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Abstract

Discrete algebraic Riccati equations and their fixed points are well understood and
arise in a variety of applications, however, the time-varying equations have not yet been
fully explored in the literature. In this article we provide a self-contained study of dis-
crete time Riccati matrix difference equations. In particular, we provide a novel Riccati
semigroup duality formula and a new Floquet-type representation for these equations.
Due to the aperiodicity of the underlying flow of the solution matrix, conventional Flo-
quet theory does not apply in this setting and thus further analysis is required. We
illustrate the impact of these formulae with an explicit description of the solution of
time-varying Riccati difference equations and its fundamental-type solution in terms of
the fixed point of the equation and an invertible linear matrix map, as well as uniform
upper and lower bounds on the Riccati maps. These are the first results of this type for
time varying Riccati matrix difference equations.

Keywords : Riccati matrix difference equations, discrete time algebraic Riccati equa-
tion, Sherman-Morrison-Woodbury inversion identity, Gramian matrix, matrix positive
definite maps, Floquet theory, semigroup duality formula, Lyapunov equations.
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1 Introduction

Riccati matrix difference equations are classical in system theory and signal processing, as
well as in optimal control and estimation theory. Their theoretical and numerical analysis
is nowadays rather well developed, however it is outside the scope of this note to provide a
detailed discussion with an exhaustive list of references regarding these developments and
the corresponding application domains. Thus we refer the reader to the review article [27]
and the seminal books [1, 7, 28] dedicated to the analysis and the applications of continuous
and discrete time Riccati equations.

This article is concerned with the design of a novel semigroup duality relation between
discrete time Riccati matrix difference equations (see (1) and Theorem 1.1). We also pro-
vide a novel Floquet-type normal formulation of a fundamental-type solution associated with
these discrete generation Riccati evolution models (see (8) and and Theorem 1.3). We illus-
trate the impact of these formulae with an explicit description of the solution of time-varying
Riccati difference equations and its fundamental-type solution in terms of the fixed point
of the equation and an invertible linear matrix map (see Corollary 1.4 and Corollary 1.5).
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We are also able to provide explicit upper and lower bounds on the Riccati map as a conse-
quence of Theorem 1.1 and Corollary 1.4. Under some additional and technical invertibility
conditions, several direct proofs can be developed using the Sherman-Morrison-Woodbury
inversion formula matrix (cf. section 2, Remark 3.1 and Remark 3.2, as well as the dual-
type time-reversed difference Riccati models discussed in the article [16]). The analysis of
more general models requires one to develop more sophisticated algebraic matrix-inversion
techniques (under our assumptions, none of the matrices introduced in (5) are invertible).

To the best of our knowledge, the semigroup duality relation presented in this article,
including the explicit descriptions of time-varying Riccati difference equations and their
fundamental solution in terms of fixed point matrices, are the first results of this type
for this class of discrete generation models. Indeed, while the discrete algebraic Riccati
equation (DARE) and the associated fixed point are well understood, there has been very
little analysis in the time-varying setting. Thus, in this article, we provide a self-contained
study of the latter. We also note that the theory developed in this article is crucial to the
stability analysis of discrete time Kalman Ensemble filter and thus the results obtained in
this article will allow one to develop the theory of such filters, as discussed in [12], to higher
dimensions.

The continuous time version of the Floquet-type formula presented in this article is dis-
cussed in the article [4]. We emphasise that the analysis of Riccati difference equations is far
more involved than their continuous time counterparts. From a purely mathematical per-
spective, the algebra of discrete time matrix models is always more involved. Furthermore,
besides some expected lengthy matrix calculations, several additional inherent difficulties
arise in the theoretical analysis of discrete time models. For instance, for homogeneous
continuous time models, the observability and controllability Gramian matrix functions are
invertible for any positive time horizon (under appropriate observability and controllability
conditions). However, in the discrete time setting, the invertibility property is only granted
for time horizons larger than the dimension of the problem (see for instance the statement
and the proof of Proposition 2.3). In the same vein, the exponential fundamental matri-
ces associated with the first variational equations in continuous time are invertible for any
positive time horizon (see [4]). Conversely, for discrete time models, whenever the drift
matrix is not invertible, the Riccati fundamental matrices are not invertible for any time
horizon. Moreover, in the discrete time setting, dual Riccati difference equations are not
always defined in terms of the inverse of a Riccati difference equation and may not have a
single pair of negative and positive definite fixed points as in the continuous time setting.

Due to these difficulties, amongst many others, we agree with the comment given in [5]:
“The (discrete time) Riccati equation is a difficult beast whose behaviour can often be coun-
terintuitive”. Furthermore, we refer to the article [5] for a popular list of surprisingly false
but often admitted conjectures about Riccati difference equations. It is not always simple
to find a self-contained, rigorous and easy-to-read study on the regularity and the stability
properties of discrete time Riccati matrix equations. On this topic, we refer to the pioneer-
ing work of Kalman [24] and Deyst and Price [15] in the 1960s. As noted in [21], in both of
these articles there was a crucial and commonly made error in the proof which invalidated
the results, see [29] and the more recent articles [35] for a more detailed discussion and ref-
erences on these issues. This error was repeated in numerous subsequent works, including
in the seminal lecture book of Jazwinski [22]. A first correction was noted in a reply to [21];
see also the reply by Kalman [25].
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We refer to the series of articles [4, 8, 40, 41] and the books [7, 28] for a more thorough
discussion on Riccati matrix equations.

The rest of the article is set out as follows. In the remainder of this section we will
introduce the Riccati matrix differential equations and some of their properties, as well as
some notation that will be used throughout. We also introduce the so-called Riccati matrix
products (cf. (6)) that will be fundamental to the stability and regularity analysis of the
Riccati difference equations (1). In section 1.3 we state our main results. As previously
mentioned Theorem 1.1 provides a duality relation between the Riccati difference equations
introduced in (1) and consequently, we obtain a Lyapunov equation that relates the positive
definite fixed points of these equations, given in Corollary 1.2. In Theorem 1.3 we provide
a Floquet-type representation analogous to the continuous time version given in [4]. In
section 2 we provide some preliminary results concerning the Riccati maps and the Gramian
matrices introduced in (12). We also state and prove several useful properties of the Riccati
maps that are often used in the literature but for which we have been unable to find a
proof. In section 3, we prove Theorem 1.1 and discuss some simplifications of the proof
under slightly stronger conditions on the model parameters. Section 4 is concerned with the
proof of Corollary 1.6 and finally, the proof of Theorem 1.3 is provided in section 5.

1.1 Matrix Differential Riccati Equations

We denote by Mr “ R
rˆr the ring of pr ˆ rq-square matrices with real entries, for some

r ě 1, and by GLr Ă Mr the general linear group of invertible matrices. When there is
no chance of confusion, we also slightly abuse notation and denote by 0 and I the null and
identity matrices, respectively, in Mr for any dimension r ě 1. We write A1 to denote the
transposition of a matrix A. We also let Sr Ă Mr denote the subset of symmetric matrices,
S0
r Ă Sr the subset of positive semi-definite matrices, and S`

r Ă S0
r the subset of positive

definite matrices. We sometimes use the Löwner partial ordering notation S1 ě S2 to mean
that a symmetric matrix pS1 ´S2q is positive semi-definite (equivalently, S2 ´S1 is negative
semi-definite), and S1 ą S2 when pS1 ´ S2q is positive definite (equivalently, S2 ´ S1 is
negative definite). Given S P S0

r ´ S`
r we denote by S1{2 a (non-unique) but symmetric

square root of B (given by a Cholesky decomposition). When S P S`
r we always choose the

principal (unique) symmetric square root.
Given some given matrices pA,R, Sq P pMr ˆS0

r ˆS0
r q we denote by Φ and pΦ the matrix

monotone maps from S0
r into itself defined for any P P S0

r by

ΦpP q :“ ApI ` PSq´1PA1 ` R and pΦpP q :“ A1pI ` PRq´1PA ` S. (1)

We denote by Φn and pΦn the Riccati evolution semigroups defined by the inductive compo-
sition formula Φn “ Φ ˝ Φn´1 and pΦn “ pΦ ˝ pΦn´1, with the convention Φ0 “ Id “ pΦ0, the
identity map from S0

r into itself.
In what follows, we assume that the pair pA,R1{2q is controllable and pA,S1{2q is ob-

servable, in the sense that the controllability and observability matrices,

”
R1{2, AR1{2, . . . , Ar´1R1{2

ı
and

»
———–

S1{2

S1{2A
...

S1{2Ar´1

fi
ffiffiffifl ,
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have rank r. Notice that the above rank conditions are trivially met when R ą 0 and S ą 0.
When R has the form R “ BΣB1 for some Σ ą 0 and some matrix B with appropriate di-
mensions, the pair pA,R1{2q is controllable if and only if pA,Bq is controllable. Also notice
that pA,S1{2q is observable if and only if pA1, S1{2q is controllable. Thus, the pair pA1, S1{2q
is controllable and pA1, R1{2q is observable. This duality-type relation between the matri-
ces pA,R, Sq and pA1, S,Rq is well known in estimation and optimal control theory in the
context of linear-Gaussian filtering or linear-quadratic regulation control. The observability
condition ensures that all the coordinates of a partially observed system state can be re-
covered from at most r-observations. The controllability condition ensures that a controller
can control all the directions of a system.

The Riccati maps presented in (1) arise in a variety of areas including in optimal control
theory and signal processing [30, 42, 1]. For the convenience of the reader, a brief proof
of the symmetry, monotonicity and positive (semi-)definite preserving properties of Riccati
maps is provided in section 2. We also discuss the positive definite preserving property of
Φ in the case where the pair pA,R1{2q is controllable. Thus, whenever the pair pA,R1{2q is
controllable and pA,S1{2q is observable both of Riccati evolution semigroups Φn and pΦn are
positive definite, in the sense that

P ą 0 ùñ @n ě 1 ΦnpP q ą 0 and pΦnpP q ą 0. (2)

These properties are folklore in the theory of Riccati matrix difference equations however,
we have been unable to find any references stating these results.

We equip the set Mr with the spectral norm }A} “
a

λmaxpAA1q where λmaxp¨q denotes
the maximal eigenvalue. The minimal eigenvalue is denoted by λminp¨q.

We also denote by SpecpAq Ă C the set of eigenvalues of a matrix A, and by ρpAq the
spectral radius of a matrix A defined by

ρpAq :“ max t|λ| : λ P SpecpAqu.

It is well-known that the controllability and observability conditions discussed above
ensure that the Riccati difference equations (1) each have a unique positive definite fixed
point

ΦpP8q “ P8 P S`
r and pΦp pP8q “ pP8 P S`

r . (3)

In addition, the matrices

E :“ ApI ` P8Sq´1 and pE :“ A1pI ` pP8Rq´1 satisfy ρpEq _ ρp pEq ă 1. (4)

The proof of these assertions can be found in any textbook on Riccati equations, see for
instance [26, 28, 23] and the more recent book [1]. In optimal control theory, the matrix E

is often called the closed loop-matrix.

1.2 Algebraic Lyapunov formula and Riccati matrix products

Consider the matrix map E and F defined for any P P S0
r by the formulae

EpP q :“ ApI ` PSq´1 P Mr ùñ E “ EpP8q P Mr,

FpP q :“ SpI ` PSq´1 P S0
r ùñ F :“ FpP8q P S0

r .

(5)
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In Theorem 1.1 we shall see that the fixed points pP8, pP8q of the Riccati maps pΦ, pΦq
discussed in (3) are connected by the discrete time algebraic Lyapunov formula

pP8 ` pP´1

8 q´1 “ E1pP8 ` pP´1

8 q´1E ` F.

A more general duality-type formula (14) between the evolution semigroups pΦn, pΦnq is also
presented in Theorem 1.1. The above formula provides a way to solve Lyapunov equations
of the form E1XE`F “ X with respect to X by computing the fixed point of a dual Riccati
equation instead of computing the conventional solution based on series expansions.

Whenever A or S is invertible, the matrix EpP q or FpP q is invertible. In this situation,
a direct proof of the discrete time algebraic Lyapunov formula stated above based on the
inversion formula (25) can be conducted (see for instance the direct calculations provided
in Remark 3.1 at the end of section 3). In addition, as shown in Remark 3.2, whenever
A is invertible the matrix P´

8 :“ p´ pP´1
8 q is a negative fixed point of Φ. In this particular

situation, as for continuous time models [4], the difference between the positive and negative
fixed points pP8 ´P´

8q solves the the discrete time algebraic Lyapunov formula stated above.
An alternative proof of this property in terms of time-reversed Riccati difference equa-

tions is provided in the article [16], which is dedicated to closed forms solutions of the
optimal cost and optimal trajectories of a general class of controlled systems based on a
judicious parametrisation of all solutions to an extended symplectic system.

We now consider the directed matrix product EnpP q defined by

En`1pP q :“ EnpΦpP qq EpP q with E0pP q “ I ùñ EnpP8q “ En. (6)

Note that this implies that E1 “ E . The matrices EnpP q play a crucial role in the
regularity analysis and the stability theory of Riccati difference equations. For instance, for
any n ě 0 and any P,Q P S0

r we have the well-known formula

ΦnpP q ´ ΦnpQq “ EnpP q pP ´ Qq EnpQq1, (7)

whose proof is a simple consequence of (27). Observe that Φn is a smooth matrix functional
with a first order Fréchet derivative (see [13]) defined for any P P S0

r and H P Sr by

∇ΦnpP q ¨ H “ EnpP qH EnpP q1

ðñ @n ě 1 ∇ΦnpP q “ ∇Φn´1pφpP qq ˝ ∇ΦpP q with ∇Φ0pP q :“ Id.

(8)

In the above display, the symbol “ ˝ ” stands for the composition of operators.
From this perspective, the directed matrix product EnpP q can be seen as a fundamental

solution of the first variational equation (8) associated with the Riccati difference equation.
Moreover, setting

Pn “ ΦpPn´1q and Q “ P8,

the formula (7) yields the product formula

Pn ´ P8 “ EnpP0q pP0 ´ P8q pEnq1, (9)

where we may write EnpP0q “ EpPn´1q . . . EpP1q EpP0q.

5



The spectral radius ρpEq is connected to any norm }.} of the matrix powers En arising
in (9) by Gelfand’s formula (see for instance [34]) given by

ρpEq “ lim
kÑ8

}Ek}1{k ă 1, (10)

where the latter inequality holds due to (4). Thus, our observability and controllability
conditions ensure the exponential decays of the matrix norms }En} towards 0 for sufficiently
large time horizons. When P0 is close to the fixed point P8, the matrices EpPnq are close
to EpP8q “ E. Hence, the convergence of the directed product EnpP0q towards 0 depends
on the convergence of Pn towards the positive definite fixed point P8. On the other hand,
in view of (9), the convergence of Pn towards P8 also depends on the convergence of the
directed product EnpP0q to 0 , as n Ñ 8. As a result, to analyse the stability properties
of the fundamental matrices discussed in (8), it is crucial to connect more explicitly the
directed products EnpP0q to the n-power EnpP8q “ En of the limiting matrix.

The asymptotic decay rates of EnpP0q towards 0 can also be discussed in terms of the gen-
eralised spectral radius (a.k.a. the joint spectral radius) of the set of matrices pEpPkqq0ďkăn

(see for instance formula (3.3) in [11]). Unfortunately, these extended spectral radius tech-
niques do not apply to our context as they require one to compute the spectral radius or the
Lyapunov exponent of the product of any finite subsequence of the unknown sequence of
Riccati matrices pEpPnqqně0. For a more detailed discussion on the complexity of computing
or estimating the extended spectral radius we refer to [38].

Last but not least, since the flow of matrices n ÞÑ EpPnq is aperiodic as soon as P0 ‰ P8,
the conventional Floquet theory, mainly developed for continuous time models [6, 17], cannot
be applied nor extended to this type of Riccati matrix difference models (see [10, 37] for
some extensions of Floquet theory to discrete time models). However, in Theorem 1.3 we
are still able to provide for any time horizon n ě r a rather surprising Floquet-type normal
form of the directed Riccati products:

EnpP0q “ En LnpP0q´1 with some function Ln s.t. sup
P0PS0

r

sup
něr

}LnpP0q´1} ă 8.

For a more precise description of the function Ln we refer the reader to section 1.3 dedicated
to the precise statement of our main results. The above result is an extended version of the
Floquet-type formula presented in [4] in the context of continuous time models to discrete
Riccati difference equations.

1.3 Statement of the main results

Before we present our main results, we first introduce some further notation. We associate
with the functions pE ,Fq introduced in (5) the increasing sequence of Gramian mappings
Gn defined sequentially for any n ě 1 and any P P S0

r by the recursion

GnpP q :“ FpP q ` EpP q1
Gn´1pΦpP qq EpP q P S

0

r ,

Gn :“ GnpP8q P S
0

r ,

,
/.
/-

(11)

with the initial condition

G0pP q “ 0 and G0 “ 0 ùñ G1pP q “ FpP q and G1 “ F,

6



where the matrix F was introduced in (5). Note that we may equivalently write

GnpQq “
ÿ

0ďkăn

EkpQq1FpΦkpQqqEkpQq P S0

r ,

Gn “ E1 Gn´1E ` F “ Gn´1 ` pE1qn F En.

,
///.
///-

(12)

In the above display, the matrices EkpQq are the direct products introduced in (6) and pE,F q
is the pair of matrices introduced in (5).

Finally, we introduce the parallel addition/harmonic-type mean mapping

H : pP,Qq P
`
S

`
r ˆ S

`
r

˘
ÞÑ HpP,Qq :“ pP ` Q´1q´1 P S

`
r

H :“ HpP8, pP8q P S`
r .

,
/.
/-

(13)

Our first main result is a duality-type formula between the Riccati evolution semigroups
pΦn, pΦnq and an algebraic Lyapunov equation relating the positive definite fixed points
pP8, pP8q introduced in (3).

Theorem 1.1. For any P,Q P S`
r and n ě 1 we have the semigroup duality-type formula

H

´
P, pΦnpQq

¯
“ EnpP q1

H pΦnpP q, Qq EnpP q ` GnpP q. (14)

The proof of the above theorem is provided in section 3. Note that from the discussion
of the properties of Φn provided in (2), we have ΦnpP q ą 0 and pΦnpP q ą 0 whenever P ą 0
and thus (14) is well-defined.

Applying the duality formula (14) to pP,Qq “ pP8, pP8q and recalling that under our
assumptions, the Lyapunov equation (15) has a unique solution, we check that the matrix
H introduced in (13) is the unique solution of the Lyapunov equation (15). This yields a
direct proof of the following corollary.

Corollary 1.2. The matrix H introduced in (13) is the unique solution of the discrete time
algebraic Lyapunov equation

H “ E1HE ` F. (15)

Using the Lyapunov fixed point equation (15), for any n ě 0 we readily check that the
sequence of Gramian matrices Gn solving the time varying Lyapunov recursion (12) can
alternatively be defined in terms of solution H of the algebraic Lyapunov equation by the
formula

Gn “ H ´ pEnq1HEn. (16)

Moreover, it also follows that
Gn ď H “ lim

nÑ8
Gn. (17)

We now formerly define the sequence of linear maps Ln that were introduced at the end
of the previous section, given for any P P S0

r by

LnpP q :“ I ` pP ´ P8qGn P Mr

ùñ LnpP8q “ I and LnpP q ´ LnpQq “ pP ´ QqGn.

7



Theorem 1.3. (Floquet-type Representation). For any time horizon n ě r, the function Ln

maps S0
r into GLr. In addition, for any P P S0

r we have the Riccati matrix product formula

EnpP q “ En
LnpP q´1 with ι :“ sup

PPS0
r

sup
něr

}LnpP q´1} ă 8. (18)

The proof of the above theorem is provided in section 5. We end this section with some
direct consequences of the above results.

Combining (7) with (18), for any time horizon n ě r and any P,Q P S0
r we have

ΦnpP q ´ ΦnpQq “ En
LnpP q´1pP ´ Qq pLnpQq´1q1 pEnq1. (19)

This yields the Lipschitz property

}ΦnpP q ´ ΦnpQq} ď pι}En}q2 }P ´ Q}. (20)

Choosing Q “ P8 in (19), we obtain the following corollary.

Corollary 1.4. For any time horizon n ě r and any P P S0
r we have the formula

ΦnpP q “ P8 ` En
LnpP q´1pP ´ P8q pEnq1.

The above formula can be seen as an extension of the Bernstein-Prach-Tekinalp for-
mula [32, 33] to discrete time Riccati difference equations, see also [4] for the continuous
time version of the above result.

Due to (18), for any n ě r and P,Q P S0
r we also have the product difference formula

EnpP q ´ EnpQq “ En LnpP q´1pP ´ QqGn LnpQq´1. (21)

This yields the Lipschitz property

}EnpP q ´ EnpQq} ď ι2}En}}H} }P ´ Q}. (22)

Again, setting Q “ P8 in (21), we obtain the following corollary.

Corollary 1.5. For any time horizon n ě r and any P P S0
r we have the formulae

EnpP q ´ En “ En
LnpP q´1pP ´ P8qGn.

Finally, we provide some surprising uniform estimates of the Riccati semigroup.
By (10), for any ǫ P r0, 1r there exists some parameter nǫ ě 1 such that for any n ě nǫ

we have
pEnq1 P´1

8 En ď p1 ´ ǫq H pP´1

8 H. (23)

With this in mind, the following estimates are a rather straightforward consequence of
Theorem 1.1 and Lipschitz property of Riccati maps (20).

Corollary 1.6. For any ǫ P r0, 1r, any time horizon m ě r and n ě nǫ, as well as for any
Q P S0

r we have the uniform estimates

Gr ď pΦmpQq and pΦnpQq ď ǫ´1 pP8. (24)

The proof of the above corollary is provided in section 4.
As with many of our results, uniform estimates for continuous time Riccati semigroup

are rather well known [3] however, to the best of our knowledge the estimates presented
in (24) are completely new for discrete time Riccati equations. In continuous time, these
uniform estimates are obtained by sophisticated Riccati differential equation comparisons
involving Gramian inversion techniques. In this case, the upper bound follows fairly easily
from the duality formula given in Theorem 1.1.

8



2 Some preliminary results

We recall the celebrated Sherman-Morrison-Woodbury matrix sum inversion identity

pM ` UNV q´1 “ M´1 ´ M´1UpN´1 ` VM´1Uq´1VM´1, (25)

which is valid for any invertible matrices pM,Nq and any conformable matrices pU, V q, see
for instance the seminal articles [2, 36, 43], an earlier work by Guttmann [19] and the review
articles [18, 20]. Several extensions of the above formula to Hilbert state spaces in terms
of Moore-Penrose or generalised Drazin inverses can also be found in the article [14]. Also
recall that the eigenvalues of the product PQ of positive semi definite matrices P,Q P S0

r

are nonnegative, so those of pI ` PQq are positive. This elementary property ensures that
pI ` PQq is invertible. Thus, the Riccati maps (1) are well defined without appealing to
Moore-Penrose or other types of generalised inverses.

Lemma 2.1. For any P P S0
r we have

α´pP qS ď FpP q “ S1{2pI ` S1{2PS1{2q´1S1{2 ď α`pP qS,

with the positive parameters

α´pP q :“ p1 ` λmaxpP qλmaxpSqq´1 and α`pP q :“ p1 ` λminpP qλminpSqq´1.

Proof. Applying (25) with M “ N “ I, U “ S1{2 and V “ PS1{2 we obtain

pI ` S1{2PS1{2q´1 “ I ´ S1{2pI ` PSq´1PS1{2,

and therefore
S1{2pI ` S1{2PS1{2q´1S1{2 “ S

`
I ´ pI ` PSq´1PS

˘
.

Now applying (25) with M “ N “ U “ I and V “ PS we also check that

pI ` PSq´1 “ I ´ pI ` PSq´1PS.

We conclude that

FpP q “ SpI ` PSq´1 “ S
`
I ´ pI ` PSq´1PS

˘
“ S1{2pI ` S1{2PS1{2q´1S1{2. (26)

Now note that

p1 ` λminpP qλminpSqq I ď I ` λminpP q S ď I ` S1{2PS1{2.

In the same vein, we have

I ` S1{2PS1{2 ď I ` λmaxpP q S ď p1 ` λmaxpP qλmaxpSqq I.

This ends the proof of the lemma.

Lemma 2.2. For any P,Q P S0
r we have the formulae

EpQq “ EpP q pI ` pP ´ QqFpQqq and ΦpP q ´ ΦpQq “ EpP qpP ´ QqEpQq1. (27)
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Proof. The first assertion is a direct consequence of the formulae

EpQq “ EpP qpI ` PSqpI ` QSq´1 and pI ` PSqpI ` QSq´1 “ pI ` pP ´ QqFpQqq .

The second assertion can be verified using the formulae

pI ` PSq´1P “ P pI ` SP q´1

pI ` PSq´1P ´ Q pI ` SQq´1 “ pI ` PSq´1pP ´ Qq pI ` SQq´1.

Proposition 2.3. For any time horizon n ě r we have

0 ă Gr ď Gn ď H (28)

Proof. Thanks to (16) and Lemma 2.1, for any n ě r we have

α´pP8q Ωr ď α´pP8q Ωn ď Gn ď H,

with the Gramian matrix

Ωn :“
ÿ

0ďkăn

pEkq1SEk ď Ω :“
ÿ

ně0

pEnq1SEn.

Applying (25) to M “ N “ I and pU, V q “ pP8, Sq we have

pI ` P8Sq´1 “ I ´ pP´1

8 ` Sq´1S,

which yields the formula
E “ A ´ ApP´1

8 ` Sq´1S.

Thus, for any z P C
r and λ P C we have

Ez “ λz and S1{2z “ 0 ðñ Az “ λz and S1{2z “ 0 ùñ z “ 0.

Recalling that pA,S1{2q is observable, the above equivalence is a direct consequence of the
Popov-Belevitch-Hautus observability test, [9]. This ensures that the pair pE,S1{2q is also
observable, that is

Rank
”
S1{2, S1{2E, . . . , S1{2Er´1

ı
“ r.

This rank condition ensures that Ωr ą 0. Indeed, we have

x1Ωrx “ 0

ùñ pS1{2xq1pS1{2xq “ 0, pS1{2Exq1pS1{2Exq “ 0, . . . , pS1{2Er´1xq1pS1{2Er´1xq “ 0

ùñ S1{2x “ 0, S1{2Ex “ 0, . . . , S1{2Er´1x “ 0 ùñ x “ 0

This implies that

@n ě r Ωn ą Ωr ą 0 and Gr ě Ω´
r :“ α´pP8q Ωr ą 0.
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This ends the proof of the lower bound estimate stated in the left hand side of (28) and
thus the proposition.

For completeness and for the convenience of the reader, to end this section we prove
some rather well-known properties of the map Φ, starting with the following lemma.

Lemma 2.4. The Riccati map Φ introduced in (1) satisfies the following properties.

(i) For all P P S0
r , ΦpP q1 “ ΦpP q.

(ii) For P,Q P S0
r and n ě 1, P ě Q ùñ ΦnpP q ě ΦnpQq and Φn`1p0q ě Φnp0q.

(iii) For all P P S0
r , ΦpP q ě 0. If, in addition, R is invertible, then ΦpP q ą 0.

Proof. (i) Applying (25) to M “ I, N “ I, U “ PS1{2 and V “ S1{2 we check that

pI ` PSq´1P “ P ´ PS1{2pI ` S1{2PS1{2q´1S1{2P “ P pI ` SP q´1,

from which it follows that ΦpP q1 “ ΦpP q.

(ii) First note that for any P P S0
r and any A P Mr the product A1PA is positive semi-

definite.

By Lemma 2.1 and equation (27) we have

ΦpP q ´ ΦpQq “ EpP qpP ´ QqEpQq1

“ EpP qpP ´ Qq
``
I ` FpQq1pP ´ Qq

˘˘
EpP q1

“ EpP qpP ´ QqEpP q1 ` EpP qpP ´ QqFpQq1pP ´ QqEpP q1.

Since FpQq is positive semi-definite the preceding comments imply that

P ě Q ùñ ΦpP q ě ΦpQq ùñ @n ě 1 ΦnpP q ě ΦnpQq. (29)

Using (29) we readily check by induction that Φnp0q is a non-decreasing sequence; that
is for any n ě 1, we have

0 ď R ď Φnp0q ď Φn`1p0q.

(iii) From the monotonicity of the map Φ, we have

P ě 0 ùñ ΦpP q ě Φp0q “ R ě 0.

In addition, if R ą 0, this inequality is strict.

We note that even though Φ is always monotone, the same cannot be said of the sequence
Pn unless P0 “ 0.

Next, consider the positive definite preserving properties of Φ under the condition that
the pair pA,R1{2q is controllable. We start with a technical lemma that is interesting in its
own right. We emphasise that this result should be known but we have not been able to
find it in the literature.

11



Lemma 2.5. Whenever the pair pA,R1{2q is controllable we have the following property

AA1 ` R ą 0.

Proof. Consider a sequence Wn of independent centered Gaussian random variables on R
r

with unit variance, and set

Xn :“ AXn´1 ` R1{2Wn “ AnX0 `
ÿ

0ďkăn

AkR1{2Wn´k.

In the above display, X0 stands for a centered Gaussian random variable on R
r with co-

variance P0 P S0
r . We also let Pn denote the covariance of the random variables Xn. In

this notation, the controllability condition ensures that Pn is invertible for any n ě r.
Equivalently, we have that

@n ě r @P0 P S
0

r λminpPrq ą 0.

The covariance Pn of the random variables Xn also satisfies for any n ě 1 the recursion

Pn “ APn´1A
1 ` R.

This implies that
0 ă λminpPrq I ď Pr ď λmaxpPr´1q AA1 ` R

from which we conclude that AA1 ` R ą 0. This ends the proof of the lemma.

We are now in a position to prove (2). Whenever P ą 0 we have

ΦpP q “ A
`
P´1 ` S

˘´1
A1 ` R ě λminpP q A pI ` λminpP qSq´1A1 ` R.

If the pair pA,R1{2q is controllable, Lemma 2.5 ensures that

P ą 0 ùñ ΦpP q ě
λminpP q

1 ` λminpP qλmaxpSq
AA1 ` R ą 0 ùñ @n ě 1 ΦnpP q ą 0.

Analogous arguments clearly show that this also holds for pΦn. This ends the proof of (2).

3 Duality-type formulae

Here we provide the proof of Theorem 1.1, followed by some comments on certain, albeit
stronger, conditions that greatly simplify the proof of the Lyapunov equation (15).

Proof. We use an induction argument with respect to the parameter n. Firstly, we check
that the duality formula (14) is satisfied for n “ 1. Observe that for any P,Q P S0

r we have

I ` P pΦpQq “ pI ` PSq ` PA1QpI ` RQq´1A.

12



Applying (25) with M “ pI ` PSq, N “ pI ` RQq´1, U “ PA1Q and V “ A we obtain

pI ` P pΦpQqq´1

“ pI ` PSq´1 ´ pI ` PSq´1 PA1Q
´

pI ` RQq ` A pI ` PSq´1 PA1Q
¯´1

A pI ` PSq´1

“ pI ` PSq´1 ´ P EpP q1Q pI ` ΦpP qQq´1
EpP q.

(30)
The last assertion comes from the fact that

A pI ` PSq´1 PA1 “ ΦpP q ´ R and pI ` PSq´1 P “ P pI ` SP q´1 .

On the other hand, we have

pI ` P pΦpQqq´1 “ I ´ P pΦpQqpI ` P pΦpQqq´1 and pI ` PSq´1 “ I ´ PS pI ` PSq´1 .

Using (30) we obtain the formula

P pΦpQqpI ` P pΦpQqq´1 “ P FpP q ` P EpP q1Q pI ` ΦpP qQq´1
EpP q.

When P P S`
r this implies that for any Q P S0

r we have

pΦpQqpI ` P pΦpQqq´1 “ FpP q ` EpP q1Q pI ` ΦpP qQq´1
EpP q.

Using (2) for any Q ą 0 we check that

Q pI ` ΦpP qQq´1 “ H pΦpP q, Qq and pΦpQqpI ` P pΦpQqq´1 “ H

´
P, pΦpQq

¯
.

Recalling that G1 “ F , this ends the proof of the duality formula (14) for n “ 1.
Now suppose that the duality formula (14) holds for some n ě 1. Then, we have

H

´
P, pΦn`1pQq

¯
“ H

´
P, pΦnppΦpQqq

¯
“ EnpP q1 H

´
ΦnpP q, pΦpQq

¯
EnpP q ` GnpP q.

On the other hand, applying (14) to n “ 1 and recalling that G1 “ F , we have

H

´
ΦnpP q, pΦpQq

¯
“ EpΦnpP qq1 H pΦn`1pP q, Qq EpΦnpP qq ` FpΦnpP qq.

This implies that

H

´
P, pΦn`1pQq

¯
“ En`1pP q1

H pΦn`1pP q, Qq En`1pP q

`
`
GnpP q ` EnpP q1 FpΦnpP qq EnpP q

˘

“ En`1pP q1 H pΦn`1pP q, Qq En`1pP q ` Gn`1pP q.

This shows that formula (14) is valid at rank pn ` 1q, thus for any n ě 1.
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Remark 3.1. Whenever A or S is invertible, a direct proof of (15) based on the inversion
formula (25) can be conducted. For instance, when A is invertible, using the fixed point
equations, we check that

pP´1
8 ` Sq´1 ` p pP8 ´ Sq´1

“ A´1pP8 ´ RqpA1q´1 ` A´1p pP´1
8 ` RqpA1q´1 “ A´1H´1pA1q´1.

(31)

On the other hand, applying (25) with M “ pP´1
8 ` Sq, N “ p pP8 ´ Sq´1 and U “ I “ V

we check that

´
pP´1

8 ` Sq´1 ` p pP8 ´ Sq´1

¯´1

“ pP´1

8 ` Sq ´ pP´1

8 ` Sq HpP´1

8 ` Sq.

In the same vein, applying (25) with M “ P´1
8 , N “ pP8 and U “ I “ V we check that

pP´1
8 ` pP8q´1 “ P8

`
P´1

8 ´ H
˘
P8.

Inverting (31), this yields the formula

A1HA “ pP´1

8 ` Sq ´ pI ` SP8q
`
P´1

8 ´ H
˘

pI ` P8Sq.

This implies that

A1HA ` pI ` SP8qS “ pI ` SP8q HpI ` P8Sq.

from which we readily check that H solves the Lyapunov equation (15).
In the same vein, when S ą 0 is invertible, we have

pP8 “ S ` A1p pP´1

8 ` Rq´1A “ S ` A1pH´1 ´ pP8 ´ Rqq´1A.

Applying (25) with M “ S, N “ pH´1 ´ pP8 ´ Rqq´1, U “ A1, and A “ V we check that

pP´1

8 “ S´1 ´ S´1A1
`
H´1 ` A

`
S´1 ´ pP´1

8 ` Sq´1
˘
A1

˘´1
AS´1.

On the other hand, applying (25) with M “ P´1
8 , N “ S, and U “ I “ V we have

pP´1

8 ` Sq´1 “ S´1 ´ S´1pP8 ` S´1q´1S´1.

This yields the formula

H´1 “ pP8 ` S´1q ´ pS´1A1q
`
H´1 ` pAS´1qpP8 ` S´1q´1pS´1A1q

˘´1
pAS´1q.

We check that H solves the Lyapunov equation (15) by applying (25) to the collection of
matrices

M “ pP8 ` S´1q´1 U 1 “ V “ pApI ` P8Sq´1q and N “ H´1.
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Remark 3.2. The map Φ can be extended to invertible matrices P P GLr XSr s.t. P `S P
GLr X Sr by setting

ΦpP q :“ ApP´1 ` Sq´1A1 ` R.

If we further assume that A is invertible, we have

pP´1

8 ` R ą 0 ùñ pP8 ´ S :“ A1p pP´1

8 ` Rq´1A ą 0

ùñ pP8Ap pP8 ´ Sq´1A1 “ pP8A
´
A1p pP´1

8 ` Rq´1A
¯´1

A1 “ I ` pP8R

ùñ Ap pP8 ´ Sq´1A1 “ pP´1

8 ` R ą 0,

from which we readily check that

´S´1 ă P´
8 :“ ´ pP´1

8 ă 0 ùñ P´
8 “ A

`
pP´

8 q´1 ` S
˘´1

A1 ` R “ ΦpP´
8 q ă 0.

This shows that P´
8 is a negative definite solution of the fixed point equation ΦpP q “ P .

Whenever A is invertible, the matrix p´P´
8 q can also be interpreted as the positive definite

solution of a time-reversed Riccati difference equation which can be interpreted as a dual
Riccati equation [16].

4 Uniform estimates

We now prove the uniform estimates stated in Corollary 1.6.
The dual Riccati semigroup pΦn is defined as Φn by replacing the matrices pA,R, Sq by

pA1, S,Rq. In this section, we use the notation p. to the denote the dual mathematical objects;
for instance ppι, pE, pGnq stands for the dual parameters defined as pι, E,Gnq by replacing
pA,R, Sq by pA1, S,Rq.

Using Theorem 1.1 and Proposition 2.3, for any Q P S`
r and n ě r we have

pΦnpQq ą H

´
P8, pΦnpQq

¯
“ pEnq1

H pP8, QqEn ` Gn ą Gr.

For any ǫ ą 0, n ě r and Q P S0
r this implies that

pΦnpQ ` ǫIq ą Gr.

On the other hand, using the Lipschitz property (20) we have

}pΦnpQ ` ǫIq ´ pΦnpQq} ď ppι } pEn}q2 ǫ,

which yields the uniform estimate

Gr ă pΦnpQq ` ppι } pEn}q2 ǫI ÝÑǫÑ0
pΦnpQq.

This ends the proof of the lower bound estimate stated in (24).
For the upper bound, applying (14) to P “ P8 for any Q ą 0 we check that

H

´
P8, pΦnpQq

¯
“ pEnq1

H pP8, Qq En ` Gn. (32)
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On the other hand, by (16) for any n ě 1 we have

Gn ď H “ pP8 ` pP´1

8 q´1 and H pP8, Qq “ pP8 ` Q´1q´1 ă P´1

8 .

This yields the uniform estimate
´
P8 ` pΦnpQq´1

¯´1

ď pEnq1 P´1

8 En ` H.

Applying (25) to M “ H, N “ P´1
8 and pU, V q “ ppEnq1, Enq we check that

pΦnpQq´1 ě pP´1

8 ´ H´1pEnq1
`
P8 ` EnH´1pEnq1

˘´1
EnH´1.

Choosing nǫ as in (23) for any n ě nǫ we obtain the estimate

pΦnpQq´1 ě pP´1

8 ´ H´1pEnq1P´1

8 EnH´1 ě ǫ pP´1

8 .

We conclude that
@Q P S`

r @n ě nǫ
pΦnpQq ď ǫ´1 pP8.

Clearly, for anyQ P S0
r by the monotone properties of Riccati semigroups stated in lemma 2.4

for any n ě nǫ we also have

pΦnpQq ď pΦnpQ ` Iq ď ǫ´1 pP8

This ends the proof of Corollary 1.6.

5 Floquet-type formulae

This section is concerned with the proof of Theorem 1.3.

Lemma 5.1. For any n ě r, Ln maps S0
r into GLr. In addition, for any n ě r and P P S0

r

we have the uniform estimate

}LnpP q´1} ď } pP8} }G´1

r } ă 8. (33)

Proof. By Proposition 2.3, the Gramian Gn is invertible for any n ě r. Thus, for any n ě r,
we have the formula

LnpP q “
`
P `

`
G´1

n ´ H´1
˘

`
`
H´1 ´ P8

˘˘
Gn.

On the other hand, we have

H “
´
P8 ` pP´1

8

¯´1

ùñ LnpP q “
´
P `

`
G´1

n ´ H´1
˘

` pP´1

8

¯
Gn.

For any n ě r and any P P S0
r , (28) implies that

0 ă Gr ď Gn ď H ùñ
´
P `

`
G´1

n ´ H´1
˘

` pP´1

8

¯´1

ď pP8 and G´1

n ď G´1

r ,

which in turn implies that

}LnpP q´1} ď } pP8} }G´1

r } ă 8,

as required.
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Lemma 5.2. For any n ě 0 and any P,Q P S0
r we have

EnpQq “ EnpP q pI ` pP ´ QqGnpQqq and EnpQq LnpQq “ En. (34)

Proof. Again, we use induction with respect to the parameter n. Since G0pQq “ 0 and
E0pQq “ I, the result is immediate for n “ 0. Assume that (34) holds for some n. Then,
replacing the pair pQ,P q in (34) by the pair pΦpQq,ΦpP qq, we check that

En`1pQq “ EnpΦpQqq EpQq

“ EnpΦpP qq pI ` pΦpP q ´ ΦpQqqGnpΦpQqqq EpQq.

Using (27) we have

EnpΦpP qq pΦpP q ´ ΦpQqqGnpΦpQqqEpQq “ En`1pP qpP ´ Qq EpQq1
GnpΦpQqqEpQq

“ En`1pP qpP ´ Qq pGn`1pQq ´ FpQqq ,

which implies that

En`1pQq “ EnpΦpP qq pEpQq ´ EpP qpP ´ QqFpQqq ` En`1pP qpP ´ QqGn`1pQq

Again, using (27), we conclude that

En`1pQq “ EnpΦpP qqEpP q ` En`1pP qpP ´ QqGn`1pQq

“ En`1pP q pI ` pP ´ QqGn`1pQqq ,

which concludes the inductive step and thus the proof.
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