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Abstract

This work presents a nonintrusive physics-preserving method to learn reduced-order mod-
els (ROMs) of canonical Hamiltonian systems. Traditional intrusive projection-based model
reduction approaches utilize symplectic Galerkin projection to construct Hamiltonian ROMs
by projecting Hamilton’s equations of the full model onto a symplectic subspace. This sym-
plectic projection requires complete knowledge about the full model operators and full access
to manipulate the computer code. In contrast, the proposed Hamiltonian operator inference
approach embeds the physics into the operator inference framework to develop a data-driven
model reduction method that preserves the underlying symplectic structure. Our method ex-
ploits knowledge of the Hamiltonian functional to define and parametrize a Hamiltonian ROM
form which can then be learned from data projected via symplectic projectors. The proposed
method is gray-box in that it utilizes knowledge of the Hamiltonian structure at the partial
differential equation level, as well as knowledge of spatially local components in the system.
However, it does not require access to computer code, only data to learn the models. Our
numerical results demonstrate Hamiltonian operator inference on a linear wave equation, the
cubic nonlinear Schrödinger equation, and a nonpolynomial sine-Gordon equation. Accurate
long-time predictions far outside the training time interval for nonlinear examples illustrate
the generalizability of our learned models.

Keywords: Structure-preserving model reduction; Hamiltonian systems; Physics-informed
machine learning; Data-driven modeling; Operator inference.

1 Introduction

Hamiltonian partial differential equations (PDEs) arise as models in many science and engineering
applications such as the elasticity equations in elastodynamics, the Maxwell-Vlasov equations in
plasma physics, the shallow-water equations in climate modeling, and the Kuramoto–Sivashinsky
equation in chemical reaction dynamics, see, e.g., [1]. The governing equations in Hamiltonian
systems possess physical, mechanical and mathematical structures in the form of symmetries,
symplecticity, Casimirs, and energy conservation. The conservative nature and the underlying
symplectic structure of Hamiltonian systems are considered fundamental to their discretization
and numerical treatment.

In the last three decades, the field of geometric numerical integration has produced a variety of
numerical methods for simulating physical systems described by Hamiltonian ordinary differential
equations (ODEs), which respect the qualitative features of the dynamical system. These structure-
preserving ideas have also been extended to Hamiltonian PDEs. An overview of the field of
structure-preserving methods can be found in, e.g. [2, 3]. For a thorough exposition, the interested
reader may consult the standard textbooks [4, 5] and the references cited herein. Since many
applications of Hamiltonian systems involve long-time numerical simulations of large-scale systems,
reduced-order models (ROMs) can be employed to obtain surrogate models that can be integrated
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in time at much lower computational cost. The qualitative properties of the surrogate model are
critical to the accuracy of the numerical simulation and reliability of long-time predictions.

Among the many model reduction approaches, proper orthogonal decomposition (POD) with
Galerkin projection [6, 7, 8, 9] has proven beneficial in a variety of science and engineering ap-
plications. In projection-based model reduction, the governing equations are projected onto a
low-dimensional subspace spanned by POD basis vectors. Classical projection-based model reduc-
tion approaches are designed to be minimal-error reduced-order models (ROMs). These ROMs
often violate the underlying geometric structure which leads to unphysical numerical predictions,
see [10]. Therefore, when the original system possesses specific qualitative features, it is preferable
to construct a ROM that retains those features. The symplectic model reduction of Hamiltonian
systems was introduced in [10], where the Galerkin projection-based ROM was modified so that the
ROM retains the underlying symplectic structure. Building on this work, the symplectic model re-
duction approach was combined with nonorthonormal bases in [11]. A similar structure-preserving
approach with shifted snapshots was presented in [12] to improve the Hamiltonian approxima-
tion. The work in [13] presented a reduced basis method approach for structure-preserving model
reduction of parametric Hamiltonian systems. The reduced basis method has been extended to
Hamiltonian systems with a more general Poisson structure in [14]. A dynamical reduced basis
method has been presented in [15] for Hamiltonian systems with local low-rank structure. The idea
of structure-preservation is explored at the variational formulation level in [16] to deduce impor-
tant properties about POD-based model reduction of Hamiltonian systems. The above methods
laid the foundation for structure-preserving model reduction for Hamiltonian systems, but they do
require full access to the computer model, which is often not possible or feasible when working with
proprietary, or very complex computer code. Data-driven (a.k.a nonintrusive) reduced modeling
methods do not require such access, and are therefore an attractive alternative.

For Hamiltonian systems, a variety of structure-preserving data-driven approaches have been
developed recently, e.g., Hamiltonian neural networks [17], symplectic networks [18], Gaussian
processes [19], Bayesian system identification [20], and orthogonal polynomials [21]. The ma-
jority of these approaches are only concerned with learning Hamiltonian systems when the data
is coming from very low-dimensional systems, i.e. 3-4 dimensions. This inability to learn from
high-dimensional data limits their use for learning models from data of large-scale systems such
as semi-discretized PDEs. On the other hand, the combination of data reduction and model
reduction—termed data-driven reduced-order modeling—is a feasible approach for this setting.

For linear systems, a variety of successful data-driven model reduction approaches have been
developed, e.g. the Loewner framework [22], eigensystem realization [23, 24, 25], vector fitting [26],
but methods for learning ROMs for nonlinear systems in a nonintrusive way is still a burgeoning
research area. For nonlinear systems, nonintrusive model reduction generally involves choosing a
particular parametrization of the nonlinear terms. The Loewner approach has been extended to
bilinear and quadratic-bilinear systems in [27, 28]. Dynamic mode decomposition (DMD) has also
been used for learning linear ROMs for nonlinear systems in [29, 30]. It is worth mentioning that
sparsity-promoting regression techniques have been used in [31, 32, 33] for data-driven discovery
of governing equations from a dictionary of nonlinear candidate functions. However, these sparse
approximation approaches are not used for reducing the dimension of large-scale systems.

Operator inference for nonintrusive model reduction was introduced in [34] and applied to full-
order models (FOMs) that are linear or have low-order polynomial nonlinear terms. Using lifting
transformations, the operator inference framework has been extended to general nonlinear systems
in [35, 36, 37]. The approach has also been extended to a gray-box setting in [38] where analytical
expressions for the nonpolynomial nonlinear terms are known and the remaining operators are
learned via operator inference. Convergence and accuracy certificates were developed in [39, 40].

Our goal is to efficiently and stably learn Hamiltonian reduced-order models from high-dimensional
data. We approach this problem by proposing the nonintrusive Hamiltonian operator inference
(H-OpInf), a structure-preserving data-driven model reduction method that preserves the under-
lying symplectic structure inherent to Hamiltonian systems. The method can work with high-
dimensional state-trajectory data from a Hamiltonian system. We project this data onto a low-
dimensional basis via symplectic projection, and learn the reduced Hamiltonian operators from the
reduced data using a constrained least-squares operator inference procedure that ensures that the
models preserve the Hamiltonian nature of the problem.

The remainder of the paper is organized as follows. Section 2 reviews the basics of Hamilto-
nian PDEs and describes intrusive structure-preserving model reduction. Section 3 presents the
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proposed structure-preserving operator inference problem for Hamiltonian systems with nonpoly-
nomial nonlinearities. In Section 4 we apply our proposed method to three Hamiltonian systems
with increasing complexity: the linear wave equation, the cubic Schrödinger equation and the
sine-Gordon equation. Our numerical results demonstrate the learned models’ interpretability and
ability to provide accurate long-time prediction beyond the training data. Finally, in Section 5 we
provide concluding remarks and future research directions.

2 Background

In this section, we introduce Hamitonian PDE models and describe intrusive projection-based
model reduction for Hamiltonian systems. This provides the necessary background for our non-
intrusive method in Section 3.3. In Section 2.1 we first review the basics of Hamiltonian PDEs
by deriving the governing PDEs, followed by their structure-preserving space discretization. After
deriving the FOM equations, we closely follow [10] to derive projection-based Hamiltonian ROMs
via symplectic projection in Section 2.2.

2.1 Hamiltonian Systems

We consider a general infinite-dimensional Hamiltonian system described by the following evolu-
tionary PDE

∂y(x, t)

∂t
= S δH

δy
, (1)

where x is the spatial variable, t is time, S is a skew-symmetric operator, δH
δy is the variational

derivative1 of H, and we consider Hamiltonian functional H defined by

H[y] =

∫

(Hquad(y, yx, · · · ) +Hnl(y)) dx, (2)

where yx = ∂y
∂x is the partial derivative of y with respect to x, Hquad(y, yx, · · · ) contains quadratic

terms and Hnl(y) contains spatially local nonlinear terms of the Hamiltonian functional.

Remark 1. Although the partition of the integrand in (2) (quadratic terms in Hquad as a function
of the spatial derivatives, and spatially local nonlinear terms in Hnl as a function of state variables)
seems very restrictive, the Hamiltonian functional form covers most (if not all) of the Hamilto-
nian PDEs found in science and engineering applications, see [2, 41]. Importantly, a quadratic
component exists in almost all Hamiltonian systems.

Hamiltonian PDEs possess important geometric properties and their numerical simulation con-
sists of two steps: 1) structure-preserving space discretization that reduces the Hamiltonian PDE to
a system of Hamiltonian ODEs; 2) structure-preserving time integration of the finite-dimensional
Hamiltonian ODE. We will briefly discuss those in the following.

2.1.1 Space Discretization of Hamiltonian PDEs

Space-discretized Hamiltonian FOMs are usually derived from the PDE by finite difference or
pseudo-spectral methods. The most popular approach to obtain a Hamiltonian FOM from the
infinite-dimensional Hamiltonian system (1) is to discretize the space-time continuous Hamiltonian
functional (2) directly. The key steps in this approach are discussed in [2, 41]. The resulting finite-
dimensional Hamiltonian model can be described by

ẏ = Sd∇yHd(y), (3)

where Sd = −S⊤
d and Hd is the space-discretized Hamiltonian function.

For this work, we will focus on canonical Hamiltonian systems, i.e. Sd = J2n =

[
0 In

−In 0

]

where In is the n × n identity matrix. For canonical systems, the state vector y ∈ R2n can be

1The variational derivative of H is defined through d
dǫ

H[y+ ǫv]|ǫ=0 =

〈

δH
δy

, v

〉

where v is an arbitrary function.
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partitioned as y = [q⊤,p⊤]⊤ where q,p ∈ Rn. Both q and p have distinct physical interpreta-
tions, and their relation to each other induces the canonical symplectic structure. The governing
equations for the semi-discrete canonical Hamiltonian systems are

ẏ =

[
q̇

ṗ

]

= J2n∇yHd(q,p) =

[
∇pHd(q,p)
−∇qHd(q,p)

]

. (4)

In addition to retaining the Hamiltonian character of the given PDE, the structure-preserving
space discretizations often introduce additional mathematical structure in the FOM operators, see
[42]. To illustrate this, we present a simple example of a Hamiltonian PDE.

Example 1. Consider the one-dimensional nonlinear wave equation with wave speed c which has
the Hamiltonian

H[q, p] =

∫ (
1

2
p2 +

c2

2
q2x +Hnl(q, p)

)

. (5)

Direct discretization of the Hamiltonian functional with n equally spaced grid points leads to the
following space-discretized Hamiltonian

Hd(q,p) =
n∑

i=1





1

2
p2i +

c2

2





n∑

j=1

Mijqj





2

+Hnl(qi, pi)




 , (6)

where qi := q(t, xi), pi := p(t, xi), and the derivative of q with respect to x is approximated by an
appropriate differentiation matrix M = (Mij)

n
i,j=1, i.e., qx(xi) ≈

∑n
j=1Mijqj . For ∆x → 0 with

n∆x = ℓ, the term Hd(q,p)∆x converges to the space-time continuous Hamiltonian functional H.
The governing FOM equations for the Hamiltonian system are

[
q̇

ṗ

]

=

[
0 In
c2D 0

] [
q

p

]

+

[
∇pHnl(q,p)
−∇qHnl(q,p)

]

, (7)

and regardless of the spatial derivative approximation, the linear FOM operators are always sym-
metric, i.e., D = M⊤M.

2.1.2 Time Integration of Semi-discrete Hamiltonian Systems

Once a Hamiltonian FOM has been formulated, a structure-preserving method can be applied
in time to complete the structure-preserving discretization in space and time. The flow map
for Hamiltonian FOMs (4) preserves the canonical symplectic form and conserves the system
Hamiltonian Hd, i.e., Hd(q(0),p(0)) = Hd(q(t),p(t)) for all t. The field of geometric numerical
integration methods has shown that it is advantageous to use time integrators that preserve these
two geometric features. In fact, time integrators that do not respect the underlying geometric
structure lead to unphysical numerical results. The work in [43] showed that a numerical integrator
with a fixed time step cannot preserve the symplectic form and conserve the energy simultaneously
for general Hamiltonian systems. Based on this result, structure-preserving time integrators for
canonical Hamiltonian systems can be divided into two categories: (i) energy-preserving integrators
and (ii) symplectic integrators. Both approaches have their own advantages and the preferred
geometric numerical integration method depends on the Hamiltonian system. Energy-preserving
integrators guarantee that the numerical solution is restricted to a codimension 1 submanifold of the
configuration manifold whereas symplectic integrators ensure a more global and multi-dimensional
behavior through symplectic structure preservation.

2.2 Intrusive Structure-preserving Model Reduction

In projection-based model reduction, the semi-discrete model is projected onto a low-dimensional
subspace. The key idea in structure-preserving model reduction is to preserve the underlying
geometric structure during the projection. Since the FOM is a Hamiltonian system with underlying
symplectic structure, the projection step is treated as the symplectic inverse of a symplectic lift
from the low-dimensional subspace to the state space, see [10]. A symplectic lift is defined by
y = Vỹ where V ∈ R2n×2r is a symplectic matrix, i.e., a matrix that satisfies

V⊤J2nV = J2r. (8)
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The symplectic inverse V+ of a symplectic matrix V is defined by

V+ = J⊤
2rV

⊤J2n, (9)

and the symplectic projection can be written as ỹ = V+y. The time evolution of the reduced state
˙̃y is given by

˙̃y = V+ẏ = V+J2n∇yHd(q,p) = J2rV
⊤∇yHd(y) = J2r∇ỹHd(Vỹ) (10)

where we have used the chain rule ∇ỹHd(Vỹ) = V⊤∇yHd(y) in the last step. The symplectic
Galerkin projection of a 2n-dimensional Hamiltonian system (4) is given by a 2r-dimensional
(r ≤ n) system

˙̃y = J2r∇ỹH̃(ỹ), (11)

where ỹ is the reduced state vector with the reduced Hamiltonian H̃(ỹ) := Hd(Vỹ). While
the symplectic Galerkin projection approach yields reduced systems that retain the Hamiltonian
nature, the reduced Hamiltonian H̃ , through its definition in terms of FOM Hamiltonian Hd,
requires access to FOM operators.

Proper symplectic decomposition (PSD) is a method to find a symplectic projection matrix V

that simultaneously minimizes the projection error in a least-squares sense, i.e.,

min
V

s.t. V⊤J2nV=J2r

||Y −VV+Y||F . (12)

where Y := [y(t1), · · · ,y(tK)] ∈ R2n×K is the snapshot data matrix, and || · ||F is the Frobenius
norm. Since solving (12) to obtain the symplectic basis matrix V is computationally expensive, we
briefly outline three efficient algorithms, first presented in [10], for finding approximated optimal
solution for the symplectic matrix V. These algorithms search for a near-optimal solution over
different subsets of Sp(2r,R2n) where Sp(2r,R2n) is the set of all 2n× 2r symplectic matrices.

1. Cotangent lift: This algorithm computes SVD of the extended snapshot matrix
Y1 := [q(t1), · · · ,q(tK),p(t1), · · · ,p(tK)] to obtain a POD basis matrix Φ ∈ Rn×r and then

constructs the symplectic basis matrix V1 =

[
Φ 0

0 Φ

]

with V+
1 = V⊤

1 . The diagonal nature

of V1 ensures that the interpretability of q and p is retained in the reduced setting.

2. Complex SVD: This algorithm describes the solution in the phase space by q(ti) + ip(ti)
to build a complex snapshot matrix Y2 := [q(t1) + ip(t1), · · · ,q(tK) + ip(tK)] and then
computes the complex SVD of Y2 to obtain a basis matrix Φ+ iΨ ∈ C

n×r. The symplectic

basis matrix is V2 =

[
Φ −Ψ

Ψ Φ

]

with V+
2 = V⊤

2 . Due to the nonzero Ψ matrices on the

off-diagonals in V2, the complex SVD algorithm loses the distinction between q and p in the
symplectic projection step.

3. Nonlinear programming: This approach starts with an intermediate symplectic matrix
Vint ∈ R2n×2k with k > r obtained by cotangent lift or complex SVD and assumes that
the optimal solution V3 is a linear transformation of Vint. This assumption simplifies the
original nonlinear programming problem to a smaller nonlinear programming problem

min
C

s.t. C⊤J2kC=J2r

||Y −VintCC+V+
intY||F , (13)

to obtain C. The symplectic basis matrix is V3 = Vint ·C. In addition to being computa-
tionally expensive, the nonlinear programming approach also loses the physical meaning of
the states q and p in the reduced setting.

Since all three PSD approaches restrict to a specific subset of symplectic basis matrices, Sp(2r,R2n),
the resulting basis matrix might be globally suboptimal. A new technique based on an SVD-
like decomposition to derive a non-orthogonal symplectic basis was presented in [11]. However,
the optimality with respect to the PSD projection error (12) of this non-orthonormal symplectic
basis is still an open question. More recently, [44] developed Riemannian optimization methods
for optimization problems with symplectic constraints, and these methods have been proven to
converge globally to critical points of the objective function.
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3 Hamiltonian Operator Inference

In this section, we propose H-OpInf, a Hamiltonian operator inference framework for canonical
Hamiltonian PDEs with general nonpolynomial nonlinearities as in (2). In Section 3.1 we first
motivate the need for H-OpInf by demonstrating how the standard operator inference from [34]
fails to preserve the underlying symplectic structure. Based on the observations from this mo-
tivating example, we present H-OpInf in Section 3.2, a nonintrusive physics-preserving method
to learn ROMs of Hamiltonian systems. We then show in Section 3.3 that under certain condi-
tions, the learned operators from nonintrusive H-OpInf converge to their intrusive projection-based
counterparts. We also discuss the overall computational procedure of H-OpInf in Section 3.4.

3.1 Motivation

We revisit the wave equation example from Example 1 with Hnl = 0, i.e., the linear wave equation

∂2ϕ

∂t2
= c2

∂2ϕ

∂x2
, (14)

defined on x ∈ [0, ℓ]. With q = ϕ and p = ϕt, the associated Hamiltonian functional is given by

H(q, p) =

∫ ℓ

0

[
1

2
p2 +

1

2
c2q2x

]

dx, (15)

and the original PDE can be recast as a Hamiltonian PDE

q̇ =
δH
δp
, ṗ = −δH

δq
. (16)

With n equally spaced grid points, we use finite difference for spatial discretization to obtain the
space-discretized FOM Hamiltonian

Hd(y) =

n∑

1

[
1

2
p2i +

c2(qi+1 − qi)
2

4∆x2
+
c2(qi − qi−1)

2

4∆x2

]

, (17)

where qi := ϕ(t, xi), pi := ϕt(t, xi), and y = [q1, . . . , qn, p1, . . . , pn]
⊤. For ∆x → 0 with n∆x = ℓ,

Hd∆x converges to the space-time continuous Hamiltonian functional H. The FOM equations are
given by the Hamilton’s equations for Hd,

ẏ = J2n∇yHd(y) =

[
0 In

−In 0

] [
−c2Dfd 0

0 In

]

y =

[
0 In

c2Dfd 0

]

y, (18)

where Dfd denotes the finite difference approximation for the spatial derivative ∂xx.
We now set ℓ = 1 and the wave speed to c = 0.1, which leads to the same linear FOM with

periodic boundary condition as in [10]. To define the initial conditions, we need the following
ingredients. Let s(x) = 10|x− 1

2 |, and consider the following cubic spline function over s:

h(s) =







1− 3
2s

2 + 3
4s

3 0 ≤ s ≤ 1,
1
4 (2− s)3 1 ≤ s ≤ 2,

0 s > 2.

The initial conditions are q(0) = [h(s(x1)), · · · , h(s(xn))], and p(0) = 0. We choose n = 500 grid
points leading to a discretized state y ∈ R

1000. The FOM is numerically integrated until time
T = 10 using the implicit midpoint rule, for which the time-marching equations are

yk+1 − yk

∆t
= J2n∇yHd

(
yk+1 + yk

2

)

, (19)

with fixed time step ∆t. The resulting time integrator is a second-order scheme and can also be
used for dynamical systems that are not Hamiltonian. For this example, we choose ∆t = 0.01. To
propagate the system forward in time, we need to solve a system of 2n = 1000 linear equations at
every time step.
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Figure 1: Linear wave equation: Even though plot (a) shows low approximation error in the training
data regime, the corresponding FOM energy error behavior in plot (b) reveals that the standard
operator inference violates the underlying Hamiltonian structure. The black line indicates end of
training time interval. See Section 4.1 for numerical implementation details.

We apply standard operator inference [34] to the linear wave equation to demonstrate how
violating the underlying symplectic structure leads to unstable ROMs. Based on the snapshot
data Y from the FOM numerical simulation, we compute the POD basis V from Y via SVD
where the POD basis vectors are columns of the POD basis matrix

V = [v1, · · · ,v2r] ∈ R
2n×2r.

We also obtain the time-derivative data Ẏ from the snapshot data Y using a finite difference ap-
proximation. We then obtain the reduced state trajectory data Ŷ and the reduced time-derivative

data
˙̂
Y via projections onto the POD basis matrix V

Ŷ = V⊤Y,
˙̂
Y = V⊤Ẏ.

Based on the linear wave FOM equation, we postulate a linear model form ˙̂y = D̂ŷ for learning
the ROM. Thus, for the linear wave equation, the standard operator inference problem essentially
involves solving the following least-squares problem for D̂

min
D̂

|| ˙̂Y − D̂Ŷ||F . (20)

Figure 1a shows state approximation error for ROMs of different sizes. We see that the state
error decreases up to 2r = 20 and oscillates from 2r = 20 to 2r = 40. Although the state error
results over the training data indicate decrease in the state error with increasing reduced dimension,
the ROMs do not conserve the space-discretized HamiltonianHd. The increasing FOM energy error
in Figure 1b confirm the fact that the reduced solution trajectories do not conserve the system
energy. In fact, the energy error plot for long-time simulation outside the training data shows
that the learned ROMs lead to unphysical predictions. In addition to violating the underlying
Hamiltonian structure, the learned operator D̂ contains nonzero matrices on the diagonals (not
shown here), which also illustrates that the standard operator inference does not preserve the block
structure that the system should have, see (18). The coupling structure in Hamiltonian systems
is intrinsically connected to the physical variables q and p in the state vector. Standard operator
inference loses the physical meaning of the states q and p in the model reduction process.

3.2 Hamiltonian Operator Inference

In this work, we consider the situation that we have a Hamiltonian PDE model (1) with canonical
structure, and we have simulated data thereof. The goal of this work is to learn a Hamiltonian
ROM from data of a canonical Hamiltonian system, so that the learned ROM:

1. is a canonical Hamiltonian system;

7



2. retains the physical interpretation of the state variables and preserves the coupling structure;

3. respects the symmetric property of structure-preserving space discretizations.

In addition to the canonical Hamiltonian structure, we also assume that we have knowledge about
Hnl at the PDE level , which is in line with our gray-box setting (2). If we consider the general wave
equation from Section 2.1.1, then the nonlinear component Hnl(q, p) of the space-time continuous
Hamiltonian functional (2) is assumed to be given explicitly, whereas the quadratic terms in Hquad

and details about their spatial discretization are unavailable.
Next, we introduce our new framework. Let y1, · · · ,yk be the solutions of the Hamiltonian

FOM at t1, · · · , tk computed with a structure-preserving numerical integration scheme and initial
condition y0. We define the snapshot matrices

Q =
[
q1 · · ·qK

]
∈ R

n×K , P =
[
p1 · · ·pK

]
∈ R

n×K . (21)

Assuming knowledge about Hnl in (2), we define the nonlinear forcing fq(y) and fp(y) as

fq(y) =
[
∂Hnl

∂p1

(q1, p1) · · · ∂Hnl

∂pn
(qn, pn)

]⊤

∈ R
n, fp(y) =

[
∂Hnl

∂q1
(q1, p1) · · · ∂Hnl

∂qn
(qn, pn)

]⊤

∈ R
n.

(22)
We utilize the explicit form of fp and fq to define the forcing snapshot matrices

Fq =
[
fq(y1) · · · fq(yK)

]
∈ R

n×K , Fp =
[
fp(y1) · · · fp(yK)

]
∈ R

n×K . (23)

We also compute the time-derivative data q̇ and ṗ from the state trajectory data q and p using a
finite difference scheme to build the snapshot matrices of the time-derivative data

Q̇ =
[
q̇1 · · · q̇K

]
∈ R

n×K , Ṗ =
[
ṗ1 · · · ṗK

]
∈ R

n×K . (24)

Given these snapshot matrices, our goal is to learn a Hamiltonian ROM directly from the data.
To learn the reduced operators, we propose to project FOM trajectories onto low-dimensional
symplectic subspaces of the high-dimensional state spaces and then fit operators to the projected
trajectories in a structure-preserving way. For the symplectic projection step, we choose the cotan-
gent lift algorithm to generate our symplectic basis matrix. In addition to being a symplectic basis
matrix, the specific block structure of the basis matrix allows us to retain physical interpretation
of q and p variables in the reduced setting, i.e.,

[
q

p

]

≈
[
Φ 0

0 Φ

] [
q̂

p̂

]

. (25)

We obtain projections of the trajectory snapshot data via the projections onto the symplectic basis
matrix Vq = Vp = Φ ∈ Rn×r obtained via the cotangent lift algorithm,

Q̂ = V⊤
qQ ∈ R

r×K , P̂ = V⊤
pP ∈ R

r×K . (26)

Similarly, we obtain projections of the nonlinear forcing data to obtain

F̂q = V⊤
pFq ∈ R

r×K , F̂p = V⊤
qFp ∈ R

r×K . (27)

We also compute projections of the time-derivative data to obtain the reduced time-derivative data

˙̂
Q = V⊤

q Q̇ ∈ R
r×K ,

˙̂
P = V⊤

p Ṗ ∈ R
r×K . (28)

Inspired by the knowledge of the Hamiltonian functional, we define the following reduced Hamil-
tonian in terms of the inferred reduced operators D̂q ∈ Rr×r and D̂p ∈ Rr×r

Ĥ(q̂, p̂) =
1

2
q̂⊤D̂qq̂+

1

2
p̂⊤D̂pp̂+ Ĥnl(q̂, p̂). (29)

Based on the assumed form for Ĥ(q̂, p̂), we derive the ROM equations of motion

˙̂q =
∂Ĥ

∂p̂
= D̂pp̂+V⊤

p fq(Vqq̂,Vpp̂),

˙̂p = −∂Ĥ
∂q̂

= −D̂qq̂−V⊤
q fp(Vqq̂,Vpp̂).

8



Using this Hamiltonian ROM form, we propose to solve the following optimization problem to
compute D̂q and D̂p

min
D̂q=D̂⊤

q
,

D̂p=D̂⊤

p

∣
∣
∣
∣

∣
∣
∣
∣

[
˙̂
Q− F̂q(Q̂, P̂)
˙̂
P+ F̂p(Q̂, P̂)

]

−
[

0 D̂p

−D̂q 0

] [
Q̂

P̂

] ∣
∣
∣
∣

∣
∣
∣
∣
F

. (30)

The symmetric constraints on D̂q and D̂p ensure that the learned reduced operators retain the
symmetric property of the full-model operators introduced during the structure-preserving spatial
discretization, see Section 2.1.1. The symmetric reduced operators D̂q and D̂p learned via H-OpInf
yield structure-preserving ROMs that are Hamiltonian systems.

Remark 2. We have introduced the H-OpInf framework in the context of canonical Hamiltonian
systems. Some Hamiltonian systems, such as the Korteveg-de-Vries (KdV) equation, Burgers’
equation, and Maxwell’s equations, possess a more general Hamiltonian structure, i.e., Sd = −S⊤

d 6=
J2n. Using an even number of spatial grid points, the noncanonical Hamiltonian PDE yields an
even-dimensional FOM which can be then transformed to the canonical form with Sd = J2n using a
congruent transformation. This transformation requires access to FOM operators. However, if the
FOM is given in the transformed canonical form then the H-OpInf framework directly carries over
to such transformed systems. Alternatively, if we assume access to such a congruent transformation
then our H-OpInf method may be combined with the lifting transformations as in [35, 36, 37] to
derive Hamiltonian ROMs for noncanonical Hamiltonian systems.

3.3 Theoretical Result

We show that under certain conditions on the time discretization, the nonintrusive Hamiltonian
ROM operators via H-OpInf converge to the intrusive Hamiltonian ROM operators. In order to
obtain these results, we make the following two assumptions on the time discretization of the FOM
and ROM.

Assumption 1. The time stepping scheme for the FOM is convergent, i.e.,

max
i∈{1,··· ,T/∆t}

∣
∣
∣
∣

∣
∣
∣
∣
yi − y(ti)

∣
∣
∣
∣

∣
∣
∣
∣
2

→ 0 as ∆t→ 0, (31)

where yi is the discrete state of the FOM system at time ti computed with a time stepping scheme.

Assumption 2. The derivatives approximated from projected states, ˙̂yk, converge to d
dt ŷ(tk) as

the discretization time step ∆t→ 0, i.e.,

max
i∈{1,··· ,T/∆t}

∣
∣
∣
∣

∣
∣
∣
∣
˙̂yi −

d

dt
ŷ(ti)

∣
∣
∣
∣

∣
∣
∣
∣
2

→ 0 as ∆t→ 0. (32)

Theorem 1. For a given symplectic basis matrix Vq = Vp = Φ ∈ Rn×r obtained via the cotangent

lift algorithm, let D̃q = V⊤
qDqVq and D̃p = V⊤

pDpVp be the intrusively projected ROM operators.
If the data matrix has full column rank, then for every ǫ > 0, there exists 2r ≤ 2n and a time step
size ∆t > 0 such that for the difference between the symmetric learned operators D̂q, D̂p and the

symmetric (intrusive) projection-based D̃q, D̃p, we have

||D̂q − D̃q||F ≤ ǫ, ||D̂p − D̃p||F ≤ ǫ.

Proof. Consider a canonical Hamiltonian system with the following governing equations

q̇ = Dpp+ fq(q,p), ṗ = −Dqq− fp(q,p), (33)

where Dq,Dp are the linear symmetric FOM operators, and fq, fp are the nonlinear forcing terms
from (22). Given FOM snapshot data Q = [q1, · · · ,qK ] ∈ Rn×K and P = [p1, · · · ,pK ] ∈ Rn×K ,
we build Q̇ana = [q̇1,ana, · · · , q̇K,ana] and Ṗana = [ṗ1,ana, · · · , ṗK,ana] by evaluating the Hamiltonian
FOM vector field (33), i.e.,

q̇k,ana = Dppk + fq(qk,pk), ṗk,ana = −Dqqk − fp(qk,pk), k = 1, · · · ,K.

9



We also define a finite difference operator It which operates on the FOM snapshot data to approx-
imate the time-derivative data

Q̇ana ≈ It(Q), Ṗana ≈ It(P).

Using the definition of the finite difference operator It, the reduced time-derivative data from

(28) can be written as
˙̂
Q = V⊤

q It(Q) and
˙̂
P = V⊤

p It(P). The H-OpInf problem of learning the

symmetric operator D̂q can be written as

min
D̂q=D̂⊤

q

∣
∣
∣
∣

∣
∣
∣
∣

˙̂
P+ D̂qQ̂+ F̂p(Q̂, P̂)

∣
∣
∣
∣

∣
∣
∣
∣
F

= min
D̂q=D̂⊤

q

∣
∣
∣
∣

∣
∣
∣
∣
V⊤

p It(P) + D̂qQ̂+ F̂p(Q̂, P̂)

∣
∣
∣
∣

∣
∣
∣
∣
F

= min
D̂q=D̂⊤

q

∣
∣
∣
∣

∣
∣
∣
∣
V⊤

p It(P) −V⊤
p Ṗana +V⊤

p Ṗana +
(

D̂q − D̃q

)

Q̂+ D̃qQ̂+ F̂p(Q̂, P̂)

∣
∣
∣
∣

∣
∣
∣
∣
F

= min
D̂q=D̂⊤

q

∣
∣
∣
∣

∣
∣
∣
∣
V⊤

p

(

It(P)− Ṗana

)

+
(

D̂q − D̃q

)

Q̂+V⊤
p Ṗana + D̃qQ̂+ F̂p(Q̂, P̂)

∣
∣
∣
∣

∣
∣
∣
∣
F

. (34)

Similarly, the H-OpInf problem of learning the symmetric operator D̂p can be written as

min
D̂p=D̂⊤

p

∣
∣
∣
∣

∣
∣
∣
∣

˙̂
Q− D̂pP̂− F̂q(Q̂, P̂)

∣
∣
∣
∣

∣
∣
∣
∣
F

= min
D̂p=D̂⊤

p

∣
∣
∣
∣

∣
∣
∣
∣
V⊤

q

(

It(Q)− Q̇ana

)

−
(

D̂p − D̃p

)

P̂− D̃pP̂+V⊤
q Q̇ana − F̂q(Q̂, P̂)

∣
∣
∣
∣

∣
∣
∣
∣
F

. (35)

Combining (34) and (35), the H-OpInf problem can be written as

min
D̂q=D̂⊤

q
,

D̂p=D̂⊤

p

∣
∣
∣
∣

∣
∣
∣
∣

[
V⊤

p 0

0 V⊤
q

]([
Ṗana

Q̇ana

]

−
[
0 −Dq

Dp 0

] [
VpV

⊤
pP

VqV
⊤
qQ

]

+

[
VpV

⊤
q Fp

−VqV
⊤
pFq

])

︸ ︷︷ ︸

(I)

+

[
V⊤

p 0

0 V⊤
q

] [
It(P)− Ṗana

It(Q)− Q̇ana

]

︸ ︷︷ ︸

(II)

+

[
0 D̂q − D̃q

−(D̂p − D̃p) 0

] [
P̂

Q̂

] ∣
∣
∣
∣

∣
∣
∣
∣
F

, (36)

where we have used D̃q = V⊤
qDqVq and D̃p = V⊤

pDpVp. Since, we have used the cotangent lift
algorithm for projection, we have Vq = Vp = Φ. Based on the time discretization assumptions, the

terms (I), (II) → 0 for ∆t→ 0 and r → n, and thus, the learned operators D̂q, D̂p converge to the

structure-preserving intrusive operators D̃q, D̃p. Therefore, in the pre-asymptotic case, there exists
for all 0 < ǫ ∈ R a small enough time step ∆t and a large enough reduced dimension r ≤ n such
that we can use the full-rank condition of Q̂, P̂ to deduce ||D̂q − D̃q||F ≤ ǫ, ||D̂p − D̃p||F ≤ ǫ.

The theorem shows that the learned symmetric Hamiltonian ROM operators converge to the
intrusive symmetric Hamiltonian ROM operators as r → n. However, this result does not provide a
convergence rate, and in our practical experience there are numerical examples where the difference
in reduced operators might not monotonically decrease for low-dimensional Hamiltonian ROMs,
such as the linear wave example in Section 4.2. In such cases, the FOM energy error becomes
a crucial metric to assess the reliability of nonintrusive Hamiltonian ROM for long-time predic-
tions. The continuous-time intrusive Hamiltonian ROM due to its specific choice of the reduced
Hamiltonian, i.e., H̃(ŷ) := Hd(Vŷ), always conserves the FOM Hamiltonian Hd. In contrast,
continuous-time nonintrusive Hamiltonian ROM conserves the reduced Hamiltonian Ĥ . Using the
theoretical result, we can interpret the learned reduced Hamiltonian Ĥ as a perturbation of the
intrusive reduced Hamiltonian H̃ , i.e., Ĥ = H̃ +∆H̃ . Since the nonlinear component is the same
for both nonintrusive and intrusive Hamiltonian ROMs, the perturbation can be written as

∆H̃ =
1

2
q̂⊤(D̂q − D̃q)q̂ +

1

2
p̂⊤(D̂p − D̃p)p̂.

Thus, the nonintrusive Hamiltonian ROM trajectories simulate a perturbed intrusive Hamiltonian
ROM Hamiltonian system and the perturbation∆H̃ depends on the difference in reduced operators.
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3.4 Computational Procedure

Due to the canonical nature of the reduced model form, the original optimization problem (30)
can be broken down into separate, symmetric linear least-squares problems of the form

min
D̂p=D̂⊤

p

∣
∣
∣
∣

∣
∣
∣
∣

˙̂
Q− F̂q(Q̂, P̂)− D̂pP̂

∣
∣
∣
∣

∣
∣
∣
∣
F

, min
D̂q=D̂⊤

q

∣
∣
∣
∣

∣
∣
∣
∣

˙̂
P+ F̂p(Q̂, P̂) + D̂qQ̂

∣
∣
∣
∣

∣
∣
∣
∣
F

. (37)

Given reduced state data Q̂, P̂ and residual data R̂q, R̂p, our goal is to find symmetric reduced

operators D̂q = D̂⊤
q and D̂p = D̂⊤

p that minimize

∣
∣
∣
∣

∣
∣
∣
∣
Q̂⊤D̂q − R̂⊤

q

∣
∣
∣
∣

∣
∣
∣
∣
F

and

∣
∣
∣
∣

∣
∣
∣
∣
P̂⊤D̂p − R̂⊤

p

∣
∣
∣
∣

∣
∣
∣
∣
F

re-

spectively. Both problems are symmetric linear least-squares problems, so let us consider the
optimization problem for infering D̂q. We formulate the symmetric linear least-squares problem

min
D̂q=D̂⊤

q

∣
∣
∣
∣

∣
∣
∣
∣
Q̂⊤D̂q − R̂⊤

q

∣
∣
∣
∣

∣
∣
∣
∣

2

F

, (38)

as a constrained optimization problem with the following Lagrangian

L(D̂q,Λ) :=

∣
∣
∣
∣

∣
∣
∣
∣
Q̂⊤D̂q − R̂⊤

q

∣
∣
∣
∣

∣
∣
∣
∣

2

F

+ 〈Λ, D̂q − D̂⊤
q 〉, (39)

where Λ ∈ Rr×r is the Lagrange multiplier and 〈·, ·〉 is the elementwise inner product, i.e., 〈Λ, D̂〉 :=
Tr(Λ⊤D̂). Differentiating the Lagrangian with respect to D̂q and Λ, we obtain the following matrix
equations

2Q̂(Q̂⊤D̂q − R̂⊤
q ) +Λ−Λ⊤ = 0,

D̂q − D̂⊤
q = 0,

where the second equation is simply the symmetric constraint condition. Rewriting the first matrix
equation as

Q̂(Q̂⊤D̂q − R̂⊤
q ) = −1

2

(
Λ−Λ⊤

)
, (40)

reveals that Q̂(Q̂⊤D̂q − R̂⊤
q ) is a skew-symmetric matrix, i.e.,

Q̂(Q̂⊤D̂q − R̂⊤
q ) = −

(

Q̂(Q̂⊤D̂q − R̂⊤
q )

)⊤

. (41)

Rewriting the above equation, we can obtain the following Lyapunov equation

(Q̂Q̂⊤)D̂q + D̂q(Q̂Q̂⊤) = Q̂R̂⊤
q + R̂qQ̂

⊤. (42)

Similarly, the symmetric reduced operator D̂p solves

(P̂P̂⊤)D̂p + D̂p(P̂P̂⊤) = P̂R̂⊤
p + R̂pP̂

⊤. (43)

Thus, the original inference problem for D̂q and D̂q can be broken down into separate symmetric
linear least-squares problems and subsequently, the symmetric reduced operators can be obtained
by solving Lyapunov equations (42) and (43). Algorithm 1 summarizes H-OpInf for Hamiltonian
systems with nonpolynomial nonlinearities.

4 Numerical Results

In this section, we study the numerical performance of H-OpInf for three Hamiltonian PDEs with
increasing level of complexity. We revisit the linear wave equation from Section 3.1 and demon-
strate that H-OpInf works for different structure-preserving space discretizations. We then study
the nonlinear Schrödinger equation, a Hamiltonian PDE with cubic nonlinearity, to investigate
the numerical performance of H-OpInf for nonlinear systems. Finally, we apply our structure-
preserving operator inference approach to the sine-Gordon equation to understand its numerical
performance for PDEs with nonpolynomial nonlinearities.
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Algorithm 1 Hamiltonian operator inference for canonical Hamiltonian systems

Input: Nonlinear component of Hamiltonian functional Hnl, snapshot data Q,P ∈ Rn×K , and
reduced dimension 2r.

Output: Symmetric reduced operators D̂q and D̂p.

1: Use knowledge of Hnl to identify correct model form for the reduced Hamiltonian Ĥ (29).
2: Compute forcing snapshot data Fq,Fp ∈ Rn×K (23).

3: Compute time-derivative data Q̇, Ṗ ∈ R
n×K (24) from state trajectory data Q,P using the

finite-difference scheme (44).
4: Build symplectic basis matrix V ∈ R2n×2r from M = [Q,P] using the cotangent lift algorithm,

see Section 2.2.
5: Project to obtain reduced state data Q̂, P̂ ∈ Rr×K (26), reduced time-derivative data

˙̂
Q,

˙̂
P ∈

Rr×K (28), and reduced nonlinear forcing data F̂q, F̂p ∈ Rr×K (27).
6: Solve separate symmetric linear least-squares problems via Lyapunov equations (42)–(43) to

nonintrusively infer symmetric reduced operators D̂q and D̂p.

4.1 Numerical Implementation Details

We compare the quality of the learned Hamiltonian ROM with the intrusive proper symplectic
decomposition (PSD), a Hamiltonian ROM obtained via the cotangent lift algorithm as outlined
in Section 2.2. Below we give some information about our FOM and ROM numerical simulations:

• For numerical time integration, we use the implicit midpoint rule (19) for all FOMs and
ROMs. The implicit midpoint rule is a symplectic scheme for Hamiltonian systems which
preserves the symplectic structure and exhibits bounded energy error for both FOM and
ROM simulations. The symplectic structure preservation also implies exact preservation of
any quadratic invariants of the motion. The implicit midpoint rule satisfies Assumption 1;
details about the numerical properties of this symplectic time integrator can be found in
[4, 5].

• To compute time-derivative data from the snapshot data we use the following fourth-order
finite difference scheme

ẏk ≈ −yk+2 + 8yk+1 − 8yk−1 + yk−2

12∆t
. (44)

For first two and last two points, we used first-order forward and backward Euler approx-
imations, respectively. The finite difference scheme used in this work for computing time-
derivative data satisfies Assumption 2.

• All numerical examples are computed with MATLAB version 2020b. The Lyapunov equations
(42)–(43) are solved using the in-built lyap function in MATLAB.

• All the state error plots in this section compute the following relative error

||Y −VŶ||2
||Y||2

(45)

where Ŷ is either obtained from nonintrusive Hamiltonian ROM or intrusive Hamiltonian
ROM. For state approximation error in training data, we only consider trajectories up to
the training time interval and for test data plots, we consider trajectories from the full ROM
simulation.

• All FOM energy error plots in this section compute the following error

|Hd(Vŷ(t))−Hd(Vŷ(0)| (46)

where ŷ is either obtained from nonintrusive Hamiltonian ROM or intrusive Hamiltonian
ROM. For ROM energy error plots, we compare |Ĥ(ŷ(t))− Ĥ(ŷ(0)| for nonintrusive Hamil-
tonian ROMs of different sizes.
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Figure 2: Linear wave equation (finite difference discretization): nonintrusive Hamiltonian ROMs
obtained with H-OpInf presented in Section 3.3 achieve similar state error performance to that of
intrusive Hamiltonian ROMs. For test data, the state approximation error for learned Hamiltonian
ROMs does not decrease as favorably with increase in reduced dimension for 2r > 20.

4.2 Linear Wave Equation

4.2.1 Finite Difference Discretization

We revisit the linear wave example from Section 3.1 with finite difference spatial discretization.
Using the H-OpInf framework, we infer symmetric reduced operators D̂q = D̂⊤

q ∈ Rr×r for 2r = 40
using Algorithm 1. Nonintrusive Hamiltonian ROMs of size 2w with 2w < 2r are constructed by
extracting submatrices of size w×w, corresponding to the first w basis vectors, from D̂q and D̂p.
Thus, our structure-preserving approach requires performing H-OpInf with Algorithm 1 only once.

Figure 2a compares the errors of the intrusive Hamiltonian ROMs and nonintrusive Hamiltonian
ROMs over the training time interval of T = 10. Compared with Figure 1a, we observe that the
state errors shown in Figure 2a don’t display oscillations. The nonintrusive Hamiltonian ROM
shows a similar behavior to the intrusive Hamiltonian ROMs for the linear wave example up to
2r = 32. However, as 2r increases further, the error for the nonintrusive Hamiltonian ROMs
levels off. This leveling off of the state error is because the projected trajectories correspond to
non-Markovian dynamics in the reduced setting even though the FOM state trajectories and the
corresponding FOM dynamics are Markovian, see [39]. Figure 2b compares the state approximation
error over the testing time interval of T = 100 where both Hamiltonian ROMs demonstrate similar
error up to 2r = 20. For 2r > 20, the intrusive Hamiltonian ROM errors decrease more rapidly
compared to nonintrusive Hamiltonian ROM.

In Figure 3a, we compare the FOM energy error for different nonintrusive ROMs. The system is
simulated for T = 100, thus predicting the numerical behavior for 900% past the training interval.
Due to its specific choice of reduced Hamiltonian, the intrusive Hamiltonian ROM conserves the
energy with the same accuracy as the FOM simulation. The nonintrusive Hamiltonian ROMs ex-
hibit bounded energy error for different ROM sizes due to their Hamiltonian nature. The bounded
energy error 900% past the training interval shows that the nonintrusive Hamiltonian ROMs simu-
late a perturbation of the intrusive Hamiltonian ROM exactly and thus, the FOM energy error for
nonintrusive ROMs remains bounded well beyond the training data. This shows a true strength of
the proposed H-OpInf, namely that if the structure is respected in every aspect of discretization
and the learning method, long-term stable predictions are possible. Figure 3b compares ROM
energy error for nonintrusive Hamiltonian ROMs where both reduced models demonstrate similar
energy error behavior. The bounded energy error plots in Figure 3 affirm the Hamiltonian nature
of the nonintrusive ROMs for different r. Additionally, these nonintrusive ROM energy error plots
also serve as an indicator of long-time stability of simulations of our learned ROM.

Remark 3. The state error leveling-off for operator inference has been resolved by a sampling
scheme based on re-projection in [39]. If the data is sampled with that scheme, then we recover
the intrusive ROMs preasymptotically from data under certain conditions. However, re-projection
in its current formulation only works for fully discrete systems with explicit or linearly implicit
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Figure 3: Linear wave equation (finite difference discretization): Plot (a) shows bounded FOM
energy error around 10−9 for nonintrusive Hamiltonian ROMs. The intrusive Hamiltonian ROM, on
the other hand, shows exact energy preservation due to its specific choice of reduced Hamiltonian.
The black line indicates end of training time interval. Plot (b) shows similar ROM energy error
for both nonintrusive Hamiltonian ROMs with marginal improvement in the error magnitude for
2r = 40.

time-marching schemes. Nonlinear Hamiltonian systems, on the other hand, require fully implicit
time integrators to preserve the underlying geometric structure. Thus, the re-projection sampling
can not be used for Hamiltonian systems. Extending this algorithm for use with H-OpInf remains
a topic of further investigation.

4.2.2 Pseudo-spectral Discretization

We now consider the linear wave example with the same setup as in Section 3.1, except that the
linear wave PDE is spatially discretized with the pseudo-spectral method. Spatial discretization
using the pseudo-spectral method involves two key steps.

1. Construct space-discretized representation of the solution through interpolating trigonomet-
ric polynomial of the solution at collocation points in the domain.

2. Derive space-discretized FOM equations for the discrete values of the solution from the PDE
by finding an approximation for the differential operator ∂xx in terms of the discrete values
from the space-discretized representation.

The FOM is represented by the following Hamiltonian ODE system

ẏ = J2n∇yHd(y) =

[
0 In

−In 0

] [
−c2Dps 0

0 In

]

y =

[
0 In

c2Dps 0

]

y,

where Dps denotes the pseudo-spectral approximation for ∂xx. Note that the FOM equations have
the same coupling structure for the pseudo-spectral discretization as in (18) for the finite difference
discretization and hence, the same ROM model form will be used for learning the symmetric
reduced operators for this case.

The state error plots for the pseudo-spectral discretization case in Figure 4 are similar to the
finite difference case. In Figure 4a, the state error for the nonintrusive Hamiltonian ROM is nearly
same as the intrusive Hamiltonian ROM for 2r ≤ 30. However in test data regime, the state error
comparison in Figure 4b show that the state error for nonintrusive Hamiltonian ROM does not
decrease as favorably after 2r = 20, similar to the case in Section 4.2.1. In the FOM energy error
plots in Figure 5a, we observe bounded energy error for 900% past the training time interval which
shows the stability of the learned Hamiltonian ROMs. The ROM energy error comparison in Figure
5b shows the energy error eventually stabilizes around 10−10 for both nonintrusive Hamiltonian
ROMs. The ability of H-OpInf to handle different structure-preserving spatial discretizations is
the key takeaway from this study. Figure 6 compares the state vector solution at t = 7, t = 41.5,
and t = 100. Both intrusive and nonintrusive Hamiltonian ROMs accurately capture the solution
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Figure 4: Linear wave equation (pseudo-spectral discretization): Plots show that H-OpInf is able
to produce accurate nonintrusive Hamiltonian ROMs even if the PDE is discretized with pseudo-
spectral method in space.
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Figure 5: Linear wave equation (pseudo-spectral discretization): Plot (a) shows bounded FOM
energy error for both nonintrusive Hamiltonian ROMs with marginally lower error for 2r = 40.
The black line indicates end of training time interval. Plot (b) shows similar ROM energy error
for nonintrusive ROMs.

profile, well beyond the training data regime. These results demonstrate the ability of the learned
Hamiltonian ROM to provide reliable long-time predictions.

4.3 Nonlinear Schrödinger Equation

The nonlinear Schrödinger equation (NLSE) is one of the most important integrable Hamiltonian
PDEs, and it is used in a wide variety of wave phenomena in physics, including nonlinear optics,
gravity waves, Langmuir waves, quantum mechanics, and condensed matter physics. The one-
dimensional NLSE considered here is a nonlinear variation of the Schrödinger equation and is one
of the universal equations that describe the evolution of slowly varying wave packets in weakly
nonlinear media with dispersion.

4.3.1 PDE Formulation

We consider the cubic Schrödinger equation

iψt + ψxx + γ|ψ|2ψ = 0, (47)
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Figure 6: Linear wave equation (pseudo-spectral discretization): Plots show the numerical approx-
imation of the linear wave equation using low-dimensional (2r = 40) intrusive and nonintrusive
Hamiltonian ROM at different t values. Despite higher state approximation error compared to
intrusive Hamiltonian ROM in the test data regime, the nonintrusive Hamiltonian ROM captures
the correct wave form at t = 100, which is remarkable because after t = 10 the Hamiltonian ROM
simulations are purely predictive.

where ψ is a complex-valued wave function and i =
√
−1 is the imaginary unit. Writing the

complex-valued wave function in terms of its real and imaginary parts as ψ = p+ iq, yields

pt = −qxx − γ(q2 + p2)q,

qt = pxx + γ(q2 + p2)p.

The coupled PDEs admit a canonical Hamiltonian PDE form yt = J δH
δy for y = [p, q]⊤ with the

following space-time continuous Hamiltonian H

H(q, p) =

∫
1

2

[

p2x + q2x − γ

2
[q2 + p2]2

]

dx.

In addition to the energy conservation, the NLSE also possesses quadratic mass and momentum
invariants

M1(q, p) =

∫
[
p2 + q2

]
dx, M2(q, p) =

∫

[pxq − qxp] dx.

4.3.2 FOM Implementation

We consider the nonlinear Schrödinger equation over x ∈ [−L/2, L/2] with L = 2
√
2π and γ = 2.

The boundary conditions are periodic and the initial conditions are p(x, 0) = 0.5 (1 + 0.01 cos(2πx/L))
and q(x, 0) = 0. The nonlinear PDE is spatially discretized using n = 64 equally spaced grid points
leading to a discretized state y ∈ R128. We employ finite difference for spatial discretization to
obtain the FOM Hamiltonian

Hd(y) =
1

2

n∑

i=1

[(
qi+1 − qi

∆x

)2

+

(
pi+1 − pi

∆x

)2

− γ

2

(
q2i + p2i

)2

]

∆x,

where pi := p(t, xi), qi := q(t, xi), and y = [p⊤ q⊤]⊤. The FOM is represented by the following
Hamiltonian ODE system

ṗ = ∇qHd(p,q) = −Dfdq− γ







...
p2i qi + q3i

...






, q̇ = −∇pHd(p,q) = Dfdp+ γ







...
p3i + q2i pi

...






.

The space-discretized NLSE system conserves the following mass and momentum invariants

M1,d(y) =

n∑

i=1

[
q2i + p2i

]
∆x, M2,d(y) =

n∑

i=1

[(
pi+1 − pi

∆x

)

qi −
(
qi+1 − qi

∆x

)

pi

]

∆x.
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Figure 7: Nonlinear Schrödinger equation: The nonintrusive Hamiltonian ROM shows a similar
behavior to the H-OpInf ROM for both training and test data in this example. For 2r > 10, we
observe a leveling off of the state error in the training data regime for the nonintrusive Hamiltonian
ROM.

The FOM is numerically integrated using the symplectic midpoint rule with ∆t = 0.005. The
resulting time-marching equations require solving a system of 2n = 128 coupled nonlinear equations
at every time step. We build the snapshot matrix by collecting the snapshots for total time T = 20.

4.3.3 Results

In Figure 7, we compare the numerical performance of intrusive and nonintrusive Hamiltonian
ROMs. The state error plots in Figure 7a over the training time interval of T = 20 show that the
learned ROM performs similar to the intrusive Hamiltonian ROM up to 2r = 10. For 2r > 10,
we observe the leveling-off for the learned ROM where the state accuracy does not improve with
increasing reduced dimension. For the test data regime of T = 100, both intrusive and nonintrusive
Hamiltonian ROMs have the same state error up to 2r = 10 in Figure 7b. For 2r > 10, intrusive
Hamiltonian ROM exhibits significantly lower state error compared to nonintrusive Hamiltonian
ROM.

The FOM energy error plots in Figure 8a show that both intrusive and nonintrusive ROMs have
similar bounded energy behavior. Unlike the exact energy conservation for the linear wave equation,
the symplectic integrator for NLSE exhibits bounded energy error and hence, nonintrusive and
intrusive Hamiltonian ROMs have the same level of FOM energy accuracy. Both Hamiltonian
ROMs are simulated until T = 100, which is 400% longer than the training interval. Due to
the nonlinear nature of the problem, both nonintrusive Hamiltonian ROMs in Figure 8b also
exhibit the same energy accuracy. Given the coupled nature of the governing nonlinear PDE, the
competitiveness of the learned ROM with the intrusive Hamiltonian ROM outside the training
data is remarkable.

4.3.4 Conservation of Invariants for NLSE

In quantum mechanics, the quantity |ψ(x, t)|2 represents the probability of finding the system in
state x at time t. We have compared |ψ(x, t)|2 approximation from the nonintrusive Hamiltonian
ROM with the FOM simulation in Figure 9. The learned Hamiltonian ROM captures the correct
distribution of |ψ(x, t)|2, even 400% outside the training time interval. In Figure 10, we compare
the conservation of mass and momentum invariants for the two Hamiltonian ROMs. Due to
the specific choice of the reduced Hamiltonian, the intrusive Hamiltonian ROM preserves both
quadratic invariants exactly. The learned Hamiltonian ROM exhibits bounded error for the mass
invariant and interestingly, conserves the momentum invariant exactly. The numerical results in
Figure 9 and Figure 10 demonstrate the physics-preserving nature of our H-OpInf method.
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Figure 8: Nonlinear Schrödinger equation: Plot (a) shows that both learned Hamiltonian ROM
and intrusive Hamiltonian ROM exhibit bounded FOM energy error with marginally higher energy
error for the nonintrusive Hamiltonian ROM. The black line indicates end of training time interval.
Plot (b) shows similar energy error accuracy for nonintrusive Hamiltonian ROMs with 2r = 10
and 2r = 12.

(a) FOM (b) H-OpInf ROM 2r = 12

Figure 9: Nonlinear Schrödinger equation: Hamiltonian ROM learned using H-OpInf correctly
predicts |ψ(x, t)|2 well outside the training time interval of T = 20.
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Figure 10: Nonlinear Schrödinger equation: The H-OpInf ROM exhibits bounded error for the mass
invariant whereas the intrusive Hamiltonian ROM demonstrates exact conservation. In contrast,
both nonintrusive and intrusive Hamiltonian ROMs conserve the momentum invariant exactly.
The black line indicates end of training time interval.

4.4 Sine-Gordon Equation

We consider a special nonlinear wave equation, called the sine-Gordon equation. This nonlinear
hyperbolic PDE appears in a number of physical applications such as Josephson junctions between
superconductors, dislocations in crystals, relativistic field theory, and mechanical transmission
lines. Although this equation was originally introduced in the 19th century, it came to prominence
in 1970s due to the presence of soliton solutions. A soliton solution is a self-reinforcing wave that
maintains its shape while it propagates at a constant velocity in the medium. These special wave
forms are caused by a cancellation of nonlinear and dispersive effects in the medium.

4.4.1 PDE Formulation

The sine-Gordon equation
ϕtt = ϕxx − sin(ϕ), (48)

has a canonical Hamiltonian formulation for q = ϕ and p = ϕt. The Hamiltonian functional

H(q, p) =

∫
1

2

[
p2 + q2x + (1− cos(q))

]
dx,

with the canonical Hamiltonian PDE form yt = J δH
δy for y = [q p]⊤ leads to

yt =

[
qt
pt

]

=

[
0 1
−1 0

][ δH
δq
δH
δp

]

=

[
p

qxx − sin(q)

]

.

4.4.2 FOM Implementation

We study the sine-Gordon equation over x ∈ [−L/2, L/2] with L = 40. For the FOM simulations,
we consider periodic boundary conditions with the following initial conditions

q(x, 0) = 0, p(x, 0) =
4

cosh(x)
. (49)

The nonlinear PDE is spatially discretized using n = 200 equally spaced grid points leading to a
discretized state y ∈ R400. We discretize the Hamiltonian functional which yields the following
space-discretized Hamiltonian Hd

Hd(y) =

n∑

i=1

[

1

2

(
qi+1 − qi

∆x

)2

+
p2i
2

+ (1− cos(qi))

]

∆x,
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Figure 11: Sine-Gordon equation: Hamiltonian ROMs learned with H-OpInf achieve same accuracy
as the intrusive Hamiltonian ROM for both training data and testing data, which is 400% longer
than the training time interval.

where qi := q(t, xi), pi := p(t, xi), and y = [q⊤ p⊤]⊤. The resulting FOM is represented by the
following Hamiltonian ODE system

q̇ = ∇pHd(p,q) = p, ṗ = −∇qHd(p,q) = Dfdq−







...
sin(qi)

...






.

The FOM is numerically integrated for total time T = 10 using symplectic midpoint rule with
∆t = 0.005. The resulting time-marching equations require solving a system of 2n = 400 coupled
nonlinear equations at every time step.

4.4.3 Results

Figure 11 shows relative state approximation error for both Hamiltonian ROMs with increasing
ROM order. For the training time interval of T = 10 in Figure 11a, both intrusive and nonintrusive
approaches yield ROMs of comparative accuracy up to 2r = 40. For 2r > 40, the state error for
nonintrusive Hamiltonian ROM levels off. Interestingly for the testing time interval of T = 50 in
Figure 11b, the nonintrusive approach gives marginally lower state error for 2r > 40.

For the FOM energy error comparison, both Hamiltonian ROMs are simulated until t = 400
to demonstrate the long-time stability of nonintrusive ROM simulations. Unlike the other two
numerical examples, we have not considered a full cycle of FOM data for training data in this
example. Inside the training data regime, both intrusive and nonintrusive Hamiltonian ROMs
produce bounded energy error behavior with similar accuracy in Figure 12a. Interestingly, the
nonintrusive Hamiltonian FOM energy error plot changes its qualitative behavior after leaving the
training data regime but the error still remains bounded up to t = 400, which is 3900% outside
the training interval. Despite the fact that nonintrusive reduced operators are learned only from
training data, the Hamiltonian nature of our learned ROM ensures accurate prediction along with
bounded energy error far outside the training data regime. Similar to the NLSE example, both
nonintrusive Hamiltonian ROMs for the sine-Gordon equation also exhibit the same ROM energy
error behavior in Figure 12b.

We have compared the approximate numerical solution using both intrusive and nonintrusive
approaches with the FOM solution in Figure 13. Even though the reduced operators are learned
from training data T = 10, our nonintrusive Hamiltonian ROM captures the correct wave shape
at t = 50 which is 400% past the training time interval.

5 Conclusions

We have presented a data-driven model reduction method that utilizes information about the space-
time continuous Hamiltonian functional to derive Hamiltonian ROMs via nonintrusive operator
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Figure 12: Sine-Gordon equation: Plot (a) shows that the learned Hamiltonian ROM exhibits
bounded FOM energy error even at t = 400. The black line indicates end of training time interval.
Plot (b) shows similar ROM energy error behavior for learned Hamiltonian ROMs of different
dimensions.
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Figure 13: Sine-Gordon equation: Plots show the numerical approximation of the solution of (48)
using low-dimensional (2r = 50) intrusive and nonintrusive Hamiltonian ROM at different t values.
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inference. Our method applies to canonical Hamiltonian systems with nonpolynomial nonlinear
terms, and learns Hamiltonian reduced operators directly from the full-model simulation data,
without an intrusive symplectic projection step that requires full-model operators. Our method
only requires access to the form of the space-discretized Hamiltonian so that we can learn the
parameters, but not the space-discretized Hamiltonian itself. The inference of the operators is
based on a constrained least-squares problem that ensures that the reduced models are Hamiltonian
systems. We have also presented a theoretical result that shows that the nonintrusively learned
reduced operators converge to the same reduced operators as obtained with intrusive structure-
preserving model reduction under certain not-too-restrictive conditions.

The numerical experiments with the nonlinear Schrödinger equation and the sine-Gordon equa-
tion demonstrate that our method works well for Hamiltonian systems with complex nonlinear phe-
nomena. The numerical results also show that the presented method learns stable reduced-order
models and provides greater interpretability, while facilitating accurate long-time predictions far
outside the training data regime.

Future research directions motivated by this work are: extending Hamiltonian operator in-
ference to noncanonical Hamiltonian systems; deriving error bounds for the difference between
Hamiltonian of intrusive and nonintrusive ROM, i.e., |H̃ − Ĥ |; and extending sampling algorithm
based on re-projection for implicit time-marching schemes so that they can be combined with
H-OpInf to recover intrusive Hamiltonian ROMs in a nonintrusive way.
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