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Abstract

The theory of stochastic processes impacts both physical and social sciences. At the molecular scale, stochastic
dynamics is ubiquitous because of thermal fluctuations. The Fokker-Plank-Smoluchowski equation models the
time evolution of the probability density of selected degrees of freedom in the diffusive regime and it is therefore
a workhorse of physical chemistry. In this paper we report the development and implementation of a Variational
Quantum Eigensolver procedure to solve the Fokker-Planck-Smoluchowski eigenvalue problem. We show that
such an algorithm, typically adopted to address quantum chemistry problems, can be applied effectively to
classical systems paving the way to new applications of quantum computers. We compute the conformational
transition rate in a linear chain of rotors experiencing nearest-neighbour interaction. We provide a method to
encode on the quantum computer the probability distribution for a given conformation of the chain and assess
its scalability in terms of operations. Performance analysis on noisy quantum emulators and quantum devices
(IBMQ Santiago) is provided for a small chain showing results in good agreement with the classical benchmark
without further addition of any error mitigation technique.

1 Introduction

Since the dawn of quantum mechanics the study of quan-
tum phenomena has been one of the key focus of the
scientific community. For many years quantum systems
have been investigated with the sole purpose of deepen-
ing our understanding on their microscopic behaviour.
In recent years, however, scientific and technological ad-
vancement opened the way to the direct manipulation
and control of quantum systems with the aim of solving
practical problems. This shift in paradigm, sometime
referred as second quantum revolution [1], changed the
way of looking at the quantum world moving it from
an object of study to the status of a powerful new tool.
Quantum computation is surely one of the key exam-
ples of these new quantum technologies and unearthing
computational tasks for which the use of quantum re-
sources can offer a significant increase in efficiency with
respect to the best classical algorithmic counterpart is
one of the key challenges of the field. Many efforts of the
scientific community have been devoted towards such an
alternative paradigm of computation leading to the de-
velopment of several algorithms that heralded its disrup-
tive potential [2]. Particularly, with regard to relevant
breakthroughs in physics and chemistry, quantum sim-
ulation is considered among the first near-term applica-
tions of this field [3]. In the present era of Noisy Inter-
mediate Quantum Devices (NISQ) [4], hybrid quantum
algorithms represent a valuable tool to boost classical
computational power using small quantum processors. In
this framework, some of the more performing algorithms
are the so called Variational Hybrid Algorithms (VHA)
where the quantum device is tasked with the preparation

of a parametrized trial state and the computation of a
cost function which, in turn, is minimized by an external
classical optimization routine [4]. This method requires
the quantum device to run circuits of reasonably short-
depth that cope with the coherence time and error rate
of modern NISQ devices [5].

The literature about VHA is constantly growing both
in terms of different implementations and in terms of
their applications. These range from the study of the
electronic structure of small molecules [6, 7] and molec-
ular vibrations [8] to the simulation of condensed matter
and high-energy physics [9, 10]. In contrast, less atten-
tion has been dedicated to the application of quantum
computing in the context of stochastic simulations (i.e.,
simulations of systems characterized by variables with a
random character, and thus by classical probability dis-
tributions). We believe that leveraging standard methods
of stochastic calculus, while harnessing the potential of
quantum computers, may lead to the development of new
quantum tools in the field of complex system simulations.
This can possibly pave the way to important advances in
chemistry, biochemistry and all the other connected fields
in which stochastic analysis plays a relevant role such
as quantitative finance, epidemiology, and computational
fluid dynamics [11–13]. Here we propose a new VHA to
solve the Fokker-Planck-Smoluchowski (FPS) eigenvalue
problem based on the isomorphism existing between the
FPS operator and the quantum Hamiltonian [14, 15]. As
an example, in this paper we will focus on the approxima-
tion of the kinetic rate constant for the conformational
transition in linear chain molecules that is connected with
the first non-vanishing eigenvalue of the FPS operator.
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Despite of its simplicity, this model has been used as
theoretical starting point for the conformational analysis
in polymers [16–18] whose study has deep implications in
many different areas [19].

The present contribution is organized as follows: Sec-
tion 2 outlines the theoretical basis of our approach. We
give a general overview on how the FPS eigenvalue prob-
lem can be treated on a quantum computer and then we
formalize the stochastic description of the conformational
dynamics of a chain of rotors characterized by a bistable
intramolecular potential energy surface.

This system is the case-study of the present work and
it models the molecular dynamics of simple polymers.
An important aspect of the Fokker-Planck dynamics in
bistable systems is that the first excited state can become
almost degenerate with the ground state especially for
large activation barriers. The corresponding small, but
non-zero, eigenvalue determines the rate of passage of
particles from one potential well to the other, so defining
a theoretical framework for a microscopic derivation of
the rate coefficients of elementary two-state reactions as
initiated by Kramers [20, 21]. Although an accurate cal-
culation of the first non-zero eigenvalue assumes a central
relevance in the study of kinetic processes, it is compu-
tationally challenging especially for large systems char-
acterized by many coupled coordinates. In this context,
the application of new quantum computational tools can
be convenient to possibly tackle previously inaccessible
stochastic problems.

We propose to harness the exponential storage capac-
ity of a quantum computer to handle this problem and
we detail the implementation of the stochastic problem
in the quantum architecture in Section 3. The eigenvalue
problem associated to the Fokker-Planck operator is en-
coded into the quantum register with a simple binary
mapping of the basis set in the computational basis. By
exploiting the symmetry of the FPS operator, we dis-
cuss a VQE-like algorithm to obtain the first non-zero
eigenvalue of the stochastic operator, corresponding to
the kinetic rate of the isomerization reaction.

Section 4 presents the results obtained for the simula-
tion of small chains characterized by different activation
barriers. We discuss several aspects which play a criti-
cal role on the performance of the algorithm, such as the
choice of the variational ansatz, the size of the basis set
which is reflected on the number of qubits to be used and
the effect of the noise on the accuracy of the result. In
the concluding section, we critically discuss the poten-
tial quantum advantage of the proposed algorithm. The
key advantage stems from the linear scaling in terms of
memory resources, indeed the binary mapping implies a
linear relation between the number of rotors in the poly-
meric chain and the number of qubits used in the im-
plementation. This is an exponential gain compared to
classical memory resources which grow with the dimen-
sion of the vector space representing the state of the sys-
tem, dimension increasing exponentially with the number

of relevant degrees of freedom. On the other hand, the
present implementation suffers of an exponential scaling
of the number of expectation values which needs to be
measured to solve the problem and a somehow limited
accuracy of the results for low barriers. We therefore
point out future developments which are needed to bring
the stochastic molecular dynamics amongst the applica-
tions which will take great advantage by the advent of
quantum computers.

2 Theory

The stochastic description of molecular systems is a broad
research field that embraces a wide range of theoretical
tools to allow the interpretation of the fluctuating dy-
namics of microscopic systems in a plethora of physical
conditions [22]. We will focus our attention on the sim-
ple case of a stationary and Markovian diffusive process.
This kind of behavior is typical of the so called over-
damped regime [23], in which a time-scale separation is
observed due to the configurational variables’ dynamics
being slower than the evolution of the conjugated mo-
menta. By looking at the system within a time-scale
comparable with the fluctuations of the configurational
variables q(t), the momentum variables rapidly loose cor-
relation, so that one can assume they are relaxed in the
equilibrium distribution.

In order to describe the time evolution of the proba-
bility distribution ρ(q, t), that depends on some config-
urational variables q, the Fokker-Planck-Smoluchowski
(FPS) equation can be invoked [23]:

∂ρ(q, t)

∂t
:= −Γ̂ρ(q, t) (1)

where the FPS operator Γ̂ is defined as follows:

Γ̂ = − ∂

∂q

T

D(q)ρeq(q)
∂

∂q
ρeq(q)−1 (2)

Here D(q) is the diffusion tensor [23] and ρeq(q) repre-
sents the Boltzmann equilibrium probability distribution:

ρeq(q) ∝ e−βU(q) (3)

where U(q) is the mean-field potential and β = (kBT )−1.

The FPS operator is real and positive semi-definite
such that each eigenvalue λk obeys to the constraint
λk ≥ 0 ∀k. From now on we will consider the eigen-
values λk sorted in ascending order such that λk ≤ λk+1

and we will indicate with ψk(q) the corresponding eigen-
functions.

The lowest eigenfunction ψ0(q), corresponding to the
null eigenvalue λ0 = 0, is provided by the equilibrium
distribution ρeq(q). If the time evolution of a generic
non-equilibrium distribution ρ(q, t) =

∑
k ck(t)ψk(q) is

considered, the following relation holds:

ρ(q, t+ τ) = e−Γ̂τρ(q, t) =
∑
k

e−λkτ ck(t)ψk(q) (4)
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From this equation we can easily conclude that, since all
the non-zero eigenvalues play the role of exponential de-
cay rates, a generic probability distribution must relax
over time toward the equilibrium state ψ0(q).

The goal of this work is to investigate a possible strat-
egy to solve, with the support of a quantum computer,
the eigenvalue problem associated to the FPS operator
from Eq. 2. This however cannot be done directly since
the FPS operator is non Hermitian and, as such, can-
not be converted into a qubit Hamiltonian to be used in
the variational procedure. This issue has a simple work-
around that involves the introduction of a symmetrized,

self-adjoint operator ˆ̃Γ:

ˆ̃Γ := ρeq(q)−
1
2 Γ̂ρeq(q)

1
2 (5)

which leads to a ”Schrödinger-like” representation of the

FPS operator [15] with ˆ̃Γ in place of the Hamiltonian op-
erator.

This new symmetrized operator conserves the same
eigenvalues λk of the original FPS operator while its
eigenfunctions ψ̃k(q) are connected with the eigenfunc-
tions ψk(q) of Γ̂ by the relation:

ψ̃k(q) = ρeq(q)−
1
2ψk(q) (6)

For more details about the symmetrized FPS operator
we refer to [23, 24].

Here, inspired by the Variational Quantum Eigen-
solver (VQE) [25], we propose an hybrid algorithm to ob-

tain the first non-vanishing eigenvalue (i.e., λ1) of ˆ̃Γ. The
procedure exploits the quantum computer to prepare, by
means of a parametrized circuit, a trial wave-function to
approximate the state correspondent to the ψ̃1(q) tar-
get eigenfunction. Subsequently an external classical op-
timization routine updates the parameters entering the
variational circuit on the basis of the measured expecta-

tion value 〈ˆ̃Γ〉. The procedure is iterated until conver-

gence. In order to measure 〈ˆ̃Γ〉 the symmetrized FPS
operator will be represented as a linear combination of
Pauli strings.

Γ̂QC =
∑
j

γjP̂j

〈ˆ̃Γ〉 ≡ 〈Γ̂QC〉 =
∑
j

γj〈P̂j〉
(7)

where the explicit formulation for the weights γj and the

Pauli strings P̂j ∈ {σx, σy, σz, I}⊗N depends upon the
adopted mapping (see Sec. 3).

Notably, the direct application of the VQE to the
FPS eigenvalue problem would lead to the trivial solu-
tion λ0 = 0, as already mentioned. In the following (Sec.
2.1), we will report the implementation of a particular
problem for which the symmetry allows to easily target
the desired eigenvalue. Nevertheless, various techniques
can be applied to overcome this issue in analogy with

the computation of excited states of a molecular Hamil-
tonian [26–28].

In the following section we will present, on the basis
of this theoretical introduction, a linear chain molecule
as model system to implement this procedure. We will
focus on the calculation of the first excited state that,
as will be discussed, assumes a central relevance in the
study of kinetic processes.

2.1 Stochastic dynamics and conforma-
tional transition rate

The FPS equation describes the time evolution of the
probability distribution over all the configurational do-
main allowing for a continuous description of the system
dynamics. This degree of detail is surely very informa-
tive, but is also not always the best way of describing a
reactive process. Often, either for simplicity or due to the
lack of information about the initial distribution, less de-
tailed descriptions are adopted, in which, rather than de-
scribing the molecular configurations, one usually thinks
to the process as the inter-conversion between reactant
and product structures [15]. In doing so we implicitly
moved our description from a continuous FPS problem
to a discrete Master equation with rates identifying the
kinetic constants for the interconversions between differ-
ent states.

In this paper, we will consider a symmetrical double
minimum system in which two stable molecular config-
urations are kept apart by a potential barrier. This is
the prototypical example of a simple isomerization pro-
cess in which the kinetic constants k of the direct and
reverse processes are the same. If the Master equation
description is adopted, it is trivial to show how the popu-
lation relaxation rate toward equilibrium is described by
the exponential decay exp (−2kt). If the barrier is large
enough, the FPS operator eigenvalue spectrum shows a
large gap between the first non-zero eigenvalue λ1 and the
higher ones. In this picture, the states corresponding to
λn � λ1 have the character of fast (intra-minimum) re-
laxing modes, while the longer-lived state, corresponding
to λ1, represents the kinetic relaxation mode connected
with the population transfer between sites (Figure 1).
The exponential form dictating the relaxation dynamic
can be obtained from Eq. 4 as exp (−λ1t) from which the
simple relation, λ1 = 2k, can be established between the
kinetic constant k and the first non-vanishing FPS oper-
ator eigenvalue λ1.

2.2 The rotor chain as a model for molec-
ular conformational dynamics

Now that the theoretical framework has been outlined
let us introduce a model system to be used as a test
subject. Let us consider a chain of N + 1 rotors free to
rotate around a common axis, see Fig.2. Let ϕk (for k =
0 , 1 , . . . , N) be the angular coordinate representing the
orientation of the k-th rotor with respect to a laboratory
axis orthgonal to the chain axis and θk := ϕk −ϕk−1 the
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Figure 1: Pictorial representation of the isomerization
process in the chain of three rotors. The potential energy
surface corresponds to the two different configurations
of the chain molecule, the kinetic rate constant for the
process is determined by the first non-zero eigenvalue of
the Fokker-Planck-Smoluchowski operator.

relative orientation angles, hereafter called as dihedral
angles, between the k-th rotor and the previous one in
the chain.

Let us assume that the rotors interact on the basis of
a nearest-neighbour periodic potential Uk(θk) = Uk(θk +
2π), depending on the corresponding dihedral angle θk,
such that the overall mean-field potential for the chain
can be specified as:

U(θ) :=

N∑
k=1

Uk(θk) (8)

in which θ = (θ1, ..., θN ) ∈ RN represents the vector
encoding the internal configuration of the chain.

In order to have a clear picture of the kinetic process,
let us consider a chain in which N − 1 mono-stable dihe-
drals are coupled to a single bi-stable potential. In what
follows the mono-stable potential will be specified as:

Uk(θk) :=
∆nr

2
[1− cos (θk)] (9)

while the bi-stable one by the form:

Uk(θk) :=
∆r

2
[cos (2θk) + 1] (10)

where we have adopted the symbols ∆r and ∆nr to in-
dicate the barrier height encountered when moving, re-
spectively, along the reactive and non-reactive dihedral

1
2

3

ϕ0
ϕ1

ϕ2

θ1

θ2

Figure 2: Schematic representation of a chain of three ro-
tors reporting the definition of the set of ϕk orientations
and of the corresponding set of dihedral angles θk.

coordinates.

Furthermore, let us assume the absence of hydrody-
namic interactions [19] amongst the rotors which, there-
fore, are considered as characterized by independent and
constant diffusion coefficients (Dk for k = 0 , 1 , . . . , N).
Under these assumptions the FPS operator for the pro-
cess can be written as:

ˆ̃Γ = −
N∑
k=0

Dkρ
− 1

2
eq (ϕ)

∂

∂ϕk
ρeq(ϕ)

∂

∂ϕk
ρ
− 1

2
eq (ϕ) (11)

in which ϕ = (ϕ0, ..., ϕN ) ∈ RN+1 represents the vector
encoding the orientation of each rotor.

The FPS operator defined in Eq. 11 contains a de-
generate degree of freedom. Because of the pairwise de-
composition of the mean field potential (see Eq. 8), any
homogeneous rotaion of the rotors brings the system into
an equivalent conformational state. Such a degeneracy
can be exploited by introducing a coordinate representa-
tion based on the dihedral angles θ and the overall chain
orientation Φ defined as:

Φ :=

∑N
k=0

ϕk

Dk∑N
k=0

1
Dk

(12)

If the coordinate transformation ϕ → [Φ,θ] is ap-
plied, the FPS operator can be decomposed as the sum of

a global orientation operator ˆ̃ΓΦ, N single dihedral terms
ˆ̃Γk and N − 1 two dihedrals interaction terms ˆ̃Γk,k+1:

ˆ̃Γ→ ˆ̃ΓΦ +

N∑
k=1

ˆ̃Γk +

N−1∑
k=1

ˆ̃Γk,k+1 (13)

with these operators specified as:

ˆ̃ΓΦ = − 1∑N
k=0D

−1
k

∂2

∂Φ2
(14)

ˆ̃Γk = − (Dk +Dk−1)

[
∂2

∂θ2
k

+
U ′′k (θk)

2
− U ′k(θk)2

4

]
(15)

ˆ̃Γk,k+1 = 2Dk

[
∂

∂θk

∂

∂θk+1
− 1

4
U ′k(θk)U ′k+1(θk+1)

]
(16)

In order to study the conformational dynamics, the term
ˆ̃ΓΦ, depending on the global orientation angle Φ, can be
neglected since it does not affect the internal degrees of
freedom.

At this point, in order to solve the eigenvalue prob-
lem associated with the FPS operator and to obtain the
integrals required for the VQE algorithm, a convenient
basis set must be selected. For the purpose of this pa-
per a set {φn(θ)} of composite basis functions has been
constructed according to:

φn(θ) =

N∏
k=1

Ξnk
(θk) (17)

where Ξnk
(θk) are the eigenfunctions of the single dihe-

dral operator ˆ̃Γk and n = (n1, ..., nN ) represents a vector
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containing the order of the eigenfunctions for each di-
hedral angle. All the isolated dihedral eigenfunctions
Ξnk

(θk) have been obtained by expanding the proper
FPS operator over a Fourier basis set.

Given the parameterized forms of Eq. 9 and Eq. 10
for the contributions to the mean field potential, one de-

rives quite easily that the FPS operator ˆ̃Γ is invariant
with respect to the change of sign of all the dihedral an-
gles. In mathematical terms this condition implies the

commutation relation
[
Γ̂, Ŝ

]
= 0, where Ŝ is the symme-

try operator for the change of sign of the dihedral angles.
In essence the FPS operator acts on a symmetry parted
Hilbert space H = H+ ⊕ H− and its action does not
mix functions belonging to the even H+ and to the odd
H− sub-spaces. So, the variational theorem applies to
the lowest eigenvalue of both sub-spaces. Therefore both
the first eigenstate ψ̃0(q) = ρeq(q)−

1
2 and the second

eigenstate ψ̃1, associated with the aforementioned kinetic
mode, can be obtained from the variational procedure ap-
plied to the even and odd sub-spaces, respectively. In this
framework, the application of a VQE procedure to get λ1

requires the representation of FPS operator on the basis
of odd basis functions only.

Given pnk
∈ (−1, 1) as the parity index of each dihe-

dral eigenfuntion Ξnk
(θk), the condition:

N∏
k=1

pnk
= −1 ∀n | φn(θ) ∈ H− (18)

must be verified in order to consider only functions be-
longing to the odd H− sub-space. The results from the
classical computations of the stochastic problem will be
discussed, together with the ones coming from the VQE
procedure, in Sec. 4.

3 Implementation

The first step in the implementation is represented by
the translation of the target ψ̃1(q) eigenfunction from a
linear combination of N -dihedral states (Eq. 17) to a lin-
ear combination of quantum computer bitstring states.
Such a procedure will provide also an expression for the
symmetrized FPS operator as a combination of Pauli
strings. In this paper, we opted for a binary mapping
in which a progressive numerical label j is assigned to
every basis function φn(θ). Each label is then directly
mapped through its binary representation bin(j) in a
state |j〉 ≡ |bin(j)〉 of the qubit register. Given a set
of J basis functions a total of Q = dlog2(J)e qubits is
required.

We start the mapping process by considering the FPS
operator representation in the previously introduced sym-
metry adapted basis:

ˆ̃Γ =
∑
r,c

γr,c|r〉〈c| with γr,c = 〈r|ˆ̃Γ|c〉 (19)

Let us indicate with δq(j) the q-th digit of the binary
representation of j such that |j〉 ≡ |δ1(j), ..., δQ(j)〉, we

can rephrase the operator representation, Eq. 19, in a
qubit-wise form:

ˆ̃Γ =
∑
r,c

γr,c

Q⊗
q=1

|δq(r)〉〈δq(c)| (20)

By substituing in the last equation each single qubit outer
product as combination of Pauli matrices, we obtain the
following decomposition in a linear combination of Pauli
strings like in Eq. 7:

ˆ̃Γ =
∑
r,c

γr,c

Q⊗
q=1

{
1− |δq(r)− δq(c)|

2

[
1q + (−1)δq(r)σzq

]
+

+
|δq(r)− δq(c)|

2

[
σxq + (−1)δq(r)iσyq

]}
(21)

As we can see each matrix element of the FPS opera-
tor is translated into a set of 2Q strings, each of which
is composed by Q Pauli matrices. Each set of strings is
specific for the given binary bitstring representation of
all the possible r and c states.

Here we discuss the potential quantum advantage of
the approach. Considering that the number of basis
states J to encode shows a roughly exponential increase
with the system size (e.g. with the length of the rotor
chain), the adoption of this mapping protocol allows to
overcome the exponential growth of a classical storage
space by requiring a number of qubits which scales lin-
early with the system size. To be more precise, let us
indicate with m a positive integer related to the number
of single-dihedral basis states used to set up the product
states in Eq. 17 and let N be the number of dihedral
angles in the chain. From these assumptions we can esti-
mate the order of J to be J ∼ O(mN ) and, consequently,
only O(N log2(m)) qubits are needed to represent the
system on the quantum register. In order to fully char-
acterize the efficiency associated with the procedure, a
more in depth analysis of the mapping is required. To
do so, the measurement process has to be taken into ac-
count. As mentioned in Sec. 2, the expectation value
measurement is related, according to Eq. 7, to the ex-
pectation values of the Pauli strings which, in turn, are
affected both by the structure of the operator and the
mapping adopted. Since we have already discussed the
features of the mapping now we should turn our atten-
tion to the estimation of the non-vanishing elements of
the FPS operator.

Due to the nearest-neighbour nature of the interac-

tion the ˆ̃Γ operator is sparse. Indeed, it has a block struc-
ture where only states differing for single-dihedral func-
tion of adjacent rotors are connected. Nevertheless, even
with this great reduction, the number of Pauli strings to
be measured is exponentially growing: the number of ele-
ments connecting states that differ for two single-dihedral
functions is O(m2JN) to which we add the O(mJN)
elements differing for a single-dihedral state and the J
diagonal elements. It may be worth to notice that this
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estimate does not take into account any symmetry argu-
ment that could reduce the count and does not consider
additional strategies that can be employed to reduce even
more the number of required measurements. Some con-
sideration about this point will be discussed in Sec. 5.

It is important to notice that this is not the only pos-
sible choice for the mapping and different strategies could
be more or less convenient depending on the system at
hand; ref. [29] details several possibilities available within
the range set by the binary mapping (more dense) and
the unary encoding (less dense, where d-level systems are
mapped into d bitstring states with all the qubits in the
state |0〉 but one distinguishing among different states,
see for instance refs. [30, 31]). As a general rule, a more
or less dense mapping results in an accordingly higher
or smaller cost in terms of length and number of Pauli
strings generated by each mapped matrix element. These
different factors must be balanced according to the sys-
tem and its size.

That said, the binary mapping suffices for our scope
which is to give a proof of concept of the application
by considering a rather small system. The design of a
more efficient mapping is left for future development and
discussed in Sec. 5.

3.1 Computational details

Here we provide the details about the numerical results
that are shown in Sec. 4. The matrix elements of the
FPS operator have been obtained with a homemade C++
code [32] which has also been used as benchmark for
the implementation of the hybrid algorithm in a Python
code [33].

In order to evaluate the accuracy and the performance
of our method we have considered a chain of three rotors.
The two resulting dihedral angles have been parametrized
as follows: the first one experiences a bi-stable poten-
tial, as dictated by Eq. 10, while the second one is de-
scribed by a mono-stable potential as from Eq. 9. The
barrier height ∆r for the bistable dihedral has been varied
from 0.5 kBT to 3.0 kBT while the ∆nr parameter for the
single-minimum dihedral has been kept fixed at 1 kBT .
The diffusion coefficients for all three rotors have been
set to the same relative value of 1. The term ”relative”
is here employed since, due to the structure of Eq. 11,
any scale factor can be applied to the FPS operator to
scale the result in term of the desired diffusion coefficient.

The algorithm has been tested on Q = 2, 3, 4 qubits
quantum registers using a composite basis set filling com-
pletely all the 2Q register states. In order to generate
the proper composite basis set for the system an ade-
quate number of single dihedral basis functions had to
be selected according to Eq. 17 and Eq. 18. Indicating
the number n1 of isolated basis function for the double
minimum dihedral and with n2 the one selected for the
single minimum one, the following (n1, n2) basis set have
been selected for each value of Q: For the 2 qubit sys-
tem a (4, 2) basis set has been employed, for the 3 qubit
we opted for a (4, 4) configuration and a (8, 4) set has
been used for the 4 qubit calculations. Note that, due

to symmetry restrains, only half of the composite basis
functions generated by each (n1, n2) set are used in the
actual variational procedure.

A RyRz heuristic variational circuit has been em-
ployed in order to prepare the trial wave-function re-
quired in the VQE procedure [34]. Two main elements
form such a circuit: a layer of parameterized Ry and Rz
rotations, used to apply an arbitrary single qubit rotation
to each qubit in the quantum register, and an entangler
block to introduce correlation in the trial wavefunction.
A variational circuit of depth d = 1 can be obtained
enclosing an entangler block between two rotation lay-
ers. Higher depth circuits can be obtained by concate-
nating couples of entangler blocks and rotation layers to
the depth d = 1 circuit. A Q-qubits RyRz circuit of
depth d is defined by 2Q(d + 1) variational parameters.
Two different entangler blocks configurations have been
considered in this paper: one creating entanglement be-
tween adjacent qubits, hereafter addressed with the name
”linear”, and one creating entanglement between all cou-
ples of qubits in the register, called ”full” from now on.
In Figure 3 a schematic representation of these parame-
terized circuits is shown.

In order to start the VQE procedure the register is
set to the all zeros state |0〉 that has been selected in or-
der to correspond to the basis set function φ0(θ1, θ2) =
Ξ1(θ1)Ξ0(θ2) given by the product of the first excited
state Ξ1(θ1) for the isolated double minimum system and
the ground-state Ξ0(θ2) of the single minimum one. The
rotation angles of the variational form are set randomly
at every run.

Four different optimization algorithm, namely the down-
hill simplex method, Sequential least square program-
ming (SLSQP), Constrained optimization by linear ap-
proximation (COBYLA) and Simultaneous perturbation
stochastic approximation (SPSA), have been applied with
a variable degree of success based on the type of simu-
lation. The IBM’s Qiskit module [35] (version 0.22) has
been employed for the simulation of the quantum circuits.

(a) Linear entangler

(b) Full entangler

Figure 3: RyRz variational forms of depth d = 1 with
linear (a) or full (b) entangler blocks on a 3-qubits circuit.
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The implementation has been verified using the built-in
Qiskit Statevector Simulator, an ideal simulator that re-
turn the statevector of the quantum register. Then, we
characterized the statistics induced by a finite number of
measurements of the quantum state in a noiseless quan-
tum simulation varying the number of runs (that are the
times a circuit is executed and measured). Finally the
behavior of the algorithm has been tested on a noisy sim-
ulator. For this last task, the noise model of the IBMQ
Santiago has been employed and a basic readout error
mitigation protocol (based on Ref. [36]) has been applied
to each circuit simulation as implemented in Qiskit.

In order to perform the simulations with the IBMQ
Santiago noise model, the built-in Qiskit transpilation
routines have been employed to map the circuit on the
quantum computer topology. During the process the
gates have been translated into U1, U2, U3 and CNOT ba-
sis gates. Given the 5 inline qubits topology of the IBMQ
Santiago quantum computer the transpilation of a linear
entangler RyRz variational form on Q qubits appears to
be very efficient resulting in a gate count of 4Q−3 (3Q−2
Un and Q− 1 CNOT) without requiring any qubit swap.
The transpilation of a full entangler RyRz circuit repre-
sent instead a more complex task requiring qubit swaps
due to the presence of CNOT entagling operations be-
tween non-adjacent physical qubits.

The expectation value measurement has been car-
ried out either by measuring independently all the Pauli
strings of the mapped operator or by retrieving from
Qiskit the built-in method which groups all the terms
that are simultaneously diagonalizable [37]. Both meth-
ods performed equally well and returned comparable re-
sults.

4 Results

In this section we discuss the results obtained with nu-
merical simulations of the algorithm in several platforms:
the Qiskit Statevector Simulator, the Qiskit Quantum
Assembly Simulator (QASM) with and without a noise
model and the IBMQ Santiago device [35].

In Sec. 4.1 we assess the variational circuit perfor-
mance by discussing the results obtained with a noise-free
optimization. The importance of this question is high-
lighted by the large amount of research on the ansatze
efficiency when this kind of algorithms are applied to
quantum chemistry problems [25, 38, 39]. Finally, in
Sec. 4.2 we show the results of noisy simulations of the
algorithm as a function of the barrier height and number
of qubits adopted.

4.1 Variational network assessment

The first question we want to address is whether a RyRz
variational form can produce a good trial wavefunction
to approximate the classical computational result and if
the optimization procedure is able to find its way towards
such a configuration.

In order to give a reasonably general picture a few
representative results have been reported in Tab. 1. All
the data in Tab. 1 have been obtained from 60 indepen-
dent VQE optimizations carried out on the Qiskit stat-
evector simulator. For each evaluation the parameters of
the RyRz variational form have been set randomly and
optimized with the SPSA algorithm for a maximum of
600 iterations. The choice of the optimization algorithm
has been dictated by a performance analysis carried out
on different optimizers reported in appendix A. The ex-
pectation value has been evaluated at each step with an
independent measurement for each of the Pauli strings.

We have chosen to report the minimum value ob-
tained from the sampling as a measure of the heuristic
network capability in generating a trial state reasonably
close to the optimal configuration; while we have adopted
the average converged result to quantify the performance
of the optimizer in extracting the desired state from the
overall accessible Hilbert space. We are aware that this is
a non trivial analysis given that many factors contribute
to the shape of the optimization landscape and the explo-
ration of the underlying Hilbert space. Nevertheless, we
will see as our considerations are in agreement with more
structured studies in literature applied to parametrized
quantum circuits [40, 41].

As it can be seen from Tab. 1 increasing the number
of qubits results in a steep rise of the average value er-
ror accompanied by a somewhat milder increase in the
error on the minimum value that, even for 4 qubits, re-
mains under the 5% limit. These data indicate how a
RyRz variational form of depth d = 1 can be used to
produce reasonable approximations of the target state
with an error, on the expectation value, lower than 1.1%
for 2 and 3 qubits systems. This finding is in agreement
with the general analysis carried out by Sim. et al. [41]
where parametrized quantum circuits similar to the ones
adopted in this study have shown a good capability of
uniformly represent the Hilbert space in which they are
defined.

Conversely, the higher error on the distribution aver-
age is a clear sign of the challenging optimization process.
It is known that such a complexity is not only arising
from the dimensionality of the problem but it is strictly
related to the phenomenon of quantum tipicality [42, 43]
meaning that the distribution of certain functions over
the quantum states of a given Hilbert space is extremely
peaked around a typical value. Specifically, for random
quantum circuits such as the one considered in our case,
the average value of the gradient objective function tends
to zero and as the Hilbert dimension increases the more
states will correspond to flat optimization landscape re-
gions [44, 45].

In order to clarify how the optimizer convergence im-
pacts the overall VQE outcome let us observe how a state
|φ〉 obtained from a N -qubit RyRz variational form can
be exactly reproduced, in the form of |φ〉 ⊗ |0〉, by a
(N + 1)-qubit RyRz variational ansatz by properly set-
ting the rotation parameters. This implies that: given
two variational systems, composed respectively by N and
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Table 1: Results obtained by 60 independent VQE optimizations using the statevector simulations. Q indicates the
number of qubits and ∆r is the barrier height for the double mimimum dihedral. We report min(λ1) as the minimum
value obtained in the simulations, 〈λ1〉 as the average value, while λref

1 represents the theoretical target value for the
considered basis set obtained with classical calculation. εmin(%) and εavg(%) are respectively the percentage error
on the minimum and on the average.

Q ∆r Entangler min(λ1) 〈λ1〉 λref
1 εmin(%) εavg(%)

2 0.5 Linear 1.51615 1.55182 1.51562 0.0350% 2.39%
3 0.5 Linear 1.48244 1.56413 1.47537 0.479% 6.02 %
3 0.5 Full 1.49113 1.56967 1.47537 1.07% 6.39%
4 0.5 Linear 1.54594 1.81958 1.47531 4.79% 23.34%
2 3.0 Linear 0.33313 0.33994 0.33310 0.00901% 2.05%

N ′ > N qubits, and considering the proper ordering of
the basis-set, the accuracy of the best estimate accessi-
ble to the larger N ′-qubits system must be higher or at
least equivalent to the accuracy of the estimate produced
by the smaller N -qubits one. In order to test this idea
a hierarchical procedure has been devised in which the
optimized parameters of a N -qubit variational form have
been used as the starting guess in a (N + 1)-qubit VQE
procedure. A total of 500 VQE have been carried out
using COBYLA as the optimizer. Differently from what
observed in a regular VQE procedure, as the one reported
in Tab. 1, a monotonic decrease in the minimum value
is encountered in the hierarchical procedure; a minimum
value of 1.516 is found for a 2 qubits system, a value of
1.484 is encountered for a 3 qubits system while a final
value of 1.475 is encountered in the case of 4 qubits. A
similar monotonic decrease is also observed in the case
of the distribution average. We therefore verified that
the accuracy of the obtained result increases by enlarg-
ing the computational space in the case the optimization
procedure is guided by an educated guess.

This observation is fundamental in understanding the
nature of the results discussed above proving that the al-
gorithmic bottleneck for the accuracy is the classical op-
timization procedure rather than the quantum portion.
In conclusion, the trends emerging from these calcula-
tions are supporting the following considerations: the
pure state distribution generated by the two entanglers
allows one to reach the configuration corresponding to the
global minimum of the optimization landscape but, on
the other hand, we have seen that the landscape itself is
affected by the dimension of the explorable Hilbert space.
This drawback could be overcome developing physically-
inspired ansatze for the Smoluchowski operator similarly
to what has been done in literature for the molecular
Hamiltonian [38].

The results presented in this section will be useful in
the following discussion: knowing the limit imposed by
an ideal implementation will allow us to independently
verify how various types of noise affect the overall stabil-
ity of the method.

4.2 Statistics of finite measurements and
quantum noise effects

At this point we continue our analysis by discussing the
effects of different noise sources on the circuits presented

above with the aim of answering the question: how does
the introduced noise impact the expectation value mea-
surement for a given circuit configuration? This is es-
pecially important in the case of nearly converged con-
figurations in which the error introduced by noise can
significantly affect the ability of the optimizer to oper-
ate. In order to investigate this point, a converged set of
RyRz parameters has been used to study the effects of fi-
nite measurements and quantum noise on the expectation
value. The optimized variational parameters have been
obtained using the IBM Q Santiago quantum computer
noise-model. To accumulate statistics, we have measured

〈ˆ̃Γ〉 with 1000 independent runs. Each Pauli string mea-
surement was accomplished accumulating 20000 shots.
Figure 4 reports the results of this investigation as two
distinct distributions for the expectation value in the case
of a sole sampling noise or with an addition of a noise
model tailored on the IBM Q Santiago device.

Figure 4: Expectation value distribution obtained from
1000 circuit (each one executed 20000 times) on the same
converged RyRz parameter set for a 2 qubit system with
∆r = 0.5kBT for the bi-stable dihedral. Blue distribu-
tion relates to the sampling under the simulated IBM Q
Santiago hardware noise; orange distribution is due to
finite measurements.

Looking at the distributions we can easily verify how
the introduction of a noise model in the simulation causes
both an increased distribution amplitude, with the loss
of the peaked Gaussian profile observed for the noiseless
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simulator, and a shift of the average value. This last
point is quite interesting since it highlights the profound
difference existing between the two effects. The sampling
effect stems from an inherent rounding error due to the
limited number of measurement performed. As such, for
a set of repeated measures it will appear as a Gaussian
distribution centered around the exact expectation value
for the state prepared by the variational form. Moreover,
the variance of the sampling distribution tends to zero as
the number of measurements increases. On the other
hand, the simulated noise of a NISQ device alters the
generation of the trial state producing slightly different
wavefunctions. Since the trial state, obtained via the
optimization procedure, is located near a minimum, most
of the error in the state preparation will result in a higher
expectation value estimate. The best value obtained in
the presence of noise is, indeed, 0.7% higher than the best
value obtained in an ideal calculation.

We now consider how the noise affects the quantum
calculation of both different models, by changing the po-
tential energy barrier of the conformational transition,
and of different implementations, by changing the num-
ber of basis functions describing the target eigenfunction
(i.e. using a different number of qubits).

Performance dependency on the potential barrier
height
For this evaluation we have performed 250 VQE routines
starting with a random guess for the RyRz parameters.
The variational parameters have been optimized using
the SPSA algorithm under the effect of the Santiago
quantum computer noise model. Every circuit has been
transpiled before the simulation. In Fig. 5 we report the
results where two qubits encode the composite dihedral
states describing a system of three rotors in which ∆r

for the double minimum dihedral has been varied form
0.5 kBT to 3.0 kBT while ∆nr for the single minimum
dihedral was kept fixed at 1 kBT .

First of all we can notice how, as expected for acti-
vated processes, the kinetic constant decreases as we in-
crease the potential energy barrier. Looking at the data
we can observe the good agreement between the classi-
cally estimated target value (solid line) and the average
results obtained with IBMQ Santiago noise model (down-
ward triangles). In the same graph, we report (stars) the
values of λ1 obtained computing the expectation value
on the IBMQ Santiago quantum computer starting from
a set of variational parameters optimized using a VQE
procedure carried out on the Qiskit Statevector Simula-
tor. During the expectation value measurement on the
IBMQ quantum hardware each circuit has been repeated,
in order to build the required statistics, for the maximum
allowed number of times (8192 runs). The obtained data,
despite being computed from parameters obtained in a
completely noiseless procedure, provide a natural metric
to look at the results in term of the characteristic noise of
a NISQ era quantum computer. These information, to-
gether with the ones coming from the noisy simulations,
can be seen as a general proof of concept showing the
feasibility to run the entire calculation on a NISQ device.

Bearing in mind that the quantum noise affects only
the evaluation of the final expectation value we may no-
tice that adding a further noise source causes sensible
deviations from the noise-free average. To comment this
results we leverage the intuition built from the statistical
analysis in the previous section: the points collected on
the IBM Q Santiago can be seen as samples of a third dis-
tribution generated by the noise of the actual quantum
hardware. Under this light we may notice that in almost
all cases we obtain absolute errors comparable with the
maximum and mean deviations of the two distributions
reported in Fig. 4.

This result on the one hand supports the effectiveness
of the noise model in capturing the performance of real
hardware, and on the other hand allows us to justify the
greater deviation from the ideal average at the last point.

Figure 5: (Upper panel) - Dependence of the first non-
zero eigenvalue λ1 with respect to the dihedral barrier
height ∆r. In light blue we report the distribution ob-
tained from 250 VQE optimizations with random initial
guess simulating the circuit execution with a noise model
based on the IBMQ Santiago hardware. The black line
represents the target value computed for the given ba-
sis set while the orange dashed line connects the average
value for each group of VQE runs. Blue stars show the
results obtained evaluating the last variational circuit (al-
ready optimized by the Statevector simulator) on the 5
qubits chip IBMQ Santiago. (Lower panel) - Absolute de-
viation from the target values. Dotted green line shows
the average result obtained with a Statevector simulation
repeated 60 times with different initial guesses.
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Finally, we can also notice that the absolute width of
the distribution remains substantially unchanged in the
range of barriers explored. As a consequence, the relative
error decreases moving from higher to smaller barriers
passing from 13.6% at 3.0 kBT to 3.72% at 0.5 kBT . In
the same figure (lower panel) the noise-free statevector
results are reported as reference. Here we can appreciate
with more the detail that, even though the distribution
width is almost constant, the optimization is more sensi-
tive with respect to the initial guess distribution for small
barrier values.

Performance dependency on the basis set size
Now that the accuracy of the algorithm has been dis-
cussed in terms of the physics of the simulated system,
a final question still remains open: how does the perfor-
mance of the protocol scales with the number of qubits
employed? To answer to such a question we consider the
same system of a three rotor chain with reactive barrier
height of ∆r = 0.5kBT . The probability density distribu-
tion has been described adopting an increasing number of
basis elements from 4 up to 16 odd composite functions
(see Eq. 17). This translates to an increasing number
of qubits to encode the overall probability density dis-
tribution. The purpose of this analysis is not to assess
the accuracy of the basis set size (which determines only
a slight change in the kinetic rate constant) but to ob-
serve the effect of a noisy device upon performing the
same calculation with an increasing number of quantum
resources. The results obtained in such a simulation, to-
gether with the reference values, are reported in Fig. 6.

As we can see the distribution width rapidly increases
with the number of qubits and so does also the average
expectation value computed with both statevector and
noisy simulators. This points out the increased complex-
ity of the optimization procedure as previously mentioned
in Sec. 4.1. For a 4 qubits system an error of the 37.6%
is recovered for the noisy simulation while an error of the
23.3% is encountered in the case of a Statevector simu-
lation. These data confirm the role of the noise in creat-
ing less accurate predictions but shows how a significant
part of the error itself should be ascribed to a difficult
convergence of the classical optimization as anticipated
in section 4.1 . This massive performance degradation
has also the effect of hiding the tiny margin for accuracy
improvement induced by the basis-set extension. This
is a critical aspect to consider in this early VQE imple-
mentations in which a good trade-off between algorithm
stability and basis-set extension must be found. Fur-
ther analyses of possible alternative variational networks
could circumvent this issue.

5 Conclusions

In this paper we have presented a novel application for
quantum computers. Particularly, we have addressed the
solution of the Fokker-Planck-Smoluchowski eigenvalue
problem exploiting its isomorphism with the Schrodinger
equation.

Figure 6: (Upper panel) - Dependence of the first non-
zero eigenvalue λ1 with respect to the number of qubits
adopted. In light blue we report the distribution ob-
tained from 250 VQE optimizations with random initial
guess with a noise model based on the IBMQ Santiago
hardware. The black line represents the target value com-
puted for the given basis set while the orange dashed line
connects the average value for each group of VQE runs.
Blue stars show the results obtained evaluating the last
variational circuit (already optimized by the Statevector
simulator) on the 5 qubits chip IBMQ Santiago. (Lower
panel) - Absolute deviation from the target values. Dot-
ted green line shows the average result obtained with a
Statevector simulation repeated 60 times with different
initial guesses.

The proposed algorithm consists of three main ingre-
dients: (i) a strategy to map the classical probability dis-
tribution onto the quantum register, (ii) the choice of a
unitary ansatz to generate trial probability distributions
(in the same spirit of the original VQEs for quantum
systems) and (iii) the implementation of a classical op-
timization routine updating the unitary control param-
eters to move towards the exact configuration. Further
investigation should follow along all the lines mentioned
above.

Indeed, in order to devise a quantum algorithm use-
ful for everyday applications and able to achieve quantum
advantage with respect to a classical solution, a polyno-
mial scaling of the quantum resources with the system
size is desirable. Our analysis in Sec. 3 has shown how
this has already partially been achieved considering the

10



information storage point of view. On the other hand, a
dense mapping such as the binary approach adopted in-
sofar requires a number of measurements that scales ex-
ponentially with the number of rotors in the chain. This
aspect can be mitigated by implementing different strate-
gies that group sets of Pauli strings reducing the overall
measurement count [37, 46–48]. For instance, consider-
ing the J diagonal elements, a single circuit execution is
sufficient since all the strings are diagonal in the compu-
tational basis and can be measured simultaneously in a
single post-rotation. Despite this, looking at systems of
interest from an application point of view a step forward
is still needed.

In a future work we will seek to overcome this issue
by developing a mapping on the single-dihedral states
which should reduce dramatically the number of terms
in the FPS operator representation. In quantum chem-
istry parlance, this would correspond to a mapping on
the spin-orbitals in place of a mapping on the Slater de-
terminant basis.

Other matters to be addressed concern the unitary
ansatz generating the trial probability distribution and
the classical optimizer. These aspects have been consid-
ered in Sec. 4. There, we have shown that adopting
a RyRz heuristic variational network allows to achieve
good results for a small basis set. We believe that the
results we have obtained in presence of a simulated noise
can be further improved by the incorporation of a mit-
igation routine such as the zero noise error extrapola-
tion [49]. However, we decided to not include also this
feature in the implementation as it goes beyond the pur-
pose of the present study of presenting a new application
of hybrid algorithms in the field of stochastic processes.

At the same time, we have also noticed that the per-
formance scales poorly with respect to the number of
qubits and suffers of some problems deriving from the
uniform and agnostic coverage of the underlying Hilbert
space. In this direction we have suggested as a working
strategy to lower the barrier of the optimization task by
applying an hierarchical procedure in which the solution
of the variational optimization with a smaller number of
basis function is used as initial guess for the estimation
of the kinetic rate constant using an higher number of
qubits. Such an approach is in line with the development
of algorithms in the NISQ era where small quantum pro-
cessors are put to test by very shallow circuits; alterna-
tively, we should look at further refinements of this im-
plementation by developing physically-inspired ansatze
as done in other contexts. Also this aspect will be inves-
tigated in a future work.

In essence, we achieved the proof of concept of the
application of a quantum computer to solve stochastic
dynamics. With some technical developments as dis-
cussed in the previous paragraphs, the proposed proce-
dure brings stochastic dynamics amongst the promising
applications of future quantum devices.
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Appendix A

In what follows the optimizer selection and the effect
that the entangler type has on the convergence behav-
ior of the algorithm will be presented. Addressing the
discussion of this problem is not trivial since the con-
vergence profile of each VQE routine depends upon the
selected set of initial parameters. In what follows we will
proceed by analyzing, for different choices of optimizer
and entangler, the convergence profile of a single VQE.
This clearly represents only a single point in the multidi-
mensional initial parameter space and consequently only
comparative considerations can be done between differ-
ent methods. Such a simple data representation, visible
in Figure 7, can anyway already give a useful qualitative
picture. For the present tests, a 3 qubit system is con-
sidered; both dihedral barriers (single and double) have
been set to 1 kB T and a common set of randomly selected
initial parameters has been kept fixed for all simulations.
The built-in Qiskit SPSA optimizer together with the
Nelder-Mead, SLSQP and COBYLA optimizer from the
SciPy [50] Python module have been employed. The fig-
ure contains three plots that represent the profile of the
VQE optimization in the case of various type of noise.
The top panel contains data obtained using the noise-
less statevector simulator. The center panel represents a
noiseless simulator in which the number of measures on
the same circuit has been set to 20000. The lower panel
shows the results for the transpiled circuits simulated in-
cluding the noise model of the IBMQ Santiago quantum
computer. Also for this last case the number of runs has
been set to 20000.

Analyzing Figure 7 many interesting comments can
be made. First of all looking at the raw performance
of the various optimizers one can easily observe how the
Nelder-Mead algorithm consistently shows a slower con-
vergence toward the target value if compared with the
other optimization procedures. The SLSQP algorithm
shows very good performance in the Statevector simu-
lations converging in few iterations to the target value;
however its sensitivity to noise prevent, as far as we can
tell, its application to noisy simulations. Both COBYLA
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Figure 7: Comparison between single VQE optimiza-
tion under different conditions of optimizer and entan-
gler. The tree graphs refers to the results obtained with
the Qiskit Statevector Simulator (higher panel), Qiskit
QASM without (central panel) and with (lower panel)
the IBMQ Santiago noise model. For the middle and
lower panel the number of measures on the same circuit
has been set to 20000.

and SPSA shows consistently stable and reasonably good
performances with the latter showing a more consistent
behaviour and greater accuracy in simulations with higher
noise. For this reason SPSA has been used as the default
optimizer throughout the paper. Looking at the central
panel one can easily see how little difference is observed
between different entanglers in term of converged values
with the full entangler resulting mildly more accurate. As
it can be seen in the lower panel, the situation is rapidly
reversed by the introduction of a realistic quantum com-
puter noise model. The more complex structure of the
full entangler joined with the less efficient transpilation,
results in a slower converging and significantly less accu-
rate result, clearly pointing to the linear entangler as the
natural candidate for a realistic implementation.
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