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Abstract

In this paper we obtain C2-open sets of dissipative, partially hyperbolic skew products
having a unique SRB measure with full support and full basin. These partially hyperbolic
systems have a two dimensional center bundle which presents both expansion and contraction
but does not admit any further dominated splitting of the center. These systems are non
conservative perturbations of an example introduced by Berger-Carrasco.

To prove the existence of SRB measures for these perturbations, we obtain a general mea-
sure rigidity result for u-Gibbs measures for partially hyperbolic skew products. This is an
adaptation to the partially hyperbolic setting of a measure rigidity result by A. Brown and
F. Rodriguez Hertz for stationary measures of random product of surface diffeomorphisms. In
particular, we classify all the possible u-Gibbs measures that may appear in a neighborhood of
the example. Using this classification, and ruling out some of the possibilities, we obtain open
sets of systems, in a neighborhood of the example, having a unique u-Gibbs measure which is
SRB.
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1 Introduction

In dynamics one usually tries to understand the asymptotic behavior of the orbit of many points.
In this direction, it is natural to try to understand properties, and the existence, of certain invariant
measures that capture the statistical behavior of a set of points that is relevant for the Lebesgue
measure. Let us make this more precise. In what follows, we refer the reader to section 2 for the
definitions of the dynamical objects that appear in this section.

Let f be a diffeomorphism of a closed, compact, connected, orientable manifold M . Given an
invariant ergodic probability measure µ, its basin is defined as

B(µ) =

p ∈ M :
1

n

n−1∑
j=0

δfj(p)
n→+∞−−−−−→ µ

 ,

where δp is the dirac measure on p and the convergence is for the weak*-topology. The measure µ
is physical if its basin has positive Lebesgue measure. In other words, physical measures are the
measures that capture the asymptotic behavior of many points in the Lebesgue point of view.

In the 1970s, Sinai, Ruelle and Bowen [Si72, Ru76, Bow75] proved that C1+α uniformly hy-
perbolic systems have finitely many physical measures that describes the statistical behavior of
Lebesgue almost every point. Nowadays, the measures they constructed are called SRB measures
(SRB for Sinai-Ruelle-Bowen), see Definition 2.17. These measures have an important geometrical
property: they admit conditional measures along unstable manifolds which are absolutely continu-
ous with respect to the volume of the unstable manifolds. After the work of Ledrappier in [Le84],
there is a well developed ergodic theory for these measures. The hyperbolic SRB measures form an
important class of physical measures.

We remark that in the hyperbolic setting there are uniform expansion/contraction, and a dom-
inated splitting (which implies that the angle between the expanding/contracting directions is
uniformly bounded from below). These two points are important to carry the constructions of such
measures.

There are many works that study conditions that guarantee the existence of hyperbolic SRB
measures outside the uniformly hyperbolic setting, see for instance [Yo98, BV00, ABV00, CDP16,
CLP19, BOv21]. We also refer the reader to the recent survey [CLP17] for a discussion on the
different methods of construction of such measures (with a focus on the geometrical method). We
now mention some of the examples of systems admitting hyperbolic SRB measures.

• Some derived from Anosov examples, in particular the ones introduced by Bonatti-Viana in
[BV00]: these examples have a dominated splitting, and nonuniform expansion, or contraction
(also known as mostly contracting, or mostly expanding), see also [ABV00, Ta04]. It gives
open sets of systems having an unique hyperbolic SRB measure.
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• Hénon maps: in [BY93] it is proved that for a set of positive Lebesgue measure of parameters
(a, b) with b > 0 small, the map

ha,b(x, y) = (x2 + y + a,−bx),

admits a hyperbolic SRB measure. This example has non-uniform expansion/contraction, it
is dissipative (it does not preserve the Lebesgue measure), and it does not admit a dominated
splitting. However, it is not guaranteed the existence of an SRB measure for an open set of
parameters (a, b).

• Some robustly non-uniformly hyperbolic volume preserving diffeomorphisms whose Oseledec’s
splitting is not dominated: by the absolute continuity of the unstable partition after the work
of Pesin (see [Pe77]), in the volume preserving scenario, the existence of a hyperbolic SRB
measure is equivalent to prove non-uniform hyperbolicity. Let us mention a few of such ex-
amples. The Berger-Carrasco’s example in [BC14] (which we will study in more detail in this
work). We also mention Avila-Viana in [AV10], and Liang-Marin-Yang in [LMY18], where
they obtain C2-open sets of symplectomorphisms which are non-uniformly hyperbolic. These
examples are conservative, they have non-uniform expansion/contraction, and the expand-
ing/contracting directions are not dominated.

• Some “large local” perturbations of Axiom A systems, which appeared in [CDP16]: these
examples also present non-uniform expansion/contraction, and no dominated splitting. But
the proof of the existence of a hyperbolic SRB measure does not guarantee the robust existence
of a hyperbolic SRB measure.

We remark that the list above is not a complete list of examples, but they represent well the
examples according to the presence of non-uniform expansion/contraction, domination, and volume
preserving or not.

In this work we give examples of open sets of dissipative systems having a unique SRB measure
in the presence of non-uniform expansion/contraction and “no domination” between expanding and
contracting directions. These properties create many difficulties in the study of the existence and
uniqueness of SRB measures.

The example we will study was introduced in [BC14] by Berger-Carrasco. It is a partially
hyperbolic system, with two dimensional center, and such that among the volume preserving systems
it is robustly non-uniformly hyperbolic with both expansion/contraction along the center and it
does not admit a decomposition of the center in dominated directions.

In [Ob20], the author proves that the Berger-Carrasco’s example and any C2-small volume
preserving perturbation of it is ergodic. In this work we study dissipative perturbations of this
example. In particular, we will find an open set of systems having a unique hyperbolic SRB
measure with full basin, and each system in this open set has non-uniform expansion/contraction
whose angle between the expanding/contracting directions is not bounded away from zero.

The example and precise statement of the results

For N ∈ R we denote by sN (x, y) = (2x − y + N sin(x), x) the standard map on T2 := R2/2πZ2.
For every N the map sN preserves the Lebesgue measure induced by the usual metric of T2. This
map is related to several physical problems, see for instance [Ch79], [Iz80] and [SS95].

3



It is conjectured that for N ̸= 0 the map sN has positive entropy for the Lebesgue measure,
see [Si94] page 144. By Pesin’s entropy formula, see [Pe77] Theorem 5.1, this is equivalent to the
existence of a set of positive Lebesgue measure, whose points have a positive Lyapunov exponent.
The existence of those sets is not known for any value of N . See [BXY17, Ch20, Du94, Go12] for
some results related to this conjecture.

In what follows we refer the reader to Section 2 for some basic definitions regarding partially
hyperbolic dynamics. Let A ∈ SL(2,Z) be a hyperbolic matrix that defines an Anosov diffeomor-
phism on T2, let Px : T2 → T2 be the projection on the first coordinate of T2, this projection is
induced by the linear map of R2, which we will also write Px, given by Px(a, b) = (a, 0).

Consider the torus T4 = T2 × T2 and represent it using the coordinates (x, y, z, w), where
x, y, z, w ∈ [0, 2π). We may naturally identify a point (z, w) on the second torus with a point (x, y)
on the first torus by taking x = z and y = w. For each N ∈ N define

fN : T2 × T2 −→ T2 × T2

(x, y, z, w) 7→ (sN (x, y) + Px ◦AN (z, w), A2N (z, w)).

This diffeomorphism preserves the Lebesgue measure. For N large enough it is a partially
hyperbolic diffeomorphism, with two dimensional center direction given by Ec = R2 × {0}. This
type of system was considered by Berger-Carrasco in [BC14], where they proved that for N large
enough fN is C2-robustly non-uniformly hyperbolic among the volume preserving diffeomorphisms.

For r ≥ 1 we consider Diffr(T4) to be the set of Cr-diffeomorphisms of T4. Inside Diffr(T4), we
may consider the subspace Skr(T2 × T2) of skew products, which is the set of Cr-diffeomorphisms
g of the form

g(x, y, z, w) = (g1(x, y, z, w), g2(z, w)),

where g2(., .) is a C
r-diffeomorphism of T2, and for each (z, w) ∈ T2, g1(., ., z, w) is a C

r-diffeomorphism
of T2 as well. Observe that fN ∈ Sk2(T2 × T2). We also remark that for N large enough, if g is
a skew product C1-close enough to fN , then g2 is an Anosov diffeomorphism, and g is partially
hyperbolic.

We recall that for a map g, a g-invariant measure µ is Bernoulli if the system (g, µ) is measur-
ably conjugated to a Bernoulli shift.

Our main result is the following:

Theorem A. Let α ∈ (0, 1). For N large enough, there exist Usk
N a C2-neighborhood of fN

contained in Sk2(T2 × T2), and V a C2-open and C2-dense subset of Usk
N such that for any g ∈ V

having regularity C2+α, there exists a unique g-invariant measure µg with the following properties:

1. µg is a hyperbolic SRB measure and Bernoulli;

2. Leb(B(µg)) = 1;

3. supp(µg) = T4.

The proof of Theorem A is based in the study of the so called u-Gibbs measures, see Definition
2.21. These measures play a key role in the study of ergodic properties of partially hyperbolic
systems. Indeed, they capture the asymptotic statistical behavior of Lebesgue almost every point,
see Theorem 2.22. For a partially hyperbolic diffeomorphism g, we write Gibbsu(g) as the set of
u-Gibbs measures for g.

To prove Theorem A we will first classify all the ergodic u-Gibbs measures that may appear in
a neighborhood of fN . This is given in the following theorem:
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Theorem B. Let α ∈ (0, 1). For N large enough, there exists Usk
N a C2-neighborhood of fN

contained in Sk2(T2 × T2), such that for g ∈ Usk
N having regularity C2+α, if µ ∈ Gibbsu(g) is

ergodic, then either:

1. µ is a hyperbolic SRB measure, or

2. there exists a finite number of C1 two dimensional tori T 1
µ , · · · , T l

µ ⊂ T4 such that each of

them is tangent to Ess
g ⊕ Euu

g , and supp(µ) = ∪l
j=1Tj

µ.

The proof of Theorem B uses an adaptation to the partially hyperbolic skew product setting of
a recent result by Brown-Rodriguez Hertz in [BRH17]. In their paper they classify all the ergodic,
hyperbolic stationary measures for random products of surface C2-diffeomorphisms. Their proof
is inspired in ideas from Benoist-Quint [BQ11] and Eskin-Mirzakhani [EM18]. In the partially
hyperbolic skew product setting, we can actually get a result more general than Theorem B, see
Theorem D below.

We remark that there are also some recent works that “push” the ideas from [BQ11, EM18, EL,
BRH17] to different settings. There is the work of Cantat-Dujardin in [CD20] which attempts to
classify stationary measures of random products of automorphisms of real and complex projective
surfaces. There is also the work of Katz, [Ka23], which pushes the ideas of [EM18, EL] to prove
rigidity of “u-Gibbs measures” of Anosov flows under a technical hypothesis called QNI (quantified
non-integrability).

The uniqueness of the SRB measure, and some other properties that appear in the statement
of Theorem A, will be a consequence of the following theorem:

Theorem C. For N large enough, there exists UN a C2-neighborhood of fN in Diff2(T4) such that
if g ∈ UN , then g has at most one SRB measure. Moreover, if µg is an SRB measure for g, then
supp(µg) = T4, it is Bernoulli and hyperbolic.

Remark 1.1. Theorems A and B hold for a neighborhood of fN inside the set of skew product
diffeomorphisms, Sk2(T2 × T2). Theorem C guarantees that there exists at most one SRB measure
in a neighborhood of fN inside Diff2(T4). However, it does not guarantee the existence of an SRB
measure.

As we mentioned before, the proof of Theorem B uses the following theorem, which holds for
more general partially hyperbolic skew products and not only perturbations of Berger-Carrasco’s
example. Let S be a compact surface. We can define Skr(S×T2) as the set of Cr-diffeomorphisms
g of the form

S × T2 → S × T2

(p1, p2) 7→ (g1(p1, p2), g2(p2))

such that g2(.) is a Cr-diffeomorphism of T2 and for each p2 ∈ T2, g1(., p2) is a Cr-diffeomorphism
of S. We say that g is a partially hyperbolic skew product of S × T2 if g is partially hyperbolic
and g2 is an Anosov diffeomorphism of T2. Let g be a partially hyperbolic skew product of S ×T2.
In what follows we write ∥Dg|Ess∥ := sup

p∈S×T2

∥Dg(p)|Ess∥ and m(Dg|Ec) := inf
p∈S×T2

m(Dg(p)|Ec),

where m(Dg(p)|Ec) := ∥ (Dg(p)|Ec)
−1 ∥−1 is the co-norm of Dg(p)|Ec .

Theorem D. Let S be a compact surface and let α, θ ∈ (0, 1) be two constants. Let g ∈ Sk2+α(S×
T2) be a partially hyperbolic skew product such that:
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(a) g is (2, α)-center bunched (see (8) for the definition) ;

(b) Euu is θ-Hölder and ∥Dg|Ess∥θ < m(Dg|Ec).

If µ ∈ Gibbsu(g) is an ergodic measure having one positive and one negative Lyapunov exponent
along the center direction, then either:

1. µ is an SRB measure;

2. the Oseledets direction E− is invariant by linear unstable holonomies (see item 2 of Theorem
6.3 for a precise definition);

3. there exist a finite number of two dimensional su-tori T 1
µ , · · · , T l

µ, such that supp(µ) =

∪l
j=1T

j
µ.

This theorem will be a direct consequence of the combination of Theorems 6.5 and 8.1 below
(see also Remark 8.2).

We remark that Theorem D has its own interest, since it gives a good “general” strategy to
approach the problem of existence of SRB measures for partially hyperbolic skew products with
two-dimensional fibers.

Discussion on the techniques and strategy of the proofs

Theorem A is an easy consequence of Theorems B, C, and of some recent results on accessibility
classes for skew products with two dimensional fibers from [HS17], given by Theorem 2.13 below.

Using the calculations to prove non-uniform hyperbolicity of fN from [BC14], and the adapta-
tions made in [Ob20], we prove that in a neighborhood of fN in Diff2(T4), every u-Gibbs measure
is hyperbolic with both a positive and a negative Lyapunov exponent along the center.

The proof of Theorem C is based on the techniques developed by the author in [Ob20]. Using
such techniques we can prove that any u-Gibbs measure has a set of large measure, whose points
have “large” stable and unstable manifolds. Furthermore, we can obtain precise control on the
“geometry” of these invariant manifolds. This allows us to prove that any two u-Gibbs measures
are homoclinically related (see Definition 2.19 and Theorem 5.1). Hence, we conclude that in a
neighborhood of fN (inside Diff2(T4)) there exists at most one SRB measure. The techniques will
also allow us to conclude that such a measure is Bernoulli. Using some arguments from the recent
work [CO21] of the author with P. Carrasco, we prove that if there exists an SRB measure then it
has full support. A key point in this proof is a quantified version of Pesin theory that appeared in
[CP18]. We remark that this type of strategy using this quantified Pesin theory allowed the author
to prove the uniqueness of the measure of maximal entropy for the standard map itself (see [Ob21]).

One of the key ingredients in the proof of Theorem B is an adaptation for the partially hyperbolic
skew product setting of the main results from [BRH17]. There are two parts in this adaptation,
which are given by Theorems 6.3 and 8.1. To prove Theorem 6.3, we show that for g sufficiently
close to fN and for an ergodic u-Gibbs measure µ, after a measurable change of coordinates using
the unstable holonomies, we are in the setting of Theorem 4.10 from [BRH17]. To justify that
the change of coordinates mentioned above take us to the setting of Brown-Rodriguez Hertz’s
rigidity result, we use the version of the invariance principle by Tahzibi-Yang in [TY19]. We then
obtain that there are only three possibilities for an ergodic u-Gibbs measure: either it is an SRB
measure; or it has atomic disintegrations along the center foliation; or the Oseledets direction for
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the negative center Lyapunov exponent is invariant by the derivative of unstable holonomies. Using
some estimates from [BC14], we prove that the third case never happens (see proposition 7.1).
We are left to deal with the u-Gibbs measures having an atomic disintegration along the center
foliation. This is done with Theorem 8.1.

Theorem 8.1 corresponds to the adaptation of Theorem 4.8 from [BRH17]. The proof of this
theorem is done in Sections 8 and 9. If the u-Gibbs measure has atomic disintegration along the
center foliation and the stable Oseledets direction is not invariant by the derivative of unstable
holonomies, we prove that the center disintegration is invariant by stable and unstable holonomies.
Since the system also verifies a condition called center bunching (see Definition 2.1), using some
results on accessibility classes (see Theorem 2.14), we may conclude the existence of the tori tangent
to the strong stable and unstable directions (see Theorem 8.1) which contain the support of the
measure.

Let us finish with a remark on item (b) in the hypothesis of Theorem D. This condition states
that we need Euu to be “Hölder enough” to apply the theorem. It is well known that the invari-
ant directions of a partially hyperbolic diffeomorphism are usually Hölder. Let g be a partially
hyperbolic skew product. If θ ∈ (0, 1) is a number such that

∥Dg(p)|Ec∥
m(Dg(p)|Euu)

< m(Dg(p)|Ess)θ,

for every point p ∈ S × T2, then Euu is θ-Hölder (see Section 4 from [PSW12]). This condition
gives an upper bound on θ. Indeed, we obtain that

θ < inf
p∈S×T2

{
logm(Dg(p)|Euu)− log ∥Dg(p)|Ec∥

− logm(Dg(p)|Ess)

}
.

On the other hand, to obtain condition (b) in the hypothesis of Theorem D we need that
∥Dg|Ess∥θ < m(Dg|Ec), which implies

θ >
logm(Dg|Ec)

log ∥Dg|Ess∥
.

Thus, a sufficient condition to obtain the hypothesis (b) is that

logm(Dg|Ec)

log ∥Dg|Ess∥
< inf

p∈S×T2

{
logm(Dg(p)|Euu)− log ∥Dg(p)|Ec∥

− logm(Dg(p)|Ess)

}
.

Further remarks and questions

The α that appears in the statements of Theorems A and B and D, only appears because in
the statement of the main result from [BRH17], the surface diffeomorphisms they consider have
regularity C2. If one obtains a version of their result for C1+β-diffeomorphisms, then one could
remove the α from the statement (see section 6).

Let us make a few remarks about the skew product hypothesis in the statement Theorems A, B
and D. This condition implies that the center foliation is smooth. This is used to prove Proposition
2.28, which states that we may use the invariance principle (see also Corollary 2.30). We also use
the smoothness of the center foliation to prove that an u-Gibbs measure projects to the unique
SRB measure for the C2-Anosov diffeomorphism on the basis (see Lemma 2.29). This is important
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in our proof because SRB measures for a C2-Anosov diffeomorphism have a property called local
product structure (see Section 8). This local product structure is a key property used to obtain
Lemma 8.4, which is used in the proof of the existence of the su-tori in item 2 of the statement of
Theorem B (and item 3 of Theorem D). It is an interesting question to know if one can remove the
skew product condition in the hypothesis to work with more general partially hyperbolic systems
with two dimensional center.

An important notion in the study of dynamical properties of partially hyperbolic systems is
accessibility (see Section 2 for the definition). It is not known if fN is accessible or not. If it were,
we would obtain several interesting consequences, such as:

• fN would be C1-stably ergodic (we refer the reader to [Ob20] for the definition and discussion
on stable ergodicity);

• for N large and Usk
N small enough such that Theorem B is satisfied, for any g ∈ Usk

N ∩
Diff2+α(T4), there would be an unique SRB measure µg, which is Bernoulli, it has full
support and full basin. Furthermore, this measure would be the unique u-Gibbs measure for
g.

We emphasize the question made by Berger-Carrasco in [BC14]:

Question 1.2. For every L > 0, does it exist N ∈ [L,+∞) such that fN is accessible?

An interesting strategy to prove the existence of an SRB measure in a neighborhood of fN
inside Diff2(T4) is to use the results from [CDP16]. In order to do that, one needs to prove that the
condition called effective hyperbolicity is satisfied (see Section 1.2 in [CDP16]). This condition
seems hard to prove, however it could give the existence of SRB measures outside the fibered case.

Question 1.3. For N large enough, for any diffeomorphism g which is sufficiently C2-close to fN ,
does it hold that g is effective hyperbolic?

In [Vi97], Viana introduced two examples of systems (sometimes called Viana maps), which
exhibit non-uniformly hyperbolic attractors . The first one is an endomorphism (see Theorem A
in [Vi97]), which is an skew product over an expanding map of the circle (on the basis), and the
dynamics on the fiber is based on the quadratic family. For this example there were several works
that studied its ergodic properties, in particular the existence of SRB measure, see for instance
[Al01, Al00, AV02, BST03].

The second example introduced by Viana is a diffeomorphism on a 5-dimensional manifold (see
Theorem B in [Vi97]). It is an skew product with a solenoid on the basis, and the dynamics on the
fiber is based on the Hénon maps (which are dissipative). Viana proved that Lebesgue almost every
point has a positive Lyapunov exponent along the fiber. This example is not well understood. In
particular, nothing has been done regarding the existence of SRB measures for this type of Viana
maps.

Question 1.4. Can the same strategy we use to study SRB measures be applied to study the
existence of SRB measure for the second type of Viana maps?

Organization of the paper

In Section 2, we review several tools that we will use in this work. In particular, results on
partially hyperbolic systems and accessibility classes, u-Gibbs and SRBmeasures, and the invariance
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principle. In section 3 we prove Theorem A assuming Theorems B and C. Sections 4 and 5 are
dedicated to prove Theorem C. In these sections we show how the techniques from [Ob20], and
[BC14], are used to obtain precise control on the center Lyapunov exponents of u-Gibbs measures,
and how to obtain the uniqueness of the SRB measure.

In Section 6 we state Theorem 4.10 from [BRH17], and we show how after a measurable change
of coordinates of our systems we are in the setting of their result. In Section 7 we prove that
in a neighborhood of Berger-Carrasco’s example, the Oseledets direction for the negative center
Lyapunov exponent is not invariant by the derivative of unstable holonomies, for any u-Gibbs
measure.

In Sections 8 and 9, we deal with the case where a u-Gibbs measure has atomic center disin-
tegration. This is done by using the invariance principle and adapting the proof of Theorem 4.8
from [BRH17]. In the appendix we prove that with some stronger bunching condition the strong
unstable holonomy between center manifolds has regularity C2, this is used in the proof of Theorem
B.
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2 Preliminaries

2.1 Partial hyperbolicity, holonomies and accessibility classes

Partial hyperbolicity and foliations

A Cr-diffeomorphism f , with r ≥ 1, is partially hyperbolic if the tangent bundle has a decom-
position TM = Ess ⊕ Ec ⊕ Euu, there is a riemannian metric on M and continuous functions
χss, χuu, χc

−, χ
c
+ : M → R, such that for any m ∈ M

χss(m) < 1 < χuu(m) and χss(m) < χc
−(m) ≤ χc

+(m) < χuu(m),

it also holds

χc
−(m) ≤ m(Df(m)|Ec

m
) ≤ ∥Df(m)|Ec

m
∥ ≤ χc

+(m);

∥Df(m)|Ess
m
∥ ≤ χss(m) and χuu(m) ≤ m(Df(m)|Euu

m
).

If the functions in the definition of partial hyperbolicity can be taken constant, we say that f is
absolutely partially hyperbolic.

It is well known that the distributions Ess and Euu are uniquely integrable, that is, there are
two unique foliations Fss and Fuu, with Cr-leaves, that are tangent to Ess and Euu respectively.
For a point p ∈ M we will denote by W ss(p) a leaf of the foliation Fss, we will call such leaf the
strong stable manifold of p. Similarly we define the strong unstable manifold of p and denote it by
Wuu(p).

9



Definition 2.1. A partially hyperbolic diffeomorphism is center bunched if

χss(m) <
χc
−(m)

χc
+(m)

and
χc
+(m)

χc
−(m)

< χuu(m), for every m ∈ M.

We denote Ecs = Ess ⊕ Ec and Ecu = Ec ⊕ Euu.

Definition 2.2. A partially hyperbolic diffeomorphism f is dynamically coherent if there are
two invariant foliations Fcs and Fcu, with C1-leaves, tangent to Ecs and Ecu respectively. From
those two foliations one obtains another invariant foliation Fc = Fcs ∩ Fcu that is tangent to Ec.
We call those foliations the center-stable, center-unstable and center foliation.

For any R > 0 we write W ∗
R(p) to be the disc of size R centered on p, for the Riemannian metric

induced by the metric on M , contained in the leaf W ∗(p), for ∗ = ss, c, uu.
The definition below allows one to obtain higher regularity of the leaves of such foliations.

Definition 2.3. We say that a partially hyperbolic diffeomorphism f is r-normally hyperbolic
if for any m ∈ M

χss(m) < (χc
−(m))r and (χc

+(m))r < χuu(m).

Definition 2.4. Let f and g be partially hyperbolic diffeomorphisms of M that are dynamically
coherent. Denote by Fc

f and Fc
g the center foliations. We say that f and g are leaf conjugated

if there is a homeomorphism h : M → M that takes leaves of Fc
f to leaves of Fc

g and such that for
any L ∈ Fc

f it is satisfied
h(f(L)) = g(h(L)).

One may study the stability of partially hyperbolic systems up to leaf conjugacy. Related to this
there is a technical notion called plaque expansivity which we will not define here, see chapter 7
of [HPS77] for the definition. The next theorem is important for the theory of stability of partially
hyperbolic systems.

Theorem 2.5 ([HPS77], Theorem 7.4). Let f : M → M be a Cr-partially hyperbolic and dy-
namically coherent diffeomorphism. If f is r-normally hyperbolic and plaque expansive then any
g : M → M in a Cr-neighborhood of f is partially hyperbolic and dynamically coherent. Moreover,
g is leaf conjugated to f and the center leaves of g are Cr-immersed manifolds.

Remark 2.6. Fix R > 0, and let f be a diffeomorphism that satisfies the hypothesis of the previous
theorem. The proof of this theorem implies that for g sufficiently Cr-close to f , for any m ∈ M
we have that W c

f,R(m) is Cr-close to W c
g,R(m). In particular, if the center foliation is uniformly

compact then for every g sufficiently Cr-close to f , for any m ∈ M , W c
f (m) is Cr-close to W c

g (m).

It might be hard to check the condition of plaque expansiviness, but this is not the case when
the center foliation of a dynamically coherent, partially hyperbolic diffeomorphism is at least C1,
see Theorem 7.4 of [HPS77]. Usually the invariant foliations that appear in dynamics are only
Hölder.

We can also obtain a better regularity for the center direction given by the following theorem,
see section 4 of [PSW12] for a discussion on this topic.

Theorem 2.7. Let f be a C2-partially hyperbolic diffeomorphism and let θ > 0 be a number such
that for every m ∈ M it is satisfied

χss(m) < χc
−(m)m(Df(m)|Ess)θ and χc

+(m)∥Df(m)|Euu∥θ < χuu(m),

then Ec is θ-Hölder.
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Unstable holonomies

Let f be a partially hyperbolic, dynamically coherent diffeomorphism. Each leaf of the foliation
Fcs is foliated by strong stable manifolds. For a point p ∈ M and q ∈ W ss

1 (p), where W ss
1 (p)

is the strong stable manifold of size 1, we can define the stable holonomy map restricted to the
center-stable manifold, between center manifolds. Let us be more precise. We can choose two small
numbers R1, R2 > 0, with the property that for any z ∈ W c

R1
(p), there is only one point in the

intersection W ss
2 (z) ∩W c

R2
(q). We define Hs

p,q(z) = W ss
2 (z) ∩W c

R2
(q). With this construction we

obtain a map Hs
p,q : W c

R1
(p) → W c

R2
(q). By the compactness of M we can take the numbers R1

and R2 to be constants, independent of p and q.
We can define analogously the unstable holonomy map, for p ∈ M and q ∈ Wuu

1 (p), which we
will denote by Hu

p,q : W c
R1

(p) → W c
R2

(q).
In [PSW97] and [PSW00], the authors prove that the mapHs

p,q is C
1 if f is a partially hyperbolic,

center bunched and dynamically coherent C2-diffeomorphism. Indeed, the authors prove that the
strong stable foliation is C1 when restricted to a center-stable leaf. Consider the family of C1-maps
{Hs

p,q}p∈M,q∈W ss
1 (p).

Theorem 2.8. Let f be an absolutely partially hyperbolic, dynamically coherent diffeomorphism
with regularity C2. Suppose also that f verifies:

1. χc
− < 1 and χc

+ > 1;

2. there exists θ ∈ (0, 1), such that

(χss)θ <
χc
−

χc
+

and
χc
+

χc
−

< (χuu)θ; (1)

and also
χss < χc

−m(Df |Ess)θ and χc
+∥Df |Euu∥θ < χuu. (2)

Then the family {Hs
p,q}p∈M,q∈W ss

1 (p) is a family of C1-maps depending continuously in the C1-
topology with the choices of the points p and q. Furthermore, there exists a constant C > 0 such
that for any p ∈ M , q ∈ W ss

1 (p), and any unit vector v ∈ Ec
p, it is satisfied

d

(
Hs

p,q(p)v

∥Hs
p,q(p)v∥

, v

)
< Cd(p, q)θ. (3)

Similar results holds for the family of unstable holonomies {Hu
p,q}p∈M,q∈Wuu

1 (p).

Theorem 2.8 has no assumption on the dimensions of the invariant directions. The proof of this
theorem can be found in [Ob], which is an adaptation of the arguments from [Br22] by Brown. In
what follows, we give the main points of this proof mostly to justify (3). For all the details, we
refer the reader to [Ob].

Sketch of the proof. By Theorem 2.7, condition (2) implies that the center bundle Ec is θ-Hölder
(see section 4 in [PSW12]). The condition (1) is sometimes called the strong bunching condition.

We may fix a local approximation of the holonomy Hs
∗ , which we will denote by πs

∗, that verifies
the following: there exists a constant C̃ > 0 such that for any p ∈ M and q ∈ W ss

1 (p), there exists
a C1+θ-map, which is a diffeomorphism onto its image, πs

p,q : W c
R1

(p) → W c(q) that verifies

11



1. d(πs
p,q(p), q) ≤ C̃d(p, q);

2. d(Dπs
p,q(p).v, v) ≤ C̃d(p, q)θ, where v ∈ SEc

p, and SEc
p is the unit sphere on Ec

p;

3. if p′ ∈ W c
loc(p) and q′ ∈ W ss

1 (p′)∩W c
loc(q), then πs

p,q coincides with πs
p′,q′ on W c

loc(p)∩W c
loc(p

′).

This can be done in the following way: Consider a smooth subbundle Ẽ inside a cone which
is close to the direction perpendicular to the subbundle Ec, with dimension dim(M) − dim(Ec).

Since Ec is θ-Hölder, the center manifolds are C1+θ. Hence, the restriction of Ẽ to any center
manifold is a C1+θ-bundle. For each point q ∈ M and ρ > 0, consider Lq,ρ := expq(Ẽ(q, ρ)) to be
the projection of the ball of radius ρ by the exponential map over q. By the uniform transversality
and the compactness of M , there exists a constant ρ0 such that for any center leaf W c

R1
(p), the set

{Lq,ρ}q∈W c
R1

(p) forms an uniform foliated neighborhood of W c
R1

(p) (or a tubular neighborhood). Let

πs
p,q be the holonomy defined by this local foliation, up to rescaling of the metric we may assume

that it is well defined for p ∈ M and q ∈ W ss
1 (p). By the compactness of M we obtain the constant

C̃ > 0 above. Observe also that since the center leaves vary continuously in the C1-topology, we
obtain that the map πs

p,q varies continuously in the C1-topology with the points p and q.
For any p, q ∈ M and each n ∈ N, write pn = fn(p) and qn = fn(q). We define

Hs
p,q,n = f−n ◦ πs

pn,qn ◦ fn.

If it is clear that we are talking about two points p and q ∈ W ss
1 (p) we will only write Hs

n = Hs
p,q,n

and similarly πs
n = πs

pn,qn .
Since we are assuming that f is absolutely partially hyperbolic, only for this proof, we write its

partially hyperbolic constants as χs = χss, χc = χc
− and χ̂c = (χc

+)
−1. Also, for a diffeomorphism

g : N1 → N2, between manifolds N1 and N2, we will write g∗ : SN1 → SN2, the action induced by
the derivative on the unitary bundles of N1 and N2.

The proof of Theorem 2.8 follows the steps in [Br22]. The first step is to prove that (Hs
n)n∈N is

uniformly Cauchy in the C0-topology. The second step is to prove that the sequence ((Hs
n)∗)n∈N

is uniformly Cauchy. The third step is to prove that for any vector v ∈ Ec
p, the sequence

(∥DHs
n(p)v∥)n∈N is also uniformly Cauchy. In all these three steps it is obtained that the rate

of convergence of these sequence does not depend on the choices of the points p and q. The uniform
convergence in the C1-topology of the sequence (Hs

n)n∈N then follows from these three steps. In
this paper, we only describe in more details step two, for the details of the other two steps we refer
the reader to [Ob].

Observe that the Lipschitz norm of f−1
∗ restricted to a fiber SxE

c is (χcχ̂c)
−1. Since f is a

C2-diffeomorphism, then f−1
∗ is a C1-diffeomorphism of SM , let C1 > 0 be the C1-norm of f−1 on

M and C2 to be the C1-norm of f−1
∗ on SM . For ξ = (x, v) ∈ SxM , write ξk = fk

∗ (x, v) = (xk, vk),
with k ∈ Z.

In [Br22], the author uses the strong bunching condition (1) above, but he also uses another
type of bunching (see Theorem 4.1 in [Br22]). In the proof, this different type of bunching is only
used to obtain a version of lemma 2.9 below. In our setting, instead of asking for this other type of
bunching, we ask that χc < 1 and χ̂c < 1. We obtain the following lemma.

Lemma 2.9. There are constants δ, α ∈ (0, 1), that satisfy the following: if ξ = (x, v), ζ = (y, u) ∈
SW c(p), K > 0 and n ≥ 0 verify d(xn, yn) < Kχn

s , d(ξn, ζn) ≤ Kχnθ
s , and for every 0 ≤ k ≤ n,

d(xk, yk) ≤ δ.
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Then, for all 0 ≤ k ≤ n,

d(xk, yk) ≤ Kχn
s .χ

−(n−k)
c and d(ξk, ζk) ≤ Kχnθ

s .(χcχ̂c)
−(n−k)(1+α).

In particular,
d(ξ, ζ) ≤ Kχnθ

s .(χcχ̂c)
−n(1+α).

Furthermore, α can be chosen such that

χθ
s.(χ̂cχc)

−(1+α) < 1.

Proof. The proof is by backward induction in k. We will first denote by α and δ quantities that
will be fixed later. Since xk and yk belongs to the same center manifold, we obtain

d(xk−1, yk−1) ≤ χ−1
c d(xk, yk) ≤ Kχn

s .χ
−n+k+1
c .

For any β ∈ (0, 1), and since d(xk, yk) ≤ δ, we have

d(f−1
∗ (xk, vk), f

−1
∗ (yk, uk)) ≤ d(f−1

∗ (xk, vk), f
−1
∗ (xk, uk)) + d(f−1

∗ (xk, uk), f
−1
∗ (yk, uk))

≤ (χcχ̂c)
−1d(vk, uk) + C2d(xk, yk).

≤ (χcχ̂c)
−1[1 + C2.(χcχ̂c)d(xk, yk)

1−β ].max{d(xk, yk)
β , d(vk, uk)}

≤ (χcχ̂c)
−1[1 + C2.(χcχ̂c)δ

1−β ]

.Kmax{χnβ
s .χ

−(n−k)β
c , χnθ

s .(χcχ̂c)
−(n−k)(1+α)}.

We claim that we can choose α and β such that for any n ∈ N and 0 ≤ k ≤ n it holds

χnβ
s .χ−(n−k)β

c ≤ χnθ
s .(χcχ̂c)

−(n−k)(1+α).

This inequality is equivalent to

1 ≤ χn(θ−β)
s .(χ(β−1−α)

c χ̂−(1+α)
c )(n−k). (4)

Since χ̂−1
c > 1, we can fix β > θ close enough to 1 such that 1 < χ

(β−1−α)
c χ̂

−(1+α)
c . Let us

explain. Observe that (χc)
−α > 1, for any α > 0. Hence,

χβ−1
c (χ̂cχc)

−αχ̂−1
c > χβ−1

c χ̂−1
c .

From this, one can see that if β is sufficiently close to 1, we have that 1 < χ
(β−1−α)
c χ̂

−(1+α)
c . Since

β > θ, and hence θ − β is negative, we conclude (4).
We also need that

χθ
s.(χ̂cχc)

−(1+α) < 1. (5)

By the strong center bunching condition (1), the inequality above holds if α is sufficiently close to
0. Fix α > 0 that verifies (5).
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Now fix δ > 0 small enough such that

[1 + C2.(χcχ̂c)δ
1−β ] ≤ (χcχ̂c)

−α.

We conclude,

d(f−1
∗ (ξk), f

−1
∗ (ζk)) ≤ (χcχ̂c)

−(1+α).Kχnθ
s .(χcχ̂c)

−(n−k)(1+α)

=Kχnθ
s .(χcχ̂c)

−(n−k−1)(1+α)

Fix ξ = (z, l) ∈ SW c
R1

(p). Write ζn := (Hs
n)∗(ξ) and ζnj := f j

∗ (ζ
n), for any j ∈ Z. We warn the

reader to not confuse the notation ζn with the notation that we were using before ζn = fn
∗ (ζ), for

a given ζ. We also write w = Hs
p,q(z), ζ

n = (Hs
n)∗(ξ) = (x, v) and ζn+1 = (Hs

n+1)∗(ξ) = (y, u).
Observe that ζnn = (πs

n)∗(ξn) and ζn+1
n = f−1

∗ ((πs
n+1)∗(ξn+1)). First we have

d(πs
n(zn), f

−1(πs
n+1(zn+1))) ≤ d(zn, π

s
n(zn)) + d(f−1(zn+1), f

−1(πs
n(zn+1))

≤ C̃χn
s d(z, w) + C1C̃χn+1

s d(z, w)

≤ 2C̃C1χ
n
s d(z, w).

The previous estimate shows that d(xn, yn) ≤ 2C̃C1d(z, w)χ
n
s . Also, it is satisfied for any

0 ≤ k ≤ n
d(xk, yk) ≤ 2C̃C1d(z, w)χ

n
sχ

−(n−k)
c . (6)

Let δ be the constant given by lemma 2.9. By domination, if n is large enough, we conclude that
d(xk, yk) < δ. This n can be taken uniform, independently of p and q.

Also, using that f−1
∗ (ξn+1) = ξn, we obtain

d(ζnn , ζ
n+1
n ) = d((πs

n)∗(ξn), f
−1
∗ (πs

n+1)∗(ξn+1))

≤ d(ξn, (π
s
n)∗(ξn)) + d(f−1

∗ (ξn+1), f
−1
∗ (πs

n+1)∗(ξn+1)).

By property 2 of πs
∗, we have d(ξn, (π

s
n)∗(ξn)) ≤ C̃d(z, w)θχnθ

s . For the second term in the
inequality we have

d(f−1
∗ (ξn+1), f

−1
∗ (πs

n+1)∗(ξn+1)) = d(f−1
∗ (zn+1, ln+1), f

−1
∗ (yn+1, un+1))

≤ d(f−1
∗ (zn+1, ln+1), f

−1
∗ (zn+1, un+1))

+d(f−1
∗ (zn+1, un+1), f

−1
∗ (yn+1, un+1))

≤ C2d(ln+1, un+1) + C2d(zn+1, yn+1)

≤ C̃C2d(z, w)
θχ

(n+1)θ
s + C̃C2d(z, w)χ

n+1
s

≤ (C̃C2 + C̃C2d(z, w)
1−θχ

(n+1)(1−θ)
s )d(z, w)θχ

(n+1)θ
s

≤ (C̃C2 + C̃C2d(z, w)
1−θ)d(z, w)θχ

(n+1)θ
s .

Thus,
d(ζnn , ζ

n+1
n ) ≤ [C̃ + (C̃C2 + C̃C2d(z, w)

1−θ)]d(z, w)θχnθ
s .
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By compactness, d(z, w) is bounded from above independently of p and q. Hence, take a constant
C3 such that d(ζnn , ζ

n+1
n ) ≤ C3d(z, w)

θχnθ
s . Fix K1 = max{2C̃C1, C3}, and observe that we are in

the setting of lemma 2.9, for K = K(z, w) := K1d(z, w)
θ. Let α be the constant given by the same

lemma. We conclude that

d(ζn, ζn+1) ≤ Kχnθ
s .(χcχ̂c)

−n(1+α) = K1χ
nθ
s .(χcχ̂c)

−n(1+α)d(z, w)θ, for n large enough.

In particular, the sequence (ζn)n∈N is Cauchy. Since this holds uniformly for any ξ, we obtain that
((Hs

n)∗)n∈N is a Cauchy sequence whose speed of convergence does not depend on the choices of
the the points p and q.

If d(p, q) ≤ δ then for any n ≥ 0 it holds that

d((Hs
n)∗, (H

s
n+1)∗) ≤ K1χ

nθ
s .(χcχ̂c)

−n(1+α)d(p, q)θ.

Write (Hs
p,q)∗ = lim

n→+∞
(Hs

n)∗. Hence, there exists a constant K2 > 0 such that for p, q ∈ M with

d(p, q) < δ, we have

d(Id∗, (H
s
p,q)∗) ≤ d(Id∗, (π

s)∗) +

+∞∑
j=0

d((Hs
j )∗, (H

s
j+1)∗) ≤ K2d(p, q)

θ.

Since δ > 0 is a constant, there is a maximum number T = [1δ ] such that there are at most
T + 1 points, {x1, · · · , xT+1} ⊂ W s

1 (p) verifying x1 = p, xT+1 = q and d(xi, xi+1) < δ. Since
Hs

p,q(.) = Hs
xT ,xT+1

◦ · · · ◦Hs
x1,x2

(.), we conclude that there exists a constant C > 0 such that

d(Id∗, (H
s
p,q)∗) ≤ Cd(p, q)θ. (7)

This concludes the proof of the second step that we mentioned above. In particular, it also proves
the conclusion (3) in the statement of this theorem.

Suppose that f is a partially hyperbolic, center bunched skew product on T4 = T2×T2, with the
Anosov map on the base f2 : T2 → T2. Observe that for any p ∈ T4, its unstable manifold Wuu(p)
projects to the unstable manifold of π2(p) of f2. In particular, for each p ∈ T4 and q ∈ Wuu(p)
and since the center leaves are uniformly compact (indeed they are just the fibers), the unstable
holonomy map can be defined on the entire center leaf Hu

p,q : W c(p) → W c(q). By Theorem 2.5,
this property is C1-open.

Using the f -invariance of the center and strong unstable foliations, it is easy to see that for any
n ∈ Z, for each p, q as above, we have

Hu
fn(p),fn(q) ◦ f

n = fn ◦Hu
p,q.

We remark that in the skew product case, we may also use the notation Hu
p2,q2 to denote the

unstable holonomy between π−1
2 (p2) and π−1

2 (q2), for p2 and q2 belonging to the same unstable
manifold of f2. Sometimes we will use this notation.

Higher regularity of unstable holonomies

Let f be a C2+α absolutely partially hyperbolic skew product of T4 = T2×T2 and let χss, χc
−, χ

c
+, χ

uu

be the partially hyperbolic constants of f . We say that f verifies the (2, α)-center unstable
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bunching condition if (
χc
+

χc
−

)2

< χuu and
χc
+

(χc
−)

2
< (χuu)α. (8)

Similarly, f verifies the (2, α)-center stable bunching condition if

χss <

(
χc
−

χc
+

)2

and (χss)α <
χc
−

(χc
+)

2
. (9)

If f verifies condition (8) and (9) then we say that f is (2, α)-center bunched.
We use the (2, α)-center bunching condition to obtain C2-regularity of the unstable holonomy

inside a center unstable leaf. This is given in the following theorem.

Theorem 2.10. Let f be a C2+α absolutely partially hyperbolic skew product of T4, and fix R > 0.
If f is (2, α)-center unstable bunched, then {Hu

p,q}p∈T4,q∈Wuu
R (p) is a family of C2-diffeomorphisms

of T2 whose C2-norm varies continuously with the choices of p and q.

This theorem is proved in the appendix (see section 10).

Accessibility classes

For a partially hyperbolic diffeomorphism f , an su-path is a curve which is the concatenation of
finitely many curves, each of them being contained in a stable or unstable leaf. Given a point
m ∈ M , its accessibility class is defined as

AC(m) = {p ∈ M : there exists an su-path connecting m and p.}

We say that f is accessible if for any m ∈ M , AC(m) = M . Suppose that f is dynamically coher-
ent, we say that an accessibility class AC(m) is trivial if AC(m)∩W c(m) is totally disconnected.
We say that f has the global product structure if there is a covering π : M̃ → M and a lift
f̃ : M̃ → M̃ for any x̃, ỹ ∈ M̃ we have

#{F̃cs(x̃) ∩ F̃uu(ỹ)} = 1 and #{F̃cu(x̃) ∩ F̃ss(ỹ)} = 1,

where F̃∗ if the lift of the foliation F∗, for ∗ = ss, cs, cu, uu. We now describe some results from
Horita-Sambarino in [HS17]. In what follows we will restrict ourselves to the case that M = T4.

We define E = E2(T4) to be the set of C2-partially hyperbolic diffeomorphisms f such that

• f is dynamically coherent, 2-normally hyperbolic and plaque expansive;

• f is center bunched;

• f has the global product structure;

• the set of compact center leaves that are f -periodic is dense in M .

The set E is C1-open in Diff2(M).
Inside E let us define the set of skew-products over a fixed Anosov diffeomorphism. Let g :

T2 → T2 be a C2-Anosov diffeomorphism, let Vg ⊂ Diff2(T2) be the open set such that if h ∈ Vg

then h× g is partially hyperbolic, center bunched and 2-normally hyperbolic. Let f : T2 → Vg be
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a continuous map and denote by f(., y) the diffeomorphism f(y) : T2 → T2. We define the skew
product given by f over g as

fg(x, y) = (f(x, y), g(y)).

Observe that fg ∈ E . Let Esp
g be the set of partially hyperbolic skew products over g which take

value on Vg. That is, fg ∈ Esp
g if and only if fg(x, y) = (f(x, y), g(y)), where f(., y) ∈ Vg for every

y ∈ T2. Observe that Esp
g can be identified with Gg := {f : T2 → Vg, s.t. f is continuous}, since

g is fixed. We say that f, f̃ ∈ Gg are C2-close if for each y ∈ T2, the diffeomorphisms f(., y) and

f̃(., y) are C2-close. Of course, Esp
g ⊂ E . We state the following theorem of Horita-Sambarino in

our scenario, but we remark that their theorem is more general than the statement we give.

Theorem 2.11 ([HS17], Theorem 2). Let g : T2 → T2 be a C2-Anosov diffeomorphism, then the set
R0 of diffemorphisms in Esp

g whose accessibility classes are all non trivial is C1-open and C2-dense.

Another important result from [HS17] is the following:

Proposition 2.12 ([HS17], Corollary 4.3). If f ∈ E has all its accessibility classes non trivial, then
there exists a C1-open neighborhood of f , V(f), in E of partially hyperbolic diffeomorphisms whose
accessibility classes are all non trivial.

Recall that Sk2(T2 × T2) is the set of C2-diffeomorphisms h that are skew products, that is,
h(x, y) = (h1(x, y), h2(y)) where x, y ∈ T2 and h(., y) is a C2-diffeomorphism of T2 that changes
continuously with the choice of y.

Recall that in the introduction we defined, for each N ∈ N, the diffeomorphism fN (x, y, z, w) =
(sN (x, y) + Px ◦ AN (z, w), A2N (z, w)), such that sN is the standard map, Px is the projection on
the horizontal direction, and A is a linear Anosov diffeomorphism on T2. Observe that fN belongs
to Sk2(T2 × T2). Furthermore, for N large enough we have that fN is 2-normally hyperbolic and
center bunched, in particular, it belongs to E . Using Theorem 2.11 and Proposition 2.12, we obtain
the following theorem.

Theorem 2.13. For N large enough, for each sufficiently small C1-neighborhood W of fN in
Sk2(T2 × T2), there exists a set V ⊂ W, which is C1-open and C2-dense in W such that for any
g ∈ V all its accessibility classes are non trivial.

Proof. If W is sufficiently C1-small, then for any g ∈ W the basis dynamics g2 is a C2-Anosov
diffeomorphism which is C1-close to A2N .

Let N be a small C1-neighborhood of A2N in Diff2(T2). For each g2 ∈ N we consider Wg2 =
W ∩ Esp

g2 and observe that this set is C1-open in Gg2 .

By Theorem 2.11, there exists a C1-open and C2-dense subset Ṽg2 of Wg2 such that for each

skew product g ∈ Ṽg2 all its accessibility classes are non trivial. By Proposition 2.12, for each

g ∈ Ṽg2 there exists a C1-open subset of E , which we denote it by V(g), of diffeomorphisms whose
accessibility classes are all non trivial. Now define

V :=
⋃

g2∈N

⋃
g∈W̃g2

V(g).

It is easy to see that V is C1-open and C2-dense in W. Moreover, for each g ∈ V all its accessibility
classes are non trivial.
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In our work we will also need the following result that describes the structure of accessibility
classes.

Theorem 2.14 ([RHV17], Theorem B). Let f be a dynamically coherent C2-partially hyperbolic
diffeomorphism with two dimensional center, and which is center bunched. Then every accessibility
class is an immersed C1-submanifold.

2.2 Pesin’s theory and SRB measures

Let f be a C1-diffeomorphism. A number λ ∈ R is a Lyapunov exponent if there exists a
point p ∈ M and a non zero vector v ∈ TpM such that limn→±∞

1
n log ∥Dfn(p)v∥ = λ. We write

λ(p, v) := limn→±∞
1
n log ∥Dfn(p)v∥.

We say that a set R has full probability if for any f -invariant probability measure ν, ν(R) = 1.
The following theorem is known as the Oseledets theorem.

Theorem 2.15 ([BP02], Theorems 2.1.1 and 2.1.2). For any C1-diffeomorphism f , there is a set
R of full probability, such that for every ε > 0 it exists a measurable function Cε : R → (1,+∞)
with the following properties:

1. for any p ∈ R there are numbers s(p) ∈ N, λ1(p) < · · · < λs(p)(p) and a decomposition

TpM = E1
p ⊕ · · · ⊕ E

s(p)
p ;

2. s(f(p)) = s(p), λi(f(p)) = λi(p) and Df(p).Ei
p = Ei

f(p), for every i = 1, · · · , s(p);

3. for every v ∈ Ei
p − {0}, λ(p, v) = λi(p).

We call the set R the set of regular points. A point p ∈ R has k negative Lyapunov exponents
if ∑

i:λi(p)<0

dim(Ei
p) = k.

Similarly for positive or zero Lyapunov exponents. From now on, we assume that ν is a f -invariant
measure, not necessarily ergodic, and there are numbers k and l such that ν-almost every point
p ∈ R has k negative and l positive Lyapunov exponents.

For a regular point we write

Es
p =

⊕
i:λi(p)<0

Ei
p and Eu

p =
⊕

i:λi(p)>0

Ei
p. (10)

It is well known that for a C2-diffeomorphism f and an invariant measure ν, then for ν-almost
every p, the set defined by

W s(p) = {q ∈ M : lim sup
n→+∞

1

n
log d(fn(p), fn(q)) < 0}

is an immersed submanifold such that TpW
s(p) = Es

p (see section 4 of [Pe77]). We call W s(p) the
stable Pesin manifold of the point p. Similarly, the set defined by

Wu(p) = {q ∈ M : lim sup
n→+∞

1

n
log d(f−n(p), f−n(q)) < 0}
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is an immersed submanifold such that TpW
u(p) = Eu

p . We call Wu(p) the unstable Pesin man-
ifold of the point p. Since these manifolds exist for ν-almost every point, the unstable manifolds
{Wu(p)}p∈R form a partition of a ν-full measure subset of M .

Remark 2.16. If f is also partially hyperbolic, with TM = Ess ⊕ Ec ⊕ Euu then the Oseledets
splitting refines the partially hyperbolic splitting. This means that for a regular point p ∈ R, there
are numbers 1 ≤ l1 < l2 < s(p) such that

Ess
p =

l1⊕
i=1

Ei
p, Ec

p =

l2⊕
i=l1+1

Ei
p and Euu

p =

s(p)⊕
i=l2+1

Ei
p.

This follows from a standard argument similar to the proof of the uniqueness of dominated
splittings, see section B.1.2 from [BDV05]. It also holds that for any regular point p, Ess

p ⊂ Es
p and

Euu
p ⊂ Eu

p .

A partition ξ of M is measurable with respect to a probability measure ν, if up to a set of
ν-zero measure, the quotient M/ξ is separated by a countable number of measurable sets. Denote
by ν̂ the quotient measure in M/ξ.

By Rokhlin’s disintegration theorem [Ro52], for a measurable partition ξ, there is set of condi-

tional measures {νξD : D ∈ ξ} such that for ν̂-almost every D ∈ ξ the measure νξD is a probability

measure supported on D, for each measurable set B ⊂ M the application D 7→ νξD(B) is measurable
and

ν(B) =

∫
M/ξ

νξD(B)dν̂(D). (11)

From now on we suppose that f is a C2-diffeomorphism and ν has no zero Lyapunov exponents.
We call such a measure hyperbolic. We remark that usually the unstable partition {Wu(p)}p∈R
is not a measurable partition. We say that a ν-measurable partition ξu is u-subordinated if for
for ν-almost every p, the following conditions are satisfied:

• ξu(p) ⊂ Wu(p);

• ξu(p) contains an open neighborhood of p inside Wu(p).

Definition 2.17 (SRB measure). A measure ν is SRB if for any u-subordinated measurable par-
tition ξu, for ν-almost every p, the conditional measure νuξu(p) is absolutely continuous with respect

to the riemannian volume of Wu(p).

Recall that an invariant probability measure µ is ergodic if and only if any f -invariant measurable
set Λ has measure 0 or 1.There is a well developed ergodic theory for hyperbolic SRB measures.
We now state some results obtained by Ledrappier in [Le84].

Theorem 2.18 ([Le84], Corollary 4.10 and Theorem 5.10.). Let f be a C2-diffeomorphism and ν
a hyperbolic SRB measure. Then there are at most countably many ergodic components of ν, that
is,

ν =
∑
i∈N

ciνi,
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where ci ≥ 0,
∑
i∈N

ci = 1, each νi is an f -invariant ergodic SRB measure such that if i ̸= j, and

ci, cj > 0 then νi ̸= νj. Moreover, for each i ∈ N such that ci > 0, there exists ki ∈ N such that

νi =
1

ki

ki∑
j=1

νi,j ,

where each νi,j is an fki-invariant probability measure, the system (fki , νi,j) is Bernoulli and νi,j ̸=
νi,l if j ̸= l. Furthermore, f permutes the measures νi,j, that is, f∗(νi,j) = νi,j+1 for j = 1, · · · , ki−1
and f∗(νi,ki

) = νi,1, where f∗(ν) denotes the pushforward of a measure ν by f .

Now given two hyperbolic ergodic measure, µ and ν, we say that stable manifolds of µ intersects
transversely unstable manifolds of ν if the following holds: there exist a set Λs with positive µ-
measure and a set Λu with positive ν-measure, such that for each p ∈ Λs and q ∈ Λu, there exists
n1, n2 ∈ Z with

W s(fn1(p)) ⋔ Wu(fn2(q)) ̸= ∅.
In this case we write µ ⋔su ν.

Definition 2.19. For µ and ν hyperbolic ergodic measures, we say that µ is homoclinically
related with ν, if µ ⋔su ν and ν ⋔su µ. We write µ ∼hom ν.

In the case that µ and ν are ergodic SRB measures, homoclinic relation actually implies that
they are the same.

Theorem 2.20. Let µ and ν be two hyperbolic, ergodic SRB measures. If µ ∼hom ν then µ = ν.

The proof of Theorem 2.20 is a consequence of Hopf’s argument adapted to the non-uniformly
hyperbolic scenario. This type of argument has been done in many places, see for instance Lemma
3.2 in [HS16].

We remark that all the results stated in this section were stated for C2-diffeomorphisms, but
they hold for C1+α-diffeomorphisms.

2.3 u-Gibbs measures and the invariance principle

u-Gibbs measures

Let f be a C2-partially hyperbolic diffeomorphism and let µ be an f -invariant measure. We say
that a µ-measurable partition ξuu is subordinated to the foliation Fuu, if for µ-almost every p,
ξuu(p) ⊂ Wuu(p) and ξuu(p) contains an open neighborhood of p inside Wuu(p). For simplicity, we
will write the conditional measure µuu

ξuu(p) by µuu
p .

Definition 2.21 (u-Gibbs). An f -invariant measure µ is u-Gibbs if for any µ-measurable partition
ξuu subordinated to Fuu, for µ-almost every point p, the conditional measure µuu

p is absolutely
continuous with respect to the Lebesgue measure of Wuu(p). We denote the set of u-Gibbs measures
of f by Gibbsu(f).

These measures have an important role in the study of ergodic theory of partially hyperbolic
systems. The next lemma states that they capture all possible statistical behavior of Lebesgue
almost every point. Recall that for any p ∈ M and n ∈ N, we defined

µn(p) =
1

n

n−1∑
j=0

δfj(p).
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Theorem 2.22 ([BDV05], Theorem 11.16). Let f be a C2-partially hyperbolic diffeomorphism,
then for Lebesgue almost every point p ∈ M , every accumulation point of the sequence of probability
measures (µn(p))n∈N belongs to Gibbsu(f).

Let us consider the strong unstable foliation Fuu and µ an f -invariant measure. We say that
a µ-measurable partition ξuu subordinated to Fuu is increasing if for µ-almost every p, we have
ξuu(f(p)) ⊂ f(ξuu(p)). We define the µ-partial entropy along Fuu by

hµ(f,Fuu) = Hµ(f
−1ξuu|ξuu) := −

∫
M

logµuu
p (f−1ξuu(p))dµ(p), (12)

where f−1ξuu(p) is the element of the partition f−1ξuu containing p. The definition above does
not depend on the choice of the µ-measurable partition ξuu. The notion of partial entropy along
expanding foliations has been introduced in [VY17] and [Ya21] (see also [LY85-1]).

Let Jacuu(p) = |det(Df(p)|Euu)|. In the case that Euu has dimension one, for any ergodic
f -invariant measure, we write λuu

µ to be the Lyapunov exponent of the strong unstable direction.
The following result can be found in [Ya21] and [Le84].

Proposition 2.23 ([Ya21], Proposition 5.2, and [Le84], Theorem 3.4). Let µ be an u-Gibbs measure.
Then

hµ(f,Fuu) =

∫
M

log Jacuu(p)dµ(p).

In particular, if Euu is one dimensional and µ is ergodic then hµ(f,Fuu) = λuu
µ .

The invariance principle

An important tool in this work is the invariance principle which was first developed by Furstenberg
in [Fu63] and by Ledrappier in [Le86]. We also mention the work of Avila-Viana in [AV10]. In
this work we use the version of the invariance principle given by Tahzibi-Yang in [TY19], which
we describe in this section. This relates entropy along strong unstable foliations with the so called
u-invariance of certain measures. Their results hold for large classes of partially hyperbolic skew
products, however, we will state them for skew products on T2 × T2.

Let f be a C2-partially hyperbolic center bunched skew product and let f2 be the Anosov
diffeomorphism on the base. We remark that on T2, every Anosov diffeomorphism is transitive.
Fix a f2-invariant measure ν. Let ξuu2 be a ν-measurable partition of T2 which is subordinated to
the foliation Fuu

2 (the unstable foliation of f2 on T2), and consider the µ-measurable partition ξuu

of T4 subordinated to Fuu which refines the partition π−1
2 (ξuu2 ) with the property that for µ-almost

every p, π2(ξ
uu(p)) = ξuu2 (π2(p)).

Definition 2.24. We say that an f -invariant measure µ is an u-state projecting on ν, if
(π2)∗µ = ν and for µ-almost every p,

(π2)∗µ
uu
p = νuuπ2(p)

. (13)

We denote the set of u-state measures projecting on ν by Stateuν (f). We say that a measure µ
projecting on ν is an s-state projecting on ν, if µ ∈ Stateuν (f

−1). We denote the set of s-state
measures by Statesν(f).
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Remark 2.25. In [TY19], the authors call the measures from definition 2.24 u-Gibbs measures
projecting on ν. Since we already use the name u-Gibbs for the measures from definition 2.21, we
changed the name in our paper. Even though later we will see that in our setting both definitions
coincide once the measure ν is an SRB-measure for the Anosov diffeomorphism on the basis (see
proposition 2.28).

The following result is a characterization using entropy for a measure to belong to Stateuν (f).

Theorem 2.26 ([TY19], Theorem A). Let f be a C2-partially hyperbolic skew product as above and
let ν be an f2-invariant measure. Suppose that µ is an f -invariant measure such that (π2)∗µ = ν.
Then hµ(f,Fuu) ≤ hν(f2) and the equality holds if and only if µ ∈ Stateuν (f).

Proposition 2.27 ([TY19], Proposition 5.4). A measure µ is an u-state projecting on ν if and
only if there exists a set X ⊂ T2 of full ν-measure such that for any two points p2, q2 ∈ X in the
same unstable leaf, we have that

µc
q2 = (Hu

p2,q2)∗µ
c
p2
. (14)

The property described by (14) is called u-invariance of the conditional measures {µc
p2
}p2∈T2 .

Since f2 is a transitive C2-Anosov diffeomorphism, it is well known that it admits an unique
SRB measure ν, see [Bow75, Ru76, Si68]. Consider now the set Stateuν (f). In what follows we will
show that Gibbsu(f) = Stateuν (f).

Proposition 2.28. For f and ν as above, Gibbsu(f) = Stateuν (f).

To prove this proposition, we will need the following lemma.

Lemma 2.29. Let µ ∈ Gibbsu(f), then (π2)∗µ = ν.

Proof. It is enough to prove that ν̃ := (π2)∗µ is an SRB measure for f2. Since f2 admits only one
SRB measure, it follows that ν̃ = ν.

Let ξuu2 be a ν̃-measurable partition subordinated to Fuu
2 . Observe that the partition ξcu =

π−1
2 (ξuu) is µ-measurable and denote by µcu

p the conditional measures of µ with respect to this
partition. The partition ξcu is refined by the µ-measurable partition ξuu which is subordinated to
Fuu and such that for µ-almost every p, we have π2(ξ

uu(p)) = ξuu2 (π2(p)).
Take a ν̃-generic point p2 ∈ T2 and let B ⊂ ξuu2 (p2) be a set of zero Lebesgue measure inside

the unstable manifold of p2. Since the foliation by center fibers is smooth (because we are in
the skew product setting), and the strong unstable manifolds of f are uniformly transverse to the
center direction inside the cu-leaves, we have that for µcu

p2
-almost every q the set ξuu(q) ∩ π−1

2 (B)
has zero Lebesgue measure inside Wuu

f (q). In particular, the u-Gibbs property of µ implies that

µuu
q (π−1

2 (B)) = 0. We conclude

ν̃uup2
(B) =

∫
M

µuu
q (π−1

2 (B))dµcu(q) = 0.

This is true for any set B of zero Lebesgue measure. This implies that ν̃uup2
is absolutely continuous

with respect to the Lebesgue measure of Wuu
f2

(p2) and the measure ν̃ is SRB.

Proof of Proposition 2.28. From (13) and the fact that the foliation by horizontal fiber is smooth,
it is immediate that Stateuν (f) ⊂ Gibbsu(f).
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Since the strong unstable direction is uniformly transverse to the center fibers inside the cu-
leaves and it projects to Euu

f2
, and since the center direction is orthogonal to the base, there exists

a constant C ≥ 1 such that for any p ∈ T4 and any vuu ∈ Euu
p we have

1

C
∥vuu∥ ≤ ∥Dπ2(p)v

uu∥ ≤ ∥vuu∥.

Suppose that µ ∈ Gibbsu(f) is an ergodic measure. Let p be a generic point for µ and let
vuu ∈ Euu

p be an unit vector. Observe that for any n ∈ N we have

1

C
∥Dfn(p)vuu∥ ≤ ∥Dπ2(f

n(p))Dfn(p)vuu∥ ≤ ∥Dfn(p)vuu∥.

Since f is a skew product and π2◦f = f2◦π2, we obtain thatDπ2(f
n(p))Dfn(p)vuu = Dfn

2 (π2(p))Dπ2(p)v
uu.

By lemma 2.29, we may assume that π2(p) is a generic point for ν. We conclude that

λuu
µ = lim

n→+∞

1

n
log ∥Dfn(p)vuu∥ = lim

n→+∞

1

n
log ∥Dfn

2 (π2(p))Dπ2(p)v
uu∥ = λuu

ν ,

where λuu
µ is the Lyapunov exponent of f for µ along the strong unstable direction and λuu

ν is the
Lyapunov exponent of f2 for ν along the unstable direction.

It is well known that the measure ν verifies Pesin’s formula (since it is also an SRB measure for
f2), see [Le84], and hence hν(f2) = λuu

ν . By proposition 2.23, we have that hµ(f,Fuu) = λuu
µ . We

conclude that hµ(f,Fuu) = hν(f2). By Theorem 2.26 we obtain that µ ∈ Stateuν (f).

The main conclusion of proposition 2.28 is the following corollary.

Corollary 2.30. For f as above, any u-Gibbs measure µ has u-invariant center conditional mea-
sures.

3 Proof of Theorem A assuming Theorems B and C

Fix N large enough and let Usk
N be a C2-neighborhood of fN inside Sk2(T2 × T2) small enough

such that it verifies the conclusions of Theorems B and C. By Theorem C, any g ∈ Usk
N has at

most one SRB-measure. By Theorem B, every u-Gibbs measure is either SRB or it is supported
on a finite union of two dimensional tori tangent to the strong stable and unstable directions. In
particular, in the second, the support of the u-Gibbs measure is contained in the finite union of
trivial accessibility classes.

By Theorem 2.13, there exists a subset V ⊂ Usk
N which is C2-open and C2-dense in Usk

N such
that any g ∈ V does not have any trivial accessibility class. In particular, for such g, there cannot
be a two dimensional torus tangent to Ess

g ⊕Euu
g . Therefore, as a consequence of Theorems B and

C, we conclude that for any g ∈ V, there exists an unique u-Gibbs measure µg. It is hyperbolic
SRB and Bernoulli. Moreover, supp(µg) = T4.

Fix g ∈ V. By Theorem 2.22, for Lebesgue almost every point p, any accumulation point of the
sequence

µn(p) =
1

n

n−1∑
j=0

δgj(p)
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is an u-Gibbs measure. Since there exists only one u-Gibbs measure µg, we conclude that for
Lebesgue almost every point p,

lim
n→+∞

µn(p) = µg.

Therefore, Leb(B(µg)) = 1 and we conclude the proof of Theorem A.

4 Center Lyapunov exponents for u-Gibbs measures

In this section we explain how the techniques developed by Berger-Carrasco in [BC14], and the
adaptations of their techniques made by the author in [Ob20], actually give estimates for the
Lyapunov exponents for any u-Gibbs measure. We prove the following theorem:

Theorem 4.1. For every δ ∈ (0, 1), there exists N0 = N0(δ) such that for every N ≥ N0, there
exists UN a C2-neighborhood of fN inside Diff2(T4) with the following property. If g ∈ UN and µ
is an u-Gibbs measure, then µ-almost every point has a positive and a negative Lyapunov exponent
along the center whose absolute value is greater than (1− δ) logN .

Remark 4.2. Even though the results from [BC14, Ob20] are in the volume preserving scenario,
several of the lemmas and propositions are still valid for dissipative perturbations. In what follows,
we will use several results from these works. The only point in this section that will need an
adaptation for u-Gibbs measures is given in proposition 4.11.

Let A ∈ SL(2,Z) be the linear Anosov matrix considered in the definition of the map fN .
Denote by 0 < λ < 1 < µ̃ = λ−1 the eigenvalues of A. Let es and eu be unit eigenvectors of A for λ
and µ̃, respectively. Recall that we defined the linear map Px : R2 → R2 given by Px(a, b) = (a, 0).

Lemma 4.3 ([BC14], Proposition 1). There is a differentiable function α : T4 → R2 such that the
unstable direction of fN is generated by the vector field (α(m), eu), where

DfN (m).(α(m), eu) = µ̃2N (α(fN (m)), eu) and ∥α(m)− λNPx(e
u)∥ < λ2N .

Observe that |detDfN |Ec
fN

| = 1.

Lemma 4.4 ([Ob20], Lemma 7.17). For ε1 > 0 and β > 0 small, if N is large and UN is small
enough then for every g ∈ UN and for all unit vectors vs ∈ Ess

g , vc ∈ Ec
g and vu ∈ Euu

g , the
following holds:

1. e−ε1 µ̃2N ≤ ∥Dg(vu)∥ ≤ eε1 µ̃2N ;

2. 1
2N ≤ ∥Dg(vc)∥ ≤ 2N ;

3. ∥D2g−1∥ ≤ 2N and ∥D2g∥ ≤ 2N ;

4. |detDg|Ec
g
| ∈ (e−β , eβ);

5. Ec
g is 1

2 -Hölder.

A key element in Berger-Carrasco’s proof is to consider center vector fields over certain pieces
of strong unstable curve. Consider g ∈ UN .
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Definition 4.5 ([BC14], Definition 7.18). An u-curve for g is a C1-curve γ = (γx, γy, γz, γw) :

[0, 2π] → M tangent to Euu
g and such that

∣∣∣dγx

dt (t)
∣∣∣ = 1, ∀t ∈ [0, 2π]. For every k ≥ 0 there exists

an integer Nk = Nk(γ) ∈
[
(e−ε1 µ̃2N )k, (eε1 µ̃2N )k

]
such that the curve gk ◦ γ can be writen as

gk ◦ γ = γk
1 ∗ · · · ∗ γNk

∗ γk
Nk+1

where γk
j for j = 1, · · · , Nk, are u-curves and γk

Nk+1 is a segment of u-curve.

The following lemma controls the length of u-curves.

Lemma 4.6 ([BC14], Corollary 5). If N is large and UN small enough then for every g ∈ UN and
any unit vector vu ∈ Euu

g,m, it holds that

|Px(Dπ1.v
u)| ∈ [(λN (∥Px(e

u)∥ − 3λN ), (λN (∥Px(e
u)∥+ 3λN )].

An easy consequence of this lemma is the following.

Corollary 4.7. For any ε2 > 0, if N is large and UN is small enough, then any two u-curves
(γ, γ′) satisfy:

e−ε2 |γ| ≤ |γ′| ≤ eε2 |γ|, (15)

where |γ| denotes the length of the curve γ.

We define the unstable jacobian of gk as

Juu
gk (m) = |detDgk(m)|Euu

g
|, ∀m ∈ T4. (16)

By item 1 of lemma 4.4, for g ∈ UN and for every m ∈ T4

e−ε1λ2N ≤ Juu
g−1(m) ≤ eε1λ2N . (17)

Lemma 4.8 ([Ob20], Lemma 7.20). For ε3 > 0 small, if N is large and UN is small enough, for
every g ∈ UN and any u-curve γ for g, for every k ≥ 0, we have

∀m,m′ ∈ γ, e−ε3 ≤
Juu
g−k(m)

Juu
g−k(m′)

≤ eε3 .

This lemma implies that for g ∈ UN and for any u-curve γ for g, if A ⊂ γ is any measurable set,
for every k ≥ 0, it holds

e−ε3
Leb(A)

Leb(γ)
≤ Leb(g−k(A))

Leb(g−k(γ))
≤ eε3

Leb(A)

Leb(γ)
.

Definition 4.9. An adapted field (γ,X) over an u-curve γ is a unitary vector field X such that

1. X is tangent to the center direction;

2. X is (CX , 1/2)-Hölder along γ, that is

∥Xm −Xm′∥ ≤ CXdγ(m,m′)
1
2 , ∀m,m′ ∈ γ,

where CX < 30N2λN and dγ is the distance measured along γ.
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Remark 4.10. The estimate on the Hölder constant used in [BC14, Ob20] is 20N2λN , instead of
30N2λN as above. This is due to the fact that the parametrization of the torus T4 is by intervals
of length 2π instead of 1 in the proof of lemma 2 in [BC14]. However, this change on the estimate
of the Hölder constant does not affect the rest of the proof.

Let (γ,X) be an adapted field, and define

Iγ,Xn =
1

|γ|

∫
γ

log ∥Dgn.X∥dγ.

Proposition 4.11. Suppose that there exists C > 0 with the following property: for every u-curve
γ there exists an adapted vector field (γ,X) for g and for all n > 0 large enough

Iγ,Xn

n
> C.

Then any u-Gibbs measure µ for g has a positive Lyapunov exponent along the center direction
greater than e−2ε3C.

Proof. Suppose not, then there exist an u-Gibbs measure µ and a measurable set B with positive
µ-measure such that every point in B has exponents in the center direction strictly smaller than
e−2ε3C. Since µ has disintegration along unstable leaves equivalent to the Lebesgue measure along
the leaves, there is an unstable manifold γ that intersects B on a set of positive measure for the
Lebesgue measure of γ. Let b ∈ γ ∩ B be a density point and take γk = g−k ◦ βk, where βk is a
u-curve with βk(0) = gk(b). We have that l(γk) → 0 and by bounded distortion (lemma 4.8)

Leb(γk ∩B)

Leb(γk)
−→ 1.

Take k large enough such that

Leb(γk ∩Bc)

Leb(γk)
<

e−2ε3(eε3 − 1)C

2 log 2N
.

Using bounded distortion again, for any mk ∈ gk(γk)

Juu
g−k(m

k) ≥ Leb(γk)

Leb(gk(γk))
e−ε3 .

Define χk(m) = lim sup
n→+∞

1

n
log ∥Dgn(gk(m)).Xk

gk(m)∥ for all m ∈ γk, where Xk is the vector field

such that (βk, X
k) verifies the hypothesis of the proposition. Since for µ-almost every point the

Lyapunov exponents exist, using the dominated convergence theorem, we have∫
γk

χkdγk =

∫
βk

χk ◦ g−kJuu
g−kdβk

≥ e−ε3
Leb(γk)

Leb(βk)

∫
βk

χk ◦ g−kdβk

= e−ε3
Leb(γk)

Leb(βk)
lim sup
n→+∞

Iβk,X
k

n

n
.Leb(βk) ≥ e−ε3CLeb(γk).
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On the other hand,∫
γk

χkdγk =

∫
γk∩B

χkdγk +

∫
γk∩Bc

χkdγk

≤ e−2ε3CLeb(γk) +
log 2Ne−2ε3(eε3 − 1)CLeb(γk)

2 log 2N

< e−ε3CLeb(γk)

which is a contradiction.

Write

E(γ,X) =
1

|γ|

∫
γ

log ∥Dg(m).Xm∥dγ(m),

where (γ,X) is an adapted field. Let π1 : T4 → T2 be the projection defined by π1(x, y, z, w) =
(x, y). For X a vector field on γ define

X̃m =
Dπ1(Xm)

∥Dπ1(Xm)∥
.

In what follows, we let δ̃ > 0 be a positive constant that we will fix later.

Definition 4.12. Consider the cone ∆δ̃ = {(u, v) ∈ R2 : N δ̃|u| ≥ |v|}. Let (γ,X) be an adapted

vector field. If for every m ∈ γ we have that X̃(m) ∈ ∆δ̃ then we say that (γ,X) is a δ̃-good

adapted vector field. Otherwise we say that it is δ̃-bad.

Recall that for k ≥ 0 and an u-curve γ the number Nk = Nk(γ) denotes the maximum number
of u curves that subdivide gk ◦γ. For an adapted field (γ,X) define the unit vector field over gk(γ),

Y k =
gk
∗X

∥gk
∗X∥ , where gk∗Xm = Dgk(g−k(m))Xg−k(m).

Lemma 4.13 ([BC14], Lemma 9). For N large and UN small enough, let g ∈ UN and (γ,X) be an
adapted field for g. For k ≥ 0, every possible pair (γk

j , Y
k|γk

j
), with 1 ≤ j ≤ Nk(γ) is an adapted

field.

The following formula is proved in section 6 of [BC14].

Lemma 4.14. For every adapted field (γ,X) and any n ∈ N

Iγ,Xn =

n−1∑
k=0

Rk +

Nk∑
j=0

1

|γ|

∫
γk
j

log ∥Dg(m).Y k
m∥Juu

g−kdγ
k
j

 ,

where Rk = 1
|γ|
∫
γk
Nk+1

log ∥Dg(m).Y k
m∥Juu

g−kdγ
k
Nk+1.

As a consequence of lemma 4.14, and using (15), we obtain

Iγ,Xn ≥
n−1∑
k=0

Rk + e−ε2

Nk∑
j=0

(min
γk
j

Juu
g−k)E(γk

j , Y
k)

 . (18)
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Since γk
Nk+1 is a piece of an u-curve, then

|γk
Nk+1|
|γ|

< 2.

By (17), we have

|Rk| =
1

|γ|

∫
γk
Nk+1

log ∥Dg(m).Y k
m∥Juu

g−kdγ
k
Nk+1 <

|γk
Nk+1|
|γ|

(eε1λ)2Nk log 2N

< 2(eε1λ)2Nk log 2N
k→+∞−−−−−→ 0.

Hence,

1

n

n−1∑
k=0

|Rk| −→ 0.

The following is the key proposition that will give us the estimate that we need.

Proposition 4.15 ([Ob20], Proposition 7.29). For N large and UN small enough, for every g ∈ UN ,
any δ̃-good adapted field (γ,X) and every k ≥ 0, we have

e−ε2

Nk∑
j=0

(min
γk
j

Juu
g−k)E(γk

j , Y
k) ≥ (1− 12δ̃) logN.

Remark 4.16. In [Ob20], the term e−ε2 on the right hand side of the equation (18) is missing.
The same term is also missing in the statement of proposition 7.29 in [Ob20]. Since we can fix ε2
arbitrarily close to 0, this does not affect the rest of the proof in [Ob20] to obtain the estimate of
the center Lyapunov exponents.

Now, we can proceed with the proof of Theorem 4.1.

Proof of Theorem 4.1. Take δ̃ = 2δ
15 . Let N be large and let UN be small enough such that it verifies

proposition 4.15. Fix g ∈ UN and let µ be an u-Gibbs measure for g. Consider any u-curve γ and
any δ̃-good vector field X on γ. By proposition 4.15, and using inequality (18), for n large enough

Iγ,Xn

n
≥ (1− 14δ̃) logN. (19)

Since we could have chosen ε3 > 0 small enough such that e−ε3(1− 14δ̃) ≥ (1− 15δ̃) by proposition
4.11, µ-almost every point has a Lyapunov exponent for g in the center direction larger than

(1− 15δ̃) logN = (1− 2δ) logN.

By condition (4) in lemma 4.4, we have that for µ-almost every point m the sum of the center
Lyapunov exponents belongs to the interval (−β, β), that is, −β < λ−(m)+λ+(m) < β. By taking
β > 0 small, after fixing δ, we conclude that

λ−(m) < β − λ+(m) < β − (1− 2δ) logN < (1− δ) logN.

Therefore, we obtain that for N large and UN small enough, for g ∈ UN , any u-Gibbs measure
µ ∈ Gibbsu(g) verifies that µ-almost every point m has both a positive and a negative Lyapunov
exponent on the center with absolute value larger than (1− δ) logN .
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5 Proof of Theorem C

Recall that in section 2 we defined the notion of homoclinically related measures (see definition
2.19). The goal of this section is to prove Theorem C. This is based in the techniques developed
by the author in [Ob20]. We actually prove the following theorem, which is more general than
Theorem C:

Theorem 5.1. For N large and UN small enough, for any k ∈ N the following holds: if g ∈ UN

and µ1, µ2 are two ergodic u-Gibbs measures for gk, then µ1 is homoclinically related to µ2.

For an SRB measure, we can also obtain the following proposition.

Proposition 5.2. For N large and UN small enough, let g ∈ UN and let µ be an SRB measure for
g. Then supp(µ) = T4.

Proof of Theorem C assuming Theorem 5.1 and Proposition 5.2. Let N be large and UN be small
enough such that Theorem 5.1 holds and fix g ∈ UN . If µ1 and µ2 are two ergodic SRB measures
for g, by Theorem 5.1, µ1 is homoclinically related to µ2. By Theorem 2.20, µ1 = µ2, and therefore
g has at most one SRB measure.

Suppose that µ is an SRB measure for g. By Theorem 2.18, there exist k ∈ N and k measures
which are gk-invariant and SRB, µ1, · · · , µk, such that µi ̸= µj for j ̸= i and

µ =
1

k

k∑
j=1

µj .

Moreover, g∗(µj) = µj+1, with the identification of k + 1 = 1, and (gk, µk) is Bernoulli. Observe
that if k = 1, then µ is Bernoulli for g.

Suppose k > 1, by Theorem 5.1, we have that for any i, j ∈ {1, · · · , k} with i ̸= j, the measures
µi and µj are homoclinically related. Since these measures are SRB, we obtain that µi = µj , which
is a contradiction with the fact that µi ̸= µj . Hence, k = 1 and the measure µ is Bernoulli for g.
Proposition 5.2 states that if µ is SRB then it has full support.

The rest of this section is mostly dedicated to prove Theorem 5.1. As we will see, the proof of
this theorem is essentially contained in the proof of the stable ergodicity for the map fN in [Ob20].
We will refer the reader to [Ob20] for the proofs of several of the lemmas and propositions that
we will use in this section, and we remark that they are also valid outside the volume preserving
setting. At the end of the section we explain how to obtain Proposition 5.2. The argument involved
in the proof of Proposition 5.2 is a combination of some estimates obtained to prove Theorem 5.1
and arguments from [CO21].

5.1 Estimates for stable and unstable manifolds of u-Gibbs measures

For a vector v ∈ TmT4, write v1 = Dπ1(m).v. For a direction E ⊂ TmT4 we will write (E)1 =
Dπ1(m).E. For this section we fix 0 < δ << 1 small and we are assuming that N is large and UN

is small enough such that Theorem 4.1 holds. For this subsection we fix two constants (depending

on N), θ1 := N− 2
5 and θ2 := N− 3

5 .
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Let g ∈ UN . For each ergodic measure µ for g let Λµ be the set of points m ∈ T4 such that

1

n

n−1∑
j=0

δfj(m) −−−−−→
n→+∞

µ and
1

n

n−1∑
j=0

δf−j(m) −−−−−→
n→+∞

µ, in the weak∗-topology.

Where δp is the dirac mass on the point p. Birkhoff’s theorem implies that µ(Λµ) = 1. Recall that
Rg is the set of regular points for g. By Theorem 4.1, if µ is an u-Gibbs measure for g, then for each
m ∈ Rg ∩ Λµ there are two directions E−

g,m and E+
g,m contained in Ec

g,m, which are the Oseledets’
directions with respect to the negative and positive Lyapunov exponent, respectively.

For each µ ∈ Gibbsu(g), we define the sets

Z−
µ =

{
m ∈ Rg ∩ Λµ : ∀n ≥ 0 it holds

∥∥∥Dgn(m)|E−
g,m

∥∥∥ <
(
N− 4

5

)n}
;

Z+
µ =

{
m ∈ Rg ∩ Λµ : ∀n ≥ 0 it holds

∥∥∥Dg−n(m)|E+
g,m

∥∥∥ <
(
N− 4

5

)n}
;

Zµ = g(Z−
µ ) ∩ g−1(Z+

µ );

Zg =
⋃

µ∈Gibbsu(g)

Zµ.

The proof of the following lemma is the same as lemma 5.2 in [Ob20]. It is an application of
Pliss lemma.

Lemma 5.3 ([Ob20], lemma 5.2). Let g ∈ UN . If µ is an ergodic u-Gibbs measure for g, then
µ(Zg) ≥ 1−7δ

1+7δ .

Let T =
[
1+7δ
28δ

]
and define

Xg =

T−1⋂
k=−T+1

gk(Zg). (20)

An easy consequence of the estimate in lemma 5.3 is given in the following lemma.

Lemma 5.4 ([Ob20], lemma 5.3). For N large and UN small enough, if µ is an u-Gibbs measure
for g then

µ(Xg) > 0.

For a vector v ∈ R2 we write v = (vh, vv), where vh and vv are the coordinates of v with respect
to the basis (1, 0) and (0, 1). For each θ > 0 we consider the horizontal and vertical cones

C hor
θ = {v ∈ R2 : θ∥vh∥ ≥ ∥vv∥} and C ver

θ = {v ∈ R2 : θ∥vv∥ ≥ ∥vh∥}.

One of the key ingredients in the proof of stable ergodicity of fN is based in a version of the
stable manifold theorem given by Crovisier-Pujals in [CP18]. Using their construction we can
obtain precise estimates on the sizes of stable and unstable manifolds inside the center direction for
u-Gibbs measures. This is given in the following proposition. Fix θ1 = N− 2

5 .
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Proposition 5.5 ([Ob20], Proposition 5.6). Let N be large and UN be small enough. For g ∈ UN

and m ∈ Zg, there are two C1-curves, W ∗
g (m), contained in W c

g (m), tangent to E∗
g,m and with

length bounded from below by r0 = N−7, for ∗ = −,+. Those curves are C1-stable and unstable
manifolds for g, respectively. Moreover,

(
TpW

+
g,r0(m)

)
1
⊂ C hor

4
θ1

(p) and
(
TqW

−
g,r0(m)

)
1
⊂ C ver

4
θ1

(q),

for every p ∈ W+
g,r0(m) and q ∈ W−

g,r0(m).

We remark that the proof of this proposition only uses the estimates for points in the set Zg

and estimates on the C2-norm of g. The proof is exactly the same as the proof of proposition 5.6
in [Ob20]

Let θ2 = N− 3
5 . Proposition 5.5 is one of the key ingredients to prove the following lemma.

Lemma 5.6 ([Ob20], Lemma 5.7). For N large, UN small and n > 15, let g ∈ UN . Then for every
m ∈ Xg there are two curves γ−

g,−n(m) ⊂ g−n(W−
g,r0(m)) and γ+

g,n(m) ⊂ gn(W+
g,r0(m)) with length

greater than 4π, such that
(
Tγ−

g,−n(m)
)
1
⊂ C ver

θ2
and

(
Tγ+

g,n(m)
)
1
⊂ C hor

θ2
.

We remark that the statement of lemma 5.7 from [Ob20], which is the equivalent of lemma 5.6
above, involves a measure νg,i. However, the proof only uses the estimates of the points in the set
Zg and the definition of Xg. Therefore, the proof of lemma 5.6 is exactly the same as the proof of
lemma 5.7 from [Ob20]

For R > 0, let

W s
g,R,−n(m) =

⋃
q∈γ−

g,−n(m)

W ss
g,R(q),

where the curve γ−
g,−n(m) is the curve given by the previous lemma. Define similarly the set

Wu
g,R,n(m), but using the strong unstable manifolds.
Let m ∈ Xg be a typical point for an u-Gibbs measure µ. Recall that the stable Pesin manifold

is a C1-immersed submanifold and it has a topological characterization given by

W s(m) = {y ∈ T4 : lim sup
n→+∞

1

n
log d(fn(m), fn(y)) < 0}.

By the topological characterization of the stable Pesin manifold and by the definition ofW s
g,R,−n(m),

it is easy to see that W s
g,R,−n(m) ⊂ g−n(W s(m)). Observe that the strong stable manifolds

subfoliate the Pesin stable manifold, in particular W s
g,R,−n(m) is open inside the Pesin manifold

g−n(W s(m)). We conclude that W s
g,R,−n(m) is a C1-submanifold. An analogous conclusion holds

for unstable manifolds.
The next lemma allows us to control the tangent space of these stable and unstable manifolds

inside the center direction.

Lemma 5.7 ([Ob20], Lemma 5.8). Fix θ3 > 0 such that θ3 > θ2 and satisfies C hor
θ3

∩ C ver
θ3

= {0}.
For g ∈ UN , there exists 0 < R < 1 such that if n ≥ 15, m ∈ Xg and m− ∈ W s

g,R,−n(m) ⊂
W s

g,2,−n(m), then (
T (W s

g,2,−n(m) ∩W c
g (m

−))
)
1
⊂ C ver

θ3 .

A similar result holds for Wu
g,R,n(m).

The last ingredient for the proof we will need is the following proposition.
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Proposition 5.8. For N large and UN small enough, if g ∈ UN then for any ergodic u-Gibbs
measure µ for g and for any k ∈ N, the following property holds: for µ-almost every point m ∈ T4,
the sets {W c

g (g
nk(m)) : n ∈ N} and {W c

g (g
−nk(m)) : n ∈ N} are both dense in T4.

The proof of this proposition is essentially the same as the proof of Proposition 5.9 in [Ob20].
For the sake of completeness we will include it here.

Proof. For UN small enough, for every g ∈ UN there is a homeomorphism hg : T4 → T4, that takes
center leaves of fN to center leaves of g, such that for every m ∈ T4 it is satisfied

g ◦ hg(W
c
f (m)) = hg ◦ f(W c

f (m))

Consider the quotients Mf = T4/ ∼c
f and Mg = T4/ ∼c

g, where p ∼c
∗ q if and only if q ∈ W c

∗ (p)

for ∗ = f, g. We denote πf : T4 → Mf and πg : T4 → Mg the respective projections. Observe that

Mf = T2 and that the induced dynamics f̃ : Mf → Mf of f is given by A2N . Endow Mg with the
distance dg given by the Hausdorff distance on the center leaves, that is,

dg(L,W ) = dHaus(π
−1
g (L), π−1

g (W )).

By the leaf conjugacy equation, the induced dynamics g̃ : Mg → Mg of g is conjugated to

the linear Anosov A2N on T2 by the homeomorphism induced by hg, which we will denote by h̃g.
Denote by Wuu

A2N (.) the unstable manifold of A2N on T2 and let

Wuu
g̃ (L) = {W ∈ Mg : lim

n→+∞
dg(g̃

−n(L), g̃−n(W )) = 0},

be the unstable set of L.

Claim 5.9 (Claim 2 in the proof of Proposition 5.9 from [Ob20]). For every m ∈ T4, for every
q ∈ W c

g (m), it is satisfied that

πg(W
uu
g (q)) = Wuu

g̃ (πg(m)) = h̃g(W
uu
A2N (πf (h

−1
g (m)))),

and πg is a bijection from Wuu
g (q) to Wuu

g̃ (πg(m)).

For the linear Anosov A2N the unstable foliation is minimal, that is, every unstable manifold
of A2N is dense in T2. Let µ be an ergodic u-Gibbs measure for g and fix m a generic point for
µ. Using the minimality of the unstable foliation of the linear Anosov and by the leaf conjugacy
Wuu

g̃ (πg(m)) is dense in Mg.

Take U a small open set in Mg. Since the center foliation is uniformly compact, Û = π−1
g (U) is

a saturated open set such that any two center leaves in Û are close to each other. By the previous
claim Wuu

g (m) ∩ Û ̸= ∅.
Since µ is an u-Gibbs measure, we have that Wuu

g (m) is contained in the support of µ. Hence,

supp(µ) ∩ Û ̸= ∅. In particular, µ(Û) > 0. Recall that m is a generic point for µ, therefore, its
future and past orbits visit Û infinitely many times. This is true for any open set U inside Mg,
which concludes the proof of the proposition for k = 1.

For k ∈ N, we remark that an unstable leaf for A2N is an unstable leaf for A2Nk, in particular,
the unstable foliation of A2Nk is minimal. The map gk is leaf conjugated to A2Nk. The same
argument as above concludes the proof of the proposition.

32



Proof of Theorem 5.1. Let N be large and UN be small enough such that lemmas 5.6, 5.7 and
proposition 5.8 hold. Fix g ∈ UN and µ1, µ2 be two ergodic u-Gibbs measures for g.

Recall that we defined the set Xg in (20) and let Λµi
be the set of typical points that we defined

before for the measures µi, for i = 1, 2. Since µi(Xg) > 0 and µi(Λµi
) = 1, the set Xi = Xg ∩ Λi

has positive µi measure as well, for i = 1, 2.
For any two points m1 ∈ X1 and m2 ∈ X2, we will prove that the stable manifold of m1 has a

transverse intersection with the unstable manifold of m2. Fix a center leaf W c
g (q), the center leaf

of some point q ∈ T4. By proposition 5.8, the forward and past iterates of W c
g (mi) are dense in T4,

for i = 1, 2. In particular, we can find two sequences, nk → +∞ and lj → +∞, such that

lim
k→+∞

πg(g
nk(m1)) = lim

j→+∞
πg(g

−lj(m2)) = πg(q),

where πg : M → Mg is the projection of M to Mg = T4/ ∼c
g, as it was introduced in the proof of

proposition 5.8. Since the center foliation is continuous, with uniformly compact leaves, we obtain
that

gnk(W c
g (m1)) = W c

g (g
nk(m1)) → W c

g (q) and g−lj (W c
g (m2)) = W c

g (g
−lj (m2)) → W c(q),

where the convergence is in the C1-topology, recall that the center foliation is uniformly compact.
By lemma 5.6, there are curves γ+

g,nk
(m1) and γ−

g,−lj
(m2) with length bigger that 4π and con-

tained in the cone C hor
θ2

and C ver
θ2

, respectively. Take R given by lemma 5.7 and consider the
sets

Lu
k(m1) =

⋃
z∈γ+

g,nk
(m1)

Wuu
g,R(z) ⊂ Wu(gnk(m1))

Ls
j(m2) =

⋃
z∈γ−

g,−lj
(m2)

W ss
g,R(z) ⊂ W s(g−lj (m2)).

For k and j large enough, gnk(W c
g (m1)) and g−lj (W c

g (m2)) are very close to the leaf W c
g (q).

Thus by the control on the angles that we obtained in lemma 5.7, there is a transverse intersection
between Lu

k(m1) and Ls
j(m2). In particular, Wu

g (g
nk(m1)) andW s

g (g
−lj (m2)) intersect transversely.

Since transverse intersections are invariant by iterates, we conclude that Wu
g (m1) and W s

g (m2) have
a transverse intersection.

Repeating this argument, exchanging the roles of m1 and m2, implies that Wu
g (m2) and W s

g (m1)
have a transverse intersection. Since the set Xi has positive µi measure, for i = 1, 2, we conclude
that µ1 is homoclinically related to µ2. This finishes the proof of Theorem 5.1 for g, in the case
k = 1.

Let k ∈ N. Following the same steps as above, it is easy to prove that any two ergodic u-Gibbs
measures for gk, µ1 and µ2, are homoclinically related.

5.2 Proof of proposition 5.2

We will need a few results from [CO21].

Lemma 5.10 ([CO21], Lemma 3.2). There exists a constant R > 0 with the following property:
for N sufficiently large, there exists a C1-neighborhood U of fN such that for any g ∈ UN and
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any two points p, q ∈ T4 we have that for any mp ∈ W c
g (p) there exists mq ∈ W c

g (q) such that
Wuu

g,R(mp) ∩W ss
g,R(mq) ̸= ∅.

Fix θ = N− 3
5 and recall that in subsection 5.1, we defined the vertical cone C ver

θ .

Lemma 5.11 ([CO21], Proposition 3.3). If N is sufficiently large there exists UN ⊂ Diff2(T4) a
C1-neighborhood of fN such that for any g ∈ UN and any open set U ⊂ T4, there exists ns ≥ 0
such that for any n ≥ ns, there exists a C1 curve γ−

n ⊂ g−n(U) satisfying:

• γ−
n is contained in a center leaf.

• π1(γ
−
n ) is tangent to C ver

θ .

• γ−
n has length greater than 4π

•
⋃

q∈γ−
n

W ss
g,R(q) ⊂ g−n(U).

Consider the vertical foliation Fver = {{z}×T2 : z ∈ T2}. Observe that for any diffeomorphism
g sufficiently C1-close to fN , we have that W c

g (m) intersects each vertical torus {z}×T2 in exactly
one point, for any m ∈ T4. Hence, for any two points m1,m2 ∈ T4, the map from W c

g (m1) to
W c

g (m2) defined by hg
m1,m2

(p) = W c
g (m2) ∩ Fver(p) is well defined. Note that, after identifying all

the horizontal tori with T2, the map hfN
m1,m2

is just the identity, independently of the points m1,m2.

Lemma 5.12 ([CO21], Lemma 3.4). For every ε > 0, there exists N0 := N0(ε) with the following
property: for N ≥ N0 there exists a C1-neighborhood UN of fN such that if g ∈ UN , p ∈ T4 and
q ∈ W ss

g,R(p) then dC0(hg
p,q, H

s
p,q) < ε. Analogous result holds for the unstable holonomy.

Proof of proposition 5.2. Let N be large and UN be small enough such that lemmas 5.6, 5.10, 5.11,
and 5.12 hold. Let g ∈ UN and suppose that µ is an SRB measure for g. Fix U ⊂ T4 an open set,
we must prove that supp(µ) ∩ U ̸= ∅.

Since µ is SRB, its supports contains entire Pesin unstable manifolds. By lemma 5.6, we can
take a µ-generic point mu with the property that for nu large enough there exists γ+

g,nu
(m) ⊂

gnu(W+
g,r0(m)) a curve of length greater than 4π and whose projection by π1 is tangent to C hor

θ .
For ns large enough, let γ−

ns
be the curve given by lemma 5.11 for U and g. As a consequence

of lemmas 5.10, and 5.12, we conclude that ⋃
q∈γ−

ns

W ss
g,R(q)

 ∩

 ⋃
p∈γ+

nu

Wuu
g,R(p)

 ̸= ∅. (21)

We refer the reader to [CO21] for more details on this argument. By (21), we obtain that
gns+nu(Wu(mu)) ∩ U ̸= ∅, and since µ is SRB we conclude that supp(µ) ∩ U ̸= ∅.

6 Rigidity of u-Gibbs measures

The main tool to study the existence of SRB measures that we will use is a recent result by Brown-
Rodriguez Hertz on measure rigidity for random dynamics of surface diffeomorphisms. The goal of
this section is to explain the statement of their result and how it can be applied to our scenario
after a measurable change of coordinates using the unstable holonomies (see Theorem 6.3).
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6.1 Measure rigidity for general skew products

Let (Ω,BΩ, ν) be a Polish probability space, that is, Ω has the topology of a complete separable
metric space, BΩ is the Borel σ-algebra of Ω and ν is a Borel probability measure on Ω. Let
θ : (Ω,BΩ, ν) → (Ω,BΩ, ν) be an invertible, measure-preserving and ergodic transformation. Let
S be a compact smooth surface and Diff2(S) be the set of C2-diffeomorphisms of S. We consider
a measurable map that for each point ξ ∈ Ω associates a diffeomorphism fξ ∈ Diff2(S). For each
n ∈ Z we define

f0
ξ := Id,

fn
ξ := fθn−1(ξ) ◦ · · · ◦ fξ for n > 0,

fn
ξ := (fθn(ξ))

−1 ◦ · · · ◦ (fθ−1(ξ))
−1 for n < 0.

We consider the skew product over θ given by the map ξ 7→ fξ, which is defined by

F : S × Ω −→ S × Ω
(x, ξ) 7→ (fξ(x), θ(ξ)).

With the notation above, we may write Fn(x, ξ) = (fn
ξ (x), θ

n(ξ)). Write X = S × Ω and let
π2 : X → Ω be the natural projection on Ω.

Let µ be an F -ergodic probability measure, such that (π2)∗µ = ν. Observe that the partition
by the fibers S is measurable. Therefore, we have a family of conditional measures defined in a set
D of full ν-measure {µξ}ξ∈D with respect to the partition induced by π2. For ν-almost every ξ, the
measure µξ is supported on Sξ := S × {ξ}. There is a trivial identification of Sξ with S, hence, by
an abuse of notation we consider the map ξ 7→ µξ to be a ν-measurable map from Ω to the space
of Borel probability measures of S.

To talk about SRB measures in this setting, we need to first talk about Lyapunov exponents
and stable and unstable manifolds. Write TX := TS ×Ω and let DF : TX → TX to be the linear
cocycle defined by

DF ((x, v), ξ) = ((fξ(x), Dfξ(x)v), θ(ξ)).

Suppose that the following integrability condition holds∫
Ω

log+(∥fξ∥C2) + log+(∥f−1
ξ ∥C2)dν(ξ) < ∞, (22)

where log+(.) = max{0, log(.)} and ∥fξ∥C2 is the C2-norm of fξ. Applying Oseledec’s theorem

for the linear cocycle DF , there is a µ-measurable decomposition T(ξ,x)X =
⊕

j E
j
(x,ξ) such that

the space Ej
(x,ξ) is the space corresponding to the Lyapunov exponent λj

µ, where {λj
µ}j are the

Lyapunov exponents of DF .
From now on, let us suppose that the measure µ is hyperbolic on the fibers, meaning, all the

Lyapunov exponents are non zero. The integrability condition (22) is used to have Pesin’s theory for
fibered systems. In particular, for µ-almost every point there exists stable and unstable manifolds,
which may possibly be just points in the case that all the exponents are negative or positive. We
refer the reader to section 6 in [BRH17] for more details.

Suppose that µ has at least one positive Lyapunov exponent. The family of unstable manifolds
{Wu(x, ξ)}(x,ξ)∈X forms a partition of a µ-full measure subset of X. Usually this partition is not
measurable. In this context, we say that a measurable partition P is u-subordinated if for µ-
almost every (x, ξ), there exists a positive number r > 0 such that Wu

r (x, ξ) ⊂ P(x, ξ) ⊂ Wu(x, ξ).
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Definition 6.1 (Fiber-wise SRB). An F -invariant probability measure µ is fiber-wise SRB if for
any u-subordinated measurable partition P, for µ-almost every (x, ξ), the conditional measure µP

(x,ξ)

is absolutely continuous with respect to the riemannian volume on Wu(x, ξ).

Let PΩ be a measurable partition of Ω. We say that PΩ is increasing if for ν-almost every
point ξ we have

PΩ(θ(ξ)) ⊂ θ(PΩ(ξ)).

Let F̂(PΩ) ⊂ BΩ be the sub-σ-algebra generated by PΩ. We say that F̂(PΩ) is an increasing
sub-σ-algebra. We remark that in [BRH17], the authors call these partitions and sub-σ-algebra
decreasing instead of increasing. We changed it here to be in harmony with the notion of increasing
that we defined in section 2.

Let F(PΩ) be the µ-completion of BS ⊗ F̂(PΩ), where BS is the Borel σ-algebra on S. For a
hyperbolic measure µ, we may also look at the Oseledec’s direction Es(x, ξ) as a measurable map
of X that takes values on the projectivization of TX. We are now ready to state the main theorem
in [BRH17].

Theorem 6.2 ([BRH17], Theorem 4.10). Let F : X → X be as above verifying the integrability
condition (22), let PΩ be a measurable increasing partition of Ω and let µ be a hyperbolic F -invariant
measure such that (π2)∗µ = ν. Suppose that the family of conditional measures on the fibers {µξ}
are non-atomic almost surely. Furthermore, assume that

1. ξ 7→ f−1
ξ is F̂(PΩ)-measurable, and

2. ξ 7→ µξ is F̂(PΩ)-measurable.

Then either (x, ξ) 7→ Es(x, ξ) is F(PΩ)-measurable of µ is fiber-wise SRB.

6.2 Change of coordinates

Fix α ∈ (0, 1). In this section, we show how to use Theorem 6.2 to obtain the following theorem:

Theorem 6.3. For N large enough, there exists Usk
N a C2-neighborhood of fN in Sk2(T2 × T2)

such that for g ∈ Usk
N ∩Diff2+α(T4), for any ergodic µ ∈ Gibbsu(g) one of the following holds:

1. µ is SRB;

2. for µ-almost every p ∈ T4, and for Lebesgue almost every point q in Wuu
loc (p)

E−
g,q = DHu

p,q(p)E
−
g,p;

3. for µ-almost every p ∈ T4 the measure µc
p is atomic.

To prove Theorem 6.3 we will define a measurable change of coordinates using the strong unstable
holonomies, so that after this change of coordinates we are in the setting of Theorem 6.2.

Recall that λ < 1 is the rate of contraction of the linear Anosov A. Let N be large enough such
that

(4N2)2
(
λ2N

)α
< 1.
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In particular, if the C2-neighborhood Usk
N of fN is sufficiently small, then for every g ∈ Usk

N we have(
∥Dg|Ec

g
∥

m(Dg|Ec
g
)

)2

(m(Dg|Euu
g
))−α < 1. (23)

Fix g ∈ Usk
N ∩ Diff2+α(T4) and some R > 1. Condition (23) above is the (2, α)-unstable center

bunching condition defined in (8). By Theorem 2.10, for any p ∈ T4, q ∈ Wuu
g,R(p) the unstable

holonomy Hu
p,q : W c

g (p) → W c
g (q) is a C2-diffeomorphism, whose C2-norm varies continuously with

the choices of p and q as above.
Since g is a partially hyperbolic skew product, we have that g(p1, p2) = (gp2

(p1), g2(p2)), where
g2(p2) is a C2+α-Anosov diffeomorphism of T2 which is topologically conjugated to A2N . It is well
known that a transitive C1+α-Anosov diffeomorphism has an unique ergodic u-Gibbs measure. Let
ν be such a measure for g2 on T2.

Fix R = {R1, · · · , Rm} a small Markov partition for A and observe that R is also a Markov
partition for A2N for every N ∈ N. By taking N sufficiently large we may suppose that the
transition matrix P2N associated with R for A2N verifies (P2N )i,j = 1, for every i, j = 1, · · ·m. Let
Rg be the image of R by the conjugacy map between A2N and g2. It is easy to see that Rg is
a small Markov partition for g2 and the conjugacy implies that it has the same transition matrix
P2N . Define Σ := {1, · · · ,m}Z which is the shift space associated with Rg for g2, let σ : Σ → Σ be
the left shift map, and let Θ : Σ → T2 be the continuous surjection that defines the semi-conjugacy
between σ and g2.

Let us set some notations. Write Σ− = {(ξi)i≤0 : ξi ∈ {1, · · · ,m}} and Σ+ := {(ξi)i>0 : ξi ∈
{1, · · · ,m}}. Let π− : Σ → Σ− and π+ : Σ → Σ+ be the natural projections. For a point ξ ∈ Σ we
write ξ− := π−(ξ) and ξ+ := π+(ξ) and we use the notation ξ = (ξ−, ξ+). The local unstable set
of a point ξ ∈ Σ is

Σu
loc(ξ) = {η ∈ Σ : η− = ξ−}.

Define νσ := Θ∗ν, and observe that this is an ergodic, σ-invariant measure. The partition
Σu

loc on local unstable sets forms a νσ-measurable partition of Σ. Let Pu be the ν-measurable u-
subordinated partition given by the intersection of local unstable manifolds of g2 with the rectangles
from the Markov partition Rg. Notice that Pu is equivalent (on a set of full ν-measure) to the
partition Σu

loc (on a set of full νσ-measure).
It is easy to see that the partition Σu

loc is an increasing partition. Let Bu be the sub-σ-algebra
generated by the partition on local unstable sets. This is an increasing sub-σ-algebra.

It is well known that Θ is bijective in a set of full νσ-measure, which we will denote by D̂.
We may further assume that D̂ is σ-invariant. Let D := Θ(D̂) this is a g2-invariant set of full
ν-measure. Define Ψ = Id×Θ−1, and notice that it is an isomorphism between T2×D and T2×D̂.
Let π′

2 : T2 × Σ → Σ be the natural projection on the second coordinate.
Let µ be an ergodic u-Gibbs measure for g. By lemma 2.29, ν = (π2)∗µ. Consider the measure

µ̂ := Ψ∗µ, and observe that it verifies (π′
2)∗µ̂ = νσ. We define the skew product on T2 × D̂ by

ĝ(x, ξ) = (ĝξ(x), σ(ξ)), where ĝξ := gΘ(ξ). We may extend ĝ to T2 × Σ by setting ĝξ = Id, for

ξ /∈ D̂. Observe that (g, µ) is isomorphic (or measurably conjugated) to (ĝ, µ̂) by the isomorphism
Ψ. Since Ψ is just the identity in the first coordinate, it is immediate that the center Lyapunov
exponents of µ are the same as the fiber Lyapunov exponents of µ̂σ. Furthermore, µ is SRB if and
only if µ̂ is fiber-wise SRB.

We now introduce a change of coordinate in the fibers for the skew product ĝ in a way that the
new skew product will verify the conditions to apply Theorem 6.2.
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(T2 × T2, µ) (T2 × T2, µ)

(T2 × Σ, µ̂) (T2 × Σ, µ̂)

(T2 × Σ, µ̃) (T2 × Σ, µ̃)

g

Ψ Ψ

ĝ

Φ Φ

g̃

Figure 1: Changes of coordinates

Fix η+ ∈ Σ+ and define the function ϕ : Σ → Σ by ϕ(ξ) = (ξ−, η+) for every ξ ∈ Σ. Observe
that for each ξ ∈ Σ, ϕ(ξ) ∈ Σu

loc(ξ). In particular ϕ is Bu-measurable.

For each ξ ∈ D̂, since Θ(ξ) and Θ(ϕ(ξ)) belong to the same local unstable manifold for g2, we
define

Φξ : T2 −→ T2

x 7→ Hu
Θ(ξ),Θ(ϕ(ξ))(x).

To simplify our notation, we write Hu
ξ,ϕ(ξ) := Hu

Θ(ξ),Θ(ϕ(ξ)). We also define Φ : T2 ×D → T2 ×D

by Φ(x, ξ) = (Φξ(x), ξ). We can extend the definition of Φ to T2 ×Σ by setting Φξ = Id for ξ /∈ D̂.
We consider a skew product g̃ on T2 × Σ defined by

g̃ = Φ ◦ ĝ ◦ Φ−1. (24)

Consider the ergodic g̃-invariant measure µ̃ = Φ∗µ̂ and observe that (π′
2)∗µ̃ = νσ. The partition

on the fibers T2 forms a measurable partition of T2 × Σ. Let {µ̃ξ}ξ∈Σ be the family of conditional
measures with respect to the fibers. Figure 1 represents all these changes of coordinates that are
conjugacies on subsets of full measure.

Lemma 6.4. The maps ξ 7→ g̃−1
ξ and ξ 7→ µ̃ξ are Bu-measurable.

Proof. Recall that g̃−1
ξ = (g̃σ−1(ξ))

−1. Since the unstable holonomy commutes with g, and by the
definition of ĝ, in what follows we will use that Hu

ξ,η ◦ ĝσ−1(ξ) = ĝσ−1(η) ◦Hu
σ−1(ξ),σ−1(η). By (24),

we have

g̃σ−1(ξ)(x) = Hu
ξ,ϕ(ξ) ◦ ĝσ−1(ξ) ◦Hu

ϕ(σ−1(ξ)),σ−1(ξ)(x)

= Hu
ξ,ϕ(ξ) ◦H

u
σ(ϕ(σ−1(ξ))),ξ ◦ ĝϕ(σ−1(ξ))(x) = Hu

σ(ϕ(σ−1(ξ))),ϕ(ξ) ◦ ĝϕ(σ−1(ξ))(x).

Notice that ϕ(ξ) and ϕ(σ−1(ξ)) depend only on ξ−, in particular g̃σ−1(ξ) depends only on ξ−. If

η ∈ Σu
loc(ξ), which means that η− = ξ−, then g̃σ−1(ξ) = g̃σ−1(η) and hence the map ξ 7→ g̃−1

ξ is
constant on local unstable sets and it is Bu-measurable.

Since µ is an u-Gibbs measure, and it projects to ν, corollary 2.30 implies that for ν-almost
every p2, and for Lebesgue almost every q2 ∈ Wuu

g2 (p2) (for the riemannian volume of Wuu
g2 (p2)), we

have
µc
q2 = (Hu

p2,q2)∗µ
c
p2
. (25)

At first, the disintegration µc
q2 is defined for almost every point inside the unstable manifold of p2.

However, using (25), for any q2 ∈ Wuu
g2 (p2), we may consider the measure µq2 = (Hu

p2,q2)∗µp2
. This
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defines a new disintegration that coincides with the original one in µ-almost every point with the
advantage that for ν-almost every point the disintegration is defined along entire unstable manifolds.

Since Ψ is the identity on the fibers and a conjugation with the shift on the basis, for νσ-
almost every ξ we obtain µΘ(ξ) = µ̂ξ. Let us see the equivalent of property (25) for µ̂. Consider

the disintegration of νσ on the measurable partition Σu
loc. For νσ-almost every ξ, let νξσ be the

conditional measure on Σu
loc(ξ). Hence, for νξσ-almost every η, we have that µ̂η = (Hu

ξ,η)∗µ̂ξ.
In an analogous way as we did for µ, we define the measure µη for every η in the local unstable

set of ξ and this defines a new disintegration that coincides with the original disintegration on a set
of full measure. By an abuse of notation we will use the notation µ̂ξ for the conditional measure
of this new disintegration. We remark that this disintegration has the advantage of being defined
along entire local unstable sets.

By the definition of Φ we see that for νσ-almost every ξ and for any η ∈ Σu
loc(ξ) the measure

µ̃η = (Hu
η,ϕ(ξ))∗µ̂η = µ̂ϕ(ξ). In particular, the map ξ 7→ µ̃ξ is constant on local unstable sets and it

is Bu-measurable.

Proof of Theorem 6.3. First, let us explain how the skew product g̃ verifies the hypothesis of The-
orem 6.2. Since Σu

loc is a decreasing partition, we have that Bu is a decreasing sub-σ-algebra. Let
B∗ be the µ̃-completion of BT2 ⊗ Bu, where BT2 is the Borel σ-algebra on T2. Recall that

g̃ξ = Hu
σ(ϕ(ξ)),ϕ(σ(ξ)) ◦ ĝϕ(ξ).

We claim that there exists a constant R > 0 such that for any ξ ∈ Σ, we have Θ(σ(ϕ(ξ))) ∈
Wuu

g2,R
(Θ(ϕ(σ(ξ)))). Indeed, recall that we had fixed Rg = {Rg,1, · · · , Rg,m} a small Markov parti-

tion for g2. Since ϕ(ξ) ∈ Σu
loc(ξ), we obtain that Θ(ϕ(ξ)) and Θ(ξ) belongs to the same local unstable

manifold intersected with some rectangle Rg,i. Since the expansion rate of unstable manifolds for g2
is close to λ−2N , which is a constant, there exists R1 > 0 that verifies Θ(σ(ϕ(ξ))) ∈ Wuu

g2,R1
(Θ(σ(ξ))),

for any ξ ∈ Σ. To conclude, we observe that Θ(ϕ(σ(ξ))) ∈ Wuu
g2,loc

(Θ(σ(ξ))). Hence, by fixing R
sufficiently large we conclude our claim.

Since g is C2+α, Theorem 2.10 in the appendix implies that for every ξ ∈ Σ, the holonomy
Hu

σ(ϕ(ξ)),ϕ(σ(ξ)) is a C2-diffeomorphism of T2 with uniformly bounded C2-norm. Since ĝξ = gΘ(ξ),

we also have that all the C2-diffeomophisms ĝξ belong to a compact subset of Diff2(T2). We
conclude that for every ξ, the C2-norm of g̃ξ is uniformly bounded. Similar conclusion holds for
g̃−1
ξ . In particular, the skew product g̃ verifies the integrability condition (22).

It is easy to see that the fiber-wise Lyapunov exponents of (g̃, µ̃) are the same as the center
Lyapunov exponents of (g, µ). In particular, µ̃ is a hyperbolic measure with a positive and a negative
fiber-wise Lyapunov exponent.

Lemma 6.4 states that (g̃, µ̃) verifies the conditions (1) and (2) in the hypothesis of Theorem
6.2. Since the skew products g̃ fibers over the system (σ, νσ), which is ergodic, we conclude that
either

1. the measure µ̃ξ is atomic for νσ-almost every ξ;

2. µ̃ is fiber-wise SRB;

3. the stable distribution (x, ξ) 7→ E−
g̃ (x, ξ) is B∗-measurable.

Notice that the composition (Φ◦Ψ) takes fibers of T2×T2 into fibers of T2×Σ. Furthermore, it
acts as a C2-diffeomorphism on each fiber. Observe also that it measurably conjugates the dynamics
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of g and g̃ on a set of full µ-measure. In particular, for ν-almost every p2 ∈ T2 we have

µc
p2

= (Φ ◦Ψ)−1
∗ µ̃Θ−1(p2). (26)

From (26) above, µ̃ξ is atomic if and only if µΘ(ξ) is atomic, for νσ-almost every ξ.
Since µ is a u-Gibbs measure, it will be an SRB measure if and only if it is fiber-wise SRB in

the sense of definition 6.1. From (26), we conclude that µ̃ is fiber-wise SRB for g̃ if and only if µ is
fiber-wise SRB for g.

For the map (x, ξ) 7→ E−
g̃ (x, ξ) to be B∗-measurable, it is equivalent to the following: for µ̃-

almost every (x, ξ) and for νξσ-almost every η ∈ Σu
loc(ξ), we have that E

−
g̃ (x, ξ) = E−

g̃ (x, η). Observe
that the points (x, ξ) and (x, η) belong to the same local unstable set for g̃. By the conjugacy (Ψ◦Φ),
we conclude that

E−
g̃ (x, ξ) = DHu

Θ(ξ),Θ(ϕ(ξ))(x)E
−
g,(x,Θ(ξ)).

Since the measure is u-Gibbs, the third condition above is equivalent to for µ-almost every p ∈ T4,
for Lebesgue almost every point q ∈ Wuu

loc (p), we have E−
g,q = DHu

p,q(p)E
−
g,p.

All these conclusions hold for any g ∈ Diff2+α(T2) sufficiently C2-close to fN . This concludes
the proof.

We remark that the same proof of Theorem 6.3 also gives the following theorem.

Theorem 6.5. Let S be a compact surface and let α ∈ (0, 1) be a constant. Suppose that g ∈
Sk2+α(S × T2) is a partially hyperbolic skew product which is (2, α)-unstable center bunched. If
µ ∈ Gibbsu(g) is an ergodic measure with one positive and one negative exponent along the center,
then either

1. µ is an SRB measure;

2. for µ-almost every p and for Lebesgue almost every point q ∈ Wuu
loc (p),

E−
g,q = DHu

p,q(p)E
−
g,p;

3. for µ-almost every p, the measure µc
p is atomic.

7 The non invariance of stable directions by u-holonomies

In this section we fix N large and UN small enough such that Theorem 4.1 holds for some small
fixed δ > 0. In particular, if g ∈ UN then any u-Gibbs measure for g has both a positive and a
negative center Lyapunov exponent for µ almost every point. Since µ has absolutely continuous
disintegration with respect to strong unstable manifolds, for µ-almost every point p, Lesbesgue
almost every point q ∈ Wuu

g (p) has a well defined Oseledec’s stable and unstable directions in
the center, where the Lebesgue measure we are considering is the measure restricted to the strong
unstable manifold Wuu

g (p).
Recall that for any p ∈ T4 and any q ∈ Wuu

g (p), there is a well defined unstable holonomy map
Hu

p,q : W c
g (p) → W c

g (q). Furthermore, this map is a C1-diffeomorphism. The main result in this
section is the following:
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Proposition 7.1. Let g ∈ UN and let µ be a u-Gibbs measure for g. For any ε > 0, the following
property holds: for µ-almost every p, there exists a set Du contained in Wuu

g,ε(p) with positive
Lebesgue measure (for the riemannian volume of Wuu

g,ε(p)) such that for any q ∈ Du it is satisfied
that

DHu
p,q(p)E

−
g,p ̸= E−

g,q.

The rest of this section is dedicated to prove proposition 7.1.
Let g ∈ UN , for any p ∈ T4, for any piece of strong unstable manifold γu

p containing p and any
unit vector v ∈ Ec

g,p, we define a unitary vector field over γu
p defined as follows: for any q ∈ γu

p we
write

PHu
p,q(p)v =

DHu
p,q(p)v

∥DHu
p,q(p)v∥

, (27)

and define v′q := PHu
p,q(p)v. First we study the regularity of the vector field v′.

Lemma 7.2. Let g ∈ UN . There exists a constant C > 0 that verifies the following: for any p ∈ T4,
let γu

p := Wuu
g,1(p) be the strong unstable manifold of size 1, for any unit vector v ∈ Ec

g,p, the vector

field v′ defined above is (C, 1
2 )-Hölder.

Proof. Observe that, for N large enough, we have(
λ2N

) 1
2 < (4N2)−1 and

(
λ2N

) 1
2 < (2N)−1.

This means that fN verifies the conditions (1) and (2) from Theorem 2.8, for θ = 1
2 . In particular,

any g sufficiently C1-close to fN also verifies (1) and (2). Lemma 7.2 then follows from the conclusion
(3), for unstable holonomies, of Theorem 2.8.

Next, we will see how the center bunching condition “smoothes” a center vector field over a
piece of strong unstable manifold. This is a crucial point for us, so that it will allow us to apply
some of the techniques and estimates from section 4 to prove proposition 7.1.

Lemma 7.3. Let g ∈ UN . For any piece of strong unstable curve γu and any X unitary vector
field over γu tangent to Ec

g which is (C0,
1
2 )-Hölder, for some C0 := C0(X) > 0, the following

holds: there exists n0 ∈ N, which depends only on C0, such that for every n ≥ n0, the vector field

Xn :=
gn
∗ (X)

∥gn
∗ (X)∥ over gn(γu) is (Cn,

1
2 )-Hölder with Cn < 30N2λN .

Proof. The proof of this lemma is essentially contained in the proof of Lemma 1 from [BC14].
However, we will repeat the main steps of the argument here. For simplicity we will prove the
lemma for fN , which we will denote by f . Using the estimates from Lemma 4.4, one can adapt the
calculations for any g ∈ UN .

Let us just review some estimates for f . Recall that

Df(x, y, z, w) =

(
DsN (x, y) Px ◦AN (z, w)

0 A2N (z, w)

)
.

Hence, ∥Df(x, y, z, w)|Ec∥ = ∥Dsn(x, y)∥ ≤ 2N . Since DsN is the only non linear term, ∥D2f∥ =
∥D2sN∥ ≤ N .
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Let γu be a piece of a strong unstable manifold and X a (C0,
1
2 )-Hölder unitary vector field over

γu. Let us estimate C1, the Hölder constant of X1 over f(γu). First, for any m,m′ ∈ γu, we have

∥Df(m)Xm −Df(m′)Xm′∥ ≤
∥Df(m)Xm −Df(m)Xm′∥+ ∥Df(m)Xm′ −Df(m′)Xm′∥ = I + II.

Since X is (C0,
1
2 )-Hölder, we obtain

I ≤ 2N∥Xm −Xm′∥ ≤ 2NC0d(m,m′)
1
2 .

If d(m,m′) < 1, then

II ≤ Nd(m,m′) < Nd(m,m′)
1
2 < 7Nd(m,m′)

1
2 .

Observe that d(m,m′) ≤ 2π < 7, for any two points m,m′ ∈ T4. If d(m,m′) ≥ 1, then

II ≤ Nd(m,m′) ≤ 7N < 7Nd(m,m′)
1
2 .

We conclude that

∥Df(m)Xm −Df(m′)Xm′∥ < (7N + 2NC0)d(m,m′)
1
2 . (28)

Also,

∥(X1)m − (X1)m′∥ = 1

∥f∗Xm∥∥f∗Xm′∥
∥∥f∗Xm′∥f∗Xm − ∥f∗Xm∥f∗Xm′∥

≤ 1

∥f∗Xm∥∥f∗Xm′∥
(∥∥f∗Xm′∥f∗Xm − ∥f∗Xm′∥f∗Xm′∥

+ ∥∥f∗Xm′∥f∗Xm′ − ∥f∗Xm∥f∗Xm′∥)

≤ 2

∥f∗Xm∥
∥f∗Xm − f∗Xm′∥

=
2

∥f∗Xm∥
∥Df(f−1(m))Xf−1(m) −Df(f−1(m′))Xf−1(m′)∥.

Lemma 4.3 states that the unstable direction is contained in a cone around eu of size bounded from
above by 2λN . This implies that for any two points in the same m and m′ in the same strong
unstable manifold du(m,m′) ≤ (1 + 2λN )d(m,m′). Therefore, by (28), lemma 4.4, and since the
points m and m′ belong to the same strong unstable manifold, we have

∥Df(f−1(m))Xf−1(m) −Df(f−1(m′))Xf−1(m′)∥ ≤ N(7 + 2C0)d(f
−1(m), f−1(m′))

1
2

≤ NλN (1 + 2λN )
1
2 (7 + 2C0)d(m,m′)

1
2 .

Recall that ∥Df |Ec
f
∥ ≥ (2N)−1, hence

∥X1(m)−X1(m
′)∥ ≤ 2NλN (1 + 2λN )

1
2 (7 + 2C0)d(m,m′)

1
2

∥f∗X(m)∥
≤ 4(1+2λN )

1
2N2λN (7+2C0)d(m,m′)

1
2 .
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Observe that 4(1 + 2λN )
1
2N2λN (7 + 2C0) estimates the Hölder constant of X1. If C0 ≤ 1

10 , then
for N large enough

4(1 + 2λN )
1
2N2λN (7 + 2C0) ≤ 4(1 + 2λN )

1
2N2λN (7.2) < 30N2λN .

Hence, C1 < 30N2λN and the same calculations imply that Cn < 30N2λN , for every n ≥ 1. Now
suppose that C0 > 1

10 . Then, for N large enough

4(1 + 2λN )
1
2N2λN (7 + 2C0)

C0
= 4(1 + 2λN )

1
2N2λN

(
7

C0
+ 2

)
< 4(1 + 2λN )

1
2N2λN72 <

1

2
.

This implies that C1 < C0

2 . Therefore, there exists ñ ∈ N such that Cñ <
(
1
2

)ñ
C0 ≤ 1

10 . Take
n0 = ñ+ 1. We conclude that for every n ≥ n0, Cn < 30N2λN .

Proof of proposition 7.1. If the conclusion of proposition 7.1 did not hold, there would exist a
diffeomorphism g ∈ UN , an u-Gibbs measure µ and a measurable set D of positive µ-measure such
that for any p ∈ D and for Lebesgue almost every point q ∈ Wuu

g (p) we would have DHu
p,q(E

−
g,p) =

E−
g,q. Fix p ∈ D and let γu := Wuu

g,1(p). Consider v an unit vector on E−
g,p and let v′ be the unit

vector field over γu defined as in (27).
Let C be the constant given by lemma 7.2. Therefore, v′ is a (C, 1

2 )-Hölder vector field over

γu. Let n0 ∈ N be given by lemma 7.3. Hence, for n ≥ n0, the vector field v′n :=
gn
∗ (v′)

∥gn
∗ (v′)∥ is

(Cn,
1
2 )-Hölder over γu

n := gn(γu), with Cn < 30N2λN .
Suppose that n0 is large enough such that l(γu

n0
) > 2π. Hence, we may consider a C1-curve

γ̃ : [0, 2π] → T4 such that γ̃ = (γ̃x, γ̃y, γ̃z, γ̃w) with
∣∣∣dγ̃x

dt

∣∣∣ = 1, γ̃([0, 2π]) ⊂ γu
n0
, and define ṽ = vun0

.

Following definition 4.9, the pair (γ̃, ṽ) is an adapted field.
Recall that δ > 0 is fixed and in section 4, on the proof of Theorem 4.1, we fixed δ̃ = 2δ

15 . For
each k ≥ 0, we write ṽk = v′n0+k and recall that there exists Nk ∈ N such that

gk ◦ γ̃ = γ̃k
1 ∗ · · · ∗ γ̃k

Nk
∗ γ̃k

Nk+1,

where γ̃k
j is an u-curve for j = 1, · · · , Nk and γ̃k

Nk+1 is a segment of a u-curve. By lemma 4.13,

every pair (γ̃k
j , ṽk|γ̃k

j
) is an adapted field for j = 1, · · · , Nk.

Recall that in section 4, we had defined the notion of δ̃-good adapted field (see definition 4.12).
We will need the following lemma.

Lemma 7.4 ([Ob20], Lemma 7.27). Let g ∈ UN , and let (γ,X) be a δ̃-bad adapted field. Then
there exists a strip S of length π such that for every j satisfying g−1γ1

j ⊂ S, the field (γ1
j ,

g∗X
∥g∗X∥ ) is

δ̃-good.

Let (γ̂, v̂) be a δ̃-good adapted field defined as follows: if (γ̃, ṽ) is a δ̃-good adapted field then
(γ̂, v̂) = (γ̃, ṽ). Otherwise, by the previous lemma, we may choose j ∈ {1, · · ·Nk} such that
(γ̃1

j , ṽ1|γ̃1
j
) is a δ̃-good adapted field. In this case, we define (γ̂, v̂) = (γ̃1

j , ṽ1|γ̃1
j
).
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Let K ∈ {n0, n0 + 1} be such that g−K(γ̂) ⊂ γu and write γ̂−K := g−K(γ̂). Recall that we had
defined Juu

gk (.) = |detDgk(.)|Euu
g
|. For any n ∈ N,

1

|γ̂|

∫
γ̂−K

log ∥DgK+nv′∥dγ̂−K =
1

|γ̂|

(
K−1∑
i=0

∫
gi◦γ̂−K

log ∥Dgv′i∥Juu
g−id(g ◦ γ̂−K)

+

∫
γ̂

log ∥Dgnv̂∥Juu
g−Kdγ̂

)
=MK +

1

|γ̂|

∫
γ̂

log ∥Dgnv̂∥Juu
g−Kdγ̂ = Mk + I γ̂,v̂n ,

where MK does not depend on n. Since (γ̂, v̂) is a δ̃-good curve, by (19) in section 4, for n large
enough we have

I γ̂,v̂n

n
≥ (1− 14δ̃) logN.

Therefore,

lim sup
n→+∞

1

|γ̂|

∫
γ̂−K

log ∥DgK+nvu∥
n

dγ̂−K = lim sup
n→+∞

MK

n
+

I γ̂,v̂n

n
≥ (1− 14δ̃) logN > 0. (29)

However, by assumption, for Lebesgue almost every q ∈ Wuu
g (p) the vector vuq belongs to E−

g,q. In
particular, there exists a number λ− < 0 such that for Lebesgue almost every q ∈ Wuu

g (p)

lim
n→+∞

log ∥DgK+n(q)vuq ∥
n

= λ− < 0. (30)

By (30) and applying the dominated convergence theorem, we obtain

lim sup
n→+∞

1

|γ̂|

∫
γ̂−K

log ∥DgK+nvu∥
n

dγ̂−K =
1

|γ̂|

∫
γ̂−K

lim sup
n→+∞

log ∥DgK+nvu∥
n

dγ̂−K ,

=
|γ̂−K |
|γ̂|

λ− < 0.

which is a contradiction with (29).

8 Measures with atomic center disintegration and the proof
of Theorem B

In this section we conclude the proof of Theorem B. The main ingredient that is missing to conclude
this proof is the following theorem.

Theorem 8.1. Let g ∈ Sk2(T2×T2) be a partially hyperbolic, center bunched skew product. Suppose
that there exists a constant θ ∈ (0, 1) such that

Euu
g is θ-Hölder and ∥Dg|Ess

g
∥θ < m(Dg|Ec

g
).

Let µ be an ergodic u-Gibbs measure for g that verifies:
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1. µ has atomic center disintegration;

2. for µ-almost every p ∈ T4, and for Lebesgue almost every point q in Wuu
loc (p)

E−
g,q ̸= DHu

p,q(p)E
−
g,p.

Then there exists a finite number of C1 two dimensional tori T 1
µ , · · · , T l

µ such that each of them is

tangent to Ess
g ⊕ Euu

g and supp(µ) = ∪l
i=1T

i
µ.

Remark 8.2. Theorem 8.1 also holds for a partially hyperbolic skew product g ∈ Sk2(S × T2),
where S is a compact surface, verifying the rest of the hypotheses of the theorem.

In section 8.2, we reduce the proof of Theorem 8.1 into proving the s-invariance of the center
conditional measures, given by Theorem 8.3. The proof of Theorem 8.3 is then given in section 9.

8.1 Proof of Theorem B assuming Theorem 8.1

Let α ∈ (0, 1) and take N large enough such that Theorem 6.3 holds and let Usk
N be a small C2-

neighborhood of fN is Sk2(T2 × T2). Take g ∈ Usk
N ∩ Sk2+α(T4) and take an ergodic measure

µ ∈ Gibbsu(g). By Theorem 6.3, there are three possibilities:

1. for µ-almost every p ∈ T4, the measure µc
p is atomic;

2. µ is SRB;

3. for µ-almost every p ∈ T4, for Lebesgue almost every point q in Wuu
loc (p), we have

E−
g,q = DHu

p,q(p)E
−
g,p.

Let us verify that g verifies the Hölder condition in the statement of Theorem 8.1. If θ ∈ (0, 1)
is a number that verifies

∥Dg(p)|Ec
g
∥

m(Dg(p)|Euu
g
)
< m(Dg(p)|Ess

g
)θ, for all p ∈ T4,

then Euu
g is θ-Hölder (see Section 4 from [PSW12]). In particular, the maximum θ we can take is

arbitrarily close to

inf
p∈T4

{
logm(Dg(p)|Euu

g
)− log ∥Dg(p)|Ec

g
∥

− logm(Dg(p)|Ess
g
)

}
. (31)

From the estimates of Lemma 4.4, for some small ε1 > 0, if N is sufficiently large, we have that
(31) is greater than

2N log µ̃
(
1− (ε1+log 2N)

2N log µ̃

)
2N log µ̃

(
1− ε1

2N log µ̃

) ,

and this can be made arbitrarily close to 1 by taking N sufficiently large (we remark that an
analogous estimate of item 1 from Lemma 4.4 holds for the strong stable direction).
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On the other hand, we also want ∥Dg|Ess
g
∥θ < m(Dg|Ec

g
). From the estimates of Lemma 4.4 for

this inequality to hold we need

θ >
log 2N

2N log µ̃
(
1− ε1

2N log µ̃

) .
The right side of the inequality goes to 0 as N increases. So for N sufficiently large, we may take
θ ∈ (0, 1) that verifies the hypothesis of Theorem 8.1.

Let µ be an ergodic u-Gibbs measure for g. By Proposition 7.1, µ cannot verify item 3 above.
If µ has atomic center disintegration, then µ verifies the hypothesis of Theorem 8.1, and therefore,
there exist T 1

µ , · · · , T l
µ which are C1-tori tangent to Ess

g ⊕ Euu
g such that supp(µ) = ∪l

i=1T
i
µ.

If µ does not have atomic center disintegration, then µ is an SRB measure and this concludes
the proof of the theorem.

8.2 Reducing the proof of Theorem 8.1 into proving s-invariance of the
center conditional measures

In this subsection we will reduce the proof of Theorem 8.1 into proving the following theorem:

Theorem 8.3 (The s-invariance of measures with atomic disintegration). Let g ∈ Sk2(T2 ×T2) be
a partially hyperbolic, center bunched skew product. Suppose that there exists a constant θ ∈ (0, 1)
such that

Euu is θ-Hölder and ∥Dg|Ess∥θ < m(Dg|cE).

Let µ be an ergodic u-Gibbs measure for g and suppose that µ verifies:

1. µ has atomic center disintegration;

2. for µ-almost every p ∈ T4, and for Lebesgue almost every point q in Wuu
loc (p)

E−
g,q ̸= DHu

p,q(p)E
−
g,p.

Let ν be the unique SRB-measure on T2 for the Anosov diffeomorphism g2. Then there exists a set
X of full ν-measure such that for any p2, q2 ∈ X in the same stable leaf for g2, we have that

µc
q2 = (Hs

p2,q2)∗µ
c
pq
.

For the rest of this section we suppose that g and µ verify the conditions of Theorem 8.1. Recall
that µ ∈ Stateuν (g), by Corollary 2.30, the measure µ has u-invariant center conditional measures
(see (14) for the definition of u-invariant). By Theorem 8.3, the measure µ also has s-invariant
center conditional measures.

Observe that for g2, after fixing some small ε > 0, for any p2 ∈ T2 there exists a neighborhood
U of p2 such that the map [., .] : W ss

g2,ε(p2) × Wuu
g2,ε(p2) → U defined by [xs, yu] = W ss

g2,ε(x
s) ∩

Wuu
g2,ε(y

u) is a homeomorphism. For a probability measure ν̂ on T2 we say that it has local
product structure if for any p2 ∈ supp(ν̂), using the homeomorphism [., .] as above, the measure
ν̂ can be written as ρν̂s × ν̂u, where ρ is a positive measurable function.

Since the measure ν is the unique SRB measure of g2, in particular, it is an equilibrium state
for the logarithm of the unstable jacobian of g2, it has local product structure (see [Bow75]). Since
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the unstable foliation of g2 is minimal (i.e. every unstable manifold is dense), then the support of ν
is T2. The proof of the following proposition can be found in [AV10]. It is a type of Hopf argument,
and is a consequence of the local product structure of ν, the su-invariance of the center conditional
measures of µ, and that the support of ν is the entire torus.

Lemma 8.4. Let µ be a measure as above. Then there exists a disintegration {µc
p2
}p2∈T2 of µ with

the following properties:

1. the measures µc
p2

coincides with the measures µc
p2

for ν-almost every p2;

2. the map p2 7→ µc
p2

is continuous;

3. for any p2 ∈ T2, and q2 ∈ Wuu
g2 (p2) we have µc

q2 = (Hu
p2,q2)∗µ

c
p2
;

4. for any p2 ∈ T2, and q2 ∈ W ss
g2 (p2) we have µc

q2 = (Hs
p2,q2)∗µ

c
p2
.

By an abuse of notation, we will denote the disintegration {µc
p2
}p2∈T2 by {µc

p2
}p2∈T2 . We will

also need the following lemma:

Lemma 8.5. There exists k ∈ N such that for every p2 ∈ T2 the measure µc
p2

has k-atoms.

Proof. We already know that the measure µc
p2

is atomic for every p2 ∈ T2. For each n ∈ N consider

the set Bn := {p ∈ T4 : µc
π2(p)

({p}) > 1
n}. It is easy to see that Bn is a g-invariant set for each

n ∈ N. For n sufficiently large µ(Bn) > 0, and by ergodicity µ(Bn) = 1. Hence, for n large
enough, every atom of µc

p2
has measure larger than 1

n , for any p2 ∈ T2, and therefore there are
finitely many atoms. Let Ap2 be the set of atoms of µc

p2
. The su-invariance implies that for any

#Ap2
= #Aq2 , for any p2, q2 ∈ T2. Hence, there exists k ∈ N such that µc

p2
has exactly k-atoms,

for every p2 ∈ T2.

Proof of Theorem 8.1. Let k ∈ N be as in lemma 8.5 and fix p2 ∈ T2. Let Ap2
: {x1, · · · , xk}

be the set of atoms of µc
p2
. The su-invariance of {µc

p2
}p2∈T2 implies that for any xi ∈ Ap2 , the

endpoint of any su-path starting in xi and ending in W c(xi) also belongs to Ap2 . In particular,
for each xi ∈ Ap2

, its accessibility class AC(xi) is trivial (see section 2 for the definition of trivial
accessibility class).

There exists l ∈ N such that the union of the accessibility classes of the points xi can be
partitioned into l disjoint accessibility classes, that is,

k⋃
i=1

AC(xi) = T 1
µ ⊔ · · · ⊔ T l

µ,

where each T i
µ is an accessibility class.

We will prove that each T i
µ is a two dimensional torus tangent to Ess

g ⊕ Euu
g . Since supp(µ) ⊂⋃k

i=1 AC(xi), this will conclude the proof of the theorem.
By Theorem 2.14, we know that T i

µ is a C1-submanifold of T4. Furthermore, since the accessi-

bility class T i
µ is trivial, we obtain that it is a 2-dimensional C1-submanifold immersed in T4 and

by the definition of accessibility class it is tangent to Ess
g ⊕ Euu

g .

Claim 8.6. T i
µ is compact.
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Proof. Since the direction Ess
g ⊕ Euu

g is uniformly transverse to Ec
g, the surface T i

µ is uniformly
transverse to the center foliation. If it was not compact, then it would intersect some center leaf
W c(p) infinitely many times. However, this is a contradiction with the fact that T i

µ∩W c(p) ⊂ Aπ2(p)

which is finite.

Since the strong stable and strong unstable manifolds of g projects to the stable and unstable
manifolds of g2, which are dense in T2 we have that π2(T

i
µ) = T2. Let us see that π2|T i

µ
: T i

µ → T2

is a covering map. The property that T i
µ is su-saturated implies that π2|T i

µ
is surjective. Since

T i
µ is tangent to Ess

g ⊕Euu
g , which is uniformly transverse to the fibers (center direction), then for

any point p2 ∈ T2 and small neighborhood U of p2, any connected component of π−1
2 (U) ∩ T i

µ is

diffeomorphic to U , hence, π2|T i
µ
is a covering map, and T i

µ is a cover of T2. The only possible

covers of T2 are homeomorphic to R2, S1 ×R and T2. Using that T i
µ is compact, we conclude that

T i
µ is actually a two torus.

9 The proof of Theorem 8.3: the s-invariance of the center
conditional measures

The goal of this section is to prove Theorem 8.3. Recall that for a partially hyperbolic diffeomor-
phism f and µ an f -inviariant measure, we defined in (12) the µ-partial entropy along Fuu, which
is given by

hµ(f,Fuu) = −
∫

logµuu
p (f−1ξuu(p))dµ(p),

where ξuu is any µ-measurable partition subordinated to Fuu.
Let us first see how the proof of Theorem 8.3 is reduced into proving the following theorem:

Theorem 9.1. Let g ∈ Sk2(T2×T2) be a partially hyperbolic, center bunched skew product. Suppose
that there exists a constant θ ∈ (0, 1) such that

Euu
g is θ-Hölder and ∥Dg|Ess∥θ < m(Dg|Ec). (32)

Suppose that µ is an ergodic u-Gibbs measure that verifies:

1. µ has both a positive and a negative Lyapunov exponent along the center;

2. µ has atomic center disintegration;

3. for µ-almost every p ∈ T4, and for Lebesgue almost every point q in Wuu
loc (p)

E−
g,q ̸= DHu

p,q(p)E
−
g,p.

Let ν be the unique SRB-measure on T2 for the Anosov diffeomorphism g2. Then

hµ(g
−1,Fss) = hν(g2). (33)

Proof of Theorem 8.3 assuming Theorem 9.1. Let g be a partially hyperbolic skew product and µ
be an ergodic u-Gibbs measure verifying the hypothesis of Theorem 8.3. By Theorem 9.1, µ verifies
hµ(g

−1,Fss) = hν(g2) = hν(g
−1
2 ). Applying the invariance principle (Theorem 2.26), we have that
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µ is an s-state projecting on ν. Proposition 2.27 applied to g−1 then implies the conclusion of
Theorem 8.3.

Remark 9.2. For the rest of the section we fix

• g a partially hyperbolic skew product and

• µ an ergodic u-Gibbs measure for g that verifies the hypothesis of Theorem 9.1.

Let

• ν be the unique SRB measure for g2 on T2, such that (π2)∗µ = ν, and

• λ+ and λ− be the positive and negative center expoenents of µ, respectively.

• Fix ξuu2 a ν-measurable partition of T2 which is subordinated to Fuu
2 (the unstable foliation of

the Anosov system g2).

• Let ξuu be a µ-measurable partition which is subordinated to Fuu, with the property that
π2(ξ

uu(p)) = ξuu2 (π2(p)). Furthermore, we may assume that each element of ξuu has small
diameter.

The proof of Theorem 9.1 follows closely the proof of Theorem 4.8 in [BRH17], with some
adaptations. Brown-Rodriguez Hertz’s proof is based on the “exponential drift” arguments that
were introduced in [BQ11] and its modified version from [EM18]. Since the proof of Theorem 4.8
in [BRH17] is technical and to make this work more self contained, we repeat most of the proof
here, with the necessary adaptations. For the proof of some of the lemmas we will refer the reader
to [BRH17].

9.1 Sketch of the proof of Theorem 9.1

Let us describe the idea of the proof as well as the main points where our setting differs from the
random product setting.

Suppose that µ is a u-Gibbs measure verifying the hypothesis Theorem 9.1. We fix a compact
set K of large measure such that the map p 7→ µc

p is continuous. Since µc
p is atomic, in this set, we

can fix a constant ε > 0 such that any two atoms in a center leaf have distance greater than ε.
Suppose that the conclusion of the theorem does not hold, then we obtain that conditional

measures along the 2-dimensional Pesin stable manifolds are not supported in a single strong stable
leaf. In particular, we can find two points p, q in the same 2-dimensional stable manifold with
d(p, q) := δ << ε such that they don’t belong to the same strong stable leaf, p is an atom of µc

p

and q is an atom for µc
q. The idea of the argument is to find a point p0 ∈ K such that µc

p0
has two

atoms with distance smaller than ε, which will give a contradiction with the choice of ε and K.
We want to find two sequences of times lj → +∞ and τj → +∞ such that for each lj , we can

choose two points pj ∈ Wuu
loc (g

lj (p)) and qj ∈ Wuu
loc (g

lj (q)) that verify the following:

1. qj ∈ W cs(pj);

2. let wj = Hs
qj ,pj

(W−
loc(qj)) ∩W+

loc(pj), then d(pj , wj) ≈ d(glj (p), glj (q));

3. d(gτj (pj), g
τj (qj)) ≈ δ.
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Then we prove that, up to a subsequence, gτj (pj) and gτj (qj) converge to p0 and q0 which are
atoms of µc

p0
. Item 3 above implies that d(p0, q0) ≈ δ << ε. Then we show that we can do this so

that p0 belongs to the set of points for which the distance of any two atoms of µc
p0

is greater than
ε and this will give the contradiction.

Let me remark that the hypothesis that E− is not DHu invariant appears to obtain item 2, and
item 2 is used to prove item 3.

This is the strategy used in the proof of Theorem 4.8 from [BRH17]. As we follow this proof,
let us mention the two points where more adaptation is needed in our setting.

• The main difficult in the strategy is to work this construction so that all the points involved
belong to some “good” set. To achieve that, in their proof, they work with the suspension flow
and a reparametrization of this flow. This reparametrized flow is convenient because it gives
precise times where a certain expansion is observed along the Oseledets unstable direction.
One of the key tools they use to control these returns to the “good” set is a martingale
convergence argument for this reparametrized flow (see Sections 9.3 and 9.4 in [BRH17]), in
which they apply the reverse martingale convergence theorem. To apply this theorem, they
need that the reparametrized flow verifies some measurability condition.

In our setting, we use DHu to adjust the definition of the reparametrized flow so that the
measurability condition is satisfied. This is done in Section 9.4.2. Let me remark that this is
similar to the change of coordinates done in Section 6.2.

• The other point where some adaptation is needed is to obtain item 2 above. Let us briefly ex-
plain Brown-Rodriguez Hertz’s proof of item 2. Let zj = Hs

qj ,pj
(W−

loc(qj))∩Hu
glj (p),pj

(W−
loc(g

lj (p))).

Let q∗ := Hs
q,p(q) and observe that q∗ ∈ W−

loc(p). If we had local su-integrability, we would

have that zj = Hu
glj (p),pj

(glj (q∗)), since qj = Hu
qj ,qj

◦Hs
pj ,qj (g

lj (q∗)). Then, by a geometrical

argument, we could conclude that d(pj , wj) ≈ d(pj , H
u
glj (p),pj

(glj (q∗)) ≈ d(glj (p), glj (q∗)). In

the random product setting considered in [BRH17], this local “joint integrability” is satisfied,
since these holonomies maps are just the identity between fibers.

In our setting, to obtain the estimate in item 2, we need to use two ingredients: the unstable
foliation is θ-Hölder, and ∥Dg|Ess∥θ < m(Dg|Ec). This is where condition (32) comes in. The
estimate needed for item 2 is obtained in Lemma 9.17.

9.2 Pesin Theory and parametrization of invariant manifolds

From now on fix a constant 0 < ε0 ≪ min{1,−λ−, λ+}. We will be interested in obtaining certain
estimates for stable and unstable manifolds along the center. In our setting, these will correspond
to curves contained in horizontal tori.

On R2 consider the the standard basis and for any v ∈ R2 write v = v1 + v2. Consider the
metric on R2 given by |v| = max{|v1|, |v2|}. For any l > 0 write R2(l) to be the ball of radius
l centered at the origin for this metric. Fix 0 < ε1 < ε0. There exists a measurable function
l : T2 × T2 → [1,+∞), and a µ-full measurable set Λ such that:

1. For each point p = (p1, p2) ∈ Λ, there is a neighborhood Up ⊂ T2 × {p2} of p1, and a
diffeomorphism ϕp : Up → R2(l(p)−1) with:

(a) ϕp(p1) = 0;
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(b) Dϕp(p1)E
−
p = R× {0};

(c) Dϕp(p1)E
+
p = {0} × R.

2. Let
g̃p = ϕg(p) ◦ g ◦ ϕ−1

p and g̃−1
p = ϕg−1(p) ◦ g−1 ◦ ϕ−1

p .

On the domain of definition of g̃p, we have:

(a) g̃p(0) = 0;

(b) Dg̃p(0) =

(
β− 0
0 β+

)
, where β− ∈ (eλ

−−ε1 , eλ
−+ε1), and β+ ∈ (eλ

+−ε1 , eλ
++ε1).

(c) Writing Lip(.) the Lipschitz constant of a function in its domain of definition, we have
Lip(g̃p −Dg̃p(0)) < ε1;

(d) Lip(Dg̃p(0)) < l(p);

(e) similar property holds for g̃−1
p .

3. There exists an uniform k0 such that k−1
0 ≤ Lip(ϕp) ≤ l(p);

4. l(gn(p)) < e|n|ε1 l(p), for any n ∈ Z.

The diffeomorphisms ϕ above are called Lyapunov charts. Its construction can be found for
instance in the appendix of [LY85-1].

We will also use a more quantified statement of the Pesin’s stable manifold theorem. Let
R− := R× {0} and R+ := {0} × R.

Theorem 9.3 (Local stable manifold theorem). For each p ∈ Λ, there exists a C2-function φ−
p :

R−(l(p)−1) → R+(l(p)−1) such that:

1. φ−
p (0) = 0;

2. Dφ−
p (0) = 0;

3. ∥Dφ−
p ∥ < 1

3 ;

4. g̃p(graph(φ
−
p )) ⊂ graph(φ−

g(p)) ⊂ R2(l(g(p))−1);

5. setting W−
loc(p) := ϕ−1

p (graph(φ−
p )), we have that

(a) g(W−
loc(p)) ⊂ W−

loc(g(p));

(b) for any z, y in W−
loc(p), and n ≥ 0, we have

d(gn(z), gn(y)) ≤ l(p)k0e
(λ−+2ε1)nd(z, y).

Similarly, there exists a C2-function φ+
p which will define the local unstable manifold.

We may define the global stable manifold of p by W−(p) := ∪n≥0g
−n(W−

loc(g
n(p))).

In our setting, for µ-almost every point p, the stable manifold W−(p) is a one dimensional curve,
and it can be parametrized by R. We remark that this curve can also be obtained by intersecting
a stable Pesin manifold, which in our setting has dimension two, with a center manifold.

For these one dimensional stable manifolds, it is convenient to use some special parametrization
that conjugates the dynamics gn|W−(p) with the linear dynamics Dgn(p)|E−

p
.
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Proposition 9.4. For µ-almost every (p1, p2), and for any (q1, p2) ∈ W−(p), there exists a C2-
diffeomorphism

h−
(q1,p2)

: W−(p) → Tq1W
−(p),

such that

1. Restricted to W−(p) we have

Dg(q1, p2) ◦ h−
(q1,p2)

= h−
g(q1,p2)

◦ g; (34)

2. h−
(q1,p2)

((q1, p2)) = 0 and Dh−
(q1,p2)

((q1, p2)) = Id;

The proof of Proposition 9.4 follows from the construction of the parametrizations that appeared
in [KK07] Section 3.1 (see also Proposition 6.5 in [BRH17]).

For each r > 0 and p a point that verifies Proposition 9.4, we define

W−
r (p) :=

(
h−
p

)−1
({v ∈ E−

p : ∥v∥ < r}). (35)

One obtains similarly functions h+
. and define W+

r (p) := (hp)
−1({v ∈ E+

p : ∥v∥ < r}).
We fix two µ-measurable unitary vector fields p 7→ v−p and p 7→ v+p such that

• v∗p ∈ E∗
p , for ∗ = −,+;

• for each p and q ∈ ξuu(p) we have that v+q =
DHp,q(p).v

+
p

∥DHp,q(p).v
+
p ∥ ;

Using these measurable vector fields, we parametrize the stable and unstable manifolds by

I−
p : t 7→ (h−

p )
−1(tv−p ) and I+

p : t 7→ (h+
p )

−1(tv+p ). (36)

It is convenient to consider another norm, called Lyapunov norm, where we can see con-
traction, or expansion, after one iterate. Let X be a set of full µ-measure where the Lyapunov
exponents are well defined. For each p ∈ X, and v ∈ Eσ

p consider the two-sided Lyapunov norm

∥v∥σε0,±,p :=

∑
j∈Z

∥Dgj(p)v∥2e−2λσj−2ε0|j|

 1
2

, where σ = {−,+} (37)

and for v ∈ E+
p , consider the one-sided Lyapunov norm

∥v∥ε0,−,p :=

∑
j≤0

∥Dgj(p)v∥2e−2λ+j−2ε0|j|

 1
2

(38)

For these norms, we have the following estimates (see [BRH15] for the estimate on the two-sided
norm).

Lemma 9.5. For p ∈ X, and v ∈ Ec
p, we have that

ekλ
−−|k|ε0∥v∥−ε0,±,p ≤ ∥Dgk(p)v∥−

ε0,±,gk(p)
≤ ekλ

−+|k|ε0∥v∥−ε0,±,p

ekλ
+−|k|ε0∥v∥+ε0,±,p ≤ ∥Dgk(p)v∥+

ε0,±,gk(p)
≤ ekλ

++|k|ε0∥v∥+ε0,±,p.

If v ∈ E+
p then

ekλ
+−kε0∥v∥ε,−,p ≤ ∥Dgk(p)v∥ε0,−,gk(p).
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The following lemma is a classical lemma in Pesin theory on the control of expansion/contraction
and angle between expanding and contracting directions.

Lemma 9.6. There exists a measurable function L : X → R, such that for any p ∈ X and n ∈ Z:

1. For v ∈ E−
p ,

1

L(p)
enλ

−− |n|
2 ε0∥v∥ ≤ ∥Dgn(p)v∥ ≤ L(p)enλ

−+
|n|
2 ε0∥v∥.

2. For v ∈ E+
p ,

1

L(p)
enλ

+− |n|
2 ε0∥v∥ ≤ ∥Dgn(p)v∥ ≤ L(p)enλ

++
|n|
2 ε0∥v∥.

3. ∡(E+
gn(p), E

−
gn(p)) ≥

1
L(p)e

−|n|ε0 . Furthermore, L(gn(p)) ≤ L(p)e|n|ε0 .

9.3 Angles and some estimates

Recall that in our setting there is a set of full µ-measure such that for any two points p and q in
this set with q ∈ Wuu(p) we have that

DHu
p,q(p)E

−
p ̸= E−

q . (39)

Recall also that X is the set of points of full µ-measure with well defined Lyapunov exponents.
Given γ1 > 0 consider Λ1 to be the set of points p such that

∡(E−
p , E+

p ) > γ1, (40)

where ∡(E−
p , E+

p ) is the angle for the natural riemannian metric of T4 between the subspaces E−
p

and E+
p . Observe that we can make the µ-measure of Λ1 arbitrarily close to 1, by taking γ1 small.

For γ2 ∈ (0, γ1

2 ) and p ∈ Λ1, we define Aγ2
(p) to be the set of points q ∈ ξuu(p) such that

• q ∈ X;

• ∡(DHu
p,q(p)E

−
p , E−

q ) > γ2;

• ∡(E+
q , E−

q ) > γ2.

Recall that for p in a set of full µ-measure, we defined µuu
p as the conditional measure on ξuu(p)

given by the disintegration of µ on the partition ξuu.
For each γ1, γ2 as above and a ∈ (0, 1), define

Aγ1,γ2,a := {p ∈ Λ1 : µuu
p (Aγ2(p)) > 1− a.}. (41)

Remark 9.7. By (39), for any two numbers a, c ∈ (0, 1) there exist γ1 > 0 and γ2 ∈ (0, γ1

2 )
sufficiently small such that µ(Aγ1,γ2,a) > 1− c.

By Lusin’s theorem, there is a compact set Λ2 ⊂ T4 with measure arbitrarily close to 1 such
that the parametrized stable and unstable manifolds W−

r (p) and W+
r (p) vary continuously in the

C1-topology, for p ∈ Λ2, on the space of embeddings C1([−r, r],T2) for any r ∈ (0, 1).
Given θ′ ∈ (0, π) and a one-dimensional space E in R2, let Cθ′(E) be the cone centered in E

with angle θ′. In what follows, we will consider exp to be the exponential map on T2, and we
identify every center manifold with the two torus T2.
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Lemma 9.8. Given θ′ ∈ (0, π), there exist r̂0, r̂1 > 0 such that for any two points p = (p1, p2) and
q = (q1, q2) both belonging to Λ2, such that d(p, q) < r̂0 and q2 ∈ W ss

g2 (p2), we have:

1. exp−1
p1

(W ∗
r̂1
(p)) ⊂ Cθ′(E∗

p), for ∗ = − or +;

2. exp−1
p1

(Hs
q2,p2

(W−
r̂1
(q))) ⊂ Cθ′(E−

p ) + exp−1
p1

(q1).

Proof. Recall that on Λ2, for r ∈ (0, 1), the map Λ2 ∋ p 7→ W ∗
r (p) varies continuously on the space

of embeddings C1([−r, r],T2). Hence, we may fix r̂1 sufficiently small such that for each p ∈ Λ2 we
have that exp−1

p1
(W ∗

r̂1
(p)) ⊂ C θ

4
(E∗

p), for ∗ = − or +.

Using that p 7→ E−
p varies continuously on Λ2, one may take r̂0 sufficiently small so that if

d(p, q) < r̂0 then E−
q ⊂ C θ

4
(E−

p ). Recall that if p2 and q2 are in the same strong stable manifold of

size 1 for g2, then dC1(Hs
p2,q2 , Id) ≤ Cd(p2, q2), for some constant C ≥ 1. If r̂0 is sufficiently small

we also have that exp−1
p1

(Hs
q2,p2

(W−
r̂1
(q))) ⊂ C θ

2
(DHs

q2,p2
(q)E−

p ), and DHs
q2,p2

(q)E−
q ⊂ C θ

2
(E−

p ).

This implies the second item of the lemma.

For each l0, we may consider the set Λ3 ⊂ Λ2 of points having the value l(p) bounded above by
l0, where l : T2 × T2 → [1,+∞) is the function defined in Section 9.2. We may also fix r̃0 > 0 and
r̃1 > 0 small enough such that for each p ∈ Λ3, we have

(a) W−
r̃1
(p) ⊂ W−

loc(p), where W−
loc(p) is the local stable manifold defined in Theorem 9.3;

(b) for q = (q1, q2) ∈ Λ2 such that q2 ∈ W ss
g2 (p2), if d(p, q) < r̃0 then ϕ−1

p (Hs
q2,p2

(W−
r̃1
(q)) is

contained in the graph of a 1-Lipschitz function G : D ⊂ R− → R+, where D ⊂ R−(l−1
0 ).

The second point above follows from combining the estimates from Theorem 9.3 and Lemma 9.8.
Observe that by taking l0 large, the set Λ3 has µ-measure arbitrarily close to µ(Λ2).

Lemma 9.9. For every γ1 > 0, γ2 ∈ (0, γ1

2 ) and Λ3 ⊂ Λ2 ⊂ Λ1 as above, there exist a measurable set
Λ′ ⊂ Λ3, with µ(Λ′) arbitrarily close to µ(Λ3), constants r0 ∈ (0, r̃0), r1 ∈ (0, r̃1), and C1, C2, C3 >
1, with the following properties: For each p ∈ Λ′ we have

1. 1
C1

d(p, w) ≤ ∥h∗
p(w)∥ ≤ C1d(p, w), for every w ∈ W ∗

r1(p), with ∗ = − or +, where h∗ is given
by Proposition 9.4;

Let p = (p1, p2) ∈ Λ′, p′ = (p′1, p
′
2) ∈ Aγ2

(p) ∩ Λ′ and q = (q1, q2) ∈ Λ′ such that q ∈ W cs
r0 (p

′) and
d(p′, q) < r0. Then,

2. W+
r1(p

′)∩Hs
q2,p′

2
(W−

r1(q)) is a single point w′, furthermore this intersection is transverse with

angles uniformly bounded away from zero inside TxT2;

3. Hu
p2,p′

2
(W−

r1(p))∩Hs
q2,p′

2
(W−

r1(q)) is a unique point z′, this intersection is transverse with angle

uniformly bounded from below.

4. For z′ and w′ as above,
1

C2
d(p′, z′) ≤ d(p′, w′) ≤ C2d(p

′, z′);

5.
1

C3
≤

∥Dgn(w′)|Tw′W
+
r1

(p′)∥
∥Dgn(q)|E+

q
∥

≤ C3, for every n ≥ 0.
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6. For any x ∈ Λ′ and y ∈ W+
r1(x) we have that

1

C3
≤

∥Dg−n(y)|TyW
+
r1

(x)∥
∥Dg−n(x)|E+

x
∥

≤ C3, for every n ≥ 0.

Proof. Items 1−3 follow from C1-topology, Lusin’s theorem and using that in our setting there exists
a constant C > 1 such that x2 ∈ W ss

g2 (y2) with d(x2, y2) < 1, we have d(Hs
x2,y2

, Id) < C.d(x2, y2)
(similar estimate holds for unstable holonomies). One can also conclude that for any r1 > 0 small,
if r0 > 0 is sufficiently small the conclusions hold.

To prove item 4, by items 2 and 3 above, the angles of the intersections W+
r1(p

′)∩Hs
q2,p′

2
(W−

r1(q))

and Hu
p2,p′

2
(W−

r1(p)) ∩Hs
q2,p′

2
(W−

r̃1
(q)) are uniformly bounded away from zero (depending on γ1, γ2

that are fixed).
Fix θ′ > 0 small. We may suppose that r1 < r̂1 and r0 < r̂0 are sufficiently small so that items

1 − 3 remain valid, where r̂0, r̂1 are the constants given by Lemma 9.8. From the conclusion of
Lemma 9.8, we obtain that for any x1 ∈ W+

r1(p
′), x2 ∈ Hs

q2,p′
2
(W−

r1(q)), and x3 ∈ Hu
p2,p′

2
(W+

r1(p)), we

have that the angles between Tx1
W+

r1(p
′), Tx2

Hs
q2,p′

2
(W−

r1(q)), and Tx3
Hu

p2,p′
2
(W+

r1(p)) are uniformly

bounded from below. The estimate in item 4 then follows from the law of sines (see Figure 2).

Figure 2: Comparing d(p′, w′) and d(p′, z′).

Since in Λ3 the function l(.) is bounded by l0, by the properties given by the Lyapunov charts,
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we obtain that there exists a constant C(l0) such that for any n ≥ 0,

d(Tg−n(y)W
+
r1(g

−n(x)), E+
g−n(x)) ≤ C(l0)

(
eλ

−+ε1

eλ+−ε1

)n

e2ε1n.

We also have that d(g−n(x), g−n(y)) < l0k0e
(−λ++2ε1)nd(x, y) for n ≥ 0. In what follows denote

Tg−j(y)W
+(g−j(x)) by Ey−j

, x−j = g−j(x) and y−j = g−j(y), for any j ∈ N. Observe that

∥Dg−1(y−j)|Ey−j
∥ ≤ ∥g∥C2∥Dg−1(x−j)|E+

x−j
∥max{d(x−j , y−j), d(Ey−j , E

+
x−j

)}.

Since
∥Dg−n(y)|Ey0

∥
∥Dg−n(x)|E+

x
∥
=

n−1∏
j=0

∥Dg−1(y−j)|Ey−j
∥

∥Dg−1(x−j)|E+
x−j

∥
,

the result then follows combining the estimates above.
The proof of item 5 is similar to the proof of item 6. One uses the information that the future

orbit of the points w′ and q converge exponentially and that the respective tangent directions
considered also converge uniformly exponentially fast on Λ3.

9.4 Reparametrized suspension flow, stopping times and the Martingale
convergence argument

9.4.1 The suspension flow

It will be convenient for us to work with the suspension flow associated with g and a reparametriza-
tion of it. Let us recall the definition of the suspension flow.

Consider the 5-dimensional manifold M̃ = T4 × R. On M̃ consider the following equivalence
relation

(p, l) ∼ (g(p), l − 1).

Let M = M̃/ ∼ be the quotient manifold, and consider the flow Φt : M → M defined by Φt([p, l]) =
[p, l + t], where [p, l] denotes the equivalence class of the point (p, l) ∈ M̃ . For ζ = [p, l] ∈ M , we
consider the center fiber T2

ζ which is given by the projection of T2 × {p2} × {l} ⊂ M̃ into M . The

fiber T2
ζ is naturally identified with T2. We will use the coordinates on M induced by T4 × [0, 1).

Consider the measure on M̃ defined by ω̃ := µ×LebR, where µ is the measure on T4 and LebR is
the usual Lebesgue measure on R. This measure projects to a probability measure ω on M , which
in the coordinates T4 × [0, 1) can be written as dω(p, l) = dµ(p)dl. Observe that this measure is
invariant by the flow Φt. Recall that X is the set of full µ-measure on T4 where the Lyapunov
exponents are well defined. Let Y be the projection on M of the set X × R defined on M̃ . This
is a set of full ω-measure and for each ζ = [p, l] ∈ Y , we may define the Oseledets splitting of the
center direction TζT2

ζ = E−
ζ ⊕ E+

ζ , where E∗
ζ = DΦt(ζ).E

σ
p , for ∗ = −,+.

We can naturally extend to Y the vector fields p 7→ v∗p (defined in Section 9.2) and the
parametrizations defined in (36). We can also extend to Y the Lyapunov norms defined in (37) in
the following way. Let ζ = [p, l] ∈ Y , then for any v ∈ Eσ

ζ we define

∥v∥∗ε0,±,ζ :=
(
∥v∥∗ε0,±,p

)1−l
(
∥Dg(p)v∥∗ε0,±,g(p)

)l
, for ∗ = −,+. (42)
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We define in a similar way the one-sided norm ∥v∥ε0,−,ζ , for v ∈ E+
ζ . This norm allows us to have

expansion or contraction varying continuously with the time. In particular, from the estimates of
Lemma 9.5, we obtain:

Lemma 9.10. For ζ = [p, l] ∈ Y , for v ∈ TζT2
ζ , and for any t ∈ R we have that

etλ
−−|t|ε0∥v∥−ε0,±,ζ ≤ ∥DΦt(ζ)v∥−ε0,±,Φt(ζ)

≤ etλ
−+|t|ε0∥v∥−ε0,±,ζ

etλ
+−|t|ε0∥v∥+ε0,±,ζ ≤ ∥DΦt(ζ)v∥+ε0,±,Φt(ζ)

≤ etλ
++|t|ε0∥v∥+ε0,±,ζ .

If v ∈ E+
ζ then

etλ
+−|t|ε0∥v∥ε,−,ζ ≤ ∥DΦt(ζ)v∥ε0,−,Φt(ζ).

Recall that L(.) is the function from Lemma 9.6. The proof of the following lemma can be
obtained by a simple adaptation of the proof of Lemma 9.4 from [BRH17].

Lemma 9.11. For ω-almost every ζ = [p, l], for any v ∈ E+
ζ

∥v∥ ≤ ∥v∥ε0,−,ζ ≤ L(p)∥g∥C1eε0(1− e−ε0)
1
2 ∥v∥.

In particular, by defining L̂(ζ) = L(p)∥g∥C1eε0(1− e−ε0)
1
2 , we have

L̂(Φt(ζ)) ≤ e2ε0(|t|+1)L̂(ζ)

and
1

L̂(ζ)
∥DΦt(ζ)|E+

ζ
∥ ≤ ∥DΦt(ζ)|E+

ζ
∥ε0,− ≤ e2ε0(|t|+1)L̂(ζ)∥DΦt(ζ)|E+

ζ
∥. (43)

9.4.2 The reparametrized flow and the Martingale convergence argument

From the partition ξuu we may consider the partition ξ̃uu obtained by the sets of the form [ξ, {l}]
in M , where ξ ∈ ξuu and l ∈ [0, 1). This forms an ω-measurable partition. For each ξ ∈ ξuu fix
ξuup ∈ ξ an Oseledets regular point for µ and for ξ̃ = [ξ, l] ∈ P let ζξ̃ be the point [pξ, l]. Given two
points ζ = [p, l] and η = [q, l] such that q ∈ Wuu(p), we write Hu

ζ,η as the map induced by Hu
p,q in

the first coordinate and fixing the l coordinate.
Consider the ω-measurable bundle V over M such that for ω-almost every point ζ, the fiber

Vζ is given by E+

ξ̃uu
ζ

. This bundle can be obtained from the bundle E+ over M in the following

way: for each ζ ∈ M we identify E+
ζ with E+

ξ̃uu
ζ

using the holonomy DHu
ζ,ξ̃uu

ζ

(ζ), recall that E+

is DHu-invariant.On the bundle V we may consider the linear cocycle over Φt given by Gt(ζ)v =
DHu

Φt(ζ),ξ̃uu
Φt(ζ)

(Φt(ζ)) ◦DΦt(ζ) ◦DHu
ξ̃uu
ζ ,ζ

(ξ̃uuζ )v, where v ∈ Vζ .

Claim 9.12. For any t > 0, and for any two points ζ, η such that η ∈ ξ̃uu(ζ) it holds that
G−t(ζ) = G−t(η). In other words, G−t(.) is constant on elements of the partition ξ̃uu.

Proof. Observe that

G−t(ζ) = (Gt(Φ−t(ζ)))
−1

= DHu
Φ−t(ζ),ξ̃uu

Φ−t(ζ)

(Φ−t(ζ)) ◦DΦ−t(ζ) ◦DHu
ξ̃uu
ζ ,ζ

(ξ̃uuζ )

= DHu
Φ−t(ζ),ξ̃uu

Φ−t(ζ)

(Φ−t(ζ)) ◦DHu
Φ−t(ξ̃uu

ζ ),Φ−t(ζ)
◦DΦ−t(ξ̃

uu
ζ )

= DHu
Φ−t(ξ̃uu

ζ ),ξ̃uu
Φ−t(ζ)

◦DΦ−t(ξ̃
uu
ζ ).
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Recall that the partition ξ̃uu verifies Φ−t(ξ̃
uu(ζ)) ⊂ ξ̃uu(Φ−t(ζ)). Thus, for any η ∈ ξ̃uu(ζ) we

have ξ̃uuΦ−t(η)
= ξ̃uuΦ−t(ζ)

and we conclude that G−t(η) = G−t(ζ).

For ω-almost every ζ = [p, l] and any vector v ∈ Vζ define

∥v∥Vε0,−,ζ :=
(
∥v∥Vε0,−,p

)1−l
(
∥G1([p, 0])v∥Vε,−,g(p)

)l
, (44)

where

∥v∥Vε0,−,p :=

 ∑
j≤0,j∈Z

∥Gj([p, 0])v∥2e−2λ+j−2ε0|j|

 1
2

.

Define
κζ(t) := log ∥Gt(ζ)∥Vε0,−. (45)

Observe that ∥v∥Vε0,−,ζ is a one-sided Lyapunov norm for the linear cocycle Gt. From the

construction of Gt it is easy to see that it the Lyapunov exponent of Gt is λ+. In particular, for
every t ∈ R we have the estimate

tλ+ − |t|ε0 ≤ log ∥Gt(ζ)∥Vε0,−.

We conclude that κζ(.) is an increasing homeomorphism of R. Moreover, the function κζ verifies
the cocycle condition, that is, κζ(t1 + t2) = κΦt1

(ζ)(t2) + κζ(t1).

Claim 9.13. There exists a uniform constant Ĉ > 1 such that for ω-a.e. ζ and any s ∈ R,

1

Ĉ
es ≤ ∥DΦκ−1

ζ (s)(ζ)|E+
ζ
∥ε0,− ≤ Ĉes.

Proof. Let t = κ−1
ζ (s) and observe that by definition log ∥Gt(ζ)∥Vε0,− = s. Fix a non-zero vector

v ∈ Vζ , hence
∥Gt(ζ)v∥Vε0,−,Φt(ζ)

∥v∥Vε0,−,ζ

= es.

Set v+ = DHu
ξ̃uu
ζ ,ζ

v and observe that

∥DΦt(ζ)|E+
ζ
∥ε0,− =

∥DΦt(ζ)v
+∥ε0,−,Φt(ζ)

∥v+∥ε0,−,ζ
.

Recall that for any t′ ∈ R, Gt′(ζ)v = DHu
Φt′ (ζ),ξ̃

uu
Φ
t′ (ζ)

(Φt′(ζ)) ◦DΦt′(ζ) ◦DHu
ξ̃uu
ζ ,ζ

(ξ̃uuζ )v. In partic-

ular, Gt(ζ)v = DHu
Φt(ζ),ξ̃uu

Φt(ζ)

(Φt(ζ)) ◦DΦt(ζ)v
+.

Since the distance between any point q and ξuuq is uniformly bounded from above, there exists
a uniform constant K > 1 such that for any non positive integer j ≤ 0,

1

K
≤ ∥Dgj(p)v+∥

∥Gj([p, 0])v∥
≤ K.

The result then follows easily from the remarks above and the definitions of the norms ∥.∥Vε,−,ζ and
∥.∥ε0,−,ζ .
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Recall that Y is the set of ω-full measure of Oselede ts regular points. We consider the
reparametrized flow Ψs : Y → Y , defined by

Ψs(ζ) = Φκ−1
ζ (s)(ζ).

For ζ = [p, l] ∈ Y , let h(ζ) = h(ξuup ) := log ∥G1([p, 0])v∥Vε0,−,Φ1(ζ)
, where ∥v∥Vε0,−,ζ = 1. By (44),

for any t ∈ [−l, 1− l) we have that
κζ(t) = th(ζ). (46)

For s ∈ R such that s
h(ζ) + l ∈ [0, 1), we have that Ψs(ζ) = [p, l + s

h(ζ) ]. That is, 1
h(ξuu

ζ ) gives the

local change of speed of the flow Φt to obtain the flow Ψs. In particular, κζ(t) =
∫ t

0
h(Φτ (ζ))dτ .

Observe that h(ζ) > λ+−ε0 for ω-almost every ζ. We also have that
∫
h(ζ)dω(ζ) < +∞ (see Claim

9.5 in [BRH17]) and hence the flow Ψs preserves the probability measure ω̂, which in coordinates
is given by

dω̂(ζ) :=
h(ζ)∫

h(η)dω(η)
dω(ζ). (47)

Since the measure ω is ergodic for Φt, we obtain that ω̂ is ergodic for Ψs.
Observe that the partition ξ̃uu is both ω and ω̂ measurable. Let B̃ be the σ-algebra generated

by the partition ξ̃uu. Let ωB̃
ζ and ω̂B̃

ζ be the conditional measures of ω and ω̂ with respect to the

σ-algebra B̃. This is the same as considering the disintegrated measures of ω and ω̂ with respect
to the measurable partition ξ̃uu. From (47) we obtain that

dω̂B̃
ζ (η) =

h(η)∫
h(ρ)dωB̃

ζ (ρ)
dωB̃

ζ (η).

By construction, the function h is B̃-measurable, since it is constant on elements of the partition

ξ̃uu. Since ωB̃
ζ and ω̂B̃

ζ are probability measures, we take

ω̂B̃
ζ = ωB̃

ζ . (48)

The function (ζ,−t) 7→ κζ(−t), where t ≥ 0, is B̃-measurable. This follows from Claim 9.12.

In particular, the semiflow Ψ−s is B̃ measurable. We also have that Ψs(B̃) ⊂ B̃ for s ≥ 0, where
Ψs(B̃) := {Ψs(C) : C ∈ B̃}, this follows from the fact that ξ̃uu is decrasing for the measurable flow
Ψs. Write B̃s = Ψs(B̃). We have that B̃s ⊂ B̃s′ , for s ≥ s′, and we obtain that {B̃s}s≥0 forms a

decreasing filtration. Let B̃∞ :=
⋂

s≥0 B̃s.
Let ρ : Y → R be a ω-integrable function, in particular it is also ω̂-integrable. For ω̂-almost

every ζ, define the conditional expectation Eω̂(ρ|B̃s)(ζ) by

Eω̂(ρ|B̃s)(ζ) :=

∫
ρ ◦Ψs(η)dω̂

B̃0

Ψ−s(ζ)
(η) =

∫
ρ(η′)d((Ψs)∗ω̂

B̃0

Ψ−s(ζ)
)(η′).

By the Ψs-invariance of ω̂ it is easy to conclude that (Ψs)∗ω̂
B̃0

Ψ−s(ζ)
= ω̂B̃s

ζ . Furthermore, since

Ψs′(ξ̃
uu) refines Ψs(ξ̃

uu), whenever s ≤ s′, we can also conclude that Eω̂(Eω̂(ρ|B̃s)|B̃s′)(η) =
Eω̂(ρ|B̃s′)(η). Thus, Eω̂(ρ|B̃s)(.) defines a reverse martingale for the decreasing filtration {B̃s}s≥0

on (Y, ω̂). By the Reverse Martingale Convergence Theorem (see [EW11] Theorem 5.8) we obtain
that for ω̂-almost every ζ we have the convergence lims→+∞ Eω̂(ρ|B̃s)(ζ) = Eω̂(ρ|B̃∞)(ζ).
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9.5 Stopping time and bi-Lipschitz estimate

Let ζ ∈ Y . For δ > 0 and t ∈ R, define

τζ,δ(t) := sup
{
t′ ∈ R : ∥DΦt(ζ)|E−

ζ
∥−ε0,±,Φt(ζ)

.∥DΦt′(Φt(ζ))|E+
Φt(ζ)

∥+ε0,±,Φt+t′ (ζ)
δ ≤ δ

}
.

Define Lζ,δ(t) := t + τζ,δ(t). Observe that the functions τζ,δ : R → R and Lζ,δ : R → R are
increasing homeomorphisms.

Lemma 9.14 ([BRH17], Lemma 9.7). The functions τζ,δ and Lζ,δ are bi-Lipschitz with constants
uniform in ζ, δ. In particular, for t′ ≥ 0

−λ−−3ε0
λ++ε0

t′ ≤ τζ,δ(t+ t′)− τζ,δ(t) ≤ −λ−+3ε0
λ+−ε0

t′,
λ+−λ−−2ε0

λ++ε0
t′ ≤ Lζ,δ(t+ t′)− Lζ,δ(t) ≤ λ+−λ−+2ε0

λ+−ε0
t′.

9.6 Estimates for the holonomies

We will need the following estimate on the holonomies.

Lemma 9.15. Suppose that Euu
g is θ-Hölder for some θ ∈ (0, 1). There exists a constant L > 1

such that the following holds true: given three points q2 ∈ T2, qu2 ∈ Wuu
g2,1(q2), and qs2 ∈ W ss

g2,loc
(q2);

let q̃2 be the unique point of the intersection between W ss
g2,loc

(qu2 ) and Wuu
g2,2(q

s
2), then for any q1 ∈ T2

d
(
Hu

q2,qu2
(q1), H

s
q̃2,qu2

◦Hu
qs2,q̃2

◦Hs
q2,qs2

(q1)
)
< Ld(q2, q

s
2)

θ.

Observe that if the strong foliations were jointly integrable, then for any points as above, we
would have

Hu
qu2 ,q2

(q1) = Hs
qu2 ,q̃2

,

and Lemma 9.15 would be immediate. This lemma will give a quantitative (upper) control on the
non-integrability.

Proof of Lemma 9.15. By the triangular inequality, we have

d
(
Hu

q2,qu2
(q1), H

s
q̃2,qu2

◦Hu
qs2,q̃2

◦Hs
q2,qs2

(q1)
)

≤ d
(
Hu

q2,qu2
(q1), H

u
qs2,q̃2

◦Hs
q2,qs2

(q1)
)
+ d

(
Hu

qs2,q̃2
◦Hs

q2,qs2
(q1), H

s
q̃2,qu2

◦Hu
qs2,q̃2

◦Hs
q2,qs2

(q1)
)
.

Since the foliation Fuu is θ-Hölder and the distance between q2 and qu2 is uniformly bounded form
above, there exists a uniform constant K1 such that

d
(
Hu

q2,qu2
(q1), H

u
qs2,q̃2

◦Hs
q2,qs2

(q1)
)
≤ K1d(q1, H

s
q2,qs2

(q1).

Since the distance between q̃2 and qs2 is uniformly bounded form above, we have

d
(
Hu

qs2,q̃2
◦Hs

q2,qs2
(q1), H

s
q̃2,qu2

◦Hu
qs2,q̃2

◦Hs
q2,qs2

(q1)
)
≤ K2d(q̃2, q

u
2 ),

where K2 is a uniform constant.
Notice that d(q1, H

s
q2,qs2

(q1)) ≤ K3d(q2, q
s
2) and d(q̃2, q

u
2 ) ≤ K4d(q2, q

s
2). The result then follows.
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9.7 The proof of Theorem 9.1

For this section we fix g ∈ Sk2(T2 × T2) and µ an ergodic u-Gibbs measure for g that verifies the
hypothesis of Theorem 9.1. Suppose that µ does not verify the conclusion of Theorem 9.1. By
Theorem 2.26 and Proposition 2.27 (the Invariance Principle), we have that

hµ(g
−1,Fss) < hν(g

−1
2 ) ≤ hµ(g

−1), (49)

where ν = (π2)∗µ is the unique SRB of g2.
Let ξs be a µ-measurable, s-subordinated partition, and observe that ξs is a unstable partition

for g−1 (we recall that in our notation ξs is subordinated to the two-dimensional Pesin stable
manifolds of g). By Ledrappier-Young’s entropy formula results (see Theorem C’ in [LY85-2]), we
have that hµ(g

−1) = hµ(g
−1, ξs). Hence,

hµ(g
−1,Fss) < hµ(g

−1, ξs)

Take ξss a measurable partition subordinated to Fss that refines the partition ξs. For µ-almost
every p let µss

p be the conditional measure of µ along ξss(p) and let µs
p be the conditional measure

of µ along ξs(p). By Ledrappier-Young’s entropy formula we also get that for µ-almost every p, the
dimension of the measure µs

p is strictly greater than the dimension of the measure µss
p . Since the

measure µs
p can be written as

∫
ξs(p)

µss
q dµs

p(q) we conclude that the measure µs
p is not supported

on ξss(p). Moreover, for any δ > 0 we could have chosen these measurable partitions having its
elements with diameter smaller than δ. Since we are assuming µ to have atomic disintegration
along the center, we conclude that for any δ > 0, for µ-almost every p, there is a point q ∈ W s

δ (p)
such that q /∈ W ss(p) and q is an atom of µc

q.

9.7.1 Fixing several parameters and sets

We now fix the choices of several parameters to obtain a set of large measure of “good” points for
which we can apply the strategy.

(A) Fix β ∈ (0, 1) small such that 1+β
1−β < λ+−λ−−2ε0

−λ−+ε0
.

(B) Fix κ1 = λ+−λ−−2ε0
λ++ε0

, κ2 = λ+−λ−+2ε0
λ+−ε0

and α0 = κ1

5(κ1+κ2)
.

(C) Recall that in Section 9.4 we defined the equivalent measures ω and ω̂ which are invariant
for the suspension flow Φt and the reparametrized suspension flow Ψs, respectively. We were
also using the notation ζ = [p, l] for points in M , where p ∈ T4 and l ∈ [0, 1).

Fix N0 > 1 large such that

ω

{
ζ : N−1

0 ≤ dω̂

dω
(ζ) ≤ N0.

}
> 1− α0

2
.

On M we may consider the measurable partition induced by the center foliation on T4. For the
measure ω, we will write ωc

ζ the conditional measure on the leaf containing ζ.

(D) By Lusin’s Theorem we fix a compact set K0 ⊂ Y ⊂ M of ω and ω̂ measure arbitrarily close
to one ( where Y is the set of full ω-measure defined at the beginning of Section 9.4) such
that:
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(i) the vector fields ζ 7→ v∗ζ ;

(ii) the parametrizations defined in (36) and extended to Y in Section 9.4;

(iii) the Lyapunov norms defined in (42);

(iv) the map ζ 7→ ωc
ζ ;

(v) the function L̂(.) from Lemma 9.6

vary continuously in K0. In particular, L̂(.) is bounded by a constant L̂0 in K0.

Recall that by assumption ωc
ζ is atomic for ω-almost every ζ. By the continuity of ζ 7→ ωc

ζ in
K0, there exists a constant ε1 > 0 such that for any ζ ∈ K0

min{d(η1, η2) : η1 and η2 are different atoms of ωc
ζ} > ε1. (50)

(E) Let C0 > 1 be the maximal ratio between the Lyapunov norms defined in (42) and the
Riemannian norm for the points in K0, that is,

C0 = sup
ζ∈K0

sup
v∈TζT2

ζ−{0}

{(
∥v∥ε0,±,ζ

∥v∥ε,−,ζ

)±1

,

(
∥v∥ε0,±,ζ

∥v∥

)±1

,

(
∥v∥ε0,−,ζ

∥v∥

)±1
}
.

(F) From Remark 9.7, fix γ1, γ2 > 0 small such that µ(Aγ1,γ2,0.9) > 1− α0. Let Λ
′ ⊂ T4, and the

constants C1, C2, C3 > 1 and r0, r1 > 0 small given by Lemma 9.9. We may also suppose that
µ(Λ′) > 1− 2α. Write A := Aγ1,γ2,0.9 × [0, 1) and for ζ = [p, l] write Aγ2

(ζ) = Aγ2
(p), where

Aγ2
(p) is defined as in Section 9.3.

(G) Let L∗ be a constant such that for any q ∈ ξuu(p) and for any x, y ∈ T2 we have

1

L∗ d(x, y) ≤ d(Hu
p,q(x), H

u
p,q(y)) ≤ L∗d(x, y),

and let L be the constant obtained in Lemma 9.15. Take C∗ = L∗ + L.

(H) Take T̂ :=
log(Ĉ2C2

0 L̂
2
0C

3
3 )

λ+ − ε0
, where Ĉ is the constant from Claim 9.13.

(I) Fix K = K0 ∩ [Λ′ × [0, 1)]. By taking the previous sets with sufficiently large measure, we
may suppose that ω(K) > 1− α0

10 and ω̂(K) > 1− α0

20N0
.

Observe that if ρ : Y → [0, 1] is an integrable function such that
∫
ρdω > 1− ab, for constants

a, b then ω({p ∈ Y : ρ(p) > 1− a}) > 1− b. Indeed, write B = {p ∈ Y : ρ(p) > 1− a}, then

1− ab <

∫
ρdω =

∫
B

ρdω +

∫
Y−B

ρdω ≤ ω(B) + (1− a)(1− ω(B)),

and this implies that ω(B) > 1− b.
Recall that in section 9.4.2 we defined B̃s = Ψs(B̃). Let 1K(.) be the indicator function of

K.Consider Eω(1K |B̃0)(ζ) =
∫
1(η)dωB̃0

ζ (η). Take a = 0.1 and b = α0, we have that

1− α

10
< ω(K) =

∫ (∫
1K(η)dωB̃0

ζ (η)

)
dω(ζ).
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By the argument above, we conclude that ω({ζ ∈ M : Eω(1K |B̃0)(ζ) > 0.9}) > 1− α0.
Similarly, using (I) and by taking a = 0.1 and b = α0

2N0
, we conclude that ω̂({ζ ∈ M :

Eω̂(1K |B̃∞)(ζ) > 0.9}) > 1 − α0

2N0
. From (C), we can conclude that ω({ζ ∈ M : Eω̂(1K |B̃∞)(ζ) >

0.9}) > 1− α0.

(I) Take B0 := {ζ ∈ M : ωB̃0

ζ (K) > 0.9}. From the argument above, ω(B0) > 1− α0.

(J) For each N > 0 let BN := {ζ ∈ M : Eω̂(1K |B̃s)(ζ) > 0.9,∀s ≥ N} = {ζ ∈ M :

ω̂B̃
Ψ−s(ζ)

(Ψ−s(K)) > 0.9,∀s ≥ N}. By the Martingale convergence argument from section
9.4.2, we have that for ω̂-almost every ζ,

lim
s→+∞

Eω̂(1K |B̃s)(ζ) = Eω̂(1K |B̃∞)(ζ).

Hence, fix N sufficiently large so that min{ω̂(BN ), ω(BN )} > 1− α0.

For each T > 0, let R(T ) be the set of points ζ ∈ K such that for B = K,A,BN ,B0 it holds
that

1

T
Leb({t ∈ [0, T ] : Φt(ζ) ∈ B}) > 1− α.0

(K) By the pointwise ergodic theorem, fix T0 > 0 large enough such that ω(R(T0)) > 0.

9.8 Back to the proof

Recall that we supposed that µ does not verify the conclusion of Theorem 9.1. Recall that ε1 > 0 is
a small constant fixed in (50). Since R(T0) > 0, we may fix two points in K, ζ = [p, l] and η = [q, l],
such that

• ζ, η ∈ R(T0);

• q ∈ W s
loc(p);

• q /∈ W ss(p).

Let δ = ∥h−
p (H

s
q,p(q))∥, where h−

p is the local chart obtained in Proposition 9.4 . Furthermore,
we may assume that

δ <
ε1

2C∗Ĉ2C6
0C

3
1C2

.

Lemma 9.16. There exists a sequence (tj)j∈N of positive numbers with tj → +∞, as j → +∞,
such that

1. Φtj (ζ) ∈ K ∩B0 ∩ A;

2. Φtj (η) ∈ K ∩B0;

3. ΦLζ,δ(tj)(ζ) ∈ K ∩ BN , where BN is defined in (J);

4. ΦLζ,δ(tj)(η) ∈ K ∩ BN .
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The proof of Lemma 9.16 is the same as Claim 12.2 in [BRH17].
Let tj → +∞ be a sequence verifying Lemma 9.16. Let ζj = Φtj (ζ), ηj = Φtj (η), ζ̃j =

ΦLζ,δ(tj)(ζ) and η̃j = ΦLζ,δ(tj)(η). Let s′j = κζj (τζ,δ(tj)) and s′′j = κηj
(τζ,δ(tj)). Notice that for tj

sufficiently large, since τζ,δ(tj) → ∞, and by the definition of the κ function, we have that

min{s′j , s′′j } ≥ (λ+ − ε0).τζ,δ(tj) ≥ N.

Since ζ̃j , η̃j ∈ BN , we have that

Eω̂(1K |B̃s′j
)(ζ̃j) > 0.9 and Eω̂(1K |B̃s′′j

)(η̃j) > 0.9. (51)

For a point ζ̂ = [p̂, l], by construction, there is a natural identification of ωB̃
ζ̂
with µuu

p̂ . We also

recall that in the skew product setting, since µ is u-Gibbs, (π2)∗µ
uu
p̂ = νuuπ2(p̂)

. Write ζj = [pj , lj ]

and ηj = [qj , lj ]. We have the following:

• Since ζj and ηj belong to B0, we have that min{ωB̃
ζj
(K), ωB̃

ηj
(K)} > 0.9.

• Since ζj ∈ A, we obtain that ωB̃
ζj
(Aγ2

(ζj)) = µuu
pj
(Aγ2

(pj)) > 0.9.

• Observe that Ψ−s′j
(ζ̃j) = Φκ−1

ζ̃j
(−s′j)

(ζ̃j), by the definition of s′j and ζ̃j , we have that Ψ−s′j
(ζ̃j) =

Φ−τζ,δ(tj)(ζ̃j) = ζj . Similarly, Ψ−s′′j
(η̃j) = ηj .

• By (51) and the previous item, we obtain that

ω̂B̃
ζj (Ψ−s′j

(K)) > 0.9 and ω̂B̃
ηj
(Ψ−s′′j

(K)) > 0.9.

Using the identification in (48), we conclude that

ωB̃
ζj (Ψ−s′j

(K)) > 0.9 and ωB̃
ηj
(Ψ−s′′j

(K)) > 0.9.

Observe that ζj and ηj both have the same time coordinate. Recall that the invariant foliations
for Φt are induced by the foliations of g. In particular, for any two points with the same l-coordinate
we can look at the holonomy map induced by the center stable foliation between the pieces of strong
unstable manifolds. We remark that the center stable holonomy induces a C1 map between strong
unstable manifolds. In particular, for j ∈ N sufficiently large, we can choose points ζj ∈ ξ̃uu(ζj)

and ̸= ηj ∈ ξ̃uu(ηj) such that

• ηj ∈ W cs(ζj);

• ηj ∈ Ψ−s′′j
(K) ∩K;

• ζj ∈ Ψ−s′j
(K) ∩K ∩ Aγ2

(ζj).

Write ζj = [pj , lj ] and ηj = [qj , lj ].
Let wj = W+

r1(pj) ∩ Hs
qj ,pj

(W−
r1(qj)) and let ωj = [wj , lj ]. Let zj = Hu

pj ,pj
(W−

r1(pj)) ∩
Hs

qj ,pj
(W−

r1(qj)). Since pj ∈ Aγ2
(pj) and qj ∈ K, by Lemma 9.9 we obtain that

1

C1C2
d(pj , zj) ≤ ∥h+

pj
(wj)∥ ≤ C1C2d(pj , zj),
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observe that by taking j sufficiently large and by Lemma 9.15, we may suppose that pj , pj and qj
verify the hypothesis of Lemma 9.9. Write q∗j = Hs

qj ,pj
(qj)

Lemma 9.17. For j sufficiently large, we have

1

C∗ d(pj , q
∗
j ) ≤ d(pj , zj) ≤ C∗d(pj , q

∗
j ),

where C∗ is the constant defined in (G).

Proof. Write q∗j = Hu
pj ,pj

(q∗j ). By Lemma 9.15 we have that

d(Hu
pj ,pj

(q∗j ), H
s
qj ,pj

◦Hu
qj ,qj

◦Hs
pj ,qj (q

∗
j )) ≤ Ld((pj)2, (qj)2)

θ ≤ L∥Dg|Ess∥tjθ. (52)

Since the angle between Hu
pj ,pj

(W−
r1(pj)) and Hs

qj ,pj
(W−

r1(qj)) is uniformly bounded away from

zero, by (52) we conclude that d(q∗j , zj)) ≤ C4L∥Dg|Ess∥tjθ, for some uniform constant C4 > 0.

Figure 3: Control on distances
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Since Hu is C1 and the diameter of the elements of the partition ξuu is uniformly bounded,
there exists L∗ > 1 such that for any x, y ∈ T2,

1

L∗ d(x, y) < d(Hu
pj ,pj

(x), Hu
pj ,pj

(y)) < L∗d(x, y).

Hence,

d(pj , qj) ≤ d(pj , q
∗
j ) + d(q∗j , zj) ≤ d(Hu

pj ,pj
(pj), H

u
pj ,pj

(q∗j )) + C4L∥Dg|Ess∥tjθ

≤ d(pj , q
∗
j )

(
L∗ + C4L

∥Dg|Ess∥tjθ

d(pj , q∗j )

)
.

However, d(pj , q
∗
j ) ≥ m(Dg|Ec)tjd(p,Hs

q,p(q)) and by the condition (32), for j sufficiently large
we have

C4
∥Dg|Ess∥tjθ

d(pj , q∗j )
≤
(
∥Dg|Ess∥θ

m(Dg|Ec)

)tj
C4

d(p,Hs
q,p(q))

< 1.

Therefore, for j sufficiently large

d(pj , qj) ≤ d(pj , q
∗
j )(L

∗ + L) = C∗d(pj , q
∗
j ).

The proof of the lower bound is similar.

Combining the estimate from Lemma 9.17 and the estimates for ∥h+
pj
(wj)∥, we obtain

1

C∗C1C2
d(pj , q

∗
j ) ≤ ∥h+

pj
(wj)∥ ≤ C∗C1C2d(pj , q

∗
j ).

However,

d(pj , q
∗
j ) ≤ C1∥h−

pj
(q∗j )∥ ≤ C0C1∥h−

pj
(q∗j )∥ε0,±,pj

= C0C1∥DΦtj (ζ)|E+
ζ
∥ε0,±∥h−

p (H
s
q,p(q))∥ε0,±,p ≤ C2

0C1∥DΦtj (ζ)|E+
ζ
∥ε0,±δ.

Similarly, we can obtain the lower bound

d(pj , q
∗
j ) ≥

1

C2
0C1

∥DΦtj (ζ)|E+
ζ
∥ε0,±δ.

Let t′j = κ−1

ζj

(s′j) and t′′j = κ−1
ηj

(s′′j ). Observe that Ψs′j
(ζj) = Φt′j

(ζj) and Ψs′′j
(ηj) = Φt′′j

(ηj).

Write ω′
j = Φt′j

(ωj), ζ
′
j := Φt′j

(ζj) = [p′j , l
′
j ], η

′
j := Φt′j

(ηj) = [q′j , l
′
j ] and η′′j := Φt′′j

(ηj) = [q′′j , l
′′
j ].

Recall that Ĉ is the constant given by Claim 9.13.

Claim 9.18.
1

Ĉ2C6
0C

2
1C2

δ ≤ ∥h+

ζ
′
j

(ω′
j)∥ ≤ Ĉ2C6

0C
2
1C2δ.
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Proof.

∥h+

ζ
′
j

(ω′
j)∥ ≤ C0∥h+

ζ
′
j

(ω′
j)∥ε0,−,ζ

′
j
= C0∥DΦt′j

(ζj)|E+

ζj

∥ε0,−∥h+

ζj

(ωj)∥ε0,−,ζj

≤ C2
0 Ĉes

′
j∥h+

ζj

(ωj)∥ ≤ C∗ĈC4
0C

2
1C2∥DΦtj (ζ)|E+

ζ
∥ε0,±δes

′
j

= C∗ĈC4
0C

2
1C2∥DΦtj (ζ)|E−

ζ
∥ε0,±δ∥Gτζ,δ(tj)(ζj)∥Vε0,−

≤ C∗Ĉ2C4
0C

2
1C2∥DΦtj (ζ)|E−

ζ
∥ε0,±δ∥DΦτζ,δ(tj)(ζj)|E+

ζj

∥ε0,−
≤ C∗Ĉ2C6

0C
2
1C2∥DΦtj (ζ)|E−

ζ
∥ε0,±δ∥DΦτζ,δ(tj)(ζj)|E+

ζj

∥ε0,± = C∗Ĉ2C6
0C

2
1C2δ.

The proof of the lower bound is similar.

Since ζ
′
j ∈ K, we have that 1

C1
∥h+

ζ
′
j

(ω′
j)∥ ≤ d(ζ

′
j , ω

′
j) ≤ C1∥h+

ζ
′
j

(ω′
j)∥. Notice as well that ωj

belongs to the stable manifold of η′j , indeed, wj ∈ Hs
qj ,pj

(W −r1 (qj)). From the definition of t′j , we

have that t′j → +∞ as j goes to infinity. In particular, d(ω′
j , η

′
j) → 0 as j increases. Hence, for j

large enough, we have that

d(ω′
j , η

′
j) <

1

2C∗Ĉ2C6
0C

3
1C2

δ. (53)

From Claim 9.18, the estimate (53) and triangular inequality, we obtain

1

2C∗Ĉ2C6
0C

3
1C2

δ ≤ d(p′j , H
s
q′j ,p

′
j
(q′j)) ≤ 2C∗Ĉ2C6

0C
3
1C2δ. (54)

Claim 9.19. |t′j − t′′j | < T̂ , where T̂ is the constant given in (H).

Proof. We consider two cases.

Case 1: t′j ≥ t′′j . As ζj ∈ K, from (D) and (43),

∥Gt′′j
(ζj)∥Vε0,− ≥ 1

Ĉ
∥DΦt′′j

(ζj)|E+

ζj

∥ε0,− ≥ 1

ĈL̂0

∥DΦt′′j
(ζj)|E+

ζ
∥.

Since η′′j ∈ K, we have

∥Gt′′j
(ηj)∥Vε0,− ≤ Ĉ∥DΦt′′j

(ηj)|E+
ηj

∥ε0,− ≤ ĈC2
0∥DΦt′′j

(ηj)|E+
ηj

∥.

Let n′ = ⌊t′j⌋ be the integer part of t′j , and let n′′ = ⌊t′′j ⌋ be the integer part of t′′j . Observe that we
are assuming that n′′ ≤ n′. We also have that n′′ ≥ 0.

∥Dgn
′′
(qj)|E+

qj

∥

∥Dgn′′(pj)|E+
pj

∥
=

∥Dgn
′′
(qj)|E+

qj

∥

∥Dgn′′(wj)|Twj
W+(pj)

∥
.

∥Dg−n′
(p′j)|E+

p′
j

∥

∥Dg−n′(w′
j)|Tw′

j
W+(p′

j)
∥
.
∥Dg−(n′−n′′)(w′

j)|Tw′
j
(W+(p′

j)
∥

∥Dg−(n′−n′′)(p′j)|E+

p′
j

∥

= I.II.III
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Recall that wj ∈ Hs
qj ,pj

(W−
r1(qj)). In particular, it belongs to the stable manifold of qj . By

item 5 in Lemma 9.9, I is bounded by C−1
3 and C3. Observe that −(n′ − n′′) and −n′ are negative

numbers. Since w′
j ∈ W+

r1(pj), from item 6 of Lemma 9.9, we obtain that II and III are bounded

by C−1
3 and C3. Hence,

1

C3
3

≤
∥Dgn

′′
(qj)|E+

qj

∥

∥Dgn′′(pj)|E+
pj

∥
≤ C3

3 . (55)

Thus,

ĈC2
0∥DΦt′′j

(ηj)|E+
ηj

∥ ≥ ∥Gt′′j
(ηj)∥Vε0,− = ∥Gt′j

(ζj)∥Vε,− ≥ e(λ
+−ε0)(t

′
j−t′′j )∥Gt′′j

(ζj)∥Vε0,−

≥ e(λ
+−ε0)(t

′
j−t′′j ) 1

ĈL̂0
∥DΦt′′j

(ζj)|E+
ζ ∥

By (55),

e(λ
+−ε0)(t

′
j−t′′j ) ≤ Ĉ2C2

0 L̂0C
3
3 .

Therefore,

t′j − t′′j ≤ log(Ĉ2C2
0 L̂0C

3
3 )

λ+ − ε0
= T̂ .

Case 2: t′j ≤ t′′j . Observe that, similar to the first case,

∥Gt′j
(ηj)∥Vε0,− ≥ 1

ĈL̂0

∥DΦt′j
(ηj)|E+

ηj

∥ and ∥Gt′j
(ζj)∥Vε0,− ≤ ĈC2

0∥DΦt′j
(ζj)|E+

ζj

∥.

We have

∥DΦt′j
(ηj)|E+

ηj

∥ε0,− ≥ 1

L̂0

∥DΦt′j
(ηj)|E+

ηj

∥ and ∥DΦt′j
(ζj)|E+

ζj

∥ε0,− ≤ C2
0∥DΦt′j

(ζj)|E+

ζj

∥.

We also have

∥Dgn
′
(qj)|E+

qj

∥

∥Dgn′(pj)|E+
pj

∥
=

∥Dgn
′
(qj)|E+

qj

∥

∥Dgn′(wj)|Twj
W+

r1
(pj)

∥
.

∥Dg−n′
(p′j)|E+

p′
j

∥

∥Dg−n′(w′
j)|Tw′

j
W+

r1
(p′

j)
∥
.

From items 5 and 6 of Lemma 9.9, we obtain

1

C2
3

≤
∥Dgn

′
(qj)|E+

qj

∥

∥Dgn′(pj)|E+
pj

∥
≤ C2

3 .

Hence,

ĈC2
0∥DΦt′j

(ζj)|E+

ζj

∥ ≥ ∥Gt′j
(ζj)∥Vε,− = ∥Gt′′j

(ηj)∥Vε0,− ≥ e(λ
+−ε0)(t

′′
j −t′j)∥Gt′j

(ηj)∥Vε0,−

≥ e(λ
+−ε0)(t

′′
j −t′j) 1

ĈL̂0
∥DΦt′′j

(ζj)|E+
ζ ∥.
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Therefore,

t′′j − t′j ≤
log(Ĉ2C2

0 L̂0C
2
3 )

λ+ − ε0
≤ T̂ .

Up to taking a subsequence, we may suppose that the sequence ζ
′
j converges to a point ζ̂0, the

sequence η′′j converges to a point η̂1, the sequence t′j − t′′j converges to a number t̂ ∈ [−T̂ , T̂ ] and
η′j = Φt′j−t′′j

(η′′j ) converges to a point η̂0 = Φt̂(η̂1).

Since q′j belongs to the center stable leaf of p′j , from (54) we obtain that

d(η̂0, ζ̂0) ≥
1

2C∗Ĉ2C6
0C

3
1C2

δ > 0.

Observe that since ζ
′
j ∈ K and ζ

′
j is an atom of ωc

ζ
′
j

, then ζ̂0 is an atom of ωc
ζ̂0
. Similarly, η̂1 is an

atom of ωc
η̂1
. By the Φt-invariance of ω, we obtain that (Φt̂)∗ω

c
η̂1

= ωc
η̂0

= ωc
ζ̂0
. Therefore, ωc

ζ̂0
has

an atom in η̂0. However, d(ζ̂0, η̂0) ≤ 2C∗Ĉ2C6
0C

3
1C2δ < ε1 and this is a contradiction with (50).

This concludes the proof of Theorem 9.1.

10 Appendix A: C2-regularity of unstable holonomies

In this appendix we prove Theorem 2.10. Let f be a C2+α absolutely partially hyperbolic skew
product of T4 = T2 × T2 and let χss, χc

−, χ
c
+, χ

uu be the partially hyperbolic constants of f . We
say that f verifies the (2, α)-center unstable bunching condition if(

χc
+

χc
−

)2

< χuu and
χc
+

(χc
−)

2
< (χuu)α. (56)

Similarly, f verifies the (2, α)-center stable bunching condition if

χss <

(
χc
−

χc
+

)2

and (χss)α <
χc
−

(χc
+)

2
. (57)

If f verifies condition (56) and (57) then we say that f is (2, α)-center bunched. In this section,
for any point p ∈ T4 and any n ∈ Z we write pn := fn(p).

In this appendix, we use the (2, α)-center unstable bunching condition to obtain C2-regularity
of the unstable holonomy inside a center unstable leaf. Recall that given p and q belonging to
the same strong unstable leaf, then there exists a well defined strong unstable holonomy map
Hu

p,q : W c(p) → W c(q). Since the center manifolds are T2, we have that each unstable holonomy
is a diffeomorphism of T2. For each R > 0, we consider the family {Hu

p,q}p∈T4,q∈Wuu
R (p). The main

theorem of the appendix is the following:

Theorem 10.1 (Theorem 2.10). Let f be a C2+α absolutely partially hyperbolic skew product of
T4, and fix R > 0. If f is (2, α)-center unstable bunched, then {Hu

p,q}p∈T4,q∈Wuu
R (p) is a family of

C2-diffeomorphisms of T2 whose C2-norm varies continuously with the choices of p and q.
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It is easy to see that this theorem follows from the case that R = 1. Observe that the (2, α)-

center unstable bunching condition implies
χc
+

χc
−
< χuu.

This condition is the regular bunching condition which is sufficient to prove that inside a center
unstable manifold, the unstable holonomy is a C1-diffeomorphism. For each n ∈ Z, for each p ∈ T4

and q ∈ Wuu
1 (p) we have

fn ◦Hu
p,q = Hu

pn,qn ◦ fn and Dfn(Hu
p,q(.))DHu

p,q(.) = DHu
pn,qn(f

n(.))Dfn(.), (58)

where pn = fn(p) and qn = fn(q).
Since the center leaves are T2, all its tangent spaces have a canonical identification with R2.

In particular, we may consider DHu
p,q(.) to be a continuous map from T2 to L(R2,R2), where

L(R2,R2) is the set of linear maps from R2 to R2. Thus, the family {DHu
p,q(.)}p∈T4,q∈Wuu

1 (p) is

a continuous family that takes values on C0(T2, L(R2,R2)). Furthermore, there exists an uniform
constant C ≥ 1 such that

∥DHu
p,q(.)− Id∥ < Cd(p, q). (59)

Fix some constantK > C and let L be the set defined as follows: an element L is a continuous family
of maps {Ap,q}p∈T4,q∈Wuu

1 (p) that takes value on C0(T2, L(R2,R2)) such that ∥Ap,q−Id∥ < Kd(p, q).
For simplicity, we will denote a family {Ap,q}p∈T4,q∈Wuu

1 (p) by A, such that Ap,q(.) = Ap,q(.). We
will also write the continuous family given the derivative of the unstable holonomy just by DHu.

Observe that L has a natural distance defined by

d(A,B) = sup
p∈T4,q∈Wuu

1 (p)

{
sup
x∈T2

∥Ap,q(x)− Bp,q(x)∥
}
.

For each n ∈ N we define Γn : L → L in the following way: for each p ∈ T4 and q ∈ Wuu
1 (p), then

Γn(A)p,q(.) = Dfn(Hu
p−n,q−n

(f−n(.)))Ap−n,q−n
(f−n(.))Df−n(.). (60)

By (58), for any n ∈ N the derivative of the unstable holonomy DHu is Γn-invariant, that is,
Γn(DHu) = DHu. In the next lemma we prove that it is the only element of L that has this
property.

Lemma 10.2. For any A ∈ L, the limit limn→+∞ Γn(A) exists and it is equal to DHu. Moreover,
DHu is the only element of L which is Γn-invariant for every n ∈ N.

Proof. Let A ∈ L. Fix p ∈ T4 and q ∈ Wuu
1 (p), and we write Hu

−n(.) = Hu
p−n,q−n

(.). We will use a
similar notation for Ap−n,q−n

. For any x ∈ W c(p), we have

∥Γn(A)p,q(x)−DHu
p,q(x)∥ = ∥Dfn(Hu

−n(x−n))
(
A−n(x−n)−DHu

−n(x−n)
)
Df−n(x)∥

≤
(
χc
+

χc
−

)n

∥A−n(x−n)−DHu
−n(x−n)∥

≤
(
χc
+

χc
−

)n (
∥A−n(x−n)− Id∥+ ∥DHu

−n(x−n)− Id∥
)

≤
(
χc
+

χc
−

)n

(K + C)(χuu)−nd(p, q).
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The center bunching condition implies that

χc
+

χc
−
(χuu)−1 < 1.

Hence, ∥Γn(A)p,q(x)−DHu
p,q(x)∥ goes to zero uniformly as n goes to infinity. Since d(p, q) ≤ 1, this

estimate is independent of the points p, q and x. In other words, limn→+∞ d(Γn(A), DHu) = 0.
Moreover, if A is Γn-invariant for every n ∈ N, then limn→+∞ d(Γn(A), DHu) = d(A, DHu) = 0
and thus A = DHu.

For a C2-diffeomorphism g : T2 → T2, we have thatDg(.) is a map that belongs to C1(T2, L(R2,R2)).
In particular, D2g(.) is a map that belongs to C0(T2, L(R2, L(R2,R2))), where L(R2, L(R2,R2)) is
the space of linear maps from R2 to L(R2,R2). The space L(R2, L(R2,R2)) can be identified with
the space L2(R2,R2), which is the space of bilinear maps of R2 taking values in R2. The space
L2(R2,R2) has a norm given by

∥B∥ = sup{∥B(u, v)∥ : ∥u∥ = ∥v∥ = 1}.

Using this norm, we can naturally define a C0-metric in C0(T2, L2(R2,R2)), which gives a C1-metric
in C1(T2, L(R2,R2)) that we will denote it by d∗C1(., .). We remark that the space C1(T2, L(R2,R2))
is complete with d∗C1(., .).

Consider the set L1 of the elements A of L such that for each p ∈ T4 and q ∈ Wuu
1 (p) we have

Ap,q(.) ∈ C1(T2, L(R2,R2)) and it varies continuously in the C1-topology with the choices of the
points p and q. We define the C1-distance on L1 by

dC1(A,B) = sup
p∈T4,q∈Wuu

1 (p)

{d∗C1(Ap,q(.),Bp,q(.))} .

It is easy to see that L1 is closed for the metric dC1 . The strategy to prove Theorem 2.10 is the
following: we consider the family Id in L1 which is just the identity for any choices of p ∈ T4 and
q ∈ Wuu

1 (p), next we consider the sequence {Γn(Id)}n∈N and we prove that this sequence is Cauchy
for the metric d∗C1 . Then, by Lemma 10.2 we know that Γn(Id) converges C0 to DHu. However,
Γn(Id) also converges C1 and therefore DHu ∈ L1, which implies that {Hu

p,q}p∈T4,q∈Wuu
1 (p) is a

continuous family of C2-diffeomorphisms.

Remark 10.3. In what follows, we will use the identification of any tangent space of T2 with R2.
So that it makes sense, for any vector v ∈ R2, to consider the composition Df(x)Df(y)v, for any
two points x and y. Theorem 2.10 also holds for other surfaces, the main point that will change in
the proof is two include the parallel transport between different tangent spaces of the surface, so that
we can make sense of similar compositions. This would include some extra terms in the computation
presented below, which can also be controlled to obtain the same conclusion. For simplicity, and
having our original problem in mind (perturbations of Berger-Carrasco’s example), we will work
only on T2.

Proof of Theorem 2.10. As we explained in the previous paragraph, to prove Theorem 2.10 it is
enough to prove that the sequence {Γn(Id)}n∈N is a Cauchy sequence. We fix p ∈ T4, q ∈ Wuu

1 (p)
and x ∈ T2. For each n ∈ N, we define Hu

−n := Hu
p−n,q−n

(x−n) and Γn := Γn(Id)p,q(x). Observe
that

Γn = Dfn(Hu
−n)Df−n(x) = Dfn(Hu

−n)Df(x−n−1)Df−1(x−n)Df−n(x).
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By (58), for each j = 1, · · · , n, we have f j(Hu
−n) = Hu

−n+j . Hence,

Γn+1 = Dfn(Hu
−n)Df(Hu

−n−1)Df−1(x−n)Df−n(x).

We want to estimate ∥DΓn+1 −DΓn∥. First, let us evaluate DΓn+1 and DΓn. In what follows, for
a diffeomorphism g, we will write D2g(y)[., .] to represent the bilinear form of its second derivative
on the point y. By the chain rule and using that Df(x−n−1)Df−1(x−n) = Id, we obtain

DΓn[., .] =D
(
Dfn(Hu

−n)Df(x−n−1)Df−1(x−n)Df−n(x)
)
[., .]

=D2fn(Hu
−n)

[
DHu

−nDf−n(x)., Df−n(x).
]

(In)

+Dfn(Hu
−n)D

2f(x−n−1)
[
Df−n−1(x)., Df−n−1(x).

]
(IIn)

+Dfn(Hu
−n)Df(x−n−1)D

2f−1(x−n) [Df−n(x)., Df−n(x).] (IIIn)

+Dfn(Hu
−n)D

2f−n(x)[., .] (IVn)

= In + IIn + IIIn + IVn.

Similarly,

DΓn+1[., .] =D
(
Dfn(Hu

−n)Df(Hu
−n−1)Df−1(x−n)Df−n(x)

)
[., .]

=D2fn(Hu
−n)

[
DHu

−nDf−n(x)., Df(Hu
−n−1)Df−n−1(x).

]
(I′n)

+Dfn(Hu
−n)D

2f(Hu
−n−1)

[
DHu

−n−1Df−n−1(x)., Df−n−1(x).
] (

II′n
)

+Dfn(Hu
−n)Df(Hu

−n−1)D
2f−1(x−n) [Df−n(x)., Df−n(x).]

(
III′n

)
+Dfn+1(Hu

−n−1)Df−1(x−n)D
2f−n(x)[., .]

(
IV′

n

)
= I′n + II′n + III′n + IV′

n.

To estimate ∥Γn+1 − Γn∥ we will separate it into four estimates.

The estimate for ∥I′n − In∥
Let us first write the expressions for In and I ′n. In what follows we use that f j(Hu

−n) = Hu
−n+j , for

any j ∈ Z. Then,

In = D2f(Hu
−1)

[
Dfn−1(Hu

−n)DHu
−nDf−n(x)., Dfn−1(Hu

−n)Df−n(x).
]

(̃In,1)

+Df(Hu
−1)D

2f(Hu
−2)

[
Dfn−2(Hu

−n)DHu
−nDf−n(x)., Dfn−2(Hu

−n)Df−n(x).
]

(̃In,2)

...

+Df(Hu
−1) · · ·Df(Hu

−n+1)D
2f(Hu

−n)
[
DHu

−nDf−n(x)., Df−n(x).
]
. (̃In,n)
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We also have

I ′n = D2f(Hu
−1)

[
Dfn−1(Hu

−n)DHu
−nDf−n(x)., Dfn(Hu

−n−1)Df−n−1(x).
]

(̃I′n,1)

+Df(Hu
−1)D

2f(Hu
−2)

[
Dfn−2(Hu

−n)DHu
−nDf−n(x)., Dfn−1(Hu

−n−1)Df−n−1(x).
]

(̃I′n,2)

...

+Df(Hu
−1) · · ·Df(Hu

−n+1)D
2f(Hu

−n)
[
DHu

−nDf−n(x)., Df−n−1(x).
]
. (̃I′n,n)

Let C̃n = Df(Hu
−n−1)Df−1(x−n)− Id. For each j = 1, · · ·n, we obtain

∥Ĩn,j − Ĩn,j∥ = ∥Df(Hu
−1) · · ·Df(Hu

−j+1).

D2f(Hu
−j)

[
Dfn−j(Hu

−n)DHu
−nDf−n(x)., Dfn−j(Hu

−n)C̃nDf−n(x).
]
∥

≤ ∥Df j−1|Ec∥∥f∥C2∥Dfn−j |Ec∥2∥DHu
−n∥∥Df−n|Ec∥2∥C̃n∥

≤ ∥f∥C2

(χc
+)

j−1.(χc
+)

2(n−j)

(χc
−)

2n
∥DHu

−n∥∥C̃n∥

= ∥f∥C2∥DHu
−n∥

(
χc
+

χc
−

)2n

∥C̃n∥(χc
+)

−j−1 < ∥f∥C2∥DHu
−n∥

(
χc
+

χc
−

)2n

∥C̃n∥.

We remark that in the last inequality we used that χc
+ > 1. By (59), for every n ∈ N, we have

∥DHu
−n∥ < K, for some constant K ≥ 1. Also

∥C̃n∥ = ∥Df(Hu
−n−1)Df−1(x−n)− Id∥

= ∥
(
Df(Hu

−n−1)−Df(x−n−1)
)
Df−1(x−n)∥

≤ 1

χc
−
∥f∥C2d(x−n−1, H

u
−n−1)

≤ 1

χc
−
∥f∥C2(χuu)−n−1d(p, q) ≤ 1

χc
−
∥f∥C2(χuu)−n−1.

Hence,

∥Ĩn,j − Ĩn,j∥ ≤
∥f∥2C2K

χuuχc
+χ

c
−

[(
χc
+

χc
−

)2

(χuu)−1

]n
.

Take the constant

C1 :=
∥f∥2C2K

χuuχc
+χ

c
−

and observe that

∥I′n − In∥ ≤
n∑

j=1

∥Ĩn,j − Ĩn,j∥ ≤ C1

(
(χc

+)
2

χuu(χc
−)

2

)n

. (61)

This gives the estimate we need for ∥I′n − In∥.
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The estimate for ∥II′n − IIn∥
This is the only part in the proof of Theorem 2.10 that we use that f is C2+α. Let

ĨIn := D2f(x−n−1)
[
Df−n−1(x)., Df−n−1(x).

]
−D2f(Hu

−n−1)
[
DHu

−n−1Df−n−1(x)., Df−n−1(x).
]
.

Notice that
∥II′n − IIn∥ = ∥Dfn(Hu

−n)ĨIn∥ ≤ (χc
+)

n∥ĨIn∥.
By the triangular inequality,

∥ĨIn∥ ≤ ∥D2f(x−n−1)
[
Df−n−1(x)., Df−n−1(x).

]
−D2f(x−n−1)

[
DHu

−n−1Df−n−1(x)., Df−n−1(x).
]
∥

+∥D2f(x−n−1)
[
DHu

−n−1Df−n−1(x)., Df−n−1(x).
]

−D2f(Hu
−n−1)

[
DHu

−n−1Df−n−1(x)., Df−n−1(x).
]
∥

= ∥Dn∥+ ∥En∥.

Let us estimate each of these terms..

∥Dn∥ =
∥∥D2f(x−n−1)

[(
Id−DHu

−n−1

)
Df−n−1(x)., Df−n−1(x).

]∥∥
≤ ∥f∥C2∥Id−DHu

−n−1∥∥Df−n−1(x)|Ec∥2

≤ ∥f∥C2

(
1

(χc
−)

2

)n+1

C(χuu)−n−1d(p, q)

≤ ∥f∥C2C

(
1

χuu(χc
−)

2

)n+1

≤ ∥f∥C2C

(
1

(χuu)α(χc
−)

2

)n+1

.

Since f is C2+α, There exists a constant CH ≥ 1 such that ∥D2f(z)[., .]−D2f(w)[., .]∥ ≤ CHd(z, w)α.
Recall that ∥DHu

−j∥ < K, for every j ∈ N and some constant K ≥ 1. Therefore,

∥En∥ ≤ CHd(x−n−1, H
u
−n−1)

α∥DHu
−n−1∥∥Df−n−1|Ec∥2

≤ CHK
1

(χc
−)

2(n+1)
(χuu)−α(n+1)d(p, q)

≤ CHK

(
1

(χuu)α(χc
−)

2

)n+1

.

Take the constant

C2 := (∥f∥C2C + CHK)
1

(χuu)α(χc
−)

2
.

We obtain

∥II′n − IIn∥ ≤ C2

(
χc
+

(χuu)α(χc
−)

2

)n

. (62)

The (2, α)-center bunching condition implies that the right hand side of (62) goes exponentially
fast to zero. This gives the estimate we need for ∥II′n − IIn∥.
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The estimate for ∥III′n − IIIn∥
Observe that

∥III′n − IIIn∥ = ∥Dfn(Hu
−n)

(
Df(Hu

−n−1)−Df(x−n−1)
)
D2f−1(x−n)

[
Df−n(x)., Df−n(x).

]
∥

≤ (χc
+)

n∥Df(Hu
−n−1)−Df(x−n−1)∥(χc

−)
−2n.

We have
∥Df(Hu

−n−1)−Df(x−n−1)∥ ≤ ∥f∥C2(χuu)−n−1.

By taking

C3 :=
∥f∥2C
χuu

,

we conclude that

∥III′n − IIIn∥ ≤ C3

(
χc
+

χuu(χc
−)

2

)n

. (63)

This concludes the estimate we need for ∥III′n − IIIn∥.

The estimate for ∥IV′
n − IVn∥

Notice that

∥IV′
n − IVn∥ = ∥Dfn(Hu

−n)
(
Df(Hu

−n−1)Df−1(x−n)− Id
)
D2f−n(x)[., .]∥

≤ (χc
+)

n∥
(
Df(Hu

−n−1)−Df(x−n−1

)
Df−1(x−n)∥∥D2f−n(x)∥

≤ (χc
+)

n∥f∥C2(χuu)−n−1(χc
−)

−1∥D2f−n(x)∥.

Let us estimate ∥D2f−n(x)∥. First, observe that

D2f−n(x)[., .] = D2f−1(x−n+1)
[
Df−n+1(x)., Df−n+1(x).

]
+Df−1(x−n+1)D

2f−1(x−n+2)
[
Df−n+2(x)., Df−n+2(x).

]
...

+Df−n+1(x−1)D
2f(x)[., .].

Using that ∥D2f−1(.)∥ ≤ ∥f−1∥C2 and by the expression above, we obtain

∥D2f−n(x)∥ ≤ ∥f−1∥C2

n−1∑
j=0

(χc
−)

−j(χc
−)

−2n+2j = ∥f−1∥C2(χc
−)

−2n
n−1∑
j=0

(χc
−)

j .

Since χc
− < 1, the sum

∑
j∈N(χ

c
−)

j converges. Define the constant C4 as

C4 :=
∥f∥C2∥f−1∥C2

∑
j∈N(χ

c
−)

j

χuuχc
−

.

We conclude that

∥IV′
n − IVn∥ ≤ C4

(
χc
+

χuu(χc
−)

2

)n

. (64)
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Conclusion of the proof of Theorem 2.10

Take

χ = max

{
(χc

+)
2

χuu(χc
−)

2
,

χc
+

(χuu)α(χc
−)

2
,

χc
+

χuu(χc
−)

2

}
,

and observe that by the (2, α)-center bunching condition χ < 1. Fix the constant Ĉ := C1 + C2 +
C3 + C4. By (61),(62), (63) and (64) we obtain that

∥Γn+1 − Γn∥ ≤ Ĉχn.

Therefore, {Γn}n∈N is a Cauchy sequence for the C1-topology. Observe that all these estimates and
constants are uniform with the choices of p ∈ T4, q ∈ Wuu

1 (p) and x ∈ W c(p). We conclude that
{Γn(Id)}n∈N is a Cauchy sequence in L1 for the C1-topology. Since Γn(Id) converges C

0 to DHu,
we conclude that DHu is C1. This implies that {Hu

p,q(.)}p∈T4,q∈Wuu
1 (p) is a continuous family of

C2-diffeomorphisms whose C2-norm varies continuously with the choices of p and q as above.
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[Si72] J. Sinăı. Gibbs measures in ergodic theory. Uspehi Mat. Nauk, 27:21–64, 1972.
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