Bl
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2 Preliminaries

2.1 Partial hyperbolicity, holonomies and accessibility classes
Partial hyperbolicity and foliations

A C"-diffeomorphism f, with r» > 1, is partially hyperbolic if the tangent bundle has a decom-
position TM = E*° @& E° @ E“*, there is a riemannian metric on M and continuous functions
xX*%, X", x%, x% : M — R, such that for any m € M

X**(m) <1< x"(m) and x**(m) < x%(m) < x5.(m) < x""“(m),

it also holds
x&(m) <m(Df(m)

gg,) < [|[Df(m)

m

Ee |l < x% (m);

1D.f(m)

If the functions in the definition of partial hyperbolicity can be taken constant, we say that f is
absolutely partially hyperbolic.

It is well known that the distributions E*® and E*" are uniquely integrable, that is, there are
two unique foliations F*° and F"*, with C"-leaves, that are tangent to E*° and E"* respectively.
For a point p € M we will denote by W*%(p) a leaf of the foliation F*¢, we will call such leaf the
strong stable manifold of p. Similarly we define the strong unstable manifold of p and denote it by
W (p).

g |l < x*(m) and x"*(m) < m(Df(m)|gy:).



Definition 2.1. A partially hyperbolic diffeomorphism is center bunched if
E(m) X (m)

C

x5 (m) X< (m)
We denote £ = E* @ E°¢ and F* = E° @ E“".

X**(m) <

< x*"“(m), for every m € M.

Definition 2.2. A partially hyperbolic diffeomorphism f is dynamically coherent if there are
two invariant foliations F¢ and F*, with C'-leaves, tangent to E° and E respectively. From
those two foliations one obtains another invariant foliation F¢ = F° N F that is tangent to E°.
We call those foliations the center-stable, center-unstable and center foliation.

For any R > 0 we write W} (p) to be the disc of size R centered on p, for the Riemannian metric
induced by the metric on M, contained in the leaf W*(p), for * = ss, ¢, uu.
The definition below allows one to obtain higher regularity of the leaves of such foliations.

Definition 2.3. We say that a partially hyperbolic diffeomorphism f is r-normally hyperbolic
if for anym e M
X**(m) < (x2(m))" and (x5 (m))" < x"*"(m).
Definition 2.4. Let f and g be partially hyperbolic diffeomorphisms of M that are dynamically
coherent. Denote by F§ and Fy the center foliations. We say that f and g are leaf conjugated
if there is a homeomorphism h : M — M that takes leaves of F§ to leaves of Fg and such that for
any L € F§ it is satisfied
h(f(L)) = g(h(L)).

One may study the stability of partially hyperbolic systems up to leaf conjugacy. Related to this
there is a technical notion called plaque expansivity which we will not define here, see chapter 7
of [HPST7] for the definition. The next theorem is important for the theory of stability of partially
hyperbolic systems.

Theorem 2.5 ([HPS77], Theorem 7.4). Let f : M — M be a C"-partially hyperbolic and dy-
namically coherent diffeomorphism. If f is r-normally hyperbolic and plaque expansive then any
g: M — M in a C"-neighborhood of f is partially hyperbolic and dynamically coherent. Moreover,
g is leaf conjugated to f and the center leaves of g are C"-immersed manifolds.

Remark 2.6. Fiz R > 0, and let f be a diffeomorphism that satisfies the hypothesis of the previous
theorem. The proof of this theorem implies that for g sufficiently C"-close to f, for any m € M
we have that W§ p(m) is C"-close to W¢ p(m). In particular, if the center foliation is uniformly
compact then for every g sufficiently C"-close to f, for any m € M, WJ‘E(m) is C"-close to Wg(m).

It might be hard to check the condition of plaque expansiviness, but this is not the case when
the center foliation of a dynamically coherent, partially hyperbolic diffeomorphism is at least C?,
see Theorem 7.4 of [HPS77]. Usually the invariant foliations that appear in dynamics are only
Holder.

We can also obtain a better regularity for the center direction given by the following theorem,
see section 4 of [PSW12] for a discussion on this topic.

Theorem 2.7. Let f be a C%-partially hyperbolic diffeomorphism and let 6 > 0 be a number such
that for every m € M it is satisfied

X**(m) < X% (m)m(Df(m)| =)’ and X5(m)|| D f(m)|gue
then E€ is 6-Hoélder.

‘9 < qu(m),

10



Unstable holonomies

Let f be a partially hyperbolic, dynamically coherent diffeomorphism. Each leaf of the foliation
F< is foliated by strong stable manifolds. For a point p € M and ¢ € W{%(p), where W75 (p)
is the strong stable manifold of size 1, we can define the stable holonomy map restricted to the
center-stable manifold, between center manifolds. Let us be more precise. We can choose two small
numbers Ry, Ry > 0, with the property that for any z € W (p), there is only one point in the
intersection W3*(z) N W, (¢q). We define Hy (2) = W3*(2) N Wg_(q). With this construction we
obtain a map Hy , : Wg (p) — W, (¢q). By the compactness of M we can take the numbers R;
and Ry to be constants, independent of p and gq.

We can define analogously the unstable holonomy map, for p € M and ¢ € W{**(p), which we
will denote by Hy , : W§ (p) — WE,_(q)-

In [PSW97] and [PSW0Q], the authors prove that the map H,, , is C' if f is a partially hyperbolic,
center bunched and dynamically coherent C?-diffeomorphism. Indeed, the authors prove that the
strong stable foliation is C'! when restricted to a center-stable leaf. Consider the family of C'-maps

{H;q}peM,qEWfs (p)-

Theorem 2.8. Let f be an absolutely partially hyperbolic, dynamically coherent diffeomorphism
with regularity C?. Suppose also that f verifies:

1. x¢ <1land x5 >1;

2. there exists 6 € (0,1), such that

s5\0 XC— X(.-i- uu\0
X < — and < (x ; 1
() < (e and T < () )
and also
X** < XEm(Df|pe:)” and x$||Dfge]|” < X" (2)

Then the family {Hg,q}peMgveS(p) is a family of C'-maps depending continuously in the C'-
topology with the choices of the points p and q. Furthermore, there exists a constant C > 0 such
that for any p € M, ¢ € W$5(p), and any unit vector v € E5, it is satisfied

S

My 0 0
d(nH;,q(p)vn’ ) < Cd(p,q)”. (3)

Similar results holds for the family of unstable holonomies {H;qu}peMngfu(p),

Theorem has no assumption on the dimensions of the invariant directions. The proof of this
theorem can be found in [Ob], which is an adaptation of the arguments from [Br22] by Brown. In
what follows, we give the main points of this proof mostly to justify . For all the details, we
refer the reader to [Ob].

Sketch of the proof. By Theorem condition (2) implies that the center bundle E° is #-Holder
(see section 4 in [PSW12]). The condition (1)) is sometimes called the strong bunching condition.

We may fix a local approximation of the holonomy H7, which we will denote by 72, that verifies
the following: there exists a constant C > 0 such that for any p € M and ¢ € W*(p), there exists
a C'9%-map, which is a diffeomorphism onto its image, Ty 4t WE (p) = W€(q) that verifies
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L d(m 4(p),q) < Cd(p, q);
s A 4 c [ : c.
2. d(Dry ,(p).v,v) < Cd(p,q)°, where v € SES, and SEJ is the unit sphere on E;
3. ifp’ € WE.(p) and ¢’ € W*(p')NW[ .(q), then m, 4 coincides with 7>, ., on WE(p)NWE (P).

This can be done in the following way: Consider a smooth subbundle E inside a cone which
is close to the direction perpendicular to the subbundle E¢, with dimension dim(M) — dim(E*).
Since E° is 6-Holder, the center manifolds are C'*Y. Hence, the restriction of E to any center
manifold is a C'*%-bundle. For each point ¢ € M and p > 0, consider L, , := exp,(E(g, p)) to be
the projection of the ball of radius p by the exponential map over q. By the uniform transversality
and the compactness of M, there exists a constant py such that for any center leaf W5, (p), the set

{L,, ”}qewﬁl (p) forms an uniform foliated neighborhood of W (p) (or a tubular neighborhood). Let

7, , be the holonomy defined by this local foliation, up to rescaling of the metric we may assume

that it is well defined for p € M and g € W*(p). By the compactness of M we obtain the constant
C > 0 above. Observe also that since the center leaves vary continuously in the C1-topology, we
obtain that the map 7, , varies continuously in the C'-topology with the points p and q.
For any p,q € M and each n € N, write p, = f*(p) and ¢, = f™(q). We define
Hyqn=F"0mp 4, 01"
If it is clear that we are talking about two points p and ¢ € W**(p) we will only write H;, = Hy ,
and similarly 7, =7, .

Since we are assuming that f is absolutely partially hyperbolic, only for this proof, we write its
partially hyperbolic constants as xs = x*°, xe = x¢ and X, = (Xﬁr)*l. Also, for a diffeomorphism
g : N1 — Ns, between manifolds Ny and Ny, we will write g, : SN; — SN, the action induced by
the derivative on the unitary bundles of N7 and Ns.

The proof of Theorem follows the steps in [Br22]. The first step is to prove that (H?),en is
uniformly Cauchy in the C%-topology. The second step is to prove that the sequence ((H3 ) ) nen
is uniformly Cauchy. The third step is to prove that for any vector v € Ej, the sequence
(IDH; (p)v]), ey is also uniformly Cauchy. In all these three steps it is obtained that the rate
of convergence of these sequence does not depend on the choices of the points p and ¢q. The uniform
convergence in the Cl-topology of the sequence (H?),en then follows from these three steps. In
this paper, we only describe in more details step two, for the details of the other two steps we refer
the reader to [Ob].

Observe that the Lipschitz norm of f, ! restricted to a fiber S, E¢ is (x.X.) !. Since f is a
C?-diffeomorphism, then f_ ! is a C*-diffeomorphism of SM, let C; > 0 be the C'-norm of f~! on
M and Cy to be the Ct-norm of 7! on SM. For ¢ = (z,v) € S, M, write &, = f¥(z,v) = (2, vr),
with k € Z.

In [Br22], the author uses the strong bunching condition above, but he also uses another
type of bunching (see Theorem 4.1 in [Br22]). In the proof, this different type of bunching is only
used to obtain a version of lemma below. In our setting, instead of asking for this other type of
bunching, we ask that y. < 1 and x. < 1. We obtain the following lemma.

Lemma 2.9. There are constants §,« € (0,1), that satisfy the following: if £ = (x,v), { = (y,u) €
SWe(p), K >0 and n >0 verify d(x,,yn) < Kx?, d(&n,C0) < KX, and for every 0 < k < n,

s 7

d(xg, yr) < 0.
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Then, for all 0 < k <n,
d(zr, ) < KxPxs ™ and d(&x, G) < KX (xeRe) M0+,

In particular,
d(€,¢) < KX (xeXe) 0.

Furthermore, o can be chosen such that
X0 (Rexe) ") < 1.

Proof. The proof is by backward induction in k. We will first denote by « and § quantities that
will be fixed later. Since xj and y; belongs to the same center manifold, we obtain
d(wr-1, Y1) < Xo A, yr) < Kx2oc "

For any 8 € (0,1), and since d(xy, yx) < 0, we have

d(fH @we, ve), £ (e, we)) < ACFH (@n, vi), fo (@i, ur) + dCF (@ wn), £ (Y un))

< (XeXe) " 'd(vr, ug) + Cad(r, yr)-

< (XeXe) M1+ Cau(xeXe)d(@h, yr) '~ P max{d(zg, yr)?, d(vy, up) }

< (XeXe) ML+ Can(xeRe ) 7]

K max{x28 e T8 (o) (R A,

We claim that we can choose a and 8 such that for any n € N and 0 < k < n it holds

X22 xg TRB <y (o Xe) TR ),
This inequality is equivalent to

1< 1O (P g k), (1)

Since X, > 1, we can fix 3 > 6 close enough to 1 such that 1 < Xgﬂflia)Q;(HO‘)

explain. Observe that (x.)™® > 1, for any « > 0. Hence,

. Let us

X (Rexe) TOx > TG

From this, one can see that if 3 is sufficiently close to 1, we have that 1 < Xgﬁflﬂl)i;(wa). Since
B > 0, and hence 6 — 3 is negative, we conclude (4)).
We also need that

X0 (Rexe) F) < 1. (5)

By the strong center bunching condition , the inequality above holds if « is sufficiently close to
0. Fix a > 0 that verifies .

13



Now fix § > 0 small enough such that

[1 + C2~(Xc§<\c)51_6] é (ch(\c)_a'

We conclude,

d(f (), £ (GR)) < (xeXe) ™R (xeXe) (P )

_ KX?O.(XCSC\C)f(nfkfl)(lJra)

O

Fix £ = (z,1) € SWg, (p). Write (" := (Hy,)«(§) and (] := fi(¢™), for any j € Z. We warn the
reader to not confuse the notation ¢™ with the notation that we were using before ¢, = f*((), for
a given (. We also write w = H3  (2), (" = (H3)«(€) = (z,v) and ("' = (H31).(§) = (y,u).
Observe that (' = (73).(&,) and C”“ (7w 1)« (€ns1)). First we have

(3, (zn), fH 510 (2n41)) < dl2n, 75 (20)) + d(f 7 (zn40), f7H (5 (2000)

<
< Ox™d(z,w) + CLOX (2, w)
<2CC1xGd(z,w).

The previous estimate shows that d(z,,y,) < 2CC1d(z,w)x?. Also, it is satisfied for any

0<k<n )
d(zy, y) < 2CC1d(z,w)x T x . ©)

Let § be the constant given by lemma [2.9] By domination, if n is large enough, we conclude that
d(xg,yx) < 0. This n can be taken unlform independently of p and gq.
Also, using that f1(£,41) = &,, we obtain

(G, i) = d((m3) (&), £ (5 1) s (Gnr)
< d(&n, (m )(é‘n)) ( Hént1)s foH (1) (Gnsn))-

By property 2 of 7, we have d(&,, (7%).(&,)) < Cd(z,w)?x". For the second term in the

inequality we have

A(f Entr) i (T 41) 5 (Ens)) = d(fi (znt1s b)), fit (Yngr, un)
< d(fi zngts bng)s £t (Znga, ung)
+d(f (znr1s ung1)s FoH (Yn1s tntr)
< Cod(lnt1, tng1) + Cod(2nt1, Ynt1)
< CChd(z,w)x (n 1) + CChd(z,w)x !
< (CCy 4 CChd(z, w)'~ Oyt = 9))d(z,w)gxgn+1)0
< (CCy + COyd(z, w)lfe)d(z,w)oxgnﬂ)a.

Thus, ~ _ ~
d(Cr, (i) < [C 4 (CCo + CCod(z, w) ' =9)]d(z, w)?x27.
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By compactness, d(z,w) is bounded from above independently of p and ¢q. Hence, take a constant
C5 such that d(¢?, (") < Csd(z,w)?x™. Fix K; = max{2CC},Cs}, and observe that we are in
the setting of lemma for K = K(z,w) := K1d(z,w)?. Let a be the constant given by the same
lemma. We conclude that

A", YY) < Kx™ . (xeXe) ") = Kix™ (xeXe) "M d(z, w)?, for n large enough.

In particular, the sequence (¢")nen is Cauchy. Since this holds uniformly for any &, we obtain that
((H})+)pen is a Cauchy sequence whose speed of convergence does not depend on the choices of
the the points p and gq.

If d(p, q) < ¢ then for any n > 0 it holds that

A((HS)w, (H3 1)) < KX (xeXe) "0 d(p, q)°.

Write (Hp )« = lim (H;).. Hence, there exists a constant Ky > 0 such that for p,q € M with

n—-+oo

d(p,q) < 6, we have

+o00
d(Id., (Hy ).) < d(Id., (7)) + > d((H3)., (H3.).) < Kod(p,q)°.
3=0

Since § > 0 is a constant, there is a maximum number T' = [§] such that there are at most

T + 1 points, {z1, -+ ,xr41} C Wi(p) verifying 1 = p, xp4+1 = ¢ and d(z;,2,41) < J. Since

Hy ()=H;, ., 0 -oH . (), we conclude that there exists a constant C' > 0 such that
d(Id., (H; ,).) < Cd(p, q)°. (7)

This concludes the proof of the second step that we mentioned above. In particular, it also proves
the conclusion in the statement of this theorem. O

Suppose that f is a partially hyperbolic, center bunched skew product on T* = T? x T2, with the
Anosov map on the base fo : T2 — T2. Observe that for any p € T4, its unstable manifold W"*(p)
projects to the unstable manifold of my(p) of fo. In particular, for each p € T* and ¢ € W“(p)
and since the center leaves are uniformly compact (indeed they are just the fibers), the unstable
holonomy map can be defined on the entire center leaf Hy , : W¢(p) — W¢(q). By Theorem [2.5]
this property is C'-open.

Using the f-invariance of the center and strong unstable foliations, it is easy to see that for any
n € 7Z, for each p, g as above, we have

Hio(p) g 0 f" = "o Hyye

We remark that in the skew product case, we may also use the notation Hp, . to denote the

unstable holonomy between 7, ' (ps) and 75 *(g2), for py and go belonging to the same unstable
manifold of f,. Sometimes we will use this notation.

Higher regularity of unstable holonomies

Let f be a C?T® absolutely partially hyperbolic skew product of T* = T? xT? and let x**, x°, X5, X"
be the partially hyperbolic constants of f. We say that f verifies the (2, a)-center unstable
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bunching condition if

C 2 C
X+) uu X+ uU\
_ < and < . 8
(XC X AL (") (8)

Similarly, f verifies the (2, «)-center stable bunching condition if

X\’ XE
X*° < () and (x**)* < —.
X% (x§)?
If f verifies condition and @ then we say that f is (2, «)-center bunched.
We use the (2, a)-center bunching condition to obtain C?-regularity of the unstable holonomy
inside a center unstable leaf. This is given in the following theorem.

9)

Theorem 2.10. Let f be a C?T absolutely partially hyperbolic skew product of T*, and fixr R > 0.
If f is (2, a)-center unstable bunched, then {H}  }pers gewuu(p) is a family of C?-diffeomorphisms
of T? whose C?-norm varies continuously with the choices of p and q.

This theorem is proved in the appendix (see section .

Accessibility classes

For a partially hyperbolic diffeomorphism f, an su-path is a curve which is the concatenation of
finitely many curves, each of them being contained in a stable or unstable leaf. Given a point
m € M, its accessibility class is defined as

AC(m) = {p € M : there exists an su-path connecting m and p.}

We say that f is accessible if for any m € M, AC(m) = M. Suppose that f is dynamically coher-
ent, we say that an accessibility class AC(m) is trivial if AC(m)NW¢(m) is totally disconnected.
We say that f has the global product structure if there is a covering 7 : M — M and a lift
f:M — M for any &, € M we have

#{F (@) NF(g)} = 1 and #{F(&) N F=(5)} = 1,

where F* if the lift of the foliation F*, for * = ss, cs, cu, uu. We now describe some results from
Horita-Sambarino in [HS17]. In what follows we will restrict ourselves to the case that M = T*.
We define €& = £2(T*) to be the set of C2-partially hyperbolic diffeomorphisms f such that

e f is dynamically coherent, 2-normally hyperbolic and plaque expansive;
e f is center bunched;

e f has the global product structure;

e the set of compact center leaves that are f-periodic is dense in M.

The set € is C'-open in Diff?(M).

Inside & let us define the set of skew-products over a fixed Anosov diffeomorphism. Let g :
T? — T? be a C?-Anosov diffeomorphism, let V, C Diff?(T?) be the open set such that if h € V,
then h x g is partially hyperbolic, center bunched and 2-normally hyperbolic. Let f : T? — V, be
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a continuous map and denote by f(.,y) the diffeomorphism f(y) : T? — T2. We define the skew
product given by f over g as

fo(@,y) = (f(2,9),9(y))-

Observe that f, € . Let £ be the set of partially hyperbolic skew products over g which take
value on V. That is, f, € ;7 if and only if fy(z,y) = (f(z,v),9(y)), where f(.,y) € V, for every
y € T2, Observe that &P can be identified with G, := {f:T? = V,, s.t. fis continuous}, since
g is fixed. We say that f, f € G, are C?-close if for each y € T?, the diffeomorphisms f(.,y) and
f (.,y) are C?-close. Of course, &P C £ We state the following theorem of Horita-Sambarino in
our scenario, but we remark that their theorem is more general than the statement we give.

Theorem 2.11 ([HS17], Theorem 2). Let g : T2 — T2 be a C?-Anosov diffeomorphism, then the set
Ro of diffemorphisms in EJP whose accessibility classes are all non trivial is C'-open and C?-dense.

Another important result from [HS17] is the following:

Proposition 2.12 ([HS17], Corollary 4.3). If f € £ has all its accessibility classes non trivial, then
there exists a Ct-open neighborhood of f, V(f), in € of partially hyperbolic diffeomorphisms whose
accessibility classes are all non trivial.

Recall that SkQ(’JI‘2 x T?) is the set of C2-diffeomorphisms h that are skew products, that is,
h(z,y) = (hi(z,y), ha(y)) where x,y € T? and h(.,y) is a C2-diffeomorphism of T? that changes
continuously with the choice of y.

Recall that in the introduction we defined, for each N € N; the diffeomorphism fy(z,y, z,w) =
(sn(x,y) + Py o AN(2,w), AN (2, w)), such that sy is the standard map, P, is the projection on
the horizontal direction, and A is a linear Anosov diffeomorphism on T?. Observe that fy belongs
to Sk?(T? x T?). Furthermore, for N large enough we have that fy is 2-normally hyperbolic and
center bunched, in particular, it belongs to €. Using Theorem [2.11] and Proposition [2:12] we obtain
the following theorem.

Theorem 2.13. For N large enough, for each sufficiently small C'-neighborhood W of fn in
Sk?*(T? x T?), there exists a set V C W, which is C*-open and C?-dense in W such that for any
g €V all its accessibility classes are non trivial.

Proof. If W is sufficiently C'-small, then for any g € W the basis dynamics ¢o is a C?-Anosov
diffeomorphism which is C*-close to A%V,

Let A be a small C'-neighborhood of A2V in Diff*(T?). For each go € N we consider W,, =
W N E:P and observe that this set is C'-open in G, .

By Theorem there exists a C'-open and C?-dense subset V,, of W,, such that for each
skew product g € 92 all its accessibility classes are non trivial. By Proposition , for each
g€ )792 there exists a C''-open subset of £, which we denote it by V(g), of diffeomorphisms whose
accessibility classes are all non trivial. Now define

v= U vw.

.‘726./\[ QEWQQ

It is easy to see that V is C'-open and C?-dense in WW. Moreover, for each g € V all its accessibility
classes are non trivial. O
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In our work we will also need the following result that describes the structure of accessibility
classes.

Theorem 2.14 ([RHVIT7], Theorem B). Let f be a dynamically coherent C2-partially hyperbolic
diffeomorphism with two dimensional center, and which is center bunched. Then every accessibility
class is an immersed C'-submanifold.

2.2 Pesin’s theory and SRB measures

Let f be a C'-diffeomorphism. A number A € R is a Lyapunov exponent if there exists a

point p € M and a non zero vector v € T, M such that lim,,_, 1o 2 log|[Df"(p)v| = A. We write

Ap,v) :=limy, 100 %log IDf™(p)v].

We say that a set R has full probability if for any f-invariant probability measure v, v(R) = 1.
The following theorem is known as the Oseledets theorem.

Theorem 2.15 ([BP02], Theorems 2.1.1 and 2.1.2). For any C*-diffeomorphism f, there is a set
R of full probability, such that for every e > 0 it exists a measurable function Ce : R — (1,+00)
with the following properties:
1. for any p € R there are numbers s(p) € N, Ai(p) < .-+ < Ag(p)(p) and a decomposition
T,M = E; D @E;(P);

2. s(f(p)) = s(p), Ni(f(p)) = Xi(p) and Df(p).E}, = EY (), for everyi=1,---,s(p);

3. for every v € E;, — {0}, AMp,v) = X (p).

We call the set R the set of regular points. A point p € R has k negative Lyapunov exponents
if

> dim(E}) =k.
X (p) <0

Similarly for positive or zero Lyapunov exponents. From now on, we assume that v is a f-invariant
measure, not necessarily ergodic, and there are numbers k and [ such that v-almost every point

p € R has k negative and [ positive Lyapunov exponents.
For a regular point we write

Ey= P E,adE'= P E, (10)
it (p) <0 X (p)>0

It is well known that for a C2-diffeomorphism f and an invariant measure v, then for v-almost
every p, the set defined by

W*(p) = {g € M : limsup ~ log d(f"(p), "(g)) < 0}

n—+oo N

is an immersed submanifold such that T,,W*(p) = E; (see section 4 of [Pe77]). We call W?*(p) the
stable Pesin manifold of the point p. Similarly, the set defined by

W(p) = (g € M : msup - logd( " (p), f~"(4)) < 0}

n—-4oo
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is an immersed submanifold such that T, IW*(p) = E}/. We call W*"(p) the unstable Pesin man-
ifold of the point p. Since these manifolds exist for v-almost every point, the unstable manifolds
{W*(p)}per form a partition of a v-full measure subset of M.

Remark 2.16. If f is also partially hyperbolic, with TM = E®*° @& E° & E"" then the Oseledets
splitting refines the partially hyperbolic splitting. This means that for a regular point p € R, there
are numbers 1 <1y <l < s(p) such that

s(p)

l l
By = @EP Ef = Eé E, and B} = P Ej.
i=1

i=l1+1 i=la+1

This follows from a standard argument similar to the proof of the uniqueness of dominated
splittings, see section B.1.2 from [BDV035]. It also holds that for any regular point p, E}* C E; and
B C B

P 2

A partition £ of M is measurable with respect to a probability measure v, if up to a set of
v-zero measure, the quotient M /¢ is separated by a countable number of measurable sets. Denote
by © the quotient measure in M/§.

By Rokhlin’s disintegration theorem [Ro52], for a measurable partition £, there is set of condi-

tional measures {1/1% : D € £} such that for P-almost every D € £ the measure V]% is a probability

measure supported on D, for each measurable set B C M the application D +— V%(B) is measurable

and
v(B) = /M/5 v5,(B)do(D). (11)

From now on we suppose that f is a C?-diffeomorphism and v has no zero Lyapunov exponents.
We call such a measure hyperbolic. We remark that usually the unstable partition {W*"(p)},er
is not a measurable partition. We say that a r-measurable partition £" is u-subordinated if for
for v-almost every p, the following conditions are satisfied:

o {"(p) C W (p);
e £%(p) contains an open neighborhood of p inside W*(p).

Definition 2.17 (SRB measure). A measure v is SRB if for any u-subordinated measurable par-
tition &%, for v-almost every p, the conditional measure Vgu ) is absolutely continuous with respect

to the riemannian volume of W*(p).

Recall that an invariant probability measure p is ergodic if and only if any f-invariant measurable
set A has measure 0 or 1.There is a well developed ergodic theory for hyperbolic SRB measures.
We now state some results obtained by Ledrappier in [Le84].

Theorem 2.18 ([Le84], Corollary 4.10 and Theorem 5.10.). Let f be a C%-diffeomorphism and v
a hyperbolic SRB measure. Then there are at most countably many ergodic components of v, that

18,
V= E CiVi,

€N
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where ¢; > 0, ch- =1, each v; is an f-invariant ergodic SRB measure such that if i # j, and
€N
ci,cj > 0 then v; # v;. Moreover, for each i € N such that ¢; > 0, there exists k; € N such that

1 &
I/i:fg Vi.g
k; 4 7

Jj=1

where each v; j is an fFi-invariant probability measure, the system (f*:, vi,j) is Bernoulli and v; j #
vi1 if j # 1. Furthermore, f permutes the measures v; j, that is, f.(vi ;) = Vi jq1 forj=1,--- ki—1
and fo(Vik;) = Vi1, where f.(v) denotes the pushforward of a measure v by f.

Now given two hyperbolic ergodic measure, i and v, we say that stable manifolds of p intersects
transversely unstable manifolds of v if the following holds: there exist a set A® with positive u-
measure and a set A* with positive v-measure, such that for each p € A® and g € A", there exists
ni,ny € Z with

We(f™ (p) W (f"2(q)) # 0.

In this case we write u Mg, v.

Definition 2.19. For p and v hyperbolic ergodic measures, we say that p is homoclinically
related with v, if pu they v and v Mgy, p. We write i ~pom V.

In the case that u and v are ergodic SRB measures, homoclinic relation actually implies that
they are the same.

Theorem 2.20. Let p and v be two hyperbolic, ergodic SRB measures. If p ~pom v then = v.

The proof of Theorem is a consequence of Hopf’s argument adapted to the non-uniformly
hyperbolic scenario. This type of argument has been done in many places, see for instance Lemma
3.2 in [HSI6].

We remark that all the results stated in this section were stated for C?-diffeomorphisms, but
they hold for C'*°-diffeomorphisms.

2.3 u-Gibbs measures and the invariance principle
u-Gibbs measures

Let f be a C%-partially hyperbolic diffeomorphism and let x be an f-invariant measure. We say
that a p-measurable partition £%* is subordinated to the foliation F"*, if for p-almost every p,
&4 (p) C W (p) and £"*(p) contains an open neighborhood of p inside W**(p). For simplicity, we

will write the conditional measure pp s, ) by g,

Definition 2.21 (u-Gibbs). An f-invariant measure u is u- Gibbs if for any p-measurable partition
§" subordinated to F"*, for p-almost every point p, the conditional measure p,* is absolutely
continuous with respect to the Lebesque measure of W"*(p). We denote the set of u-Gibbs measures
of f by Gibbs*(f).

These measures have an important role in the study of ergodic theory of partially hyperbolic
systems. The next lemma states that they capture all possible statistical behavior of Lebesgue
almost every point. Recall that for any p € M and n € N, we defined

n—1
1
Nn(P) = n Z 5fj(p)-
j=0
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Theorem 2.22 ([BDVO05|], Theorem 11.16). Let f be a C*-partially hyperbolic diffeomorphism,
then for Lebesgue almost every point p € M, every accumulation point of the sequence of probability
measures (pn(p))nen belongs to Gibbs™(f).

Let us consider the strong unstable foliation F** and p an f-invariant measure. We say that
a p-measurable partition £** subordinated to F“* is increasing if for p-almost every p, we have
& (f(p)) C f(£"*(p)). We define the u-partial entropy along F“* by

B, Fo) = H (f~Lem g = — /M log 42 (£ 167 (p)) du(p), (12)

where f~1£%(p) is the element of the partition f~1£““ containing p. The definition above does
not depend on the choice of the p-measurable partition £“*. The notion of partial entropy along
expanding foliations has been introduced in [VY17] and [Ya21] (see also [LY85-1]).

Let Jac*™(p) = |det(Df(p)|gwu)|. In the case that E*“ has dimension one, for any ergodic
J-invariant measure, we write A;* to be the Lyapunov exponent of the strong unstable direction.
The following result can be found in [Ya21] and [Le84].

Proposition 2.23 ([Ya21], Proposition 5.2, and [Le84], Theorem 3.4). Let u be an u-Gibbs measure.
Then

B (L F) = /M log Jac®* (p)dy(p).

In particular, if E** is one dimensional and p is ergodic then h,(f, F**) = ALt

The invariance principle

An important tool in this work is the invariance principle which was first developed by Furstenberg
in [Fu63] and by Ledrappier in [Le86]. We also mention the work of Avila-Viana in [AVI0]. In
this work we use the version of the invariance principle given by Tahzibi-Yang in [TY19], which
we describe in this section. This relates entropy along strong unstable foliations with the so called
u-invariance of certain measures. Their results hold for large classes of partially hyperbolic skew
products, however, we will state them for skew products on T? x T2.

Let f be a C?-partially hyperbolic center bunched skew product and let f, be the Anosov
diffeomorphism on the base. We remark that on T?, every Anosov diffeomorphism is transitive.
Fix a fo-invariant measure v. Let £4* be a v-measurable partition of T? which is subordinated to
the foliation F4* (the unstable foliation of fo on T?), and consider the y-measurable partition £4%
of T* subordinated to F“* which refines the partition 7, 1( ) with the property that for y-almost

every p, m2(§""(p)) = £5" (m2(p))-

Definition 2.24. We say that an f-invariant measure p is an u-state projecting on v, if
(m2)wpe = v and for p-almost every p,

()il = V2% (13)

We denote the set of u-state measures projecting on v by State..(f). We say that a measure p
projecting on v is an s-state projecting on v, if u € Statel(f~1). We denote the set of s-state
measures by Statel (f).

21



Remark 2.25. In [TYI19], the authors call the measures from definition u-Gibbs measures
projecting on v. Since we already use the name u-Gibbs for the measures from definition [2.21], we
changed the name in our paper. Even though later we will see that in our setting both definitions
coincide once the measure v is an SRB-measure for the Anosov diffeomorphism on the basis (see

proposition ,
The following result is a characterization using entropy for a measure to belong to State,, (f).

Theorem 2.26 ([TY19], Theorem A). Let f be a C?-partially hyperbolic skew product as above and
let v be an fo-invariant measure. Suppose that p is an f-invariant measure such that (7e).u = v.
Then h,,(f, F**) < hy,(f2) and the equality holds if and only if 1 € State, (f).

Proposition 2.27 ([TY19], Proposition 5.4). A measure p is an u-state projecting on v if and
only if there exists a set X C T? of full v-measure such that for any two points ps,qs € X in the
same unstable leaf, we have that

Mgz = (Hl?z’qz)*'uzciz' (14)

The property described by is called u-invariance of the conditional measures {u5, },,cr2-

Since fy is a transitive C2-Anosov diffeomorphism, it is well known that it admits an unique
SRB measure v, see [Bow75, [Ru76, [Si68]. Consider now the set State; (f). In what follows we will
show that Gibbs"(f) = State,.(f).

Proposition 2.28. For f and v as above, Gibbs"(f) = Statey, (f).
To prove this proposition, we will need the following lemma.
Lemma 2.29. Let ;i € Gibbs"(f), then (m2).pu = v.

Proof. Tt is enough to prove that v := (m2).p is an SRB measure for fs. Since fo admits only one
SRB measure, it follows that v = v.

Let 4" be a p-measurable partition subordinated to F3*. Observe that the partition £ =
Ty L(€") is p-measurable and denote by py" the conditional measures of p with respect to this
partition. The partition £° is refined by the pu-measurable partition £** which is subordinated to
Fu* and such that for p-almost every p, we have w2 (§"*(p)) = £4*(m2(p)).

Take a D-generic point ps € T? and let B C £4%(p2) be a set of zero Lebesgue measure inside
the unstable manifold of ps. Since the foliation by center fibers is smooth (because we are in
the skew product setting), and the strong unstable manifolds of f are uniformly transverse to the
center direction inside the cu-leaves, we have that for ugi-almost every ¢ the set £*“(q) Ny 1(B)
has zero Lebesgue measure inside W}“‘(q) In particular, the u-Gibbs property of u implies that

,u};“(ﬂgl(B)) = 0. We conclude

Puu(B) = /M i (e L (B))dp™ (g) = 0.

This is true for any set B of zero Lebesgue measure. This implies that 7, is absolutely continuous
with respect to the Lebesgue measure of W}‘Z“(pg) and the measure 7 is SRB.
O

Proof of Proposition[2.28 From and the fact that the foliation by horizontal fiber is smooth,
it is immediate that State;, (f) C Gibbs"(f).
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Since the strong unstable direction is uniformly transverse to the center fibers inside the cu-
leaves and it projects to E%), and since the center direction is orthogonal to the base, there exists
a constant C' > 1 such that for any p € T* and any v** € E;" we have

1 uu uu uu
vl < IDm(p)o || < fo™|.

Suppose that p € Gibbs"(f) is an ergodic measure. Let p be a generic point for p and let
v"" € EJ" be an unit vector. Observe that for any n € N we have

SIDF" )| < | Dms (7 () DF @) | < D" (P

Since f is a skew product and moo f = foome, we obtain that Do (f™(p))Df™(p)v** = D f3(ma(p)) Dma(p)v™™.
By lemma we may assume that mo(p) is a generic point for v. We conclude that

A= lim —log |[Df"(p)o™| = lim —log||Df3 (m2(p)) Dma(p)o™ || = AJ*,

where A" is the Lyapunov exponent of f for y along the strong unstable direction and Aj" is the
Lyapunov exponent of f5 for v along the unstable direction.

It is well known that the measure v verifies Pesin’s formula (since it is also an SRB measure for
f2), see [Le&4], and hence h, (f2) = A\%*. By proposition we have that h,(f, F**) = A\j*. We
conclude that h,(f, F**) = h,(f2). By Theorem we obtain that p € Statey, (f). O

The main conclusion of proposition [2.28]is the following corollary.

Corollary 2.30. For f as above, any u-Gibbs measure p has u-invariant center conditional mea-
sures.

3 Proof of Theorem [A] assuming Theorems [B] and [C|

Fix N large enough and let U3¥ be a C2?-neighborhood of fy inside Sk?(T? x T?) small enough
such that it verifies the conclusions of Theorems [B| and By Theorem any g € Z/{ka has at
most one SRB-measure. By Theorem [B] every u-Gibbs measure is either SRB or it is supported
on a finite union of two dimensional tori tangent to the strong stable and unstable directions. In
particular, in the second, the support of the u-Gibbs measure is contained in the finite union of
trivial accessibility classes.

By Theorem there exists a subset V C U3F which is C?-open and C2-dense in U3F such
that any g € V does not have any trivial accessibility class. In particular, for such g, there cannot
be a two dimensional torus tangent to Ej° @ E*. Therefore, as a consequence of Theorems [B| and
@ we conclude that for any g € V, there exists an unique u-Gibbs measure 4. It is hyperbolic
SRB and Bernoulli. Moreover, supp(jy) = T*.

Fix g € V. By Theorem for Lebesgue almost every point p, any accumulation point of the
sequence

n—1
1
n(P) =~ g )
§j=0
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is an u-Gibbs measure. Since there exists only one u-Gibbs measure 4, we conclude that for
Lebesgue almost every point p,

lim i, (p) = pg-

n——+o0o

Therefore, Leb(B(uy)) = 1 and we conclude the proof of Theorem

4 Center Lyapunov exponents for u-Gibbs measures

In this section we explain how the techniques developed by Berger-Carrasco in [BC14], and the
adaptations of their techniques made by the author in [Ob20], actually give estimates for the
Lyapunov exponents for any u-Gibbs measure. We prove the following theorem:

Theorem 4.1. For every § € (0,1), there exists No = No(9) such that for every N > Ny, there
exists Uy a C%-neighborhood of fn inside Diffz('ﬂ“l) with the following property. If g € Uy and p
s an u-Gibbs measure, then p-almost every point has a positive and a negative Lyapunov exponent
along the center whose absolute value is greater than (1 — §)log N.

Remark 4.2. Even though the results from [BC1), [Ob20] are in the volume preserving scenario,
several of the lemmas and propositions are still valid for dissipative perturbations. In what follows,
we will use several results from these works. The only point in this section that will need an
adaptation for u-Gibbs measures is given in proposition [{.11]

Let A € SL(2,Z) be the linear Anosov matrix considered in the definition of the map fn.
Denote by 0 < A < 1 < i = A~ ! the eigenvalues of A. Let e® and e be unit eigenvectors of A for A
and /i, respectively. Recall that we defined the linear map P, : R? — R? given by P,(a,b) = (a,0).

Lemma 4.3 ([BC14], Proposition 1). There is a differentiable function o : T* — R? such that the
unstable direction of fn is generated by the vector field (a(m),e"), where

Dfn(m).(a(m),e") = p*" (a(fn(m)), ") and [la(m) — AV Py(e")]| < AV
Observe that | det DfN|E;N| =1.

Lemma 4.4 ([Ob20], Lemma 7.17). For g1 > 0 and 8 > 0 small, if N is large and Uy is small
enough then for every g € Un and for all unit vectors v € EJ°, v € Eg and v* € EJ", the
following holds:

1 e < Dyl < et
ok <D < 2,
. |1D%g7 Y| < 2N and ||D?%g|| < 2N;

€ (e, ef);

2

3

4. |det Dg|ke
)

. Ef s %-Hc')'lder.

A key element in Berger-Carrasco’s proof is to consider center vector fields over certain pieces
of strong unstable curve. Consider g € Uy
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Definition 4.5 ([BCI4], Definition 7.18). An u-curve for g is a C'-curve v = (Va, Yy, Vo Yw) °
[0,27] — M tangent to Ey* and such that ‘d% (t)‘ =1, Vt € [0,27]. For every k > 0 there exists

dt
an integer Ny = Ni(7) € [(e=1 @®N ), (e i®N)*] such that the curve g o~y can be writen as

gF oy = kK IN K YN
where 'y]’? forj=1,--- Ng, are u-curves and %’%kﬂ is a segment of u-curve.
The following lemma controls the length of u-curves.

Lemma 4.6 ([BC14], Corollary 5). If N is large and Uy small enough then for every g € Uy and

any unit vector v € EY . it holds that

|Po(Dmyvt)] € [V ([[Pa(e)]| = 3AY), AN ([P ()] + 3AY)).
An easy consequence of this lemma is the following.

Corollary 4.7. For any o > 0, if N is large and Uy 1is small enough, then any two u-curves

(7,7') satisfy: /
e =2y < Y] < ey, (15)

where |y| denotes the length of the curve ~.

We define the unstable jacobian of ¢g¥ as
Jgit(m) = | det ng(m)|E_gu|, Vm € T, (16)
By item 1 of 1emma for g € Uy and for every m € T4
e NN < (m) < e AP (17)

Lemma 4.8 ([Ob20], Lemma 7.20). For e3 > 0 small, if N is large and Uy is small enough, for
every g € Uy and any u-curve vy for g, for every k > 0, we have
Jo (m)

Ym,m' €5, e <L — ~ <e¢

€3
= Ty =

This lemma implies that for g € Uy and for any u-curve «y for g, if A C ~y is any measurable set,
for every k£ > 0, it holds

_o, Leb(A) _ Leb(g"(A)) < o Leb(A) -
Leb(y) = Leb(g7*(7)) = Leb(y)
Definition 4.9. An adapted field (v, X) over an u-curve v is a unitary vector field X such that
1. X is tangent to the center direction;
2. X is (Cx,1/2)-Hélder along vy, that is
1

| Xm — Xo|| < Cxdy(m,m')z, Vm,m’ € ~,

where Cx < 30N?A\YN and d., is the distance measured along 7.
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Remark 4.10. The estimate on the Hélder constant used in [BCTJ, [Ob20] is 20N2?\N | instead of
30N2\N as above. This is due to the fact that the parametrization of the torus T* is by intervals
of length 2w instead of 1 in the proof of lemma 2 in [BC1j|]. However, this change on the estimate
of the Holder constant does not affect the rest of the proof.

Let (v, X) be an adapted field, and define

1 n
I;Z’X = m/logHDg X||dry.
¥

Proposition 4.11. Suppose that there exists C' > 0 with the following property: for every u-curve
~ there exists an adapted vector field (v, X) for g and for all n > 0 large enough

T X

— > C.

n

Then any u-Gibbs measure p for g has a positive Lyapunov exponent along the center direction
greater than e=2%3C.

Proof. Suppose not, then there exist an u-Gibbs measure p and a measurable set B with positive
p-measure such that every point in B has exponents in the center direction strictly smaller than
e~223C. Since p has disintegration along unstable leaves equivalent to the Lebesgue measure along
the leaves, there is an unstable manifold ~ that intersects B on a set of positive measure for the
Lebesgue measure of 7. Let b € ¥ N B be a density point and take v, = ¢~% o Bx, where 8 is a
u-curve with Bx(0) = g*(b). We have that I(vx) — 0 and by bounded distortion (lemma

Leb(y N B)

— 1.
Leb(vi,)

Take k large enough such that

Leb(y, N B°) - e~ (efs — 1)C
Leb(vi) 2log2N

Using bounded distortion again, for any m* € g*(yx)

wuu k Leb(,yk) e~ %8
)2 Lo

1
Define yx(m) = limsup — log | Dg™(g" (m)).X;“k(m) || for all m € ~;, where X* is the vector field

n—+4oo 1
such that (B, X*) verifies the hypothesis of the proposition. Since for pu-almost every point the
Lyapunov exponents exist, using the dominated convergence theorem, we have

/ chd'Yk:/ Xk o g P dBy,
VE Bk

. Leb(%)/ k
3 o d
= Leb(ﬁk) 5 Xk©°g kﬂk
L ﬁkﬂX-
e LZZE;:; hfiup " Leb(Br) > e “*CLeb(v).



On the other hand,

/ Xkd’Yk:/ XdeH-/ Xkdk
Vi YeNB YeNB®

log2Ne=2%3(e** — 1)CL
§6_2E3CL6b(’Yk)+ 0g € (e )O Eb(’yk)

2log2N
< e ®3CLeb(v)
which is a contradiction. O
Write )
B X) = o [ 10g|Dgom). X r ()
v

where (v, X) is an adapted field. Let m; : T* — T? be the projection defined by 7 (z,y, 2, w) =
(x,y). For X a vector field on v define

=~ Dﬂ'l(Xm)
Xy = ——m
[ D72 (X)) |

In what follows, we let 5>0bea positive constant that we will fix later.

Definition 4.12. Consider the cone Ay = {(u,v) € R? : N‘§|u\ > |v|}. Let (v,X) be an adapted
vector field. If for every m € ~ we have that X (m) € Aj then we say that (v,X) is a é-good
adapted vector field. Otherwise we say that it is 6-bad.

Recall that for k > 0 and an u-curve + the number N = Ny () denotes the maximum number
of u curves that subdivide g* o~y. For an adapted field (y, X) define the unit vector field over g*(v),

k
Yk = %, where gF X, = DgF(g7F(m)) X y-r ().

Lemma 4.13 ([BC14], Lemma 9). For N large and Un small enough, let g € Uy and (v, X) be an

adapted field for g. For k > 0, every possible pair ('y]’-“,Yka), with 1 < j < Ng(v) is an adapted
J

field.

The following formula is proved in section 6 of [BCI4].
Lemma 4.14. For every adapted field (v, X) and anyn € N

n—1 Nk-
1
X =% (r+> 4 / log [[Dg(m) Y T dnt | |
k=0 =l

where Ry, = ﬁ f7§k+1 log ||Dg(M).Y7’,SLHJ;3kd’YJ]%k+1.

As a consequence of lemma and using 7 we obtain

n—1 Nk
x> Ry +e™ ) (min J) By}, Y*) | - (18)
k=0 7=0 J
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Since ’yka 41 is a piece of an u-curve, then

k
|7Nk+1|<2
v
By 7Wehawe
1
= / g Dy YL b1 < mf'(ﬂ)”’“mgw

< 2(ef* NNk log 2N LA Ny}

Hence,
1 n—1
- > |Ri| — 0.
k=0
The following is the key proposition that will give us the estimate that we need.

Proposition 4.15 ([Ob20], Proposition 7.29). For N large and Uy small enough, for every g € Uy,
any d-good adapted field (v, X) and every k > 0, we have
Nk B
e 2 Z(mm JMOE (fy;-“,Yk) > (1—-120)log N.

=0 5

Remark 4.16. In [Ob2()], the term e~ °2 on the right hand side of the equation (@ 18 mMissing.
The same term is also missing in the statement of proposition 7.29 in [Ob2(]. Since we can fix o
arbitrarily close to 0, this does not affect the rest of the proof in [Ob20] to obtain the estimate of
the center Lyapunov exponents.

Now, we can proceed with the proof of Theorem

Proof of Theorem [/.1]. Take 6= 2—5 Let N be large and let Uy be small enough such that it verifies
proposition Fix g € Uy and let 1 be an u—Glbbs measure for g. Con51der any wu-curve 7y and
any b- good vector field X on ~. By proposition and using mequahty , for n large enough

X

>(1- 146) log N. (19)
Since we could have chosen €3 > 0 small enough such that e==*(1 — 146) > (1 — 158) by proposition
p-almost every point has a Lyapunov exponent for g in the center direction larger than

(1 —158)log N = (1 — 20) log N.

By condition (4) in lemma we have that for u-almost every point m the sum of the center
Lyapunov exponents belongs to the interval (=3, 3), that is, =3 < A~ (m) + AT (m) < 8. By taking
B > 0 small, after fixing &, we conclude that

A" (m) < B—=AT(m)<B—(1-25)logN < (1—4)logN.

Therefore, we obtain that for N large and Uy small enough, for g € Uy, any u-Gibbs measure
i € Gibbs"(g) verifies that p-almost every point m has both a positive and a negative Lyapunov
exponent on the center with absolute value larger than (1 —d)log N. O
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5 Proof of Theorem

Recall that in section [2[ we defined the notion of homoclinically related measures (see definition
2.19). The goal of this section is to prove Theorem |C| This is based in the techniques developed
by the author in [Ob20]. We actually prove the following theorem, which is more general than
Theorem

Theorem 5.1. For N large and Uy small enough, for any k € N the following holds: if g € Uy
and pi1, 1o are two ergodic u-Gibbs measures for g*, then py is homoclinically related to .

For an SRB measure, we can also obtain the following proposition.

Proposition 5.2. For N large and Uy small enough, let g € Uy and let p be an SRB measure for
g. Then supp(p) = T*.

Proof of Theorem |(] assuming Theorem and Proposition[5.4 Let N be large and Uy be small
enough such that Theorem holds and fix g € Uy . If 1 and po are two ergodic SRB measures
for g, by Theorem [5.1} p; is homoclinically related to p2. By Theorem [2:20} p; = p2, and therefore
¢ has at most one SRB measure.

Suppose that p is an SRB measure for g. By Theorem there exist £ € N and k& measures
which are g*-invariant and SRB, g, , g, such that u; # u; for j # i and

k
> we
j=1

u:

el

Moreover, g.(p;) = pij+1, with the identification of k + 1 = 1, and (g¥, u¥) is Bernoulli. Observe
that if £ = 1, then p is Bernoulli for g.

Suppose k > 1, by Theorem we have that for any 4,5 € {1, -+, k} with ¢ # j, the measures
i and ; are homoclinically related. Since these measures are SRB, we obtain that u; = 1, which
is a contradiction with the fact that p; # pj;. Hence, £ = 1 and the measure p is Bernoulli for g.
Proposition states that if p is SRB then it has full support. O

The rest of this section is mostly dedicated to prove Theorem As we will see, the proof of
this theorem is essentially contained in the proof of the stable ergodicity for the map fy in [Ob20].
We will refer the reader to [Ob20] for the proofs of several of the lemmas and propositions that
we will use in this section, and we remark that they are also valid outside the volume preserving
setting. At the end of the section we explain how to obtain Proposition[5.2} The argument involved
in the proof of Proposition [5.2]is a combination of some estimates obtained to prove Theorem
and arguments from [CO21].

5.1 Estimates for stable and unstable manifolds of u-Gibbs measures

For a vector v € T}, T*, write vy = Dm(m).v. For a direction E C T}, T* we will write (E); =
Dmy(m).E. For this section we fix 0 < § << 1 small and we are assuming that N is large and Uy
is small enough such that Theorem holds. For this subsection we fix two constants (depending
on N), 6, := N—% and 6, :== N5,
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Let g € Uy. For each ergodic measure p for g let A, be the set of points m € T* such that

n—1 n—1
1 1 . X
- jgzo 8¢5 (m) m w and -~ jE:O O3 (m) m 1, in the weak™-topology.

Where 6, is the dirac mass on the point p. Birkhoff’s theorem implies that p(A,) = 1. Recall that
Ry is the set of regular points for g. By Theorem if p is an u-Gibbs measure for g, then for each
m € Ry N A, there are two directions E,,, and E,,, contained in Ef , , which are the Oseledets’
directions with respect to the negative and positive Lyapunov exponent, respectively.

For each p € Gibbs"(g), we define the sets

Z; ={meRy N A ¥n 20 it holds | Dg" ()|, | < (N7F)};
4
5

P
Zh = {m € RgN A, :¥n >0 it holds HDg*”(m)IE;m < (Nf )n}

Zy=9(Z;)Ng N (Z});

Zg= U Zy-

neGibbs“(g)

The proof of the following lemma is the same as lemma 5.2 in [Ob20]. It is an application of
Pliss lemma.

Lemma 5.3 ([Ob20], lemma 5.2). Let g € Uy. If p is an ergodic u-Gibbs measure for g, then
N(Zg) > %;g'

Let T = [%} and define

Xo= [ 92 (20)
k=—T+1
An easy consequence of the estimate in lemma [5.3]is given in the following lemma.
Lemma 5.4 ([Ob20], lemma 5.3). For N large and Uy small enough, if 1 is an u-Gibbs measure

for g then
1(Xg) > 0.

For a vector v € R? we write v = (vy,v,), where vj, and v, are the coordinates of v with respect
to the basis (1,0) and (0,1). For each 6 > 0 we consider the horizontal and vertical cones

Gy = {v € R® : Ollunl| > [|vo|} and 65" = {v € R? : ||vo || > [lonl]}-

One of the key ingredients in the proof of stable ergodicity of fy is based in a version of the
stable manifold theorem given by Crovisier-Pujals in [CP18]. Using their construction we can
obtain precise estimates on the sizes of stable and unstable manifolds inside the center direction for
u-Gibbs measures. This is given in the following proposition. Fix 6; = N~

il
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Proposition 5.5 ([Ob20], Proposition 5.6). Let N be large and Un be small enough. For g € Un
and m € Z,, there are two C*-curves, Wy (m), contained in W§(m), tangent to E} . and with

length bounded from below by ro = N7, for * = —,+. Those curves are C'-stable and unstable
manifolds for g, respectively. Moreover, (Tprfm (m))1 C %”%Or(p) and (Tqufm (m))1 C %:iler(q%

for every p € Wt (m) and g € W, (m).

g,To g;To

We remark that the proof of this proposition only uses the estimates for points in the set Z,
and estimates on the C?-norm of g. The proof is exactly the same as the proof of proposition 5.6
in [Ob20]

Let 5 = N—5. Proposition is one of the key ingredients to prove the following lemma.

Lemma 5.6 ([Ob20], Lemma 5.7). For N large, Uy small and n > 15, let g € Uyn. Then for every
m € Xy there are two curves v, _,,(m) C g~ (W, (m)) and v}, (m) C g"(W, (m)) with length

greater than 4w, such that (T'yg_,_n(m))1 C 6y and (T’y;n(m))l C G

We remark that the statement of lemma 5.7 from [Ob20], which is the equivalent of lemma
above, involves a measure v, ;. However, the proof only uses the estimates of the points in the set
Zg4 and the definition of X,. Therefore, the proof of lemma is exactly the same as the proof of
lemma 5.7 from [Ob20]

For R > 0, let

Wip_nlm) = | 25(9),

q€7,,_n(m)

where the curve v, _n(m) is the curve given by the previous lemma. Define similarly the set
W' g (m), but using the strong unstable manifolds.
Let m € X be a typical point for an u-Gibbs measure p. Recall that the stable Pesin manifold

is a Cl-immersed submanifold and it has a topological characterization given by

We(m) ={yeT*: limsup%logd(f"(m)j"(y)) < 0}.

n—-+oo

By the topological characterization of the stable Pesin manifold and by the definition of W , _, (m),
it is easy to see that Wy _, (m) C g7"(W?(m)). Observe that the strong stable manifolds
subfoliate the Pesin stable manifold, in particular W 5 _, (m) is open inside the Pesin manifold
g~"(W*(m)). We conclude that W¢ , _, (m) is a C'-submanifold. An analogous conclusion holds
for unstable manifolds.

The next lemma allows us to control the tangent space of these stable and unstable manifolds

inside the center direction.

Lemma 5.7 ([Ob20], Lemma 5.8). Fiz 03 > 0 such that 03 > 0y and satisfies G, 065" = {0}.
For g € Uy, there erists 0 < R < 1 such that if n > 15, m € X, and m~ € W;Rﬁn(m) C

5o, _n(m), then
(T(Ws

9,2,—n

(m)N W;(m_)))l C Gy
A similar result holds for Wi'p | (m).

The last ingredient for the proof we will need is the following proposition.
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Proposition 5.8. For N large and Uy small enough, if g € Uy then for any ergodic u-Gibbs
measure ji for g and for any k € N, the following property holds: for p-almost every point m € T4,
the sets {W(g™ (m)) : n € N} and {W¢(g~™*(m)) : n € N} are both dense in T*.

The proof of this proposition is essentially the same as the proof of Proposition 5.9 in [Ob20].
For the sake of completeness we will include it here.

Proof. For Uy small enough, for every g € Uy there is a homeomorphism h, : T* — T*, that takes
center leaves of fy to center leaves of g, such that for every m € T* it is satisfied

g o hg(Wi(m)) = hg o f(W§(m))
Consider the quotients My = T*/ ~% and M, = T*/ ~¢, where p ~¢ ¢ if and only if ¢ € W¢(p)
for x = f,g. We denote 7y : T — My and my : T4 — M, the respective projections. Observe that
My = T? and that the induced dynamics f : My — My of f is given by A?N. Endow M, with the
distance dy given by the Hausdorff distance on the center leaves, that is,
dg(L, W) = dyaus(m, (L), 7, (W)).

By the leaf conjugacy equation, the induced dynamics g : My — M, of g is conjugated to

the linear Anosov A2Y on T2 by the homeomorphism induced by hg, which we will denote by h,.

Denote by Wiy (.) the unstable manifold of A2N on T? and let

Was(L) = {W € My : lim_dy(57"(L),§7"(W)) =0},

be the unstable set of L.

Claim 5.9 (Claim 2 in the proof of Proposition 5.9 from [Ob20]). For every m € T*, for every
q € Wg(m), it is satisfied that

g (Wy'(q)) = Wy (mg(m)) = hy(Wiikn (m(hg " (m)))),

and g is a bijection from Wy(q) to W3 (mg(m)).

For the linear Anosov A%Y the unstable foliation is minimal, that is, every unstable manifold
of AN is dense in T?. Let u be an ergodic u-Gibbs measure for ¢ and fix m a generic point for
w. Using the minimality of the unstable foliation of the linear Anosov and by the leaf conjugacy
W3 (mg(m)) is dense in M.

Take U a small open set in M. Since the center foliation is uniformly compact, U= 7Tg_1(U ) is

a saturated open set such that any two center leaves in U are close to each other. By the previous
claim W2 (m) N U # 0.

Since p is an u-Gibbs measure, we have that Wg““(m) is contained in the support of . Hence,
supp(u) N U # 0. In particular, M(U) > 0. Recall that m is a generic point for u, therefore, its
future and past orbits visit U infinitely many times. This is true for any open set U inside My,
which concludes the proof of the proposition for £ = 1.

For k € N, we remark that an unstable leaf for A2N is an unstable leaf for , in particular,
the unstable foliation of A2N* is minimal. The map g¢* is leaf conjugated to A2N*. The same
argument as above concludes the proof of the proposition. O

A2Nk
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Proof of Theorem[5.1 Let N be large and Uy be small enough such that lemmas and
proposition hold. Fix g € Uy and p1, uz be two ergodic u-Gibbs measures for g.

Recall that we defined the set X in and let A, be the set of typical points that we defined
before for the measures y;, for ¢ = 1,2. Since p;(Xy) > 0 and p;(A,,) =1, the set X; = Xy N A;
has positive p; measure as well, for i = 1,2.

For any two points m; € X; and my € Xo, we will prove that the stable manifold of m, has a
transverse intersection with the unstable manifold of ma. Fix a center leaf W (q), the center leaf
of some point ¢ € T*. By proposition the forward and past iterates of Wq”(mz) are dense in T*,
for i = 1,2. In particular, we can find two sequences, n; — 400 and l; — 400, such that

H Nk — T; —lj _
Jim (g™ (ma)) = lim (97 (ma)) = my @)

where 7, : M — M, is the projection of M to M, = T*/ ~g» as it was introduced in the proof of
proposition [5.8] Since the center foliation is continuous, with uniformly compact leaves, we obtain
that
9" (Wg(ma)) = Wg (g™ (m1)) = Wg(q) and g~ (W (ms)) = We(g™" (m2)) = W(q),

where the convergence is in the C'-topology, recall that the center foliation is uniformly compact.

By lemma there are curves v, (m1) and Vo—1, (mg) with length bigger that 47 and con-
tained in the cone 6" and 63", respectively. Take R given by lemma and consider the
sets

Lim) = |J g.r(2) CWH(g" (m1))
ZE’Y;,nk (m1)
Limo) = | s m(2) CW*(g7h (m2)).

ZG’Y;,ZJ (m2)

For k and j large enough, ¢g"* (W (m1)) and g7l (W (mz)) are very close to the leaf Wg(q).
Thus by the control on the angles that we obtained in lemma there is a transverse intersection
between Ly (m1) and L$(my). In particular, W (g"* (m1)) and W (g% (my)) intersect transversely.
Since transverse intersections are invariant by iterates, we conclude that W' (m1) and W;(m2) have
a transverse intersection.

Repeating this argument, exchanging the roles of m; and ma, implies that W (mz) and W7 (m1)
have a transverse intersection. Since the set X; has positive p; measure, for ¢ = 1,2, we conclude
that pq is homoclinically related to ps. This finishes the proof of Theorem for g, in the case
kE=1.

Let £ € N. Following the same steps as above, it is easy to prove that any two ergodic u-Gibbs
measures for g¥, 1 and jp, are homoclinically related. O

5.2 Proof of proposition [5.2
We will need a few results from [CO21].
Lemma 5.10 ([CO21], Lemma 3.2). There exists a constant R > 0 with the following property:
for N sufficiently large, there exists a C'-neighborhood U of fx such that for any g € Uy and
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any two points p,q € T* we have that for any m, € W (p) there exists my € Wi(q) such that
Wit (mp) (1 W3a(m,) 0.

Fix § = N~ and recall that in subsection 5.1, we defined the vertical cone Cyer.

Lemma 5.11 ([CO21], Proposition 3.3). If N is sufficiently large there exists Uy C Diff*(T*) a
C'-neighborhood of fn such that for any g € Uy and any open set U C T*, there exists ng > 0
such that for any n > ng, there exists a Ct curve v, C g~"(U) satisfying:

o . is contained in a center leaf.
o (7, ) is tangent to €.

o . has length greater than 4w

o |J Wik(e) cg(U).

qEYVn

Consider the vertical foliation F,, = {{z} x T? : 2 € T?}. Observe that for any diffeomorphism
g sufficiently C'-close to fy, we have that W (m) intersects each vertical torus {z} x T? in exactly
one point, for any m € T*. Hence, for any two points m;, mo € T, the map from Wc(ml) to
Wg(mg) defined by h, ... (p) = Ws(mz) N Fyer(p) is well defined. Note that, after 1dent1fy1ng all

the horizontal tori with T2, the map h/~ is just the identity, independently of the points my, ms.

mi,ma

Lemma 5.12 ([CO21], Lemma 3.4). For every € > 0, there exists Ny := Noy(e) with the following
property: for N > Ny there exists a C'-neighborhood Uy of fn such that if g € Un,p € T* and

q € W;%(p) then deo(hf ,, Hy ) < e. Analogous result holds for the unstable holonomy.

Proof of proposition[5.3. Let N be large and Uy be small enough such that lemmas
and hold. Let g € Uy and suppose that p is an SRB measure for g. Fix U C T* an open set,
we must prove that supp(u) N U # 0.
Since p is SRB, its supports contains entire Pesin unstable manifolds. By lemma [5.6] we can
take a p-generic point m, with the property that for n, large enough there exists 7;,71 (m) C
g™ (Wi, (m)) a curve of length greater than 4w and whose projection by 7 is tangent to cpor.

For ng large enough, let v, be the curve given by lemma n for U and g. As a consequence
of lemmas [5.10} and [5.12} we conclude that

U W@ | 0| U Wik | #0. (21)

q€Yn PEV,

We refer the reader to [CO2I] for more details on this argument. By (21), we obtain that
g™t (W (my,)) NU # 0, and since p is SRB we conclude that supp(u) N U # 0. O

6 Rigidity of u-Gibbs measures

The main tool to study the existence of SRB measures that we will use is a recent result by Brown-
Rodriguez Hertz on measure rigidity for random dynamics of surface diffeomorphisms. The goal of
this section is to explain the statement of their result and how it can be applied to our scenario
after a measurable change of coordinates using the unstable holonomies (see Theorem [6.3)).
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6.1 Measure rigidity for general skew products

Let (9, Bq,v) be a Polish probability space, that is, Q has the topology of a complete separable
metric space, Bq is the Borel o-algebra of 2 and v is a Borel probability measure on ). Let
0 : (Q,Bq,v) — (,Bq,v) be an invertible, measure-preserving and ergodic transformation. Let
S be a compact smooth surface and Diff*(S) be the set of C2-diffeomorphisms of S. We consider
a measurable map that for each point £ € Q associates a diffeomorphism f; € Diff?(S). For each
n € Z we define

f? = Id,

fgn = fgnfl(g) o---0 f& for n > 0,

fgn = (fan(&-))_l o:-+0 (fg—l(g))_l for n < 0.

We consider the skew product over ¢ given by the map & — f¢, which is defined by

F:5xQ — Sx0Q
(&) = (fe(2),0(8)).

With the notation above, we may write F"(x,§) = (f{(z),0"(£)). Write X = S x Q and let
mo : X — Q be the natural projection on ).

Let 1 be an F-ergodic probability measure, such that (m2).u = v. Observe that the partition
by the fibers S is measurable. Therefore, we have a family of conditional measures defined in a set
D of full v-measure {pu¢}eep with respect to the partition induced by mo. For v-almost every &, the
measure f¢ is supported on Sg := .S x {{}. There is a trivial identification of S¢ with S, hence, by
an abuse of notation we consider the map £ — p¢ to be a v-measurable map from {2 to the space
of Borel probability measures of S.

To talk about SRB measures in this setting, we need to first talk about Lyapunov exponents
and stable and unstable manifolds. Write TX :=TS x Q and let DF' : TX — TX to be the linear
cocycle defined by

DF((z,v),§) = ((fe(x), Dfe(x)v), 0(5))-
Suppose that the following integrability condition holds

/Q log™* (|| el =) + log™ (1 £ | o2)d(€) < oo, (22)

where log™ (.) = max{0,log(.)} and ||f¢|c2 is the C?mnorm of fe. Applying Oseledec’s theorem
for the linear cocycle DF, there is a p-measurable decomposition Ti¢ ) X = P j ng 6 such that

the space ng,g) is the space corresponding to the Lyapunov exponent Aﬂ, where {Aﬂ}j are the
Lyapunov exponents of DF'.

From now on, let us suppose that the measure p is hyperbolic on the fibers, meaning, all the
Lyapunov exponents are non zero. The integrability condition is used to have Pesin’s theory for
fibered systems. In particular, for u-almost every point there exists stable and unstable manifolds,
which may possibly be just points in the case that all the exponents are negative or positive. We
refer the reader to section 6 in [BRHIY] for more details.

Suppose that p has at least one positive Lyapunov exponent. The family of unstable manifolds
{W*(2,8)} (2,6)ex forms a partition of a u-full measure subset of X. Usually this partition is not
measurable. In this context, we say that a measurable partition P is u-subordinated if for pu-
almost every (z,&), there exists a positive number r > 0 such that W¥(x, &) C P(z,&) C W¥(z,§).
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Definition 6.1 (Fiber-wise SRB). An F-invariant probability measure p is fiber-wise SRB if for
any u-subordinated measurable partition P, for u-almost every (x,£), the conditional measure u@ £)

is absolutely continuous with respect to the riemannian volume on W*(x,&).

Let Pg be a measurable partition of 2. We say that Pq is increasing if for v-almost every
point & we have

Pa(0(€)) C 0(Pa(S))-

Let F(Pq) C Bq be the sub-o-algebra generated by Pg. We say that F(Pgq) is an increasing
sub-c-algebra. We remark that in [BRHI1T7], the authors call these partitions and sub-o-algebra
decreasing instead of increasing. We changed it here to be in harmony with the notion of increasing
that we defined in section

Let F(Pq) be the p-completion of Bsg ® F(Pq), where Bg is the Borel o-algebra on S. For a
hyperbolic measure p, we may also look at the Oseledec’s direction E®(z,£) as a measurable map
of X that takes values on the projectivization of TX. We are now ready to state the main theorem
in [BRHI7].

Theorem 6.2 ([BRH17|, Theorem 4.10). Let F : X — X be as above verifying the integrability
condition @), let Pq be a measurable increasing partition of Q and let u be a hyperbolic F-invariant
measure such that (me).p = v. Suppose that the family of conditional measures on the fibers { ¢}
are non-atomic almost surely. Furthermore, assume that

1. & fgl is F(Pq)-measurable, and

2. € pie is F(Pq)-measurable.
Then either (z,€) — E*(x,&) is F(Pq)-measurable of y is fiber-wise SRB.

6.2 Change of coordinates

Fix o € (0,1). In this section, we show how to use Theorem to obtain the following theorem:

Theorem 6.3. For N large enough, there exists UsF a C%-neighborhood of fn in SkZ(’H‘2 x T?)
such that for g € UF N DIff*T*(T*), for any ergodic p € Gibbs"(g) one of the following holds:

1. u is SRB;

2. for p-almost every p € T4, and for Lebesgue almost every point q in W*%(p)

loc

Eyq= DH;,q(p) g,

9.p’
3. for p-almost every p € T* the measure My, Us atomic.

To prove Theorem|[6.3 we will define a measurable change of coordinates using the strong unstable
holonomies, so that after this change of coordinates we are in the setting of Theorem [6.2
Recall that A < 1 is the rate of contraction of the linear Anosov A. Let N be large enough such
that
(4N?)2 (A*M)" < 1.
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In particular, if the C2-neighborhood USF of fy is sufficiently small, then for every g € UsF we have

Dagl e 2
(W) (m(Dg|p)) ™ < 1. -

Fix g € UgF N Diff* *(T*) and some R > 1. Condition above is the (2, a)-unstable center
bunching condition defined in . By Theorem m for any p € T4, ¢ € . k(p) the unstable
holonomy H}Y . : Wg(p) — W(q) is a C*-diffeomorphism, whose C?-norm varies continuously with
the choices of p and ¢ as above.

Since g is a partially hyperbolic skew product, we have that g(pi, p2) = (9p, (P1), g2(p2)), where
g2(p2) is a C?+*-Anosov diffeomorphism of T? which is topologically conjugated to A%V. It is well
known that a transitive C'*®-Anosov diffeomorphism has an unique ergodic u-Gibbs measure. Let
v be such a measure for go on T2.

Fix R = {R1, -, R} a small Markov partition for A and observe that R is also a Markov
partition for A%V for every N € N. By taking N sufficiently large we may suppose that the
transition matrix Poy associated with R for A2V verifies (Pan)i; =1, for every i,j =1,---m. Let
R4 be the image of R by the conjugacy map between AN and go. It is easy to see that Ry is
a small Markov partition for go and the conjugacy implies that it has the same transition matrix
Pyn. Define 3 := {1,--- ,m}? which is the shift space associated with R, for ga, let 0 : ¥ — ¥ be
the left shift map, and let © : ¥ — T? be the continuous surjection that defines the semi-conjugacy
between ¢ and gs.

Let us set some notations. Write = = {(&)i<o : & € {1, -+ ,m}} and T := {(&)is0 : & €
{1,--- ,m}}. Let 7~ : ¥ = X~ and 7t : ¥ — X% be the natural projections. For a point £ € ¥ we
write ¢~ = 7 (£) and €T := 77 (£) and we use the notation & = (67,¢T). The local unstable set
of a point £ € X is

loe(§) ={neX:n” =¢"}

Define v, := ©,v, and observe that this is an ergodic, o-invariant measure. The partition
Y. on local unstable sets forms a v,-measurable partition of ¥. Let P* be the v-measurable u-
subordinated partition given by the intersection of local unstable manifolds of g with the rectangles
from the Markov partition R,. Notice that P" is equivalent (on a set of full v-measure) to the
partition X . (on a set of full v,-measure).

It is easy to see that the partition X}  is an increasing partition. Let B“ be the sub-o-algebra
generated by the partition on local unstable sets. This is an increasing sub-o-algebra.

It is well known that © is bijective in a set of full v,-measure, which we will denote by D.
We may further assume that D is o-invariant. Let D := ©(D) this is a gp-invariant set of full
v-measure. Define ¥ = Id x ©~!, and notice that it is an isomorphism between T? x D and T? x D.
Let 7} : T? x ¥ — ¥ be the natural projection on the second coordinate.

Let 4« be an ergodic u-Gibbs measure for g. By lemma [2.29] v = (), pt. Consider the measure
fi := W,u, and observe that it verifies (m}).ji = v,. We define the skew product on T2 x D by
§(x,&) = (9e(x),0(&)), where ge := gge). We may extend g to T? x ¥ by setting g¢ = Id, for
&d D. Observe that (g, 1) is isomorphic (or measurably conjugated) to (g, ft) by the isomorphism
W. Since V¥ is just the identity in the first coordinate, it is immediate that the center Lyapunov
exponents of p are the same as the fiber Lyapunov exponents of ji,. Furthermore, p is SRB if and
only if i is fiber-wise SRB.

We now introduce a change of coordinate in the fibers for the skew product § in a way that the
new skew product will verify the conditions to apply Theorem [6.2]
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(T2 X TZHU’) L> (T2 X TQM”)

ol

(T2 x 2, ) —— (T? x %, f1)

L

(T2 x 3, i) —— (T? x £, 1)

Figure 1: Changes of coordinates

Fix nT € ©7 and define the function ¢ : ¥ — ¥ by ¢(£) = (£7,nT) for every £ € 3. Observe
that for each £ € £, ¢(§) € £}:.(§). In particular ¢ is B*-measurable.
For each ¢ € D, since ©(¢) and O(¢(€)) belong to the same local unstable manifold for gs, we
define
P T2 — T?

o= Hee o) (@)-

ST : : u — TJu ; . T2 2
To simplify our notation, we write H£,¢>(£) = H@)(S),@(aﬁ(&))' We also define & : T* x D — T* x D

by ®(z,€) = (De(x),€). We can extend the definition of ® to T2 x ¥ by setting ®¢ = Id for £ ¢ D.
We consider a skew product § on T? x ¥ defined by

Gg=®ojod L. (24)

Consider the ergodic g-invariant measure i = ®. /i and observe that (7}).fi = v,. The partition
on the fibers T? forms a measurable partition of T? x . Let {fi¢ }¢es; be the family of conditional
measures with respect to the fibers. Figure [l| represents all these changes of coordinates that are
conjugacies on subsets of full measure.

Lemma 6.4. The maps £ — ggl and £ — [i¢ are B*-measurable.

Proof. Recall that Je = (gafl(g))—l. Since the unstable holonomy commutes with g, and by the
deﬁ}xllition of g, in what follows we will use that H¢', o §,-1(¢) = Jo-1(y) © H:j,l(g)’rl(n). By ,
we have

Jo=r©(®) = He gy 0 o-16) © Hiomr(6)).0-1(6) (7)
= H{ g 0 Hypio10)).6 © 9oto-1@) (@) = Hy0-1(0))),06) © Joto1()) (2)-

Notice that ¢(¢) and ¢(o~1(€)) depend only on £~ in particular Jo-1(¢) depends only on ™. If
n € X (§), which means that n~ = {7, then j,-1(¢) = Jo-1(;) and hence the map £ — ggl is
constant on local unstable sets and it is B*-measurable.

Since p is an u-Gibbs measure, and it projects to v, corollary [2.30] implies that for v-almost
every pz, and for Lebesgue almost every ga € Wy (p2) (for the riemannian volume of W;'*(p2)), we
have

Mgz = (qu:z’qz)*'uzciz' (25)
At first, the disintegration pg, is defined for almost every point inside the unstable manifold of ps.

However, using , for any ga € W,*(p2), we may consider the measure pg, = (Hy, ,,)«Hp,- This
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defines a new disintegration that coincides with the original one in u-almost every point with the
advantage that for v-almost every point the disintegration is defined along entire unstable manifolds.

Since V¥ is the identity on the fibers and a conjugation with the shift on the basis, for v,-
almost every § we obtain pug¢) = fie. Let us see the equivalent of property for ji. Consider
the disintegration of v, on the measurable partition ¥ . For v,-almost every &, let v$ be the
conditional measure on X% (€). Hence, for v§-almost every n, we have that fi, = (Hg ) fe-

In an analogous way as we did for u, we define the measure 1, for every n in the local unstable
set of £ and this defines a new disintegration that coincides with the original disintegration on a set
of full measure. By an abuse of notation we will use the notation fi¢ for the conditional measure
of this new disintegration. We remark that this disintegration has the advantage of being defined
along entire local unstable sets.

By the definition of ® we see that for v,-almost every & and for any n € X}! (£) the measure
fin = (Hu,d)(f))*ﬂn = fig(¢)- In particular, the map £ — ji¢ is constant on local unstable sets and it

n
is B%-measurable. O

Proof of Theorem[6.3 First, let us explain how the skew product g verifies the hypothesis of The-
orem Since X}* is a decreasing partition, we have that B" is a decreasing sub-c-algebra. Let

loc

B* be the fi-completion of Br> ® BY, where By is the Borel o-algebra on T2. Recall that

9e = Hy(s(6)),0(0(6)) © 90(&)-

We claim that there exists a constant R > 0 such that for any £ € X, we have O(a(¢(§))) €
Witr(©(é(a(€)))). Indeed, recall that we had fixed Ry = {Ry1, -, Rg,m} a small Markov parti-
tion for go. Since ¢(§) € T} .(€), we obtain that ©(¢(£)) and ©(§) belongs to the same local unstable
manifold intersected with some rectangle R ;. Since the expansion rate of unstable manifolds for g»
is close to A™?N, which is a constant, there exists Ry > 0 that verifies ©(a(¢(§))) € Wiip (O(a(£))),
for any £ € X. To conclude, we observe that ©(é(c(§))) € Wiit,.(0(c(€))). Hence, by fixing R
sufficiently large we conclude our claim.

Since g is C?*t%, Theorem in the appendix implies that for every £ € X, the holonomy

Hg(¢(€)))¢(g(€)) is a C%-diffeomorphism of T? with uniformly bounded C?-norm. Since g¢ = 9e(¢)s
we also have that all the C?-diffeomophisms g¢ belong to a compact subset of Diff2(T2). We
conclude that for every &, the C%-norm of g¢ is uniformly bounded. Similar conclusion holds for
ge ! In particular, the skew product § verifies the integrability condition .

It is easy to see that the fiber-wise Lyapunov exponents of (g, i) are the same as the center
Lyapunov exponents of (g, ). In particular, i is a hyperbolic measure with a positive and a negative
fiber-wise Lyapunov exponent.

Lemma states that (g, i) verifies the conditions (1) and (2) in the hypothesis of Theorem
Since the skew products g fibers over the system (o, v, ), which is ergodic, we conclude that
either

1. the measure fi¢ is atomic for v,-almost every &;

2. [ is fiber-wise SRB;

3. the stable distribution (z,&) — Ej (z,§) is B*-measurable.

Notice that the composition (® o W) takes fibers of T? x T? into fibers of T? x . Furthermore, it

acts as a C2-diffeomorphism on each fiber. Observe also that it measurably conjugates the dynamics
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of g and § on a set of full y-measure. In particular, for v-almost every py € T? we have

H;fm = (@ © \Il);lﬂ@’l(m)' (26)

From ([26) above, fi¢ is atomic if and only if (e is atomic, for v,-almost every &.

Since p is a u-Gibbs measure, it will be an SRB measure if and only if it is fiber-wise SRB in
the sense of definition From , we conclude that [ is fiber-wise SRB for g if and only if p is
fiber-wise SRB for g.

For the map (z,¢) — E (v,§) to be B*-measurable, it is equivalent to the following: for fi-
almost every (z,£) and for v5-almost every n € L% (), we have that B (z,§) = E; (z,n). Observe
that the points (z,£) and (x, n) belong to the same local unstable set for §. By the conjugacy (Vo®),
we conclude that

By (2,€) = DHg¢),0(0(6) (*) By (4 0(¢))

Since the measure is u-Gibbs, the third condition above is equivalent to for p-almost every p € T4,
for Lebesgue almost every point ¢ € Wyt (p), we have E = DH} (p)E, .

loc

All these conclusions hold for any g € Diff2+a(']l‘2) sufficiently C2-close to fy. This concludes
the proof. O

We remark that the same proof of Theorem also gives the following theorem.

Theorem 6.5. Let S be a compact surface and let o € (0,1) be a constant. Suppose that g €
Sk*T(S x T2) is a partially hyperbolic skew product which is (2, a)-unstable center bunched. If
u € Gibbs“(g) is an ergodic measure with one positive and one negative exponent along the center,
then either

1. p is an SRB measure;

2. for p-almost every p and for Lebesgue almost every point ¢ € W*%(p),

loc

Eyq= DH;;,q(p) 9.0}

3. for p-almost every p, the measure p, is atomic.

7 The non invariance of stable directions by u-holonomies

In this section we fix N large and Uy small enough such that Theorem holds for some small
fixed 6 > 0. In particular, if g € Uy then any u-Gibbs measure for g has both a positive and a
negative center Lyapunov exponent for p almost every point. Since p has absolutely continuous
disintegration with respect to strong unstable manifolds, for p-almost every point p, Lesbesgue
almost every point ¢ € W;“(p) has a well defined Oseledec’s stable and unstable directions in
the center, where the Lebesgue measure we are considering is the measure restricted to the strong
unstable manifold W (p).

Recall that for any p € T and any q € wg (p), there is a well defined unstable holonomy map
Hy, : Wi(p) — Wi(g). Furthermore, this map is a C'-diffeomorphism. The main result in this
section is the following:
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Proposition 7.1. Let g € Uy and let i be a u-Gibbs measure for g. For any € > 0, the following
property holds: for p-almost every p, there exists a set D" contained in Wg”“;(p) with positive
Lebesgue measure (for the riemannian volume of W;'t(p)) such that for any q € D" it is satisfied
that

DH, (P)Ey ), # Eqq-

The rest of this section is dedicated to prove proposition 7.1

Let g € Uy, for any p € T4, for any piece of strong unstable manifold 7, containing p and any
un%t vector v € EY . we define a unitary vector field over v, defined as follows: for any ¢ € v, we
write

DH;j’q(p)v

PH" (p)v = —-202_
»a " = Dy, el

(27)

and define v, := PH}  (p)v. First we study the regularity of the vector field v’.

Lemma 7.2. Let g € Uy. There exists a constant C > 0 that verifies the following: for any p € T?,
let vy = W (p) be the strong unstable manifold of size 1, for any unit vector v € E ,, the vector

field v' defined above is (C, 5)-Hélder.
Proof. Observe that, for N large enough, we have
(A2V)2 < (AN?)"hand (A2V)2 < (2N)7L
This means that fy verifies the conditions 1) and from Theorem for 6 = % In particular,
2)

any g sufficiently C''-close to fx also verifies (1) and ([2)). Lemmathen follows from the conclusion
(), for unstable holonomies, of Theorem O

Next, we will see how the center bunching condition “smoothes” a center vector field over a
piece of strong unstable manifold. This is a crucial point for us, so that it will allow us to apply
some of the techniques and estimates from section [4] to prove proposition

Lemma 7.3. Let g € Uy. For any piece of strong unstable curve v* and any X unitary vector
field over 4" tangent to EY which is (Co, %)—H&lder, for some Cy := Co(X) > 0, the following
holds: there exists ng € N, which depends only on Cy, such that for every n > ng, the vector field

X, = Hz{{g;“ over g"(v*) is (Cy, 3)-Holder with C,, < 30N2\V.

Proof. The proof of this lemma is essentially contained in the proof of Lemma 1 from [BCI14].
However, we will repeat the main steps of the argument here. For simplicity we will prove the
lemma for fy, which we will denote by f. Using the estimates from Lemma [4.4] one can adapt the
calculations for any g € Uy

Let us just review some estimates for f. Recall that

o N
Df(z,y,z,w) = (DsNé% 0) PzAgjfvl(ZEi;)w)) .

Hence, |Df(z,y, z,w)|g<|| = || Dsn(z,y)|| < 2N. Since Dsy is the only non linear term, ||D?f|| =
|D%sn| < N.
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Let 4" be a piece of a strong unstable manifold and X a (Cp, %)—H'dlder unitary vector field over
~*. Let us estimate Cy, the Holder constant of X; over f(y*). First, for any m,m’ € 4", we have

[1Df(m) X = D f(m) Xope || <
[Df(m) X — Df(m) X || + [ Df (m) Xy = D f (m") Xy || = T + 11

Since X is (Cy, 1)-Hélder, we obtain
I <2N|| X, — Xpr|| < 2NCod(m,m')?.
If d(m,m') < 1, then
II < Nd(m,m') < Nd(m,m')? < TNd(m,m’)?.
Observe that d(m,m’) < 27 < 7, for any two points m, m’ € T*. If d(m,m’) > 1, then
II < Nd(m,m') < TN < TNd(m,m’)*.
We conclude that
IDf(m) Xy — Df(m') X || < (TN + 2N Co)d(m,m’)? . (28)

Also,

([ X [ e X = [ X | f X

1
1) = Xl = e X

(HHf*Xm’Hf*Xm - Hf*Xm’”f*Xm'H

- 1
[ X [ X
+ X (1 Xonr = ([ e X || foe X )

2
M ¥ Il *Xm - *Xm/
< Trx e = o]
2 /
= TIPS U ()X sy = DI ) X g -

Lemma [£.3] states that the unstable direction is contained in a cone around e* of size bounded from
above by 2\Y. This implies that for any two points in the same m and m’ in the same strong
unstable manifold d“(m,m’) < (1 + 2AY)d(m,m’). Therefore, by , lemma and since the
points m and m’ belong to the same strong unstable manifold, we have

N(7+2Co)d(f~H(m), [~ (m'))7

IDF(fHm) X g1y = DF(F7HM ) X g1 ()|
NAN (14 2XN)2 (7 4 2Co)d(m, m/)?.

<
<

Recall that || D f|ge| > (2N)~1, hence

N Nyz ni
1 () — X ()| < 2T (L 2A 1) (7 + 2Co)d(m, m)

< < 4(1420)2 N2AN (74200 d(m, m') 2 .
X0l (2072 NEAT (T +2C0)d(m, m')
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Observe that 4(1 4 2AN)2 N2AN (7 + 2C,) estimates the Holder constant of X;. If Cy < -, then
for N large enough

4(1 4 2AN) 2 N2AN (7 4 2C0) < 4(1 4 2AV)2 N2AN(7.2) < 30N2AN.

Hence, C; < 30N2\Y and the same calculations imply that C,, < 30N2\Y, for every n > 1. Now
suppose that Cy > %. Then, for N large enough

4(1 4 2AN)2 N2AN (7 + 2C, 7 1
(1+ )QC (T+2C0) _ 41 1 oMy N2AN (+2) <4(14+22AV)EN2ANT2 < -
0

Co 2

This implies that C; < % Therefore, there exists n € N such that C; < (%)ﬁCo < 1—10. Take

ng = 7+ 1. We conclude that for every n > ng, C,, < 30N2\N. O

Proof of proposition[71] If the conclusion of proposition [7.I] did not hold, there would exist a
diffeomorphism g € Uy, an u-Gibbs measure ;1 and a measurable set D of positive y-measure such
that for any p € D and for Lebesgue almost every point ¢ € Wi (p) we would have DH} (E, ) =
E,, Fixpe D and let v* ; 1( ). Consider v an unit vector on £, and let v/ be the unit
vector field over v* defined as in

Let C be the constant given by lemma Therefore, v" is a (C, %)—Hélder vector field over

v*. Let ng € N be given by lemma Hence, for n > ng, the vector field v/, := Hg{gz:gu is

(Cn, 3)-Hélder over 4% := g™ (y"), with C,, < 30N2AY.
Suppose that ng is large enough such that (v, ) > 27. Hence, we may consider a Cl-curve

: [0,27] — T* such that ¥ = (Ya, Yy, ¥z, Yow) With d'“ ’ =1, 5([0,27]) C v;,, and define & = v};,

Followmg definition u the pair (,7) is an adapted ﬁeld
Recall that 6 > 0 is fixed and in section |4} on the proof of Theorem [4.1] we fixed & = —g. For
each k > 0, we write 0y = v’ otk and recall that there exists N € N such that

gEoF = AL * kAN, * AN 41

where ’yk is an w-curve for j = 1,.-- , N; and :Yllifk-kl is a segment of a u-curve. By lemma
every pair (’yj ,vk|,y «) is an adapted field for j =1, |, Ng.

Recall that in section l we had defined the notion of d-good adapted field (see definition
We will need the following lemma.
Lemma 7.4 ([Ob20], Lemma 7.27). Let g € Uy, and let (v, X) be a 6-bad adapted field. Then
there exists a strip S of length m such that for every j satisfying g~ ‘v 1 C S, the field (7]1, ”giif(”) is
5—good.
) be a b-good adapted field defined as follows: if (7,0) is a b-good adapted field then

A, 0
(%,9) = (3,0). Otherwise, by the previous lemma, we may choose j € {1,--- Ny} such that
('yj,v1|;m1) a 6-good adapted field. In this case, we define (¥,9) = (ﬁ},f}l\;@).
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Let K € {ng,no + 1} be such that ¢~ % (9) C v* and write _x := g~ % (). Recall that we had
defined Jii'(.) = | det Dg*(.) For any n € N,

uu .
ES]

K—-1
1 n 2 1 U 2
f/ log | Dg" ™'l di-k = — [ D / log || Dgvi|| T3 d(g © 4-k)
|P)/‘ VK |7| i=0 gloY_ K

+ [10g1Dg"] ;“Kd@)
;
1 =
= Myt o [ 108 | Dyl Tyt = My + I
;Y

where Mg does not depend on n. Since (§,0) is a g—good curve, by in section |4} for n large
enough we have

Iy .
> (1 —144)log N.
n
Therefore,
1 log || Dg®+tmu® M I =
lim sup — / Md&_;{ — limsup —= + ~— > (1 — 144) log N > 0. (29)
n—+oo |’Y| Aok n—+oco N n

However, by assumption, for Lebesgue almost every ¢ € W™ (p) the vector vy belongs to £ . In
particular, there exists a number A~ < 0 such that for Lebesgue almost every ¢ € W (p)

1 D K+n u
i 81D @l (30)

n—-+oo n

By and applying the dominated convergence theorem, we obtain

y 1 log | Dg" v 1 . log | Dg"*"v"||
im sup Al ———dy_k lim iup Tdv_m
Y-k J_g MFoo

n ol
Y- K|

141
which is a contradiction with . O

n—-+oo ‘

AT <0.

8 Measures with atomic center disintegration and the proof
of Theorem

In this section we conclude the proof of Theorem [B] The main ingredient that is missing to conclude
this proof is the following theorem.

Theorem 8.1. Let g € Sk? (T2 xT?) be a partially hyperbolic, center bunched skew product. Suppose
that there exists a constant 6 € (0,1) such that

EJ" is 0-Holder and || Dg

Let 1 be an ergodic u-Gibbs measure for g that verifies:
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1. @ has atomic center disintegration;

2. for p-almost every p € T*, and for Lebesque almost every point q in Wk (p)
Egq# DHy (p)Eg .
Then there exists a finite number of C two dimensional tori Tl}, e ,T}L such that each of them is
tangent to E5° @& Ey" and supp(p) = Uélelﬁ.

Remark 8.2. Theorem also holds for a partially hyperbolic skew product g € Sk*(S x T?),
where S is a compact surface, verifying the rest of the hypotheses of the theorem.

In section [B:2] we reduce the proof of Theorem [8:I] into proving the s-invariance of the center
conditional measures, given by Theorem The proof of Theorem is then given in section [9]

8.1 Proof of Theorem [B| assuming Theorem (8.1

Let o € (0,1) and take N large enough such that Theorem holds and let U3¥ be a small C%-
neighborhood of fy is Sk*(T? x T?). Take g € UF N Sk* ™ *(T*) and take an ergodic measure
u € Gibbs“(g). By Theorem there are three possibilities:

1. for p-almost every p € T4, the measure My, 1s atomic;
2. pis SRB;
3. for p-almost every p € T4, for Lebesgue almost every point ¢ in W“%(p), we have

Eyq= DHg,q(p)E!;p'

Let us verify that g verifies the Holder condition in the statement of Theorem If6 € (0,1)
is a number that verifies
1Dg(p)| kgl

m(DgD) s DI

ESS)", for all p € T,

then EJ" is 0-Holder (see Section 4 from [PSW12]). In particular, the maximum 6 we can take is
arbitrarily close to

(31)

. log m(Dg(p)|puw) — log || Dg(p)| ke ||
peT*

—logm(Dg(p)

)

From the estimates of Lemma [4:4] for some small ¢; > 0, if N is sufficiently large, we have that
is greater than

2N log i
2N 1ot (1 - o557 )

and this can be made arbitrarily close to 1 by taking N sufficiently large (we remark that an
analogous estimate of item 1 from Lemma holds for the strong stable direction).

2N log ji (1 - 7“1“0%”))

)
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On the other hand, we also want HDg|E;s
this inequality to hold we need '

< m(Dg|ge). From the estimates of Lemma H for

log2N

0> .

The right side of the inequality goes to 0 as N increases. So for N sufficiently large, we may take
0 € (0,1) that verifies the hypothesis of Theorem

Let u be an ergodic u-Gibbs measure for g. By Proposition w1 cannot verify item 3 above.
If 1 has atomic center disintegration, then p verifies the hypothesis of Theorem [8:1] and therefore,
there exist T}, --- , T}, which are C'-tori tangent to E3* & E2* such that supp(p) = Ul_, T}..

If v does not have atomic center disintegration, then p is an SRB measure and this concludes
the proof of the theorem.

8.2 Reducing the proof of Theorem [8.1]| into proving s-invariance of the
center conditional measures

In this subsection we will reduce the proof of Theorem into proving the following theorem:

Theorem 8.3 (The s-invariance of measures with atomic disintegration). Let g € Sk*(T? x T?) be
a partially hyperbolic, center bunched skew product. Suppose that there exists a constant 6 € (0,1)
such that

ESS

E™ is §-Hélder and ||Dg % < m(Dg|%).

Let 1 be an ergodic u-Gibbs measure for g and suppose that p verifies:
1. p has atomic center disintegration;

2. for p-almost every p € T*, and for Lebesque almost every point q in Wikt (p)

E,,#DHy(p)E,;,.

Let v be the unique SRB-measure on T? for the Anosov diffeomorphism g». Then there exists a set
X of full v-measure such that for any p2,qa € X in the same stable leaf for go, we have that

p“22 = (H;’z,fh)*'u;q'

For the rest of this section we suppose that g and p verify the conditions of Theorem Recall
that u € State, (g), by Corollary the measure ;1 has u-invariant center conditional measures
(see for the definition of u-invariant). By Theorem the measure p also has s-invariant
center conditional measures.

Observe that for go, after fixing some small € > 0, for any p, € T? there exists a neighborhood
U of py such that the map [.,.] : Wg2 _(p2) x W' (p2) — U defined by [2°,y"] = W55 _(2°) N
Wut_(y*) is a homeomorphism. For a probability measure & on T? we say that it has local
product structure if for any py € supp(?), using the homeomorphism [.,.] as above, the measure
U can be written as pi® x 0", where p is a positive measurable function.

Since the measure v is the unique SRB measure of g9, in particular, it is an equilibrium state

for the logarithm of the unstable jacobian of gs, it has local product structure (see [Bow75]). Since
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the unstable foliation of g5 is minimal (i.e. every unstable manifold is dense), then the support of v
is T2. The proof of the following proposition can be found in [AVI0]. It is a type of Hopf argument,
and is a consequence of the local product structure of v, the su-invariance of the center conditional
measures of u, and that the support of v is the entire torus.

Lemma 8.4. Let j1 be a measure as above. Then there exists a disintegration {fiy, }p,ct2 of pt with
the following properties:

e S . ]
1. the measures i, coincides with the measures g, for v-almost every pa;
2. the map pa v [y, 1s continuous;

3. for any ps € T2, and g € Wit (p2) we have g, = (Hy, . )<y, ;

4. for any py € T?, and ¢z € Wi (p2) we have Tig, = (Hy, ., )«Fp, -

By an abuse of notation, we will denote the disintegration {7y, },,er> by {45, }p,er2. We will
also need the following lemma;:

Lemma 8.5. There exists k € N such that for every py € T? the measure My, has k-atoms.

Proof. We already know that the measure pf,, is atomic for every py € T?2. For each n € N consider
the set B, = {p € T*: Hey oy ({P}) > 1}, It is easy to see that B, is a g-invariant set for each
n € N. For n sufficiently large pu(B,) > 0, and by ergodicity u(B,) = 1. Hence, for n large
enough, every atom of g has measure larger than %, for any py € T?, and therefore there are
finitely many atoms. Let Ap, be the set of atoms of y;,. The su-invariance implies that for any
#A,, = #A,,, for any ps,gs € T?. Hence, there exists k € N such that My, has exactly k-atoms,

for every py € T2. O

Proof of Theorem[8.1 Let k € N be as in lemma and fix ps € T?. Let A,, : {z1, -, 21}
be the set of atoms of uj, . The su-invariance of {uy, },,er2 implies that for any z; € Ap,, the
endpoint of any su-path starting in x; and ending in W¢(z;) also belongs to A,,. In particular,
for each z; € A,,, its accessibility class AC(z;) is trivial (see section [2| for the definition of trivial
accessibility class).

There exists [ € N such that the union of the accessibility classes of the points x; can be
partitioned into ! disjoint accessibility classes, that is,

JAC@)=Tiu---uT;

B w

where each T}, is an accessibility class.

We will prove that each T ; is a two dimensional torus tangent to Eg° & Eg". Since supp(p) C
Ule AC(z;), this will conclude the proof of the theorem.

By Theorem we know that Tﬁ is a C''-submanifold of T*. Furthermore, since the accessi-

bility class Tﬁ is trivial, we obtain that it is a 2-dimensional C'-submanifold immersed in T* and
by the definition of accessibility class it is tangent to EJ° & EJ".

Claim 8.6. Tli is compact.
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Proof. Since the direction Ej* @ Eg* is uniformly transverse to Eg, the surface TZ is uniformly
transverse to the center foliation. If it was not compact, then it would intersect some center leaf
W¢(p) infinitely many times. However, this is a contradiction with the fact that T, "W¢(p) C A, ()
which is finite. O

Since the strong stable and strong unstable manifolds of g projects to the stable and unstable
manifolds of g», which are dense in T? we have that FQ(TZ) = T2. Let us see that my Ti TZ — T2

is a covering map. The property that Tﬁ is su-saturated implies that WQ‘TZ is surjective. Since

TfL is tangent to Eg* & Eg", which is uniformly transverse to the fibers (center direction), then for
any point ps € T? and small neighborhood U of py, any connected component of 7, 1(U ynT ZL is
diffeomorphic to U, hence, o

i is a covering map, and Tﬁ is a cover of T?. The only possible
covers of T? are homeomorphic to R%, S x R and T?. Using that TZ is compact, we conclude that
TZ is actually a two torus. O

9 The proof of Theorem [8.3: the s-invariance of the center
conditional measures

The goal of this section is to prove Theorem Recall that for a partially hyperbolic diffeomor-
phism f and g an f-inviariant measure, we defined in the p-partial entropy along F**, which
is given by

B, F) = — / log 122 (1€ (p))du(p),

where %" is any p-measurable partition subordinated to F*.
Let us first see how the proof of Theorem [8:3]is reduced into proving the following theorem:

Theorem 9.1. Let g € Sk* (T2 xT?) be a partially hyperbolic, center bunched skew product. Suppose
that there exists a constant 6 € (0,1) such that

¥ < m(Dg

EJ" is 0-Hoélder and || Dg|gss Ee). (32)
Suppose that p is an ergodic u-Gibbs measure that verifies:
1. p has both a positive and a negative Lyapunov exponent along the center;

2. p has atomic center disintegration;

3. for p-almost every p € T, and for Lebesgue almost every point q in W*%(p)

loc
Egq# DHy (p)Eg .
Let v be the unique SRB-measure on T? for the Anosov diffeomorphism go. Then
g™ F*%) = hu(02). )
Proof of Theorem assuming Theorem[9.1] Let g be a partially hyperbolic skew product and

be an ergodic u-Gibbs measure verifying the hypothesis of Theorem 8.3] By Theorem 1 verifies
h (gt F*%) = h,(g2) = h,(g95 ). Applying the invariance principle (Theorem [2.26)), we have that
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1 is an s-state projecting on v. Proposition m applied to g~!' then implies the conclusion of
Theorem [R.31
U

Remark 9.2. For the rest of the section we fix

e g a partially hyperbolic skew product and

e 1 an ergodic u-Gibbs measure for g that verifies the hypothesis of Theorem[9.1]
Let

o v be the unique SRB measure for g on T2, such that (ms).p = v, and

e AT and A\~ be the positive and negative center expoenents of u, respectively.

o Fix £¥% a v-measurable partition of T? which is subordinated to F4* (the unstable foliation of
the Anosov system gs).

o Let €' be a p-measurable partition which is subordinated to F"*, with the property that
mo(E¥%(p)) = &¥%(ma(p)). Furthermore, we may assume that each element of £** has small
diameter.

The proof of Theorem follows closely the proof of Theorem 4.8 in [BRHI17], with some
adaptations. Brown-Rodriguez Hertz’s proof is based on the “exponential drift” arguments that
were introduced in [BQ1I] and its modified version from [EMIS|. Since the proof of Theorem 4.8
in [BRHIT] is technical and to make this work more self contained, we repeat most of the proof

here, with the necessary adaptations. For the proof of some of the lemmas we will refer the reader
to [BRHI1T].

9.1 Sketch of the proof of Theorem

Let us describe the idea of the proof as well as the main points where our setting differs from the
random product setting.

Suppose that p is a u-Gibbs measure verifying the hypothesis Theorem We fix a compact
set K of large measure such that the map p — pj is continuous. Since pg is atomic, in this set, we
can fix a constant € > 0 such that any two atoms in a center leaf have distance greater than e.

Suppose that the conclusion of the theorem does not hold, then we obtain that conditional
measures along the 2-dimensional Pesin stable manifolds are not supported in a single strong stable
leaf. In particular, we can find two points p,q in the same 2-dimensional stable manifold with
d(p,q) := § << e such that they don’t belong to the same strong stable leaf, p is an atom of My
and ¢ is an atom for pg. The idea of the argument is to find a point pg € K such that ug; has two
atoms with distance smaller than e, which will give a contradiction with the choice of € and K.

We want to find two sequences of times [; — 400 and 7; — 400 such that for each [;, we can
choose two points p; € W4 (g" (p)) and g; € Wt4(g" (¢)) that verify the following:

oc loc
l.g; € Wcs(f?j);

2. let Wy = H; 5 (Wy,.(q,)) "W (B;), then d(p;,w;) ~ d(g" (p), 9 (4));

3. d(g™(p;) 97 (7)) =~ 0.
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Then we prove that, up to a subsequence, g™ (ﬁj) and g7 @j) converge to pg and qp which are
atoms of p . Item 3 above implies that d(po, qo) = 6 << e. Then we show that we can do this so
that po belongs to the set of points for which the distance of any two atoms of uy is greater than
¢ and this will give the contradiction.

Let me remark that the hypothesis that £~ is not DH" invariant appears to obtain item 2, and
item 2 is used to prove item 3.

This is the strategy used in the proof of Theorem 4.8 from [BRHI17]. As we follow this proof,
let us mention the two points where more adaptation is needed in our setting.

e The main difficult in the strategy is to work this construction so that all the points involved
belong to some “good” set. To achieve that, in their proof, they work with the suspension flow
and a reparametrization of this flow. This reparametrized flow is convenient because it gives
precise times where a certain expansion is observed along the Oseledets unstable direction.
One of the key tools they use to control these returns to the “good” set is a martingale
convergence argument for this reparametrized flow (see Sections 9.3 and 9.4 in [BRHI1T]), in
which they apply the reverse martingale convergence theorem. To apply this theorem, they
need that the reparametrized flow verifies some measurability condition.

In our setting, we use DH" to adjust the definition of the reparametrized flow so that the
measurability condition is satisfied. This is done in Section Let me remark that this is
similar to the change of coordinates done in Section [6.2

e The other point where some adaptation is needed is to obtain item 2 above. Let us briefly ex-

plain Brown-Rodriguez Hertz’s proof of item 2. Let Z; = H3 5 (Wi, (Qj))ﬂH;ﬁj )5 (Wioe(9" ()

Let ¢* := H; ,(¢q) and observe that ¢* € W;_.(p). If we had local su-integrability, we would

have that z; = H;‘,j (0)15, (g% (g*)), since q; =Hy, a,© Hp o (g% (g*)). Then, by a geometrical

argument, we could conclude that d(p;,w;) ~ d(p;, H;Z]. 5 (g% (q*)) =~ d(g" (p), g% (¢*)). In
P

the random product setting considered in [BRH1T], this local “joint integrability” is satisfied,

since these holonomies maps are just the identity between fibers.

S

In our setting, to obtain the estimate in item 2, we need to use two ingredients: the unstable
foliation is #-Holder, and || Dg|g=:||® < m(Dg|g<). This is where condition comes in. The
estimate needed for item 2 is obtained in Lemma

9.2 Pesin Theory and parametrization of invariant manifolds

From now on fix a constant 0 < €9 < min{l, —A\~, A*}. We will be interested in obtaining certain
estimates for stable and unstable manifolds along the center. In our setting, these will correspond
to curves contained in horizontal tori.

On R? consider the the standard basis and for any v € R? write v = v; + vo. Consider the
metric on R? given by |v| = max{|vi|,|v2|}. For any I > 0 write R?(I) to be the ball of radius
[ centered at the origin for this metric. Fix 0 < e; < gg. There exists a measurable function
[:T? x T? = [1,+0o0), and a u-full measurable set A such that:

1. For each point p = (p1,p2) € A, there is a neighborhood U, C T? x {p2} of p1, and a
diffeomorphism ¢, : U, — R%(I(p)~!) with:

(a) ¢p(p1) = 0;
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(b) Doy(p1)E, =R x {0};
(c) Doy(p1)Es = {0} x R.
2. Let
Jp = gm0 900,  and ;' = dy1y 097 0

On the domain of definition of g,, we have:
(a) 9p(0) = 0;

(b) P5(0) = <5o 50+)’ where §7 € (€2 ~%1,e* +91), and ¥ € (X 77 A o),

(¢) Writing Lip(.) the Lipschitz constant of a function in its domain of definition, we have
Lip(g, — Dgp(0)) < &1;

(d) Lip(Dgp(0)) < U(p);

(e) similar property holds for g, L

3. There exists an uniform kg such that ky ' < Lip(¢,) < I(p);

4. U(g™(p)) < el™=11(p), for any n € Z.

The diffeomorphisms ¢ above are called Lyapunov charts. Its construction can be found for
instance in the appendix of [LY85-1].

We will also use a more quantified statement of the Pesin’s stable manifold theorem. Let
R :=R x {0} and R" := {0} x R.

Theorem 9.3 (Local stable manifold theorem). For each p € A, there exists a C%-function op -
R™ (l(p)il) — R+(l(p)71) such that:

1. ¢, (0) =0;
2. Dy, (0) = 0;
3. 1Dy, || < 35

4. gp(graph(ey)) C graph(y ) € R*((g(p))~");
5. setting W, (p) := ¢, (graph(y, ), we have that

(¢) 9(Wioe(P)) € Wige(9(p));
(b) for any z,y in W, (p), and n > 0, we have

d(g"(2),9" () < Up)koe™ T2 d(2, y).
Similarly, there exists a C%-function gpj,‘ which will define the local unstable manifold.

We may define the global stable manifold of p by W™ (p) := Up>09~ " (W,,.(¢"()))-

In our setting, for u-almost every point p, the stable manifold W~ (p) is a one dimensional curve,
and it can be parametrized by R. We remark that this curve can also be obtained by intersecting
a stable Pesin manifold, which in our setting has dimension two, with a center manifold.

For these one dimensional stable manifolds, it is convenient to use some special parametrization
that conjugates the dynamics g™|yy - () with the linear dynamics Dg"(p)| By
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Proposition 9.4. For p-almost every (p1,p2), and for any (q1,p2) € W~ (p), there exists a C?-

diffeomorphism

(_‘1171)2) W (p) — T(hW_(p):
such that

1. Restricted to W~ (p) we have

Dyg(q1:p2) © hiy, 1) = Pgtar pa) © 95 (34)

2. hiy o ((1,p2)) = 0 and Dh, ((q1,p2)) = Id;

The proof of Proposition[0.4] follows from the construction of the parametrizations that appeared
in [KKQT7] Section 3.1 (see also Proposition 6.5 in [BRHI1T]).
For each r > 0 and p a point that verifies Proposition we define

_ \-1 _
W (p) = (h,)  ({veE, vl <r}). (35)
One obtains similarly functions 2+ and define W, (p) := (h,)~'({v € Ef : |Jv]| <r}).
We fix two p-measurable unitary vector fields p — v, and p — v; such that

o vy € EJ, for x = —, +;

N
e for each p and ¢ € £“*(p) we have that v = %%
p,q vp

Using these measurable vector fields, we parametrize the stable and unstable manifolds by
- N + . =1+
I, it (h,) (tv, ) and Z7 1 t = (hy) " (tv,). (36)

It is convenient to consider another norm, called Lyapunov norm, where we can see con-
traction, or expansion, after one iterate. Let X be a set of full y-measure where the Lyapunov
exponents are well defined. For each p € X, and v € EJ consider the two-sided Lyapunov norm

2

10lg, 2 = | D 1Dg (p)v]?e2X" 9720l ) where o = {—, +} (37)
JEZ

and for v € E];Ir , consider the one-sided Lyapunov norm

_ b o
[v]leq,—p = Z\\ng(p)vHQ@ 2275 —2eoll (38)
§<0

For these norms, we have the following estimates (see [BRH15] for the estimate on the two-sided
norm).

Lemma 9.5. Forp € X, and v € ES, we have that

p}
ol s L < DGR s ey S € HE L L,
+_ +
N e o)l E L < D@, e,y S N o] L,

Ifv e Ef then

+_
T o]le, - p < IDGE (0)0lleo, - g (p) -
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The following lemma is a classical lemma in Pesin theory on the control of expansion/contraction
and angle between expanding and contracting directions.

Lemma 9.6. There exists a measurable function L : X — R, such that for any p € X and n € Z:

1. Forve E,,
L na-—lnle n nA~ 410l
e el < 1D @)l < Lip)e™ *E e ol
2. Forve Ef,
1 nA+—m€0 n n/\++m60
o 7% v]| < [Dg"(p)vl| < L(p)e 7o
3. L(Ef. y Boniyy) = Ti¢ ™0 Furthermore, L(g™ (p)) < L(p)el™l®.

9.3 Angles and some estimates

Recall that in our setting there is a set of full u-measure such that for any two points p and ¢ in
this set with ¢ € W**(p) we have that

DH; (p)E, # E, . (39)

Recall also that X is the set of points of full y-measure with well defined Lyapunov exponents.
Given y; > 0 consider A; to be the set of points p such that

&(Egjv E;) > M, (40)

where £(E, , E}) is the angle for the natural riemannian metric of T* between the subspaces E,
and EI}L . Observe that we can make the p-measure of A; arbitrarily close to 1, by taking v, small.
For v, € (0,%) and p € Ay, we define 7, (p) to be the set of points g € {**(p) such that

e gEX;
o L(DHy (p)E, , E;) > 2;
o L(E},E]) > .

Recall that for p in a set of full y-measure, we defined p,;" as the conditional measure on §"* (p)
given by the disintegration of p on the partition £“*.
For each 1,72 as above and a € (0,1), define

Ay sia = Ap € A1 iy (4, (p)) > 1 —a.}. (41)

Remark 9.7. By (@), for any two numbers a,c € (0,1) there exist y1 > 0 and v € (0, %)
sufficiently small such that p(Ay, ,.0) > 1—c.

By Lusin’s theorem, there is a compact set Ao C T* with measure arbitrarily close to 1 such
that the parametrized stable and unstable manifolds W, (p) and W,f(p) vary continuously in the
Cl-topology, for p € Ay, on the space of embeddings C*([—r, 7], T?) for any r € (0,1).

Given 0’ € (0,7) and a one-dimensional space E in R?, let 6y (E) be the cone centered in E
with angle 6’. In what follows, we will consider exp to be the exponential map on T2, and we
identify every center manifold with the two torus T2.
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Lemma 9.8. Given 0’ € (0,7), there exist 7o, 71 > 0 such that for any two points p = (p1,p2) and
q = (q1,q2) both belonging to Aa, such that d(p,q) < 7o and g2 € W3 (p2), we have:
1. exps (W2 () © G (3). for = — or +

T1

2. exp, '(HE, ,, (Wi () C o (E, ) + exp, M (q1).

q2,p2 T1

Proof. Recall that on As, for r € (0,1), the map Ay 3 p — W (p) varies continuously on the space
of embeddings C*([—r, 7], T?). Hence, we may fix #; sufficiently small such that for each p € Ay we
have that exp,, (W} (p)) C €s (L), for x = — or +.

Using that p — E varies continuously on A, one may take 7y sufficiently small so that if
d(p,q) < 7o then E C %% (E, ). Recall that if po and ¢z are in the same strong stable manifold of
size 1 for g, then dei (H,, ., 1d) < Cd(pa, g2), for some constant C' > 1. If 7 is sufficiently small
we also have that exp, '(Hg, .. (W7 (q))) C ¢o (DH,, ,,(0)E, ), and DHg, , (0)E; C Co(Ey).
This implies the second item of the lemma. O

For each Iy, we may consider the set A3 C Ay of points having the value I(p) bounded above by
lo, where [ : T? x T? — [1,+00) is the function defined in Section We may also fix 79 > 0 and
71 > 0 small enough such that for each p € A3, we have

(a) Wz (p) C Wi, (p), where W,

loc

(p) is the local stable manifold defined in Theorem

(b) for ¢ = (q1,42) € Az such that go € Ws(p2), if d(p,q) < 7o then ¢, ' (Hy, . (W7 (q)) is

T1

contained in the graph of a 1-Lipschitz function G : D ¢ R~™ — R*, where D C R‘(Zgl).

The second point above follows from combining the estimates from Theorem [9.3] and Lemma
Observe that by taking Iy large, the set Az has py-measure arbitrarily close to p(Asg).

Lemma 9.9. For everyy; > 0, v2 € (0, %) and A3 C Ay C Ay as above, there exist a measurable set
A C A3, with p(A') arbitrarily close to p(A3), constants rg € (0,79), r1 € (0,71), and Cy,Co,C5 >
1, with the following properties: For each p € A’ we have

1. C%d(p,w) < by (w)]| < Crd(p,w), for every w € W (p), with x = — or +, where h* is given
by Proposition [9.4);

Let p = (p1,p2) € N, p' = (p},05) € o, (p) N A and q = (q1,q2) € N’ such that g € WS (p') and
d(p’,q) < rg. Then,

2. Wi nH, ,pg(Wr_l (q)) is a single point w', furthermore this intersection is transverse with

angles uniformly bounded away from zero inside T,T?;

3. Hp (W (p))NH,, ” (WS (q)) is a unique point 2', this intersection is transverse with angle
uniformly bounded from below.

4. For 2’ and w' as above,

C%d(pc ) < d(p w') < Cad(p), 2');

n /
1 _ D" @)k, w o
Cs = IDg™ (@)l

< (3, for every n > 0.
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6. For any x € A" and y € W} (x) we have that

L IDg™" W)z, wit ()l
Cs = [IDg=™(@)| g+l

< Cjs, for every n > 0.

Proof. Ttems 1—3 follow from C'-topology, Lusin’s theorem and using that in our setting there exists
a constant C' > 1 such that xo € Wy (y2) with d(z2,y2) < 1, we have d(H; Id) < C.d(z2,y2)

T2,Y2?
(similar estimate holds for unstable holonomies). One can also conclude that for any 1 > 0 small,
if 7o > 0 is sufficiently small the conclusions hold.
To prove item 4, by items 2 and 3 above, the angles of the intersections W (p’) NHG, . (W, ()
and Hp, p;(WT: (p))N HE, (W5 (g)) are uniformly bounded away from zero (depending on 71,72
that are fixed).

Fix 6/ > 0 small. We may suppose that r; < 71 and 7y < 7o are sufficiently small so that items
1 — 3 remain valid, where 7o, 7; are the constants given by Lemma [0.8 From the conclusion of
Lemma we obtain that for any x; € W (p'), x2 € Hy, o (W (q)), and x5 € Hp, (W, (p)), we

have that the angles between T,,, Wt (), Ty, He, o (Wr (@), and Ty, H ) p'Q(le_ (p)) are uniformly

bounded from below. The estimate in item 4 then follows from the law of sines (see Figure [2).

Hiw (W, lg])

(W () AN

+
.| W)

Figure 2: Comparing d(p’,w’) and d(p’, ).

Since in As the function I(.) is bounded by ly, by the properties given by the Lyapunov charts,
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we obtain that there exists a constant C'(ly) such that for any n > 0,

+(g— + M\,
d(Tq_"(y)er(g n(x))»Eg—n(x))ﬁc(lo) pre o e,

We also have that d(g~"(z), g " (y)) < lokoe™* 25014 () for n > 0. In what follows denote
Ty-iyW (g7 () by E,_,, x_; = g7 (x) and y_; = g7 (y), for any j € N. Observe that

1D~ (y—)le, Il < ||g||02||Dg_1($7j)|E;;j lmax{d(z—;,y—;), d(E,_,, EI )}

Since »
HDg‘”( 15, H | Dy yj>|EM||
|Dg—" |E+|| 1Dg=(z—5) gy Il

the result then follows combining the estimates above.

The proof of item 5 is similar to the proof of item 6. One uses the information that the future
orbit of the points w’ and ¢ converge exponentially and that the respective tangent directions
considered also converge uniformly exponentially fast on As.

O

9.4 Reparametrized suspension flow, stopping times and the Martingale
convergence argument

9.4.1 The suspension flow

It will be convenient for us to work with the suspension flow associated with g and a reparametriza-
tion of it. Let us recall the definition of the suspension flow.
Consider the 5-dimensional manifold M = T* x R. On M consider the following equivalence

relation
(p,1) ~ (9(p), 1 = 1).

Let M = M/ ~ be the quotient manifold, and consider the flow ®; : M — M defined by ®,([p,1]) =
[p,] + t], where [p, 1] denotes the equivalence class of the point (p,1) € M. For ¢ = [p,1] € M, we
consider the center fiber Tg which is given by the projection of T? x {ps} x {I} € M into M. The
fiber T% is naturally identified with T2. We will use the coordinates on M induced by T* x [0, 1).

Consider the measure on M defined by & := p x Lebg, where u is the measure on T and Lebg is
the usual Lebesgue measure on R. This measure projects to a probability measure w on M, which
in the coordinates T* x [0,1) can be written as dw(p,!) = du(p)dl. Observe that this measure is
invariant by the flow ®;. Recall that X is the set of full g-measure on T* where the Lyapunov
exponents are well defined. Let Y be the projection on M of the set X x R defined on M. This
is a set of full w-measure and for each ¢ = [p,{] € Y, we may define the Oseledets splitting of the
center direction TCT% = Eg @ Ezr, where Ef = Dq)t(C).Eg, for x = —, +.

We can naturally extend to Y the vector fields p + vy (defined in Section 9.2) and the
parametrizations defined in . We can also extend to Y the Lyapunov norms defined in in
the following way. Let ¢ = [p,l] € Y, then for any v € EZ we define

* * 1-1 * !
Jollzy e = (1ol ) ™ (1D k) for 5 = =+, (42)
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We define in a similar way the one-sided norm ||v||s,,— ¢, for v € EZ“ This norm allows us to have
expansion or contraction varying continuously with the time. In particular, from the estimates of
Lemma we obtain:

Lemma 9.10. For ¢ =[p,l| €Y, for v € T;T%, and for any t € R we have that

R (] e 25 (O e o ]| 2

co, .80 (C)

<
X = e io,i,c
XN olf Lo < DRI, paye) < €N TIRIIE, L

Ifve EZ' then
+_
e o)l e < IDP(C)0lle, — 0 ()

Recall that L(.) is the function from Lemma The proof of the following lemma can be
obtained by a simple adaptation of the proof of Lemma 9.4 from [BRH1T].

Lemma 9.11. For w-almost every ¢ = [p,l], for any v € E;‘

Ceon L
[0l < llvlleo,—¢ < L(p)llgllcre (1 —e™=0) 2 o]
In particular, by defining L(¢) = L(p)||g|lcre= (1 — e=0)2, we have
L(@,(Q)) < e TVL(Q)

and

1 ) R
mHD(bt(C”EzH < HD(I)t(C)|E2r||ED7— < 6260(| H_l)L(C)”D(I)t(C)‘EZr” (43)

9.4.2 The reparametrized flow and the Martingale convergence argument

From the partition £“* we may consider the partition £“* obtained by the sets of the form [¢, {I}]
in M, where £ € £** and [ € [0,1). This forms an w-measurable partition. For each £ € £** fix
§," € € an Oseledets regular point for y and for E=1[¢1 € P let (¢ be the point [pe,l]. Given two
points ¢ = [p, (] and 1 = [g, ] such that g € W**(p), we write H¢, as the map induced by H}  in
the first coordinate and fixing the [ coordinate.

Consider the w-measurable bundle V' over M such that for w-almost every point ¢, the fiber
Ve is given by Eggu. This bundle can be obtained from the bundle ET over M in the following
way: for each ( € M we identify EZT with Eggu using the holonomy DHZ g (¢), recall that E*
is DH"-invariant.On the bundle V we may consider the linear cocycle over ®; given by Gi(Qv =
DH} (0) (®:(¢)) o DP4(() o Dng C(g?“)v, where v € V¢.

14608, () ¢

Claim 9.12. For any t > 0, and for any two points (,n such that n € éuu(g) it holds that

G_+(¢) = G_t(n). In other words, G_4(.) is constant on elements of the partition £“*.
Proof. Observe that

Gt(Q) = (Gu@-e(Q)™" = DHy e (24(C) 0 DE_4(C) 0 DHE,, (£)
[k (9] < B
- DH‘I’—t(C)’égit(c) (@-(0) ?H‘I’ft(ég“),‘b—t(@ o D2 (&%)
= PHy @nge ., 0 P2
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Recall that the partition €4 verifies @4 (£4(¢)) C £“*(®_;(¢)). Thus, for any n € £“*(¢) we
have £5" ) = &5" () and we conclude that G_;(n) = G_¢((). O

For w-almost every ¢ = [p,!] and any vector v € V; define

1-1 l
ol —.c 2= (ol )" (1G1, ODlE - y) (1)
where 1
Y, =1 S 1G,(Ip, 0)w|2e 2} i~ 2e0ldl
7<0,5€Z
Define
k¢(t) :=log |‘Gt(o||¥0,f~ (45)

Observe that Hv||¥0’7’,: is a one-sided Lyapunov norm for the linear cocycle Gy. From the
construction of G it is easy to see that it the Lyapunov exponent of G; is A*. In particular, for
every t € R we have the estimate

tAT — [tleo < log |G (Q)|1Y, —-

We conclude that k¢(.) is an increasing homeomorphism of R. Moreover, the function k. verifies
the cocycle condition, that is, r¢(t1 +t2) = Ka, (¢)(t2) + K¢ (t1)-

Claim 9.13. There exists a uniform constant C > 1 such that for w-a.e. ¢ and any s € R,

1 s A s
56 < ”D(I),g;l(s)(C”EerEo,— < Ce’.

Proof. Let t = Hgl(s) and observe that by definition log |G¢(¢)||Y, _ = s. Fix a non-zero vector
v € V¢, hence
GO, aie
anx),_,g
Set vt = Dng v and observe that
e,
D24 (v [lo,— ()

Dq) C " = 9 s Xt .

” t( )IEC ”80, HU+H€07*,C
Recall that for any ¢ € R, Gy ({)v = DH" . (®¢(¢)) o DPy({) o DHY (ég“)v In partic-

guu g

@y (C)ég;(()
ular, Gi(Q)v = DHG )z (24(0)) 0 D8(C)uT
®e(0:€5 ()

Since the distance between any point ¢ and £;* is uniformly bounded from above, there exists
a uniform constant K > 1 such that for any non positive integer j < 0,

1 _ |IDg (p)ot|
K <16 Mo =%

The result then follows easily from the remarks above and the definitions of the norms ||.[|¥ _ ¢ and
[leo,~¢-
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Recall that Y is the set of w-full measure of Oselede ts regular points. We consider the
reparametrized flow ¥, : Y — Y defined by

\Ils (() = (I)HEI(S) (g)

For ¢ = [p,] € Y, let h(C) = A(€™) = log |G ([p, O], _ g ), where [o]lY, _ . = 1. By (F),
for any t € [—1,1 — 1) we have that
Relt) = th(c). (46)

For s € R such that 757 +1 € [0,1), we have that ¥4(¢) = [p,l + ﬁ] That is, % gives the
¢

local change of speed of the flow ®; to obtain the flow ¥,. In particular, k¢(t) = fg h(®
Observe that h(¢) > AT — ¢ for w-almost every (. We also have that [ h(¢)dw(¢) < 400 (see Claim
9.5 in [BRHI17]) and hence the flow ¥, preserves the probability measure &, which in coordinates

is given by
4(¢) = ) auy(0). (47)
J h(n)dw(n)

Since the measure w is ergodic for ®;, we obtain that @ is ergodic for Ws.
Observe that the partition §"" is both w and @ measurable. Let B be the o-algebra generated
by the partition 5“" Let wC and wc be the conditional measures of w and @w with respect to the

o-algebra B. This is the same as considering the disintegrated measures of w and & with respect
to the measurable partition £“*“. From we obtain that

disB (n) = Th)asE ) hizz dwB (n).
C

By construction, the function h is B-measurable, since it is constant on elements of the partition
£¥t. Since w? and d}? are probability measures, we take

J\ml

WE = wf. (48)

The function (¢, —t) ~ k¢(—t), where ¢ > 0, is B-measurable. This follows from Claim
In particular, the semiflow ¥_; is B measurable. We also have that W (B) C B for s > 0, where
U, (B) := {¥,(C) : C € B}, this follows from the fact that f““ is decrasing for the measurable flow
,. Write B, = ¥,(B). We have that B, C B/, for s > s, and we obtain that {Bs}s>o forms a
decreasing filtration. Let B =Ns>0 B,.

Let p: Y — R be a w- 1ntegrable function, in particular it is also @w-integrable. For w-almost
every C, define the conditional expectation E(p|Bs)(¢) by

Ea(plB,)(¢) = / po Wi o) = [ o205 )

By the WUg-invariance of @ it is easy to conclude that (\Ils)*d)go_ © = d}fs. Furthermore, since
\Ilsf(éuf) refines W, (£%), whenever s < s’, we can also conclude that E(;,(Ew(p\[;’s)ﬂgs/)gn) =
E;(p|Bs)(n). Thus, Eg(p|Bs)(.) defines a reverse martingale for the decreasing filtration {Bs}s>0
on (Y,w). By the Reverse Martingale Convergence Theorem (see [EW11] Theorem 5.8) we obtain
that for @-almost every ¢ we have the convergence lims_, o0 Eg(p|Bs)(¢) = Eg(p|Boo) ().
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9.5 Stopping time and bi-Lipschitz estimate
Let (€Y. For § >0 and t € R, define

res(t) == sup {#' € R: 1D24(O)] -1, 0,01 D20 (@i 11 0, 0 <0
Define L¢ 5(t) := t + 7¢s(t). Observe that the functions 75 : R - R and L¢s : R — R are
increasing homeomorphisms.

Lemma 9.14 ([BRH17], Lemma 9.7). The functions 7¢ s and L¢ s are bi-Lipschitz with constants
uniform in {,0. In particular, for t' >0

Tt < ms(t+t) —es(t) < Rt
At ——2 At—A"42
At < Les(t4t) — Les(t) <0 Asp=treot,

9.6 Estimates for the holonomies
We will need the following estimate on the holonomies.

Lemma 9.15. Suppose that Ej" is 6-Holder for some 6 € (0,1). There exists a constant L > 1
such that the following holds true: given three points gz € T2, ¢4 € g1(q2), and g5 € W32, (q2);

let G2 be the unique point of the intersection between Wp*,, .(¢3) and W'5(q5), then for any q1 € T2

A (Hl g (), H, g 0 Hi g, 0 Hy, s (1)) < Ld(az, 63)".

Observe that if the strong foliations were jointly integrable, then for any points as above, we
would have
H;é";% ((Zl) = H;g#'iz’
and Lemma would be immediate. This lemma will give a quantitative (upper) control on the
non-integrability.

Proof of Lemma[9.15 By the triangular inequality, we have

d (ngng ((h)’ ngng °© H;S,Qz °© Hgmfli (QI))
<d (H‘??wq; (ql)’ Hgiiﬁz © ng,qg (ql)) +d (H:;E#h © ng,Q§ (ql)’ Hf?z#lé‘ © H‘?‘S@z ° ng,qé (Q1)) .

Since the foliation F“* is §-Holder and the distance between g2 and ¢¥ is uniformly bounded form
above, there exists a uniform constant Ky such that

@ (HL g (a0), H g, 0 i (0)) < Kdlan, H g5 (00)
Since the distance between G» and ¢35 is uniformly bounded form above, we have

0 Hy, 3 (01). Hi, g3 © i g, © H gy (01)) < Kad(da,05),

d (H:;Saib
where K is a uniform constant.
Notice that d(q1, Hg, o (q1)) < K3d(g2,¢5) and d(Gs, ¢%) < K4d(q2,q5). The result then follows.

O
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9.7 The proof of Theorem (9.1

For this section we fix g € Sk? (T? x T?) and p an ergodic u-Gibbs measure for g that verifies the
hypothesis of Theorem [0.1] Suppose that p does not verify the conclusion of Theorem [0.1] By
Theorem and Proposition (the Invariance Principle), we have that

hu(g™! ) < (g3 ') < (g ™), (49)

where v = (72), 4 is the unique SRB of go.

Let £° be a p-measurable, s-subordinated partition, and observe that £° is a unstable partition
for g=! (we recall that in our notation £° is subordinated to the two-dimensional Pesin stable
manifolds of g). By Ledrappier-Young’s entropy formula results (see Theorem C’ in [LY85-2]), we
have that h,(g7') = h,(g7",£%). Hence,

hﬂ(gfl’]:ss) < h#(gil,fs)

Take £°° a measurable partition subordinated to F°° that refines the partition £°. For p-almost
every p let u3® be the conditional measure of y along £°* (p) and let py, be the conditional measure
of v along £°(p). By Ledrappier-Young’s entropy formula we also get that for p-almost every p, the
dimension of the measure y;, is strictly greater than the dimension of the measure y;°. Since the
measure p; can be written as fgs(p) pg®dps(q) we conclude that the measure yi5 is not supported
on £°%(p). Moreover, for any 6 > 0 we could have chosen these measurable partitions having its
elements with diameter smaller than §. Since we are assuming g to have atomic disintegration
along the center, we conclude that for any § > 0, for p-almost every p, there is a point ¢ € W§(p)
such that ¢ ¢ W**(p) and ¢ is an atom of p.

9.7.1 Fixing several parameters and sets

We now fix the choices of several parameters to obtain a set of large measure of “good” points for
which we can apply the strategy.

(A) Fix 8 € (0,1) small such that ifﬁ < A=A 2%

B —A"+eo
(B) Fix k1 = AT 20 yo) = ATA 4920 5pq g = L
1= AT +eo ) 2 = Ay —¢€o 0= 5(H1+H2)'

(C) Recall that in Section we defined the equivalent measures w and @ which are invariant
for the suspension flow ®; and the reparametrized suspension flow W, respectively. We were
also using the notation ¢ = [p,] for points in M, where p € T* and [ € [0, 1).

Fix Ny > 1 large such that

w{g:Nglgi‘i(g)gNo.}>1—°;].

On M we may consider the measurable partition induced by the center foliation on T*. For the
measure w, we will write w¢ the conditional measure on the leaf containing .

(D) By Lusin’s Theorem we fix a compact set Ko CY C M of w and & measure arbitrarily close
to one ( where Y is the set of full w-measure defined at the beginning of Section such
that:
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(H)

@

(i) the vector fields ¢ — vf;
(ii) the parametrizations defined in and extended to Y in Section
(iii) the Lyapunov norms defined in (42);
(iv) the map ¢ — wg;
(v) the function L(.) from Lemma

vary continuously in Kj. In particular, I:() is bounded by a constant Lo in K.
Recall that by assumption w¢ is atomic for w-almost every (. By the continuity of ¢ — w¢ in
K, there exists a constant £; > 0 such that for any ¢ € K

min{d(n1,72) : n1 and ny are different atoms of w¢} > e1. (50)

Let Cy > 1 be the maximal ratio between the Lyapunov norms defined in and the
Riemannian norm for the points in Ky, that is,

+1 +1 +1
Com s s (aneo,i,q) ’<||v50,i,<> 7(||v||50,-,<> |
(Ko veT T2 —{0} vlle,~ ¢ [[v]] [[v]]

From Remark fix 41,72 > 0 small such that p(A,, 4,,09) > 1 —ag. Let A’ C T?, and the
constants Cy, C2,C3 > 1 and g, 71 > 0 small given by Lemma[9.9] We may also suppose that
p(A) >1—2a. Write 4 := A, 4,09 % [0,1) and for ¢ = [p, ] write <%, (¢) = <, (p), where
oy, (p) is defined as in Section

V2

Let L* be a constant such that for any ¢ € £*“(p) and for any x,y € T? we have

() < d(HY (2), HYy () < Ld(,y).

p.q

and let L be the constant obtained in Lemma [9.15] Take C* = L* + L.

. log(C?C2LACS A
Take T := M, where C'is the constant from Claim [9.13
— <o
Fix K = Ko N [A’ x [0,1)]. By taking the previous sets with sufficiently large measure, we
may suppose that w(K) >1— 9§ and &(K) > 1 — 553-.

Observe that if p : ¥ — [0, 1] is an integrable function such that [ pdw > 1 — ab, for constants
a,bthen w({p €Y :p(p) >1—a})>1—>. Indeed, write B={p €Y : p(p) >1—a}, then

1—ab</pdw:/dew—i—/}/_dewSw(B)—l—(l—a)(l—w(B)),

and this implies that w(B) > 1 —b. . )
Recall that in section we defined B, = W(B). Let 1x(.) be the indicator function of

K .Consider E,,(1x|Bo)(¢) = f]l(n)dw?“ (n). Take a = 0.1 and b = o, we have that

1= <ali) = [ ([ e m) auo).
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By the argument above, we conclude that w({¢ € M : B, (1x|Bo)(¢) > 0.9}) > 1 — ayg.

Similarly, using and by taking a = 0.1 and b = 53, we conclude that &({¢ € M :

Eo(1x|Bso)(¢) > 0.9}) > 1 — - From we can conclude that w({¢ € M : By (1x|Bso)(C) >
09}) >1—ap.

(I) Take By :={Ce M : wf“ (K) > 0.9}. From the argument above, w(Bg) > 1 — ayp.

(J) For each N > 0 let By = {¢ € M : Ey(1g|Bs)(¢) > 09,¥s > N} = {( € M :

of)g_ 0 (Y=s(K)) > 0.9,Vs > N}. By the Martingale convergence argument from section

we have that for &-almost every ¢,

lim E@(IK‘BS)(C) - Ew(]lKu;)oo)(C)

s—+o0

Hence, fix N sufficiently large so that min{@w(By),w(Bx)} > 1 — ap.

For each T' > 0, let R(T') be the set of points ¢ € K such that for B = K, 4, By, B it holds
that

1
TLeb({t €10,T): ®4(¢) € B}) >1—aug
(K) By the pointwise ergodic theorem, fix Ty > 0 large enough such that w(R(7p)) > 0.

9.8 Back to the proof

Recall that we supposed that u does not verify the conclusion of Theorem[0.1] Recall that €; > 0 is
a small constant fixed in (50)). Since R(Ty) > 0, we may fix two points in K, ¢ = [p,!] and n = [g, 1],
such that

b Ca ne R(TO)a
e g€ Wi.(p);
* g ¢ W>(p).
Let 0 = ||h, (H; ,(q))|l, where h,, is the local chart obtained in Proposition . Furthermore,
we may assume that
)< 8—1
20+C2CEC3Cy

Lemma 9.16. There exists a sequence (t;);en of positive numbers with t; — +o00, as j — +00,
such that

1. @4,(¢) € KNBy N A;

2. &4, (n) € K NDBoy;

3. @ 41,)(C) € KN By, where By is defined in|(T);
4. ®r.st(n) € KNBy.
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The proof of Lemma [9.16] is the same as Claim 12.2 in [BRHIT].

Let t; — +o0o be a sequence verifying Lemma Let G = ©,(C), mj = P¢,(n), {“j =
Pr.se)(C) and 7 = Pp 1y(n). Let s = k¢, (1¢,5(t5)) and 87 = ky, (7¢, 5( ) Notlce ‘that for t;
sufficiently large, since 7¢ 5(t;) — oo, and by the definition of the  function, we have that

mln{s], ]}>( —e9).1¢,5(t;) > N.
Since (j, 7j; € By, we have that

Es(1x|By )(() > 0.9 and Eg(1x|Byy)(7;) > 0.9. (51)

For a point ¢ = [p, 1], by construction, there is a natural identification of w8 ¢ 5 with pt- We also

recall that in the skew product setting, since y is u-Gibbs, (m2).pu5" = Va(5)" Write ¢; = [pj, ;]

and 7; = [g;,1;]. We have the following:

e Since (; and n; belong to By, we have that min{wg (K),wfj (K)} > 0.9.
e Since (; € 4, we obtain that w? (Ay, (G)) = ppt (Ayy (ps) > 0.9.

e Observe that U_, (fj) = (¢;), by the definition of s’ and (j, we have that Uy (CJ)

’1( s%)
() = ¢ Similaly, Vg (i) = ;-

e By and the previous item, we obtain that
@B (U_y (K)) > 0.9 and @8 (W_ 0 (K)) > 0.9,
Using the identification in , we conclude that
W (U_ (K)) > 0.9 and w8 (¥_ 0 (K)) > 0.9,

Observe that (; and n; both have the same time coordinate. Recall that the invariant foliations
for ®; are induced by the foliations of g. In particular, for any two points with the same [-coordinate
we can look at the holonomy map induced by the center stable foliation between the pieces of strong
unstable manifolds. We remark that the center stable holonomy induces a C'' map between strong
unstable manifolds. In particular, for j € N sufficiently large, we can choose points (; € £“*(¢;)

and #n; € f““(nj) such that
® 7, € WCS(Zj);
o7, €V (K)NK;
o (€U (K)NKNA, ).

Write Zj = [ﬁj,lj] and n; = [gj’lj]'
Let @, = W(p,) N Hj 5 (W (@) and let @; = [, Let % = Hy 5 (W (p;)) N

HE 5 (W(g,)). Since p; € Ay, (p;) and g, € K, by Lemma. we obtain that

4;:P;

1

0.6, P 25) < 1h5 @)l < C1C2d(p;, %),
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observe that by taking j sufficiently large and by Lemma we may suppose that p;,p; and g,
verify the hypothesis of Lemma Write ¢f = H;; , (q;)

4j:P;

Lemma 9.17. For j sufficiently large, we have

1 * — = * *
@d(pj,qj) < d(p;,%z;) < C*d(py, q;),

where C* is the constant defined in|(G)
Proof. Write ¢; = H};, 5 (qj). By Lemma we have that

d(H"

v o (@) 5 o HY o o H () < Ld((p))2, (4)2)° < LIDglg- | (52)

Ess

Since the angle between Hy - (W, (p;)) and Hy 5 (W1 (g;)) is uniformly bounded away from

r1
zero, by we conclude that d(7},%;)) < C4L|Dg ti9, for some uniform constant Cy > 0.

E‘SS
H 5 (W, (@)
A L RO
Py i
| W)
u é —
(P3)2 Breensniinienin i i @)
5
E

(gj)a ®rrrrrrrrn SAICIITEE IR TEIER LI s (G5

Figure 3: Control on distances
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Since H* is C' and the diameter of the elements of the partition £%* is uniformly bounded,
there exists L* > 1 such that for any z,y € T2,

1 u u *
—d(w,y) < d(H, 5 (2), 5 (5) < Ld(z,y).

Hence,

t;0

d(p;,q) < dp;,q) +d(@ %) < d(Hy, 5 (pj), Hy, 5.(¢7)) + CaL||Dg|ges

| Dg|g=-|%°
7 d(pj,q;)

ge)d(p, H; ,(q)) and by the condition ([32), for j sufficiently large

| Dy ”9<<||D9|Ess||9>“ G
d(pj,a;) ~ \m(Dglge) ) d(p,H; (q))

Therefore, for j sufficiently large

IN

However, d(p;,q;) > m(Dg
we have

C4|

The proof of the lower bound is similar. O

Combining the estimate from Lemma and the estimates for ||h (w;)]|, we obtain
J

1

md(pj,q;‘) < by (@) < C*C1Cad(py, 45).

However,

d(p;,q;) < Cillhy, (g < CoChlly,, (g7)lleo.+ 0,
= CoCi[D®y, (Ol gt leo £ l1hy (Hg (@) |0, 2.0 < CEC1IDP; (O] g N0, 26

Similarly, we can obtain the lower bound

N 1
d(pj,q;) > mHD‘I’t,- (C)|E;r||eo,i5-

Let t; = /ii_l (s7) and t] = H%jl (s). Observe that Wy (¢;) = 4 (¢;) and Wy (7;) = Py (7).

S = = _ _ _ _
Write &) = ®y/ (fvj% = Pu (C;) = 0}, 51,y o= @o (W) = [¢, 1] and 0 := @40 () = [qf, 17].
Recall that C is the constant given by Claim

1 .
im 9.18. ————§ < ||hd, @))|| < C2C{CCy0.
Claim 9.18 0208012026 < Iz @)l < C*C5CTC8
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Proof.

||h§;@})|| < Co||h§; @)lly,—z, = Coll D®y, (Zj)|Egj||€0,*Hh’%:(wj)”80,—,zj
< GECes bt @) < C*CCECECH Dy, (Q)] gt |y 406
= C*C?CSLCszIID%(C)\EC—IIso,i5||GT<,5<tj)(Cj)HZO,f
< C*OQCgCIQCQHD‘I)tj(g”E;||Eo,i5HD(I)TC,,s(tj)(Cj)|Ezfj”80,—
< C O CEORC|| D2, (Ol Nlao 81 DPr 50, (6l Nl = C*C2CHCRC.
The proof of the lower bound is similar. O

Since Z; € K, we have that C%th, @) < d(ig,w;-) < Cl||h%r,j (@)l Notice as well that @,

J
belongs to the stable manifold of ﬁ;, indeed, w; € Hy - (W —,, (;)). From the definition of ¢}, we
I3
have that t; — 400 as j goes to infinity. In particular, d(w},ﬁ;) — 0 as j increases. Hence, for j
large enough, we have that

1
@, 1) < ——————0. 53
@3:1) < Semeaccac, (53)
From Claim the estimate and triangular inequality, we obtain
1 N
— 5 < d(p},, HS , (¢})) < 2C*C*CECCyo. 54
20+ C208C3C, (7 ;P (g;)) < 0C1C2 (54)

Claim 9.19. [t} —t]| < T, where T' is the constant given in .

Proof. We consider two cases.

Case 1: t; > t]. As Zj eK, from and (43)),
_ 1 - 1 -
v
16 @I, 2 ZIDy Gz - = 7 N0 Gl I

Since 7} € K, we have

1Gey @IE, — < CIDDey ()]s ey~ < CCEIDPey (7)o |1

€0,

Let n' = [t} | be the integer part of ¢}, and let n” = |t | be the integer part of /. Observe that we
are assuming that n”/ < n’. We also have that n”/ > 0.

’I’L” _ ’I’L” - _n/ 7/. _ n'fn” W
IDg @les |l 1D @l | DI @l | 1Dy @) e |
1Dg™" @)l s | 1Dg™ @)y w+@pll 1D~ @)z, we@pll™ 1D~ =) (),
J J Pj
=1I1I1II
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Recall that w; € HS (W_ (@;)). In particular it belongs to the stable manifold of g;. By

r1

item 5 in Lemma- Iis bounded by C;' and C3. Observe that —(n’ —n”) and —n' are negative
numbers Since w; € Wi "(p;), from item 6 of Lemma. we obtain that II and I1I are bounded
by C ,  and Cj. Hence

Thus,
CCRIID®y () s || 2 |Gy M)l — = |Gy (C])IIV U DG (€I, -
15
+ 1z
> e ' A@
By (55)),
e —e0) (¥ —t]) < 6‘20313003.
Therefore,
! log(CZCgLOC??) _ T
J J = N €0 o

Case 2: t; <t]. Observe that, similar to the first case,
_ 1 _ _ . _
G @)% - = i DDy (m)\Egj | and |Gy (C)1%, - < CC|| D@y, (C)lez -
0 : i

We have

_ 1 = — _
1D®; ()] g lleo,~ = 7 ;)| | and [D®4 ()l oo~ < CgllD‘Pt;(éj)\Eg I
J 0 nj ’ j ’ J

We also have
’_ n (= —n' (!
1Dg™ (@)l g+ | 1Dg"™ @)+ | 1Dg™ @)l g |

||D9”'(27j)|Egj|| a ||D9”'(Ej)|T@jw:g(5j)H'||D9_"/(E;‘)|TW;_WJ1(§;)H.

From items 5 and 6 of Lemma[0.9] we obtain

LD @l
3 = g @l 1 =

Hence,

~ — — +_ 1"t _
CCRIDPy )lp: |2 1G @I = Gy I, - = N =) |Gy (7)1,

HEo,f

v

+_ "_
e —e0)(t] t) ||D‘I>t“(j)|Ezr||-

68



Therefore, R X
log(C2C2LoC3)

<T.
>\+—€0 -

1 !
) —t) <

O

Up to taking a subsequence, we may suppose that the sequence Z; converges to a point éo, the
/ J—

' — 1 converges to a number t e [-T,T) and

sequence ﬁ;’ converges to a point 71, the sequence ¢
;= - (777) converges to a point 7jg = ®;(1).

Since q; belongs to the center stable leaf of p;-, from we obtain that

1

>——— >0
20+C2C8C3C,y

d(70, Co)

Observe that since Z; € K and Z; is an atom of w%, then CAO is an atom of wg . Similarly, 77 is an
j 0

atom of wgl. By the ®;-invariance of w, we obtain that (@g)*wfh = w%o = wzgo

an atom in 7j5. However, d(éo,ﬁo) < 20*6’208013025 < &1 and this is a contradiction with .
This concludes the proof of Theorem (9.1

. Therefore, wéﬁ has
0

10 Appendix A: C%-regularity of unstable holonomies

In this appendix we prove Theorem Let f be a C?>T* absolutely partially hyperbolic skew
product of T* = T2 x T? and let x*%, x°, X5, X" be the partially hyperbolic constants of f. We
say that f verifies the (2, @)-center unstable bunching condition if

C 2 C
X+) uu X+ uUuU\
=] <x"™and —/— <(x . 56
<x (x2)? &) (56)

Similarly, f verifies the (2, «)-center stable bunching condition if

X<
(x$)?

If f verifies condition and then we say that f is (2, a)-center bunched. In this section,
for any point p € T* and any n € Z we write p, := f"(p).

In this appendix, we use the (2, a)-center unstable bunching condition to obtain C2?-regularity
of the unstable holonomy inside a center unstable leaf. Recall that given p and ¢ belonging to
the same strong unstable leaf, then there exists a well defined strong unstable holonomy map
HY, : W¢(p) = W¢(q). Since the center manifolds are T?, we have that each unstable holonomy
is a diffeomorphism of T2. For each R > 0, we consider the family {H;f,q}pe?r‘l,qewg”( . The main
theorem of the appendix is the following:

N
X% < (XC) and (x**)* < (57)
X

+

p)

Theorem 10.1 (Theorem [2.10). Let f be a C?*T< absolutely partially hyperbolic skew product of
T4, and fir R > 0. If f is (2, a)-center unstable bunched, then {H) ypert qewpn(py s a family of
C?-diffeomorphisms of T? whose C%-norm varies continuously with the choices of p and q.
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It is easy to see that this theorem follows from the case that R = 1. Observe that the (2, a)-

This condition is the regular bunching condition which is sufficient to prove that inside a center
unstable manifold, the unstable holonomy is a C'-diffeomorphism. For each n € Z, for each p € T*
and ¢ € W}*(p) we have

center unstable bunching condition implies

froHy,=Hp, o of"and Df*(Hy,())DH,,() = DH, o (f"())Df"(), (58)
where Pn = fn(p) and qn = fn(q)
Since the center leaves are T2, all its tangent spaces have a canonical identification with R2.
In particular, we may consider DHY (.) to be a continuous map from T? to L(R? R?), where
L(R? R?) is the set of linear maps from R? to R?. Thus, the family {DH;' (.)}pers,gewuu(p) 18
a continuous family that takes values on C°(T?, L(R?,R?)). Furthermore, there exists an uniform
constant C' > 1 such that
IDHE, () - Id]| < Cd(p, q). (59)

Fix some constant K > C and let £ be the set defined as follows: an element £ is a continuous family

of maps {4, ¢}pers gewne (p) that takes value on C°(T?, L(R?,R?)) such that || 4, ,—Id| < Kd(p, q).

For simplicity, we will denote a family {A; 4}pere gewuu(p) by A, such that Ay 4(.) = Ap4(.). We

will also write the continuous family given the derivative of the unstable holonomy just by DH".
Observe that £ has a natural distance defined by

JAB) = sup {sup ||Ap,q<x>—6p,q<x>||}.

pET4,qe Wi (p) (zeT?

For each n € N we define I',, : £ — £ in the following way: for each p € T* and ¢ € W%(p), then

Ln(A)pg() = D" (Hy o (T ODAp_gn (FTO)DFT()- (60)

By (58)), for any n € N the derivative of the unstable holonomy DH*" is I',-invariant, that is,
I',(DH") = DH". In the next lemma we prove that it is the only element of £ that has this

property.

Lemma 10.2. For any A € L, the limit lim,_, o [, (A) exists and it is equal to DH*. Moreover,
DH" is the only element of L which is T',,-invariant for every n € N.

Proof. Let A€ L. Fix p e T* and ¢ € W{**(p), and we write H, (.) = HY ,  (.). We will use a
similar notation for A,  , .. For any z € W¢(p), we have

T (A)pq(x) = DH ()| = D" (H", (z-n)) (A-n(z-n) = DH", (z_p)) Df " ()]

ﬁ ! T — v (x
< (Xc_ ) A () = D, (2-0)]

xi\" o) « ()
< (% ) (1A 0(o—) — T + [ DI, (e) ~ T
<(3) wronm ).
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The center bunching condition implies that

Xg (o uuy-

Hence, ||T',(A)p,q(z) — DH} ()] goes to zero uniformly as n goes to infinity. Since d(p, q) < 1, this
estimate is independent of the points p, ¢ and x. In other words, lim, . d(T',(A), DH") = 0.
Moreover, if A is T'y,-invariant for every n € N, then lim,, o d(T'n(A), DH") = d(A,DH") = 0
and thus A = DH". O

For a C2-diffeomorphism g : T? — T2, we have that Dg(.) is a map that belongs to C1(T?, L(R?,R?)).
In particular, D?g(.) is a map that belongs to C°(T?, L(R?, L(R? R?))), where L(R?, L(R? R?)) is
the space of linear maps from R? to L(R? R?). The space L(R?, L(R? R?)) can be identified with
the space L?(R? R?), which is the space of bilinear maps of R? taking values in R?. The space
L?(R? R?) has a norm given by

1Bl = sup{[| B(u, 0)| : Jull = [[o]] = 1}.

Using this norm, we can naturally define a C%-metric in C°(T?, L?(R?,R?)), which gives a C''-metric
in C1(T?, L(R?,R?)) that we will denote it by df.. (.,.). We remark that the space C*(T?, L(R? R?))
is complete with dg,. (., .).

Consider the set £! of the elements A of £ such that for each p € T* and ¢ € W{**(p) we have
Ap () € CHT? L(R?,R?)) and it varies continuously in the C'-topology with the choices of the
points p and q. We define the C'-distance on L' by

dei (A, B) = sup {d*cl(Ap,q(-)vgp,q(-))}-

pET4,qeW [ (p)

It is easy to see that £' is closed for the metric doi. The strategy to prove Theorem is the
following: we consider the family Id in £' which is just the identity for any choices of p € T* and
q € W{*(p), next we consider the sequence {I';,(Id)},en and we prove that this sequence is Cauchy
for the metric df,,. Then, by Lemma we know that I',,(Id) converges C° to DH". However,
T, (Id) also converges C' and therefore DH" € L', which implies that {H} }pers gewnu(p) is a
continuous family of C?-diffeomorphisms.

Remark 10.3. In what follows, we will use the identification of any tangent space of T? with R2.
So that it makes sense, for any vector v € R?, to consider the composition D f(z)Df(y)v, for any
two points x and y. Theorem[2.10 also holds for other surfaces, the main point that will change in
the proof is two include the parallel transport between different tangent spaces of the surface, so that
we can make sense of similar compositions. This would include some extra terms in the computation
presented below, which can also be controlled to obtain the same conclusion. For simplicity, and
having our original problem in mind (perturbations of Berger-Carrasco’s example), we will work
only on T?.

Proof of Theorem[2.10. As we explained in the previous paragraph, to prove Theorem [2.10] it is
enough to prove that the sequence {I',(Id)},en is a Cauchy sequence. We fix p € T4, ¢ € W (p)
and 2 € T?. For each n € N, we define H*, := HY  (x_n)and I, := [',(Id)pq(x). Observe
that

T\ = D" (H")Df () = Df"(H",)Df(z_n 1)Df " (z_n)Df " (2)
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By 7 for each j = 1,--- ,n, we have fi(H",) = H®, . ;. Hence,
Lo = Df*(HY,)Df(H, _1)Df " (x—n)Df " ().

We want to estimate ||DT',,11 — DT, ||. First, let us evaluate DT, 1 and DT',. In what follows, for
a diffeomorphism g, we will write D?g(y)[.,.] to represent the bilinear form of its second derivative
on the point y. By the chain rule and using that Df(z_,,_1)Df~*(x_,) = Id, we obtain

DT[] =D (Df*(H" ) Df(x_n_1)Df (@ _n)Df"(2)) [, ]
= D2f"(H",) [DH",Df~"(z)., Df " ().] (1,)
+DfM(H",)D*f(x_p1) [Df " ()., Df " (2).] (IL,)

+DfM(H,)D f(x-n-1)D*f~H(w_p) [Df " (2)., Df " (2).] (IIL,)
+Df(HY,)D*f~(@)[., ] (IVy)

=1, + 11, + IIL, + IV,,.

Similarly,
DTUpial., ] =D (Df (H" )Df(H",_)Df (z_p)Df () [, .]

=D?f"(H",) [DH*,Df"(2).,Df(H",_,)Df" (z).] 1)
+Df"(H",)D*f(H",_,) [DH", _Df " *(2).,Df " (z).] (II,)
+DfM(HY,)Df(H", 1)D*f~H(z_p) [Df "(x).,Df "(x).] (IIL,)
+Df N HY, )Df N @) D2 (@) ] (V)

=1, + 1, + III,, +1V,.

To estimate ||T';,11 — 'y || we will separate it into four estimates.

The estimate for ||I/, — L,||

Let us first write the expressions for I,, and I/,. In what follows we use that f/(HY,) = H", 4 for
any j € Z. Then,

I, = D*f(H",) [Df* (H",)DH", D "(x)., Df**(H",)Df " (x)] (i)
- D(H" )D* [(H"5) [Df*>(H" ) DH", Df "(2).. Df" >(H* )Df "(2)]  (L,2)

+Df(H"y)--- Df(HEn+1)D2f(HEn) [DHﬁanin(x)-a Dfin(z)] . (In,n)
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We also have

L, = D*f(H")) [Df"~'(H",)DH", Df " (x)., Df"(H", _,)Df " (2).] (I1)
+Df(H")D*f(H",) [Df""(H,)DH", . Df "(x)., Df* M (H ) Df " (z).] (L)

+Df(H"))---Df(H", ,,)D*f(H",) [DH",Df "(x).,Df " ()] . (T,

Let C,, = Df(H", ,)Df'(z_,) — Id. For each j = 1,---n, we obtain

T = Lugll = IDF(H ) - DF(H" 1)
D2f(H" ) [Df*~I(H",)DH",,Df ~"(x)., Df*~I(H*,)CoDf " (x).]|

<UD F g || flloe | DF"
(x%)I L (x5 )2 (=)
<||fllc2
Xi 2n B o X:L 2n B
=||f||c2||DHun|(Xc> 1Cll ) < o=l DE" | (X) 1ol

2| DH,|[[DF " |ge|*|Cn

FEec

IDH®,[[ICl

We remark that in the last inequality we used that x¢ > 1. By , for every n € N, we have
|IDH", | < K, for some constant K > 1. Also

1Cull = IDF(H, D Ma—y) — 1d]|
= || (Df(HEn—l) - Df(ffnfl)) Df_l(m,n)H
< Xig||f||cad<x_n_1,Hﬁn_1>
< X%Hfllm(x"“)_"_ld(p, 0 < X%Ilfl\cz(x““)_”_l-

Hence,

T T f Z K XC ? uu\— "
s — Tyl < I B | OGNy

XMEXGEXE A XS

Take the constant

Oy = 1112 K
X*xG XS
and observe that )
n - N (XC ) n
I, =Ll < 3 [y — Tasll < (+ ) (61)
= X" (x2)

This gives the estimate we need for ||I}, — I,,]|.
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The estimate for ||IT/, — IL,||
This is the only part in the proof of Theorem that we use that f is C?*. Let
I, :== D*f(z_p_1) [Df " (2)., Df "' (2).]-D*f(H",_,) [DH",_,Df " (z).,Df " z).].

Notice that B .
T, = T | = (| Df" (H2 )T | < (x5)™ [T -

By the triangular inequality,
Ll < ID?f(z—p1) [Df " (2), DF "1 (2).]
~D?f(e—p-1) [DH, _,Df " H(2)., Df " H(2).] |
+|D*f(x—pn-1) [DH",,_1Df " (z).,Df " (z).]
~D*f(H", ) [DHY, \Df " H(z).,Df " (x).] |

= ||Dnll + | Enll-
Let us estimate each of these terms..
|Dnll = || D*f(x—n-1) [(Id— DH", 1) Df " (x)., Df " (x).]
<\ fllc2Id — DH®,, _|[[|IDf~" " (2)| g |”
1 n+1
S R - C uu 7n71dp7q
e () CO oo
1 n+1 1 n+1
< 20 ————= < 20 ———m—— .
M€ (prgz) = W€ (g )

Since f is C?*, There exists a constant Cy > 1such that | D2 f(2)[.,.]-D?*f(w)][., ]| < Cud(z, w)®.
Recall that ||[DH" || < K, for every j € N and some constant & > 1. Therefore,

HEnH S CHd(x_n_l’ HY

—n—1

) IDHY, (IDf~" g 2

1
w\—a(n+1
W(X )~ Vd(p, )

= Gk (M)

Co = ([ flle2C + CrK)

<CuK

Take the constant 1

We obtain

/ Xi- )n
I, — L[ < Co | —— ] . 62
| I=c ((X““)“(X‘i)2 o

The (2, a)-center bunching condition implies that the right hand side of goes exponentially
fast to zero. This gives the estimate we need for ||IT/, — IT,,|.
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The estimate for ||IIT,, — II1,,||
Observe that

LT, — 1L, || = |Df™(HY,,) (Df(HY, 1) = Df(z—p-1)) D*f"H(z—p) [Df ()., Df " (x).] |

< (X)"IDFHY, 1) = Df(—n-1)[(x2) 7"

We have
IDf(H, 1) = Df(x—n-1)|| <[Ifllcz(x*) "
By taking
2
C%:::|E;l?’
we conclude that ] N
X(/
nr, —111,|| < C (*) )
| I= G ey

This concludes the estimate we need for [|II, — IIL,||.
The estimate for ||[IV/, — IV, ||
Notice that
[TV, = Vo || = | Df"(HY,) (Df(HY, ) Df~(2_p) — Id) D*f~"(z)[., ]|
< ()" (DFHY, ) = Df(@—n-1) Df (@) || D> f~"(2)]
< (X" Ifllez(x) =) D2 (@)

Let us estimate ||[D?f~"(z)||. First, observe that

D2 f(a)],, ] = D*f (@ —pyr) [DF " ()., DF " ()]
+ Df_l(x,nH)DQf_l(x,nJrg) [Df_"“(ac).7 Df_"+2(x).]

+ D[ @)D f(@)], ]
Using that ||[D?f~1(.)|| < ||f~!||c2 and by the expression above, we obtain

n—1 n—1

ID2F =" @) < M e= Do) )2 = 1 o (k) 7 Yo (k).

j=0 =0
Since x¢ < 1, the sum . (X< )7 converges. Define the constant Cy as

e e o gen(xe )
- quXi '

Ch:
We conclude that N
XC
IV, —1IV,|| < Cy (*) .
I | NTTTORE
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Conclusion of the proof of Theorem [2.10

Take )
(x%) X5 X5 }
X ()2 () (x2)? xe (x)?
and observe that by the (2, a)-center bunching condition x < 1. Fix the constant €' := Cy + Cy +

Cs+ Cy. By ,, and we obtain that
[Trni1 — Tl < CA1Xn~

X—max{

Therefore, {T', }nen is a Cauchy sequence for the C''-topology. Observe that all these estimates and
constants are uniform with the choices of p € T*, ¢ € W**(p) and z € W¢(p). We conclude that
{T,,(Id)}nen is a Cauchy sequence in £ for the C*-topology. Since I',,(Id) converges C° to DH*,
we conclude that DH" is C'. This implies that {H} (.)}pers gewpu(p) is a continuous family of
C?-diffeomorphisms whose C2-norm varies continuously with the choices of p and g as above. [
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