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Abstract

We consider the properties of a slow-fast prey-predator system in time and space. We

first argue that the simplicity of prey-predator system is apparent rather than real and

there are still many of its hidden properties that have been poorly studied or overlooked

altogether. We further focus on the case where, in the slow-fast system, the prey growth

is affected by a weak Allee effect. We first consider this system in the non-spatial case

and make its comprehensive study using a variety of mathematical techniques. In par-

ticular, we show that the interplay between the Allee effect and the existence of multiple

timescales may lead to a regime shift where small-amplitude oscillations in the population

abundances abruptly change to large-amplitude oscillations. We then consider the spa-

tially explicit slow-fast prey-predator system and reveal the effect of different time scales

on the pattern formation. We show that a decrease in the timescale ratio may lead to

another regime shift where the spatiotemporal pattern becomes spatially correlated lead-

ing to large-amplitude oscillations in spatially average population densities and potential

species extinction.

Keywords: Slow-fast time scale; relaxation oscillation; canard cycle; spatial pattern;

regime shift

1 Introduction

In the natural environment, interactions in a population community are usually quite complex

[5, 25, 77]. This ubiquitous complexity have several different sources such as the complexity

of the wood web, nonlinearity of species feedbacks, multiplicity of temporal and spatial scales,

etc. It is extremely difficult, in fact hardly possible at all to capture the entire complexity

of ecological interactions in a single mathematical model or framework. Instead, the usual

means of analysis tend to focus on a particular aspect or feature of the ecological system. For

instance, while the food web theory endeavours to link the properties of a realistic population

community to the complexity of the corresponding food web, in particular by analysing the web

connectivity and revealing the bottlenecks [1, 60], a lot of attention focuses on the properties of

simpler ‘building blocks’ from which the web is made [24]. A variety of blocks of intermediate
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complexity have been considered, a few examples are given by the three-species competition

system [17], intraguild predation [19] and a three-species resource-consumer-predator food chain

[15].

Arguably, the most basic block is the prey-predator system. It has been a focus of research

for almost a century [64, 80] and there is a tendency to think about it as a fully studied, text-

book material [36]. However, this is far from true. The apparent mathematical simplicity of

the prey-predator system (usually associated with the classical Rosenzweig-McCarthur model

as a paradigm [64, 77]) is superficial rather than real, and there has recently been a surge of

interest and an increase in mathematical modellng literature dealing with its ‘hidden’, over-

looked properties, with more than a hundred of papers published in the first quarter of 2021

alone1. New properties readily arise as soon as one introduces relatively small (i.e. preserv-

ing the defining structure of the model), biologically motivated changes into the paradigmatic

system, e.g. adding explicit heterogeneous space [83], changing the specialist predator to a gen-

eralist one [62, 69], changing the properties of predator’s functional response [2, 20], considering

different types of density dependence in the population growth or mortality [10, 23], or taking

into account the fact that the intraspecific dynamics of prey and predator often occur on a very

different time scale [26, 59].

While one of the generic properties of a prey-predator system is its intrinsic capability to

produce sustained population cycles (due to the emergence of a stable limit cycle in a certain

parameter range [37]), with many fundamental implications for the population dynamics, an-

other equally important property is its capacity to exhibit pattern formation, in particualar

due to the Turing instability [68, 78]. The latter has been a focus of many groundbreaking

studies that linked the patterns observed in various biological and ecological systems to the dis-

sipative instability in a prey-predator (or, more generically, activator-inhibitor) system, e.g. see

[13, 14, 22, 38, 40, 44, 45, 46, 47, 48, 49, 63], also [50] for an exhaustive review of earlier

research. Other studies also discovered and considered in detail a possibility of non-Turing pat-

tern formation, in particular due to the interplay between the Hopf bifurcation and diffusion

[51, 52, 53, 57, 67, 73] as well as pattern formation resulting from the Turing-Hopf bifurcation

[3].

Interestingly, in spite of the large number of modelling papers concerned with the prey-

predator system, there are still a number of issues poorly investigated. One such issue is the

interaction between different types of density dependence and the existence of different time

scales, either in a spatial or nonspatial system. Indeed, one context where the prey-predation

framework has been particularly successful to provide a new insight into the mechanisms of

ecological interactions are is large-magnitude nearly-periodical fluctuations in population size

that has been observed in many species and ecosystems. In such a case, typically, a large out-

break in population abundance is followed by a population decline, often to a small population

size or density. For instance, the fluctuations in populations of snowshoe hares and Canadian

lynx in the Canadian Boreal forest was modeled with the help of a tri-trophic food web model

[75] where the population explosion of the lynx was observed every 9-11 years followed by

a rapid decline in the population of hares. Also in case of plankton ecosystem within lake,

the seasonal abundance of zooplankton (particularly Daphnia) is frequently observed, which

completely grazes down the algal biomass thus resulting in clear-water phases in lakes [67].

1Data are taken from the Web of Science
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The exact causes of these fluctuations are still a debatable issue among various researchers.

However, one of the common trait observed in the above examples is that the bottom level of

a multi-trophic system or the basal prey has faster growth and decay compared to their con-

sumers. On the other hand, the population of the budworm can increase several hundred fold

within a span of few years whereas the leaves of adult trees do not grow at a comparable rate.

This resulted in the outbreak of spruce budworm which destroyed the balsam forest of eastern

Northern America [34]. To capture this type of rapid growth/decay for the interacting species,

researchers introduced the mathematical models with slow-fast time scale. A small time scale

parameter is introduced either in the prey growth equation or in the predator growth depending

upon the species under consideration.

In a rather general case, the prey-predator interaction in a nonspatial system can be modeled

by a system of coupled ordinary differential equations

u′ = uf(u)− vg(u, v),

v′ = evg(u, v)−m(v)v,
(1)

where u and v denote the prey and predator densities, respectively, at time t. (A spatially

explicit approach includes diffusion terms, hence turning the ODEs to PDEs, see Section 5).

Here both the species are assumed to be distributed homogeneously within their habitat. The

function f(u) represents the per capita growth rate of prey, g(u, v) describes the prey-predator

interaction and µ describes the natural death rate of predators in absence of prey, e is known as

the conversion efficiency. Assuming the rate of growth of prey population much faster than its

predator, a time-scale parameter 0 < ε � 1 is introduced which transform the original model

to a slow-fast model as follows

εu′ = uf(u)− vg(u, v),

v′ = evg(u, v)−m(v)v.
(2)

This type of slow-fast prey predator models were first studied by Rinaldi and Muratori [61], so

far as our knowledge goes, where the cyclic coexistence of the slow-fast limit cycle was discussed.

They also analyzed the cyclic fluctuation in population densities of three species model in a

slow-fast setting with one and two multiple time scale parameters.

In mathematical literature, the slow-fast systems are considered as singularly perturbed

ordinary differential equation, where ε is the singular perturbation parameter. The standard

stability and bifurcation analysis performed for the prey-predator models was not enough to an-

alyze the complete dynamics exhibited by the slow-fast systems. Many mathematical techniques

were developed to study this class of systems. In the late 1970s, Neil Fenichel [11] introduced a

geometric approach based on the invariant manifold theory to study the singularly perturbed

coupled systems, known as Geometric Singular Perturbation Theory (GSPT). Using this theory

the dynamics of the full slow-fast system are studied by reducing it to sub-systems of lower

dimension and thereby studying the complete dynamics of the subsystems. The application of

Fenichel’s theory in the context of biology was well explained by G. Hek [16]. But this theory

fails to approximate the dynamics near the non-hyperbolic equilibrium points where the sys-

tem encounters a singularity. Later in 2001, Krupa and Szmolyan [27, 28] extended Fenichel’s

theory to overcome the difficulty around non-hyperbolic points using the blow-up technique.

This was based on the pioneering work of Dumortier [7, 8, 9]. The main idea behind this was
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to blow up the non-hyperbolic equilibrium points of the system by a 4-dimensional unit sphere

S3 and the trajectories of the blow-up system is mapped on and around the sphere. In case,

the blow-up space still has non-hyperbolic points, sequence of blow-up maps can be used to

desingularize the system.

Before the development of mathematical tools to study this class of systems, a Dutch Physi-

cist Van der Pol [9, 79] observed large amplitude periodic oscillation consisting of slow and fast

dynamics, which he named relaxation oscillation. These are periodic solutions consisting of

slow curvilinear motion and sudden fast jumps. These types of slow-fast limit cycles were

later observed in many chemical and biological systems [26, 42, 61, 81, 82]. Another type of

periodic solution observed in singularly perturbed systems are canard solutions. This was first

investigated by E. Benôıt et. al [4] while studying the Van der Pol Oscillator. Dumortier and

Roussarie, in their seminal work [9], analyzed this phenomenon through a geometric approach,

using blow-up technique and with the help of invariant manifold theory. A canard is a solution

of a singularly perturbed system which follows an attracting slow manifold, closely passing

through the bifurcation point of the critical manifold, and then following a repelling slow man-

ifold for O(1) time. It was observed that for the existence of canard solution Hopf bifurcation

is necessary [28]. The fast transition from small stable limit cycles appearing through Hopf

bifurcation to large amplitude relaxation oscillation via a sequence of canard cycles within an

exponentially small range of the parameter is known as canard explosion. In real-world ecosys-

tems this phenomenon can be related to sudden outbreak or decline of a particular species

[34, 66, 67, 74, 75].

Over the last few years, several works have been done on prey-predator systems with slow-

fast time scale. In [42, 43, 61], the authors have analyzed the periodic bursting of high and

low-frequency oscillations in interacting population models with two and three-trophic level

with slow-fast time scale. A novel 1-fast-3-slow dynamical system have been developed in

[58] to consider the adaptive change of diet of a predator population that switches its feeding

between two prey populations. The classical Rosenzweig–MacArthur (RM) model and the

Mass Balance chemostat model in the slow-fast setting is studied in [26], where the authors

have shown that the RM model exhibits canard explosion in the oscillatory regime of the

parameter space whereas the later model does not exhibit such phenomenon. They have used

the asymptotic expansion technique to determine the canard explosion point. In [59], the

authors have used the blow-up technique to obtain an analytical expression of the bifurcation

thresholds for which maximal canard solution occurs in the RM-model. The existence and

uniqueness of the relaxation oscillation cycle have been studied for the Leslie-Gower model with

the help of entry-exit function and GSPT in [82]. The rich and complex slow-fast dynamics of

the predator-prey model with Beddington-DeAngelis functional response is studied in [65]. To

the best of our knowledge, there is no work so far in literature considering the Allee effect in

the slow-fast prey-predator model. In this paper, first we consider the slow-fast dynamics of

the classical Rosenzweig–MacArthur (RM) model with multiplicative weak Allee effect in prey

growth equation using GSPT and blow-up technique.

In population ecology, the Allee effect is a widely observed phenomenon especially at low

population density, which describes a positive relationship between species population and per

capita population growth rate of species. The main causes of Allee effect include difficulties

in mate finding, inbreeding depression, cooperative defense mechanism etc. Mostly, we are
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concerned about the demographic Allee effect which can be classified as: strong Allee and

weak Allee effect. For strong Allee effect, the per capita growth rate is negative below some

critical population density (Allee threshold), and the growth rate becomes positive above that

threshold. Whereas, in case of weak Allee effect, per capita growth rate is small and remains

positive even at low population densities. But with the introduction of the time scale parameter

the per capita growth rate becomes much higher even at low density. Thus the species can

recover itself from the endemic level, and extinction is prevented. In this paper, we have

incorporated the weak Allee effect in prey’s growth in order to capture the true essence of the

slow-fast cycle.

The main objective of this paper is to provide a detailed slow-fast analysis of the tem-

poral model based on the various mathematical approach discussed above, and numerically

investigating the corresponding spatially extended slow-fast model. In prey-predator models,

the oscillatory dynamics of the system arises from the Hopf bifurcation but in the slow-fast

setting other than Hopf bifurcating limit cycle, the system exhibit various other interesting

periodic solution namely canard and relaxation oscillation. Here we are interested to explore

these solutions analytically and numerically with the help of sophisticated slow-fast techniques

as discussed above.

Over the last few decades, significant work has been done to study the mechanism of spatial

dispersal of species, with the help of reaction-diffusion systems. In this regard, the study of

invasion of the exotic species emerged to be of particular interest for many theoretical or field

ecologists. Biological invasion is a complex phenomenon that starts with a local introduction

of exotic species and once it gets established in a particular region, they start spreading and

occupying new areas [33]. The study of rate and pattern of spread is of primary importance

as they have a huge environmental impact and also can be used as a control measure for other

species. The invasion of exotic species takes place via propagation of continuous wave fronts, as

well as via irregular movement of separate population patches [32]. In [41, 56], the authors have

shown that patchy invasion is possible in deterministic models as a result of the Allee effect.

To the best of our knowledge, there exist hardly any work in literature which such complete

analysis of the slow-fast prey-predator model as well as on the effect of explicit time-scale

parameters on pattern formation. Here, first we perform exhaustive numerical simulations to

examine the pattern spread and patchy invasion of the species. And then, we examine how the

invasion of the species are affected by the time-scale parameter.

This paper is divided into two parts, in the first part we will provide mathematical analysis

of the temporal slow-fast model and the second part is supported by exhaustive numerical

simulations to investigate the effect of varying time-scale in biological invasion. In section 2, we

introduce the non-dimensionalised temporal model and standard stability analysis is performed.

Then in section 3 we introduced the slow-fast system. In section 4 we discussed GSPT and

blow-up technique for a detailed mathematical analysis of slow-fast systems. The existence

and uniqueness of the relaxation oscillation is studied here followed by the phenomenon of

canard explosion. In section 5, we consider the corresponding slow-fast spatio-temporal model

to examine how the spread of invasive species is affected by time-scale parameters. Finally, we

draw the conclusion of our work in section 6.
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2 Temporal Model and its linear stability analysis

We consider the classical Rosenzweig-MacArthur prey-predator model with the multiplicative

weak Allee effect in prey growth [6, 50, 70]. Let u and v be the prey and its specialist predator

densities, respectively, at time t. In appropriately chosen dimensionless variables and parameter

(see [41] for details), the model is given by the following equations:

du

dt
= f(u, v) := γu(1− u)(u+ β)− v

( u

1 + αu

)
, (3a)

dv

dt
= g(u, v) := v

( u

1 + αu
− δ
)
. (3b)

Here and below, the sign “:=” means “is defined”. We focus on the case where the growth

rate of the prey population is damped by the weak Allee effect, so that 0 < β < 1. For

β < 0, the Allee effect becomes strong (in this case, the prey population has another [usntable]

equilibrium at u = β); for β ≥ 1, the Allee effect is absent [31]. The per capita growth rate

f(u, v)/u is increasing for 0 < u <
1− β

2
and decreasing for

1− β
2

< u < 1. The predator

is a specialist predator as they do not have any alternative food source to survive apart from

u. The prey-dependent functional response is taken to be Holling type II [18]. The system

contains four positive dimensionless parameters where β quantifies the weak Allee parameter,

γ is the coefficient proportional to the maximum per capita growth rate, called characteristic

growth rate [21]. The parameter α characterizes the inverse saturation level of the functional

response and δ is the natural mortality rate of the predator. Throughout this paper we will

consider δ as the bifurcation parameter to determine the stability conditions of the coexisting

steady-state for the model 3.

Depending on the species traits, the prey population often grows much faster than its predator;

one well known example is given by hare and lynx where hares reproduce much faster than lynx

[75]. This motivated researchers to introduce a small time-scale parameter ε, 0 < ε < 1 in the

basic model (3). The parameter ε is interpreted as the ratio between the linear death rate of

the predator and the linear growth rate of the prey [16, 61]. And the assumption ε < 1 implies

that one generation of predator can encounter several generations of prey [18, 29]. Therefore

considering the difference in the time scale, the slow-fast version of the dimensionless model

(3) can be written as

du

dt
= f(u, v) = γu(1− u)(u+ β)− uv

1 + αu
, (4a)

dv

dt
= εg(u, v) = εv

( u

1 + αu
− δ
)
, (4b)

with initial conditions u(0) ≥ 0, v(0) ≥ 0 . Since the prey population grows faster compared to

the predator, u and v are referred to as fast and slow variables, respectively and time t is called

fast time. The equilibrium points for the system are independent of ε, thus system (3) and

(4) has same equilibrium points. The extinction equilibrium point and prey only equilibrium

point of system (3) (as well as for (4) are given by E0 = (0, 0) and E1 = (1, 0) respectively.

The interior equilibrium point E∗(u∗, v∗) of the system is the point where the non-trivial prey

nullcline intersect with non-trivial predator nullcline in the interior of the positive quadrant,

and we have,

u∗ =
δ

1− αδ
, v∗ = γ(1− u∗)(u∗ + β)(1 + αu∗).
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E∗ is feasible if the parametric restriction δ(α+ 1) < 1 holds. With the help of linear stability

analysis, we find E0 is always a saddle point. E1 is stable for δ >
1

1 + α
and saddle point

for δ <
1

1 + α
. E∗ bifurcates from predator free equilibrium point E1 through transcritical

bifurcation at δ = δT ≡
1

1 + α
.

Now evaluating the Jacobian matrix for the system (4) at the interior equilibrium point

E∗(u∗, v∗) we have

J∗ =

γ(u∗(2− 3u− 2β) + β)− v∗
(1 + u∗α)2

− u∗
1 + u∗α

εv∗
(1 + u∗α)2

ε
( u∗

1 + u∗α
− δ
)
 .

From the feasibility condition of E∗ we always have Det(J∗) > 0. The interior equilibrium

point is stable if Tr(J∗) < 0, and it loses its stability via super-critical Hopf bifurcation when

Tr(J∗) = 0 and is unstable for Tr(J∗) > 0. The Hopf threshold δ = δH can be obtained by

solving Tr(J∗) = 0 which on simplification gives

δH =
1 + α2β −

√
1 + α + α2 − αβ + α2β + α2β2

α(−1− α + αβ + α2β)
. (5)

Transversality condition for Hopf bifurcation is satisfied at δ = δH . The coexistence steady state

E∗(u∗, v∗) is stable for δ > δH and it destabilizes for δ < δH , surrounded by a stable limit cycle.

The bifurcation diagrams of the system (3) with δ as bifurcation parameter and for two different

values of β are plotted in Fig. 1. It is readily seen that, in case β < 1/α, with an increase in the

Allee threshold β (hence making the Allee effect weaker) the Hopf bifurcation point shifts to the

left. Correspondingly, the steady species coexistence occurs for a broader parameter range of δ

(see Fig. 1). Furthermore, with the increase of β the size of the limit cycle is reduced. Increase

in the strength of the weak Allee effect not only enhance the stable coexistence rather reduces

the amplitude of stable oscillatory coexistence. Interestingly, the linear stability results remains

unaltered in the presence of slow-fast time scale as the analytical conditions are independent of

ε. The linear stability analysis fails to capture the complete dynamics of the slow-fast system

(4) for 0 < ε� 1. The system (4) exhibit catastrophic transition which cannot be captured by

standard stability analysis, rather the model may sometimes overestimate ecological resilience

[74]. Therefore, to study the complete dynamics of the system we take help of geometric singular

perturbation theory and blow-up technique which will be discussed in next sections.

3 Slow-fast system

In this section, we shall describe the dynamics of the slow-fast system (4) when 0 < ε� 1. To

understand the dynamics of the system (4) for sufficiently small ε (> 0) we need to consider

the behaviour of two subsystems corresponding to (4), which can be obtained for ε = 0. The

system in its singular limit, ε = 0 is obtained as follows

du

dt
= f(u, v) = γu(1− u)(u+ β)− uv

1 + αu
, (6a)

dv

dt
= 0. (6b)
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(a) β = 0.2 (b) β = 0.8

Figure 1: The bifurcation diagram of system (3) using δ as the bifurcation parameter shown

for two different values of β and other parameters as α = 0.5, γ = 3. Here the blue solid

curve shows either the stable steady state (for δ > δH) or the size of the stable limit cycle (for

δ < δH), the solid red line shows the semitrivial ‘prey-only’ state in the range where it is a

saddle (hence unstable), and the dashed red line shows the unstable coexistence steady state.

The above system is known as fast subsystem or layer system corresponding to the slow-fast

system (4). The fast flow consists with constant predator density determined by the initial

condition v(0) = c, and by integrating the differential equation

du

dt
= γu(1− u)(u+ β)− uc

1 + αu
, (7)

with initial condition u(0) > 0. The direction of the fast flow depends on the choice of initial

conditions u(0), v(0) and other parameter values. Green horizontal lines are solution trajectories

with appropriate direction as shown in Fig. 2a. Now writing system (4) in terms of the slow

time τ := εt, we get the equivalent system in terms of slow time derivatives,

ε
du

dτ
= f(u, v) = γu(1− u)(u+ β)− uv

1 + αu
, (8a)

dv

dτ
= g(u, v) = v

( u

1 + αu
− δ
)
. (8b)

Substituting ε = 0 in the above system to find the following differential algebraic equation

(DAE),

0 = f(u, v) = γu(1− u)(u+ β)− uv

1 + αu
, (9a)

dv

dτ
= g(u, v) = v

( u

1 + αu
− δ
)
, (9b)

which is known as the slow subsystem corresponding to the slow-fast system (8). The solution

of the above system is constrained to the set {(u, v) ∈ R2
+ : f(u, v) = 0} and is known as critical

manifold C0. This set has one-one correspondence with the set of equilibrium of the system

(7). This critical manifold consists of two of different manifolds

C0
0 = {(u, v) ∈ R2

+ : u = 0, v ≥ 0},

C1
0 =

{
(u, v) ∈ R2

+ : v = q(u) := γ(1− u)(u+ β)(1 + αu), 0 < u < 1, v > 0
}
,
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such that C0 = C0
0 ∪ C1

0 where C0
0 is the positive v-axis and C1

0 is a portion of a parabola as

shown in Fig. 2a, marked with black colour. The slow flow on the critical manifold is given by

du

dτ
=

g(u, q(u))

q̇(u)
, (10)

where ‘.‘ refers to the differentiation w.r.t u. The solution of the system (4) for sufficiently

small ε > 0 cannot be approximated from its limiting solution at ε = 0. Therefore, ε = 0 is the

singular limit of the system (4). The solution of the full system is obtained by combining the

solution of the system in its singular limits. And depending on the region in the phase space

we use either of the subsystems.

For α = 0.5, β = 0.22, γ = 3, and δ = 0.3 the coexistence steady-state is unstable for 0 < ε ≤ 1

and is surrounded by a stable limit cycle. Interestingly the size and shape of stable limit cycle

change with the variation of ε which is shown in Fig. 2(b). The size and shape of closed curve

attractor (blue), obtained for ε = 0.001 is quite different from stable limit cycle (magenta)

which is obtained for ε = 1. This shape does not change if we further decrease ε, keeping

other parameters fixed. This observation is based upon the numerical simulation and we need

detailed analysis to understand the possible shape of the trajectories in singular limit ε → 0.

For ε = 0.001, the closed curve attractor (blue) consists of two horizontal segments on which

flow is fast and one curvilinear and vertical segment where the flow is slow. They are obtained

by concatenating the solution of the layer and the reduced subsystem respectively. The two

horizontal segments of the attractor (blue) are the perturbed trajectories corresponding to the

layer system. This signifies the fast growth or decay of the prey species while predator density

remains unaltered. The vertical portion close to v-axis and curvilinear part are close to the

critical manifolds C0
0 and C1

0 . Change in shape and size of the attractor does not solely depend

upon the magnitude of ε rather determined by the magnitude of the parameters involved with

the reaction kinetics and time scale parameter.

Now we fix ε = 0.01 and other parameters as mentioned above, except δ. Small variation in

δ just below the δH results in rapid change in size and shape of the periodic attractor (see

Fig. 2(c)). A small limit cycle (cyan) appears for δ = 0.3762 known as canard cycle without

head. This cycle encounter a change in curvature when δ = 0.376165 and the resulting cycle

is known as canard cycle with head (blue). Further decreasing δ to 0.36 the system settles

down to a closed cycle known as relaxation oscillation. Further decrease in δ does not alter

the size and shape of the closed attractor and the trajectories converge to the stable relaxation

oscillation cycle even for ε sufficiently small. In the next section, we will derive the analytical

conditions for the existence of canard cycle and relaxation oscillation. The analytical results

will help us to identify the domains in the prarametric plane where we can find these different

types of closed curve attractors.

4 Analysis of slow-fast system

The critical manifold C1
0 can be divided into two parts, one part consists of the attractors of

the fast sub-system and another part is repelling in nature. The attracting and repelling part

of the manifold is separated by a non-degenerate fold point P . The fold point P (uf , vf ) is

9



(a) (b)

(c)

Figure 2: (a) Dynamics of the slow-fast system (4) where single arrow represnt slow flow and

double arrow represent fast flow, (b) limit cycles for different values of time-scale parameter

ε = 1 (magenta), ε = 0.1 (green), ε = 0.001 (blue), (c) canard cycles for different values of the

bifurcation parameter δ for ε = 0.01, canard cycle without head for δ = 0.3762 (cyan), canard

cycle with head for δ = 0.376165 (blue), relaxation oscillation for δ = 0.36 (magenta) and other

parameters are mentioned in the text.

characterized by the following conditions [27].

∂f

∂u
(uf , vf ) = 0,

∂f

∂v
(uf , vf ) 6= 0,

∂2f

∂u2
(uf , vf ) 6= 0, and g(uf , vf ) 6= 0.

The components of the fold point are given by

uf =
(α− αβ − 1) + (1 + α + α2 − αβ + α2β + α2β2)

1
2

3α
,

vf = γ(1− uf )(uf + β)(1 + αuf ),

which is the maximum point on the critical manifold. The fold point divides the critical manifold

into normally hyperbolic attracting (C1,a
0 ) and repelling (C1,r

0 ) submanifolds given by

C1,a
0 =

{
(u, v) ∈ R2

+ : v = q(u), uf < u ≤ 1
}

C1,r
0 =

{
(u, v) ∈ R2

+ : v = q(u), 0 ≤ u < uf

}
.
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The point of intersection of C1
0 with the vertical v-axis is TC(0, βγ), which is the transcritical

bifurcation point for the fast subsystem. It follows from Fenichel’s theorem [11, 29], there

exist locally invariant slow sub-manifolds C1
ε and C0

ε which are diffeomorphic to the respective

critical manifolds C1
0 and C0

0 , except at the non-hyperbolic points P and T . C1
0 can be written

explicitly as v = q(u), we assume the invariant manifold C1
ε can be written as a perturbation

of v = q(u) as follows, with ε as perturbation parameter,

C1
ε =

{
(u, v) ∈ R2

+ : v = q(u, ε), 0 < u < 1, v > 0
}
, (11)

where q(u, ε) = q0(u) + εq1(u) + ε2q2(u) + · · · , and C0
ε = {(u, v) ∈ R2

+ : u = 0, v ≥ 0}. Using

the invariance condition and the asymptotic expansion of q(u, ε), we can find the perturbed

invariant manifold approximated up to the desired order. The approximation of q(u, ε) up to

second order is provided in Appendix A with explicit expressions for q0, q1, q2. The approxi-

mations of invariant manifold for different values of ε are shown in Fig. 3. This approximation

has two non-removable discontinuities in the vicinity of the non-hyperbolic points P and TC .

The critical manifold C1
0 is normally hyperbolic except at the points P (uf , vf ) and TC(0, βγ)

and so is C1
ε . Thus any trajectory starting near the attracting (repelling) submanifold C1,a

0

(C1,r
0 ) cannot cross the fold point P (transcritical point TC). We can see from Fig. 2 that for

sufficiently small values of ε the trajectories pass enough close to the attracting manifold C1,a
0

and cross the point P . Fenichel’s theory is not adequate to determine the analytical expression

for perturbed sub-manifolds close to C1
0 and is continuous in the vicinity of the non-hyperbolic

points.

Figure 3: Second order approximation of perturbed manifold from GSPT with ε = 1 (magenta),

ε = 0.1(green), ε = 0.01(red), ε = 0.001(blue); for the parameter values α = 0.5, β = 0.22, γ =

3, δ = 0.3 .

Therefore, to construct a trajectory passing through the vicinity of the point P we must remove

the singularity at this point. Depending on parameter δ, the predator nullcline intersects either

C1,a
0 or C1,r

0 or passes through the point P . Thus the coexistence equilibrium point E∗ lies either

on C1,a
0 or C1,r

0 or coincides with P . When E∗ lie on C1,a
0 it is globally asymptotically stable and

every trajectory converges to E∗. When E∗ coincides with the fold point P then fu(E∗) = 0,

fv(E∗) 6= 0, fuu(E∗) 6= 0, and g(E∗) = 0, this point is called the canard point. For the model

under consideration (4), the Hopf point coincides with the canard point. The solution passing
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through this point is known as the canard solution. For δ < δH , the coexistence equilibrium

point E∗ lies on the repelling sub-manifold C1,r
0 , it is unstable and we obtain a special kind of

periodic solution consisting of two fast flow (almost horizontal) and two slow flow (passing close

to C1,a
0 and C0

0) called relaxation oscillation. We will discuss the existence of such solutions in

consequent subsections.

To remove the singularity at the fold point, we use blow-up transformation at the non-hyperbolic

fold point which will extend the system over a 3-sphere in R4, denoted by S3 = {x ∈ R4 : ||x|| =
1}. Using the blow-up technique we remove the singularity from the system and determine the

canard solution passing through this point.

To apply the blow-up technique, first, we transform the slow-fast system (4) into its desired

slow-fast normal form.

4.1 Slow-fast normal form

Here we consider a topologically equivalent form of the system (4) by re-scaling the time with

the help of a transformation t→ (1 + αu)t, where (1 + αu) > 0 [30]. The transformed system

is
du

dt
= γu(1− u)(u+ β)(1 + αu)− uv ≡ F (u, v, δ),

dv

dt
= ε (uv − δv(1 + αu)) ≡ εG(u, v, δ).

(12)

The fold point P coincides with the coexistence equilibrium point at δ = δ∗. As a consequence,

the following conditions hold

F (u∗, v∗, δ∗) = 0, Fu(u∗, v∗, δ∗) = 0, Fv(u∗, v∗, δ∗) 6= 0, Fuu(u∗, v∗, δ∗) 6= 0,

Gu(u∗, v∗, δ∗) 6= 0, Gδ(u∗, v∗, δ∗) 6= 0 and G(u∗, v∗, δ∗) = 0.
(13)

Using the transformation U = u − u∗, V = v − v∗, λ = δ − δ∗, we translate the fold point to

the origin, and together with the conditions (13) the system reduces to the slow-fast normal

form near (0, 0) as follows

dU

dt
= −V h1(U, V ) + U2h2(U, V ) + εh3(U, V ),

dV

dt
= ε (Uh4(U, V )− λh5(U, V ) + V h6(U, V )) ,

(14)

where h′is, i = 1, 2, 3 · · · 6 are given in Appendix B.

Here λ measures the perturbation of δ from δ∗ and is considered as bifurcation parameter

for the system (14). The bifurcation parameter λ and time-scale parameter ε are assumed to

be independent of time. We now extend the above system to R4 by augmenting the equations
dλ

dt
= 0 and

dε

dt
= 0 to system (14) and study the dynamics of the system in the vicinity of

(0, 0, 0, 0).

4.2 Blow-up transformation

The fold point P of the system (4) and the equilibrium point E∗ coincides at the Hopf bi-

furcation threshold. Hence P is now a Canard point. Let us consider the blow-up space
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S3 = {(Ū , V̄ , λ̄, ε̄) ∈ R4 : Ū2 + V̄ 2 + λ̄2 + ε̄2 = 1} and an interval I := [0, ρ] where ρ > 0 is

a small constant. We define a manifold M := S3 × I and the blow-up map Φ, Φ : M → R4

where

Φ(Ū , V̄ , λ̄, ε̄, r̄) = (r̄Ū , r̄2V̄ , r̄λ̄, r̄2ε̄) := (U, V, λ, ε). (15)

Using the above map we can write the transformed system as follows

dŪ

dt
=

1

r̄

(
dU

dt
− Ū dr̄

dt

)
,
dV̄

dt
=

1

r̄2

(
dV

dt
− 2r̄V̄

dr̄

dt

)
,

dλ̄

dt
=

1

r̄

(
dλ

dt
− λ̄dr̄

dt

)
,
dε̄

dt
=

1

r̄2

(
dε

dt
− 2r̄ε̄

dr̄

dt

)
,

(16)

where
dŪ

dt
,
dV̄

dt
,
dλ̄

dt
,
dε̄

dt
are given in (14). To study the dynamics of the transformed system

on and around the hemisphere S3
ε≥0 we will introduce the charts with direction blow-up maps

[29, 76]. Along each direction of the coordinate axis we define the charts K1, K2, K3 and K4

by setting V̄ = 1, ε̄ = 1, Ū = 1 and λ̄ = 1 respectively, in (16). The charts K1 and K3

describe the dynamics in the neighborhood of the equator of S3 and K2 describes the dynamics

in a neighborhood of the positive hemisphere. Here, we mainly focus on chart K2 to prove the

existence of a periodic solution for 0 < ε̄ � 1. Re-scaling the time with the transformation

t̄ := r̄t, we desingularize the system (16) so that the multiplicative factor r̄ disappears. The

transformed version of the system (16) can be written in chart K2 as follows

dŪ

dt
= −V̄ b1 + Ū2b2 + r̄

(
a1Ū − a2Ū V̄ + a3Ū

3
)

+O(r̄(λ̄+ r̄)),

dV̄

dt
= Ūb3 − λ̄b4 + r̄

(
a4Ū

2 + a5V̄
)

+O(r̄(λ̄+ r̄),

dλ̄

dt
= 0,

dε̄

dt
= 0,

(17)

where bj’s are given in Appendix B,

a1 = a5 = 0, a2 = 1, a3 = − (γ + αγ(4u∗ + β − 1)) , a5 = u∗ − (1 + u∗α)δ∗. (18)

The condition for the destabilization of the coexistence equilibrium point through singular Hopf-

bifurcation is summarized in the following theorem. The Hopf bifurcation of the system (14)

occurs at λ = 0. At Hopf bifurcation, the purely imaginary eigenvalues of the corresponding

Jacobian matrix are a function of ε, which tends to zero as ε→ 0. Also, in slow-time derivative,

the eigenvalues are a function of 1/ε. Thus on both the time scales the Hopf bifurcation is

singular as ε→ 0.

Theorem 4.1. Let (U, V ) = (0, 0) is the canard point of the transformed system (14) at λ = 0

such that (0, 0) is a folded singularity and G(0, 0, 0) = 0. Then for sufficiently small ε there

exist a singular Hopf bifurcation curve λ = λH(
√
ε) such that the equilibrium point p of the

system (14) is stable for λ > λH(
√
ε) and

λH(
√
ε) = −b3(a1 + a5)

2b2b4

ε+O(ε3/2). (19)
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Proof. The proof of the theorem is given in Appendix B.

The singular Hopf bifurcation curve for the system (12) is thus given by

δH(
√
ε) =

1 + α2β −
√

1 + α + α2 − αβ + α2β + α2β2

α(−1− α + αβ + α2β)
−

b3(a1 + a5)

2b2b4

ε+O(ε3/2).

(20)

In Fig. 4 the singular Hopf bifurcation curve (red) is plotted in δ−ε parametric plane, it clearly

explains how the singular Hopf-bifurcation threshold changes with the variation in ε. Once the

coexistence equilibrium loses stability through Hopf bifurcation, at the Canard point, we find

a closed orbit as attractor surrounding the unstable equilibrium point. From this point small

amplitude stable canard cycle originates enclosing the point P and then forms canard cycle

with head depending on the parameter values. The following theorem provides an anlaytical

expression of the maximal canard curve in (λ− ε) plane.

Theorem 4.2. Let (U, V ) = (0, 0) is the canard point of the slow-fast normal form (14) at

λ = 0 such that (0, 0) is a folded singularity and G(0, 0, 0) = 0. Then for ε > 0 sufficiently

small there exists maximal canard curve λ = λc(
√
ε) such that the slow flow on the normally

hyperbolic invariant submanifolds M1,a
ε connects with M1,r

ε in the blow-up space. And λc(
√
ε)

is given by

λc(
√
ε) = − 1

A5

(3A1

4A2
4

+
A2

2A4

+ A3

)
ε+O(ε3/2) (21)

Proof. The proof of this theorem is given in Appendix C.

The maximal canard curve, along which the canard cycle with head appears for the system

(12) is given by

δc(
√
ε) =

1 + α2β −
√

1 + α + α2 − αβ + α2β + α2β2

α(−1− α + αβ + α2β)
−

1

A5

(3A1

4A2
4

+
A2

2A4

+ A3

)
ε+O(ε3/2).

(22)

Keeping α, β and ε (> 0) fixed, δc(
√
ε) gives the threshold for the existence of canard cycle with

head. A schematic diagram of the threshold curves in δ− ε-plane is illustrated in Fig. 4 and it

divides the δ−ε parametric plane into four domains. In domain I, when δ > δH, the coexistence

equilibrium point is stable. For a fixed ε > 0, as we decrease δ from domain I to domain II

small amplitude canard cycles appear after crossing the Hopf bifurcation threshold δ = δH. In

domain II, that is when δc < δ < δH, the system experiences a transition from canard cycle

with head to canard cycle without head. The size of the canard cycle increases on decreasing

δ and the shape of the cycle changes to canard with a head at δ = δc. The canard cycle whith

head persists in a narrow domain III, where δro < δ < δc. On further decreasing δ, that is,

when δ ≤ δro the unstable equilibrium point is surrounded by a stable periodic attractor called

relaxation oscillation. This periodic attractor consists of two concatenated slow (close to the

critical manifold) and fast (almost horizontal and away from the critical manifold) flow. We can

see that for sufficiently small ε, this transition, from small canard cycle to relaxation oscillation

through canard cycle with head, takes place within a narrow interval of the parameter δ and

the phenomenon is known as canard explosion. This mechanism is further illustrated with the

help of numerical example in the sub-section 4.4.
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Figure 4: Schematic diagram showing singular Hopf bifurcation curve δH (red), maximal canard

curve δc (blue), and δro (dashed black) relaxation oscillation cycle.

4.3 Entry-Exit Function

The canard cycle and relaxation oscillation pass through the fold point P when ε = 0. These

closed attractors pass through the vicinity of P for ε � 1. We now prove the existence of a

trajectory that jumps from the fold point to the other attracting slow manifold C0
0 through fast

horizontal flow and continuing there for a constant time the trajectory leaves C0
0 at a certain

point. This is determined by the entry-exit function and we can find the coordinates of the

exit point from the slow manifold C0
0 . To do this, first, rewrite the system (4) as a Kolmogorov

system [12] as follows

du

dt
= uf1(u, v) = u

(
γ(1− u)(u+ β)− v

1 + αu

)
,

dv

dt
= εvg1(u, v) = εv

( u

1 + αu
− δ
)
.

(23)

We can verify f1(0, v) = γβ − v, g1(0, v) = −δ < 0, which implies that f1(0, v) < 0 if v > γβ,

f1(0, v) > 0 if v < γβ. T (0, βγ) on the vertical axis is the transcritical bifurcation point

and we can divide the slow manifold C0
0 into two parts V + := {(u, v) : u = 0, v > γβ} and

V − := {(u, v) : u = 0, v < γβ}. Clearly V + is attracting and V − is repelling.

Let us fix ε > 0 and let umax be the point of maximum of the critical manifold C1
0 obtained

from the extremum condition q̇0(u) = 0, where q0(u) is given in Appendix A. Solving for umax
we find

umax =
(α− αβ − 1) +

√
1 + α + α2 − αβ + α2β + α2β2

3α
(24)

and from the expression of C1
0 we have

vmax = q(umax) = γ(1− umax)(umax + β)(1 + αumax). (25)

Now we consider a trajectory starting from a point, say (u1, v1), where u1 < umax and v1 = vmax.

The trajectory gets attracted toward the attracting manifold V+ and starts moving downward

maintaining proximity to V +. It was expected that the trajectory would leave the vertical axis

at the bifurcation point T where it loses its stability [42]. The trajectory crosses the point

T and continues to move vertically downward remaining close to the repelling part V −, for

a certain time, until a minimum predator population p(v1) is attained s.t. 0 < p(v1) < γβ.
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After leaving the slow manifold near the point p(v1), the trajectory starts moving along a fast

horizontal segment and gets attracted to attracting slow manifold C1,a
0 . This point of exit is

determined by an implicit function p(v1), called entry-exit function, which is defined implicitly

as ∫ v1

p(v1)

f1(0, v)

vg1(0, v)
dv = 0.

For simplicity we define v0 := p(v1), then we have∫ v1

v0

v − γβ
vδ

dv = 0 =⇒ (v1 − v0)− γβ ln
(v1

v0

)
= 0 (26)

Substituting (25) into equation (26) we obtain a transcendental equation in v0 which we solve

numerically to obtain the exit point.

For the parameter values α = 0.5, β = 0.2, γ = 3, δ = 0.3 we obtain umax = 0.472, v1 = 1.316,

and solving the transcendental equation (26) we get p(v1) = 0.207509, which is the exit point

from the manifold C0
0 .

Theorem 4.3. Let P be the fold point on the critical manifold C1
0 where the slow flow on the

attracting manifold C1,a
0 is given by (10). Also assume that the coexistence equilibrium point

lies on the normally hyperbolic repelling critical submanifold under the parametric restriction,

δ

1− αδ
<

(α− αβ − 1) +
√

1 + α + α2 − αβ + α2β + α2β2

3α

and let U denotes a small neighborhood of a singular trajectory γ0 consisting of alternate slow

and fast trajectories. Then for sufficiently small ε there exist a unique attracting limit cycle

γε ⊂ U such that γε → γ0 as ε→ 0.

Proof. The proof is given in Appendix D.

These cycles are shown with the help of a numerical example in Appendix D. When ε→ 0, all

the trajectories asymptotically converge to this stable limit cycle consisting of alternate slow

and fast transitions of prey and predator densities. This cycle can be interpreted as: when the

predator population reaches some high density there is a rapid decline in the prey population

due to excessive consumption by the specialist predator and the prey reaches a considerably low

level. As a consequence, the predator population declines slowly until it reaches a low threshold

density at which the prey population again starts growing. Consequently, the prey regenerates

within a very short time while predator density remains more or less fixed. Finally, the predator

population starts growing slowly due to the abundance of resources. Finally, when the predator

density reaches its maximum level, the slow-fast cycle completes and this dynamics continues

with time.

4.4 Canard Explosion

In the previous sub-sections, we have observed the periodic dynamics of the slow-fast system

near the canard point, where the predator nullcline intersects the non-trivial prey nullcline at the

fold point. This occurs at a certain threshold of the parameter δ. At this point, the coexistence

equilibrium point loses stability through singular Hopf bifurcation and a small amplitude stable
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limit cycle is observed. Due to the decrease of the parameter δ, the Hopf bifurcating stable

cycle grows in size and settles down to relaxation oscillation. The fast transition in the size

of the limit cycle from small canard cycles to relaxation oscillation occurs in an exponentially

small range of the parameter δ. This phenomenon is known as the canard explosion.

The family of canard cycles are already shown in Fig. 2(c) for fixed ε and three values of δ

close to the singular Hopf bifurcation threshold δH . The coexistence equilibrium is stable for

δ > δH and the trajectory converges to the stable steady state for any initial condition as it

is the global attractor. We can see that for δ just below δH , a stable limit cycle grows in size

and a new periodic solution emerges known as the canard cycle without a head Fig. 2(c) (cyan

color). This marks the onset of the canard explosion. Further decreasing δ slightly we obtain

another canard cycle known as canard with head Fig. 2(c) (blue color). This cycle is special

in the sense that from the vicinity of the fold point it follows the repelling slow manifold C1,r
0

for O(1) time, before jumping to another attracting manifold. A maximal canard is obtained

at δ = δc. After crossing the maximal canard threshold, the system settles down to a large

stable periodic solution called relaxation oscillation, which marks the end of canard explosion.

This orbit is characterized by the fact that the slow flow on reaching the vicinity of the fold

point directly jumps to another attracting slow manifold, as studied in the previous section.

The strength of the Allee effect has a significant influence on the amplitude of stable oscillatory

coexistence of both the species. The change in the amplitude of the limit cycle corresponding

to canard explosion is shown in Fig. 5.

Figure 5: The bifurcation diagram showing the change in the amplitude of the canard cycles is

plotted against δ for α = 0.5, γ = 3, ε = 0.01 β = 0.22

For smaller values of β, the size of the canard cycle is very large and the canard explosion

occurs in an exponentially small interval. However, on increasing the value of β the size of the

limit cycle shrinks and instead of a sudden change in the size of the cycle, we observe a gradual

increase in the amplitude of the periodic solution Fig. 6. Though the transition from canard

cycle to relaxation oscillation takes place in a much wider parametric interval, in this case, it is

difficult to distinctively identify the different periodic solutions. For smaller values of β, when

the prey population is almost absent, the predator population also slowly declines to an almost
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endemic level. But on increasing the strength of the Allee effect the predator density never

collapses but stays at the system at a much higher density. After which the system experience

a sudden outbreak in the prey population within a very short interval of time. Again because

of the abundance of resources, the predator population grows slowly and reaches the maximum

capacity. Due to the exploitation of the resources, there is a fast decline in the prey density

and this cycle continues.

(a) (b)

Figure 6: (a) The canard cycles for α = 0.5, β = 0.8, γ = 3, ε = 0.01 and for different values

of δ i.e δ = 0.234 (green), δ = 0.233 (blue), δ = 0.231 (magenta), (b) the bifurcation diagram

showing the change in the size of the cycles.

5 Spatio-temporal model

We now consider the spatio-temporal model corresponding to the model (4) with slow-fast time

scale. Here, we consider that the prey and predator densities are functions of time and space,

u(t,x) and v(t,x) denote prey and predator densities, respectively, at time t and at spatial

location x. In case of one dimensional (1D) space x = x ∈ R and for two dimensional (2D)

space x = (x, y) ∈ R2. For simplicity we assume that x belongs to a bounded domain D ⊂ R
and D ⊂ R2 respectively. The spatio-temporal dynamics of the prey-predator interaction is

described by the following reaction-diffusion equation

ut = γu(1− u)(u+ β)− uv

1 + αu
+∇2u, (27a)

vt = ε

(
uv

1 + αu
− δv

)
+ d∇2v, (27b)

where d is the ratio of diffusivity coefficients of predator to prey and ∇2 is the Laplacian

operator. The above spatio-temporal model is subject to no-flux boundary condition and non-

negative initial condition. The model (27) can not produce any stationary Turing pattern and

it can be proved that the Turing instability condition is not satisfied. However, instability

of the coexistence steady-state due to Hopf bifurcation combined with the diffusivity of two

species leads to some dynamic pattern due to the formation of traveling wave, wave of invasion
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and spatio-temporal chaos. The mechanisms responsible for such kind of pattern formation are

described in [33].

Analytical condition for the existence of traveling wave leads to successful invasion by specialist

predator is derived in the next subsection. For simplicity of mathematical calculation, we

restrict ourselves to one dimensional space to explain the existence of traveling wave. In case

of two dimensional spatial domain, the analogous patterns are presented separately.

5.1 Existence of Traveling wave

To study the successful invasion by the predator we consider the system (27) in one dimensional

space, we re-write the above system as

∂u(t, x)

∂t
= f(u, v) +

∂2u

∂x2
, (28a)

∂v(t, x)

∂t
= εg(u, v) + d

∂2v

∂x2
, (28b)

where f(u, v) = γu(1 − u)(u + β) − uv
1+αu

, g(u, v) = uv
1+αu

− δv. The predator is introduced

in a small domain where the prey density is at its carrying capacity. The successful invasion

of the predator is characterized by the existence of a traveling wave joining the predator free

steady-state with the coexistence steady-state. Depending upon the stability of the coexistence

steady-state, we can find monotone traveling wave, non-monotonic traveling wave, and periodic

traveling wave as explained below with the help of numerical examples.

We begin with deriving the minimum speed of the traveling wave which result in the successful

invasion of the specialist predator into the space already inhabited by its prey. For this, we

first consider a single-species model with the linear growth:

∂v(t, x)

∂t
= αv +D

∂2v

∂x2
,

where α, D > 0 are parameters with obvious meaning. Stricktly speaking, the above equation

does not possess a traveling wave solution. However, for a compact initial condition, it is known

that the tail of the profile propagates with the constant speed given by cmin = 2
√
Dα, see [33],

sometimes referred to as the Fisher spreading speed.

For the invasion of predator into space inhabited by its prey, we consider the tail of the profile

where u ≈ 1 and v ≈ 0 and linearize (28b) around (1, 0):

∂v(t, x)

∂t
= ε
( 1

α + 1
− δ
)
v + d

∂2v

∂x2
. (29)

Clearly, the speed of the traveling wave, at the onset of successful invasion, is given by

cv = 2
(
εd
[ 1

α + 1
− δ
])1/2

. (30)

The feasibility condition is δ(α + 1) < 1. The expression for cv indicates that the speed of

traveling wave reduces in the order of
√
ε. We consider the existence of traveling wave starting

from the predator free steady-state, which leads to the successful establishment of the predators,

this requires the consideration of the system (28) with the following conditions

u(t, x) = 1, and v(t, x) = 0, as x→ −∞, ∀ t,
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u(t, x) = u∗, and v(t, x) = v∗, as x→∞, ∀ t.

We consider the traveling wave solution of the system (28) in the form u(t, x) = φ(ξ), v(t, x) =

ψ(ξ) where ξ = x − ct and c is the wave speed. The functions φ(ξ) and ψ(ξ) thus satisfy the

equations
d2φ

dξ2
+ c

dφ

dξ
+ f(φ, ψ) = 0,

d
d2ψ

dξ2
+ c

dψ

dξ
+ εg(φ, ψ) = 0.

(31)

Substituting p(ξ) = −dφ
dξ

and q(ξ) = −dψ
dξ

, from (31) we can derive four coupled ordinary

differential equations as follows

dφ

dξ
= −p,

dp

dξ
= −cp+ f(φ, ψ),

dψ

dξ
= −q,

dq

dξ
=

1

d
(−cq + εg(φ, ψ)).

(32)

Three homogeneous steady states (E0, E1, E∗) of the spatio-temporal model (28) corresponds

to three steady states of system (32) are Q0(0, 0, 0, 0), Q1(1, 0, 0, 0) and Q∗(u∗, 0, v∗, 0). To

ensure the successful invasion of the predator, we focus on the dynamics of the system (32)

around Q1 and Q∗. The Jacobian matrix of the system (32) evaluated at Q1 is

JQ1 =


0 −1 0 0

−γ(1 + β) −c − 1
1+α

0

0 0 0 1

0 0 ε
d
( 1

1+α
− δ) − c

d

 (33)

The eigenvalues of the matrix JQ1 are λ1,2 = c
2
±
√
c2+4g(1+β)

2
and λ3,4 = − c(1+α)

2
±

√
Γ

d(1+α)

where Γ = (1 + α)2c2 − 4εd(1 + α)(1 − δ − αδ). First two eigenvalues are real, whereas λ3,4

are real for c2 ≥ 4εd(1−δ−αδ)
1+α

. The traveling wave exist if all the eigenvalues are real, otherwise

the trajectories will spiral around Q1 and leads to negative population density. Hence, the

minimum speed of traveling wave originating from predator free steady-state is

cmin =
[4εd(1− δ − αδ)

1 + α

]1/2

. (34)

Note that cmin depends on ε, thus for ε < 1, the wave speed decreases. The minimum wave

speed derived here is the same as it was derived earlier with the help of the linearized equation.

The expressions for the eigenvalues of the Jacobian matrix JQ∗ are quite complicated and hence

we avoid writing them here explicitly for the sake of brevity. For c ≥ cmin, the eigenvalues of JQ∗

can be real or complex depending on which we find monotone traveling wave and non-monotone

as well as periodic traveling wave originating from the steady states E1.

To illustrate the existence of various type of traveling waves, we fix the parameter values

α = 0.5, β = 0.22, γ = 3, ε = 1 and consider δ as variable parameter. From (34) we find that

20



(a) t = 300 (b) t = 240

(c) t = 220

Figure 7: Monotone traveling wave, non-monotone traveling wave and periodic traveling wave

obtained for the model (28) with α = 0.5, β = 0.22, γ = 3, ε = 1 and (a) δ = 0.6, (b) δ = 0.38

and (c) δ = 0.3 at different time as mentioned with the figures.

traveling wave exists for δ < 2/3. The eigenvalues of JQ∗ are real for 0.52 < δ < 0.667 and the

eigenvalues are complex conjugate for δ ≤ 0.52. Complex conjugate eigenvalues with negative

real parts correspond to non-monotone traveling wave and with positive real part correspond to

periodic traveling wave. Three types of traveling waves are shown in Fig. 7 for three different

values of δ. For δ = 0.38, the minimum wave speed cmin ≈ 1.07, and the complex conjugate

eigenvalues with negative real part are −1.22 ± 0.423i, whereas for δ = 0.3, cmin ≈ 1.211 and

the complex eigenvalues with positive real part are 0.034 ± 0.405i. The initial condition used

in Fig. 7 is given by

u(0, x) =

{
u∗, 0 ≤ x ≤ 3

1, 3 < x ≤ 300
, v(0, x) =

{
v∗, 0 ≤ x ≤ 3

0, 3 < x ≤ 300
.

The traveling wave emerging from the above initial conditions connects the prey-only steady

state E1 to the coexistence state E∗. Its shape depends on parameter values; for δ = 0.6, its

profile is monotone (see Fig. 7a). A non-monotone traveling wave emerges for δ = 0.38 (see

Fig. 7b). The range of spatio-temporal oscillation increases for values of δ close to the temporal
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Hopf bifurcation threshold. For δ = 0.3, we find periodic traveling wave, with a plateau behind

the oscillatory front corresponding to steady state E∗ which is, for these parameter values,

unstable: a phenomenon known as the dynamical stabilization [35, 54, 55, 71].

(a) (b)

(c)

Figure 8: Periodic traveling waves for the model (28) with α = 0.5, β = 0.22, γ = 3, ε = 1 and

(a) δ = 0.3, (b) δ = 0.2 and (c) δ = 0.1 at the same instant of time t = 160.

We mention here that the properties of emerging traveling wave are rather robust with

regard to the choice of initial conditions. For instance, for a different initial condition as given

by

u(0, x) =

{
1, 0 ≤ x ≤ 3

0, 3 < x ≤ 300
, v(0, x) =

{
0.2, 0 ≤ x ≤ 2

0, 2 < x ≤ 300
,

the emerging periodic traveling waves shown in Fig. 7c and Fig. 8a are qualitatively similar.

Numerical simulation for smaller values of δ shows an increase in the magnitude and period of

the oscillating front as shown in Fig. 8b-c. For numerical simulations we have chosen a spatial

domain of size [0, 300], further increase in domain size does not effect the qualitative property

of the traveling waves.

To understand the effect of slow-fast time scale on the resulting pattern formation, here we

consider the change in periodic traveling wave shown in Fig. 8a for ε < 1. The model (28)
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is simulated for three different values of ε as mentioned at the caption of Fig. 9. With the

decrease in ε, we observe that the oscillatory wake of the invading predator front separating

the predator-free area and the onset of spatiotemporal shrinks and eventually disappears for

smaller values of ε, so that dynamical stabilization does not occur. Also the size of predator-free

area where prey exists at its carrying capacity increases with the decrease in ε. The size of

predator-free patch increases further for ε < 0.25.

(a) (b)

(c)

Figure 9: Periodic traveling waves for the model (28) with α = 0.5, β = 0.22, γ = 3, δ = 0.3

and (a) ε = 0.75, (b) ε = 0.5 and (c) ε = 0.25 at the same instant of time t = 160.

5.2 Patterns in two dimension

Finally, we consider the spatio-temporal pattern formation over two dimensional spatial do-

main. The nonlinear reaction-diffusion system (27) is solved numerically using five-point finite

difference scheme for the Laplacian operator and forward Euler scheme for the temporal part

with the initial conditions (35) and (36). Equal diffusivities are considered throughout i.e,

d = 1. Two types of initial conditions are used to study the successful invasion and establish-

ment of both species. In [41] Morozov et.al used the following initial condition which explains
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that a small amount of population of both the species are introduced within a small elliptic

domain

u(0, x, y) =

{
u0,

(x−x1)2

∆11
+ (y−y1)2

∆12
≤ 1

0, otherwise
, v(0, x, y) =

{
v0,

(x−x2)2

∆21
+ (y−y2)2

∆22
≤ 1

0, otherwise
(35)

where u0 and v0 measure the initial densities of prey (native) and predator (invasive) species

respectively. The other initial condition we consider here, is a small amplitude heterogeneous

perturbation from the homogeneous steady states (see [39] for details), is

u(x, y, 0) = u∗ − e1(x− 0.1y − 225)(x− 0.1y − 675),

v(x, y, 0) = v∗ − e2(x− 450)− e3(y − 450),
(36)

where (u∗, v∗) is the homogeneous steady state and for numerical simulation we choose e1 =

2× 10−7, e2 = 3× 10−5, and e3 = 2× 10−4.

First we simulate the spatio-temporal model with the initial condition (35) in a square domain

L × L with L = 300, with grid spacing ∆x = ∆y = 1 and time step ∆t = 0.01. The

simulation results are verified with other choices of ∆x and ∆t to ensure that the obtained

results are free from numerical artifact. We consider a small elliptic domain within which

the prey is at its carrying capacity (u0 = 1) and a small amount of population (v0 = 0.2) is

introduced. Other parameter values are x1 = 153.5, y1 = 145, x2 = 150, y2 = 150, ∆11 = 12.5,

∆12 = 12.5, ∆21 = 5, ∆22 = 10. We simulate the model for a sufficiently long time so that the

invading waves can cover the whole domain and hits the domain boundary. Parameter values

of α, β, γ and ε are same as mentioned in the previous subsection. We will first check the

change in resulting pattern by varying the parameter δ. In Fig 10, two dimensional spatial

distribution of prey population density at two different time points are shown for δ = 0.3.

We have omitted the spatial distribution of the predator population as they exhibit similar

patterns as exhibited by the prey species. Choosing δ = 0.3, just below the temporal Hopf

bifurcation threshold (δH = 0.3768), we observe concentric circular rings as the initial transient

pattern which eventually settle down to an interacting spiral pattern once the transients are

over. With the advancement of time, the expanding circular rings hit the domain boundary

and break into irregular patches. These irregular spiral patches cover the whole domain, and

the system dynamics can be identified as interacting spiral chaos (see Fig. 10b). Note that the

initial invading waves are the periodic traveling waves (Fig. 10a) but in large-time we observe

irregular spatio-temporal oscillations (Fig. 10b). This type of chaotic dynamics persists in the

vicinity of temporal Hopf bifurcation threshold (0.2 < δ < δH = 0.3768).

Keeping other parameters fixed, we further decrease δ (≤ 0.2) and find propagating circular

rings which are periodic traveling waves. The number of rings, that is the number of population

patches within the fixed domain, decreases with the decrease in magnitude of δ. These periodic

traveling waves do not break after hitting the boundary and the spatio-temporal dynamics

remains unaltered. This result is in agreement with Sherrat et. al [72] that the system exhibits

oscillatory dynamics as a successful invasion. Periodic traveling fronts for δ ≤ 0.2. are shown

in Fig. 11.

Now we consider the effect of the slow-fast time scale on the resulting patterns. In the previous

subsection, we have explained the reduction of traveling wave speed with the decrease in the

magnitude of ε. As a result, the time taken by the predators to invade over the entire domain
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(a) t = 80 (b) t = 500

Figure 10: Spatio-temporal pattern of prey with initial condition 35 obtained for α = 0.5, β =

0.22, γ = 3, δ = 0.3, ε = 1 at different intervals of time.

for ε � 1 is much longer as compared to ε = 1. For ε < 1 we find two kinds of distinctive

changes in the resulting patterns. The width of the population patches increase (see Fig 12a),

and the spatio-temporal chaotic dynamics changes to periodic temporal oscillation of nearly

homogeneous distribution of prey and predator densities (see Fig 12d). The time evolution of

the spatial average of the prey and predator population is analogous to the temporal Canard

cycle.

The choice of the initial condition and the domain size plays an important role in pattern

formation. We simulate the system (27) with the second kind of initial condition (36) and over

a square domain L × L with L = 900. The initial condition indicates a small heterogeneous

perturbation from the homogeneous steady state (u∗, v∗). Choosing the same parameter set as

Fig. 10, initially, we find two spirals rotating about their fixed centers. The regular spirals are

destroyed with the advancement of time and the interacting spiral pattern engulfs the whole

domain (see Fig. 13b-c). These patches move, break and form new patches, but qualitatively,

the dynamics of the system does not alter with time.

Exhaustive numerical simulation indicates that for δ close to the temporal Hopf bifurcation

threshold, the system always exhibits spatio-temporal chaos. The duration and type of transient

patterns depend upon the initial condition and the size of the domain. Now considering ε < 1,

we found the persistent interacting spirals with thick arms (see Fig. 14a for ε = 0.1). The

regular spiral grows in size and doesn’t breakdown even after hitting the boundary when ε is

significantly small, say ε = 0.01. The irregularity of the temporal evolution of spatial averages

of both the population decreases and moves towards periodic or quasi-periodic oscillation with

the decrease in the magnitude of ε. This claim is justified from the time evolution of spatial

averages as presented in the lower panel of Fig. 14.
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(a) δ = 0.2 (b) δ = 0.1

(c) δ = 0.05

Figure 11: Spatio-temporal pattern of prey with initial condition 35 for α = 0.5, β = 0.22, γ =

3, ε = 1 at t = 200.

6 Discussion and Conclusions

Understanding the effects that the existence of multiple time scales may have on the population

dynamics of corresponding interacting species, in particular by promoting or hampering their

persistence, has been attracting an increasing attention over the last two decades. In particular,

some preliminary yet significant work has been done to understand changes in the oscillatory

coexistence in the presence of slow-fast time scales [16, 26, 42, 61]. However, the effects of

the slow-fast dynamics in the spatially explicit systems, e.g. as given by the corresponding

reaction–diffusion equations, remains poorly investigated. This paper aims to bridge this gap,

at least partially. As our baseline system, we consider the classical Rosenzweig-McCarthur prey-

predator model with the multiplicative weak Allee effect in prey’s growth. We pay particular

attention to the interplay between the strength of the weak Allee effect (quantified by parameter

0 < β < 1) and the difference in the time scales for prey and predator (quantified by ε ≤ 1).

We first provide a detailed slow-fast analysis for the corresponding nonspatial system. In

doing that, we have obtained the following results:
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(a) (b)

(c) (d)

Figure 12: Spatio-temporal pattern of prey and plots of average spatial of prey and predator

population is given w.r.t time for α = 0.5, β = 0.22, γ = 3, δ = 0.3 for ε = 0.1(left) and ε =

0.01(right). Upper panel shows the pattern at (a) t = 10000, (b) t = 5000; lower panel shows

the phase trajectory of spatially averaged densities (c) t ∈ [2000, 10000], (d) t ∈ [5000, 10000].

• in the presence of slow-fast dynamics (ε � 1) and a weak Allee effect, a decrease in the

predator mortality may lead to a regime shift where small-amplitudfe oscillations in the

populaton abundance change to large-amplitude oscillations (see Fig. 5). This change

becomes more abrupt in case the Allee effect is ‘not too weak’ (i.e. β is sufficiently small),

cf. Figs. 5 and 6.

On a more technical side, we have derived an asymptotic expansion in ε for the invariant

approximated manifolds and have explained the dynamics of the system near the hyperbolic

submanifolds. This theory cannot be extended at non-hyperbolic points. To unravel the com-

plete geometry of the manifolds and their intersection as they pass through the non-hyperbolic

points we followed the blow-up technique [9, 27, 28]. We considered the slow-fast normal form

of the model by translating the fold point to the origin. As the transformed system has a

singularity at the origin, it is then blown up to a sphere S3 and the trajectories of the blow-up

system are mapped on and around the sphere. Using the blow-up analysis we have found the

analytical expression for the singular Hopf bifurcation curve (λH(
√
ε)) along which the eigenval-

ues become singular as ε→ 0. A particular kind of slow-fast solution known as canards (with
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(a) t = 360 (b) t = 900

(c) t = 1500

Figure 13: Spatio-temporal pattern of prey density for α = 0.5, β = 0.22, γ = 3, δ = 0.3, ε = 1,

at different time intervals.

or without head) has been found explicitly with the help of Melnikov’s distance function in the

blow-up space. We have also calculated an analytical expression for the maximal canard curve

(λc(
√
ε)). Another type of periodic solution is obtained which consists of two concatenated

slow and fast flow, known as relaxation oscillation. Analytically, we have proved the existence

and uniqueness of the relaxation oscillation cycle using the entry-exit function [61, 82] and

validated our results numerically.

The difference in the time scale for the growth and decay in prey and predator species capture

some interesting feature of respective populations. As the prey population growth takes place

over a faster time scale, the predator population remains unchanged during the rapid growth

and the decay of prey population. On the other hand, the change in predator population occurs

slowly compared to the prey population. This type of growth and decay in two constituent

species is observed for steady-state coexistence as well as oscillatory coexistence. The presence

of weak Allee effect in prey growth acts as a system saver. The size of the limiting relaxation

oscillation cycle is smaller in size when the magnitude of Allee effect is comparatively large (cf.

Fig. 6). It reduces the chance of extinction (maybe localized) as the periodic attractor remains

away from both the axes.
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(a) ε = 1 (b) ε = 0.1 (c) ε = 0.01

(d) ε = 1 (e) ε = 0.1 (f) ε = 0.01

Figure 14: Upper panel (a,b,c) represents spatial distribution of prey for α = 0.5, β = 0.22, γ =

3, δ = 0.3 for different values of ε (a) t = 12000, (b) t = 55000, (c) t = 10000 ; lower panel

(d,e,f) represents phase trajectory of spatially averaged densities obtained after removing initial

transients (d) t ∈ [3000, 12000], (e) t ∈ [3000, 55000], (f) t ∈ [5000, 10000].

To understand the change in dynamic behavior, we have chosen the predator mortality rate

δ, as the bifurcation parameter. For predator mortality rate greater than Hopf threshold the

system stabilizes at coexistence steady state, whereas, the system shows oscillatory dynamics for

mortality rate less than the threshold. For the model under consideration, the Hopf threshold

is independent of the time scale parameter. But the combination of the mortality rate along

with time scale parameter (0 < ε � 1) has enormous effect on the nature of the oscillatory

coexistence. For a fixed ε > 0, as we decrease δ below the Hopf threshold, we observe a

fast transition from small amplitude oscillatory coexistence to relaxation oscillation within an

exponentially small range of the parameter δ via a family of canard cycles (Fig. 5), known as

canard explosion. This type of dynamics has been observed in an ecosystem where the growth

rate of the interacting species (resource-consumer type) differ on some orders of magnitude. The

reason behind this can be interpreted as: when the predator density is at a maximum level,

due to over-consumption the prey population collapses rapidly. Since the predator is specialist,

due to the lack of food source the predator population starts decaying slowly and reaches a

lower density. It reduces grazing pressure on the prey, as a result the prey population revives

leading to a sudden outbreak. Again with increasing food resources, the predator population

increases slowly until it reaches a desirable level which can be supported by the abundance of

prey and thus the cycle continues. Empirical evidence suggests that this type of oscillatory

dynamics is observed in real world, for example in the food web of Canadian boreal forest [75]

where outbreak of hare population follows a cycle of almost 11 years. In the aquatic ecosystem

the seasonal cycle of Daphnia and algae [66, 67] are observed and also in a forest ecosystem

where insect pests defoliate the adult trees [34].
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We then considered the effect of multiple time scales in one-dimensional and two-dimensional

spatial extension of our slow-fast system. In the 1D case, the minimum speed of the traveling

wave of predator invading into the space already occupied by its prey (observed in case of

compact initial conditions) is found analytically, while the patterns emerging in the wake of

the front are investigated by means of numerical simulations. In the 2D case, the effect of the

interplay between the weak Allee effect and the multiple timescales is studied in simulations.

The following result is worth of highlighting:

• in the presence of a weak Allee effect, a decrease in the time scale ratio (i.e. for ε � 1)

may lead to a regime shift where the pattern becomes correlated across the whole spatial

domain resulting in large-amplitude oscillations of spatially average population density;

see Fig. 14. Since the corresponding trajectory in the phase plane (< u >,< v >) comes

close to the vertical axis, the immediate ecological implication of this is a likely extinction

of prey.

On a more technical side, our main interest was to study how the invasion of the species is

taking place and how it is getting affected with the introduction of the time scale parameter.

For the values of δ less than Hopf bifurcation threshold (δ < δH), we find spatio-temporal

chaotic patterns. The onset of spatio-temporal chaos and the duration of transient oscillation

is completely influenced by the initial distribution of the two species. Fig. 10 shows periodic

traveling waves as transient dynamics before spatio-temporal chaos sets in. However, small

amplitude heterogeneous perturbation around the homogeneous steady states reduces the time

length for transient dynamics and the system quickly enters spatio-temporal chaotic regime. For

δ significantly less than δH (see Fig. 11) we find only periodic traveling waves which indicate that

continuous alteration of population patches mimics the temporal dynamics of large amplitude

oscillations.

Consideration of time scale difference in the growth rates of prey and predator have some

stabilizing effect on the spatio-temporal pattern formation scenario. On one hand, it increases

the size of the coexisting population patches over the domain, and on other hand, it drives the

spatio-temporal chaotic pattern to periodic or quasi-periodic oscillatory dynamics as shown in

Fig. 14. One prominent feature can be visualized from the numerical simulation that spatio-

temporal chaotic pattern engulf the entire domain of size 900 × 900 at t = 1700, for ε = 1,

whereas it takes quite a long time for ε = 0.1. The pattern obtained for ε = 0.1 in Fig. 14(b) is

interacting spiral but not chaotic, as it does not show any sensitivity to initial condition. The

time evolution of average prey-predator density changes from chaotic nature to quasi-periodic

oscillation with the decrease in magnitude of ε as shown in the lower panel of Fig. 14.

In this work, we have considered a prey-predator model with specialist predator and the

consumption of prey by the predator follows prey-dependent functional response. As a result,

the periodic solution arising through Hopf instability is stable and there is no possibility of global

bifurcation through which one or more species can collapse. The large amplitude oscillatory

coexistence obtained from the temporal model changes to periodic traveling wave once the

individuals are assumed to be distributed over their habitat heterogeneously. The difference

in the time-scale for the growth of resource and consumer leads to the establishment of the

species over larger patches and the speed of invasive wave reduces with the decrease of ε. The

irregularity of population patches (spatio-temporal chaotic patterns) as a part of successful
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invasion is observed for parameter values close to the Hopf bifurcation threshold and ε is

close to or equal to 1. Decrease in the magnitude of ε reduces the irregular oscillation but the

duration of transient oscillations are enhanced. The study of spatio-temporal pattern formation

with a difference in time scales in the context of ecological systems is quite unexplored in

literature. This kind of study can provide a better insight in establishment of the invasive

species. More realistic phenomena can be captured if we consider long food chain model with

multiple time scales and two species model with generalist predator with predator dependent

functional response, which we will study in our future works.
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Appendix A

Here we will follow geometric singular perturbation technique as given by Fenichel [11] to find

the analytical expression of locally perturbed invariant manifold C1
ε . Since v = q(u, ε), from

the invariance condition we have
dv

dt
=
dq(u, ε)

du

du

dt
.

Using the explicit expression for
du

dt
and

dv

dt
from (4) we get

εq(u, ε)(u(1− αδ)− δ) = u
dq(u, ε)

du
(γ(1− u)(u+ β)(1 + αu)− q(u, ε)). (37)

Substituting the asymptotic expansion of q(u, ε) from (11 and assuming u 6= 0, q̇0(u) 6= 0, we

equate ε free terms from both sides to obtain

q0(u) = γ(1− u)(u+ β)(1 + αu), (38)

which is exactly the critical manifold. Now equating the coefficients of ε from both sides of

(37) we get

q1(u) =
q0(u)(u(1− αδ)− δ)

−uq̇0(u)
. (39)

Similarly we obtain q2(u) by equating the coefficients of ε2,

q2(u) =
q1(u)(u(1− αδ)− δ) + uq1q̇1(u)

−uq̇0(u)
. (40)

Proceeding as above we find qr(u), r = 3, 4, · · · by equating the coefficients of εr from (37).

Therefore the second order approximation of the perturbed invariant manifold is given by

q(u, ε) = q0(u) + εq1(u) + ε2q2(u),

where q0, q1, q2 are given in (38)-(40).
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Appendix B

We apply the blow-up transformation in the slow-fast normal form (14) where

h1(U, V ) = u∗ + U, h3(U, V ) = 0, h5(U, V ) = (v∗ + V )(1 + αu∗) + Uv∗α,

h2(U, V ) = −γ(−1 + 6u2
∗α + 3u∗(1 + α(β − 1)) + β − αβ)− Uγ(1 + α(4u∗ + β − 1)),

h4(U, V ) = (v∗ + V )(1− αδ∗), h6(U, V ) = u∗ − (1 + u∗α)δ∗, ,

On chart K2, ε̄ = 1 so the blow-up transformation as defined in (15) reduces to:

r̄ =
√
ε, U =

√
εŪ , V = εV̄ , λ =

√
ελ̄. (41)

Using the transformation (41) we can write the system (17) by removing the overbars as

Ut = −b1V + b2U
2 +
√
εG1(U, V ) +O(

√
ε(λ+

√
ε)),

Vt = b3U − b4λ+
√
εG2(U, V ) +O(

√
ε(λ+

√
ε)),

(42)

where
b1 = u∗, b2 = −γ(−1 + 6u2

∗α + 3u∗(1 + α(β − 1)) + β − αβ),

b3 = v∗(1− αδ∗), b4 = v∗(1 + αu∗),
(43)

and

G1(U, V ) = a1U − a2UV + a3U
3, G2(u, V ) = a4U

2 + a5V. (44)

Let the equilibrium point of the system (42) is (Ue, Ve), Ue =
b4λ

b3

+ O(2) and Ve = O(2)

where O(2) := O(λ2, λ
√
ε, λ). Linearizing the system about this equilibrium point we have the

Jacobian matrix as

J :=

(
2Ueb2 + a1

√
ε+O(2) −b1 +O(2)

b3 +O(2) a5

√
ε+O(2)

)
(45)

At the Hopf bifurcation we have Trace J = 0 which implies

2b2b4λ

b3

+
√
ε(a1 + a5) +O(2) = 0. (46)

and applying the blow-down map λH = λ
√
ε we get the singular Hopf bifurcation curve λH(

√
ε)

for the slow-fast normal form (14) as

λH(
√
ε) = −b3(a1 + a5)

2b2b4

ε+O(ε3/2). (47)

Appendix C

Here we prove the existence of maximal canard curve and will give an analytical expression for

the same. For that we will first prove the following proposition. In chart K2 of the blow up

space we consider the desingularized system (42) as

Ut = −b1V + b2U
2 + rG1(U, V ) +O(λr, r),

Vt = b3U − b4λ+ rG2(U, V ) +O(λr, r),

rt = 0,

λt = 0,

(48)

37



where b1, b2, b3, b4,G1 and G2 are computed above (43), (44). The dynamics of the system on

the sphere is obtained by putting r = 0 in (48) for different values of λ in the vicinity of 0.

Thus, by taking r = 0, λ = 0, the above system is integrable and we have

Ut = −b1V + b2U
2,

Vt = b3U.
(49)

This is a Riccati equation and the solution of this equation helps in proving our main theorem.

Proposition 1 The solution of the system (49) is given by H(U, V ) = c, where

H(U, V ) = e
−

2b2

b3

V (b3

2
U2 − b1b

2
3

4b2
2

− b1b3

2b2

V
)

and

dU

dt
= −e

2b2

b3

V ∂H

∂V
,

dV

dt
= e

2b2

b3

V ∂H

∂U
.

(50)

Proof. We can write the above Riccati system (49) as

dV

dU
=

b3U

−b1V + b2U2
(51)

where the integrating factor is e
−

2b2

b3

V

. Multiplying both sides with the I.F and integrating we

get

e
−

2b2

b3

V (
U2 − b1

b2

V − b1b3

2b2
2

)
= c0.

Multiplying with
b3

2
we obtain the solution of the system( 49) as

e
−

2b2

b3

V (b3

2
U2 − b1b

2
3

4b2
2

− b1b3

2b2

V
)

= c,

where c = c0
b3

2
is a constant. The solution determined by c = 0 is a parabola of the form

U2 =
b1b3

2b2
2

+
b1

b2

V.

Proof of theorem 4.2: We write the solution of the system (49) in the parametric form

η(t) = (U(t), V (t)) =
(
t,
b2

b1

t2 − b3

2b2

)
, t ∈ R (52)

For ε = 0 the attracting and repelling submanifolds of the critical manifoldM1
0 intersect along

the equator of the blow-up space S3. From Fenichel’s theory, for ε > 0 there exist invariant
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perturbed attracting (M1,a
ε ) and repelling submanifold (M1,r

ε ). Along the curve (52), the

attracting (M1,a
ε ) and repelling (M1,r

ε ) invariant submanifolds in the blow-up space intersect

and the solution trajectory lying in that intersection is called maximal canard. We use Melnikov

function to calculate the distance between these invariant manifolds [27], [29] which is given by

Dr,λ = drr + dλλ+O(r2), (53)

where

dr =

∫ ∞
−∞
∇H(η(t))TG(η(t))dt,

dλ =

∫ ∞
−∞
∇H(η(t))T

(
0

−b4

)
dt,

(54)

where G, H and b4 are defined in (44), (50) and (43) respectively. The distance between the

submanifolds M1,a
ε and M1,r

ε is given by the eq. (53). And since the maximal canard lie in

the intersection of these manifolds, so we must have Dr,λ = 0. For that we now calculate the

Melnikov-type integrals dr and dλ (52 ) and (54). Therefore,

dr =

∫ ∞
−∞

[
(a1U − a2UV + a3U

3)
∂H(η(t))

∂U
+ (a4U

2 + a5V )
∂H(η(t))

∂V

]
dt

=

∫ ∞
−∞

e
−

2b2

b3

V [
(a1U − a2UV + a3U

3)b3U + (a4U
2 + a5V )(b1V − b2U

2)
]
dt

= e

∫ ∞
−∞

e−A4t2
(
A1t

4 + A2t
2 + A3

)
dt

(55)

where,

A1 = a3b3 −
a2b2b3

b1

, A2 = a1b3 +
a2b

2
3

2b2

− a4b1b3

2b2

− a5b3

2
, A3 =

a5b1b
2
3

4b2
2

, A4 =
2b2

2

b1b3

.

Now substituting z = t2 and by repeated integration by parts we obtain

dr = e
(3A1

4A2
4

+
A2

2A4

+ A3

)∫ ∞
−∞

e−A4t2dt, (56)

and

dλ = −
∫ ∞
−∞

b4
∂H

∂V
dt

= b4

∫ ∞
−∞

e
−

2b2

b3

V

(−b1V + b2U
2)dt

= eA5

∫ ∞
−∞

e−A4t2dt,

(57)

where A5 =
b1b3b4

2b2

. Since dλ 6= 0 therefore using implicit function theorem we can explicitly

solve for λ from (53)

λ(r) = −dr
dλ
r +O(r2) = − 1

A5

(3A1

4A2
4

+
A2

2A4

+ A3

)
r +O(r2). (58)

Now using blow down map λc = λ
√
ε we obtain the maximal canard curve for the slow-fast

normal form (14).

λc(
√
ε) = − 1

A5

(3A1

4A2
4

+
A2

2A4

+ A3

)
ε+O(ε3/2). (59)
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Appendix D

Here we prove the existence of a unique attracting limit cycle called relaxation oscillation. To

study the dynamics of the system (23) we define two section of the flow as

∆in = {(u+, v) : u+ << umax, v ∈ (v1 − ρ, v1 + ρ)},
∆out = {(u+, v) : u+ << umax, v ∈ (v0 − ρ2, v0 + ρ2)},

where umax, v1, v0 are defined in subsection 4.3 and ρ is sufficiently small positive number.

Let us define a return map Π : ∆in → ∆in which is a composition of two maps

Φ : ∆in → ∆out, Ψ : ∆out → ∆in,

such that Π = Ψ ◦ Φ. Let us fix ε > 0 and we take a point (u+, v+) on the section ∆in. Now

we consider a trajectory of the system (23) starting from the initial point (u+, v+). From the

analysis of the entry-exit function we can say that this trajectory will be attracted to V+ and

will leave V− at point (0, p(v+)), where p is the entry-exit function. The trajectory then jumps

into the section ∆out at the point (u+, p(v+)). Thus, the map Φ is defined with the help of

entry-exit function as Φ(u+, v+) = (u+, p(v+)).

Now to study the map Ψ we consider two trajectories γ1
ε , γ

2
ε starting from the section ∆out.

These trajectories get attracted toward C1,a
ε where the slow flow is given by

du

dτ
=
g(u, q(u, ε))

q̇(u, ε)
.

They follow the slow perturbed manifold until the vicinity of the fold point where they contract

exponentially toward each other [82] and jump into ∆in. From Theorem 2.1 of [27] we have

that the map Π is a contraction. Using contraction mapping theorem we conclude that Π has

a unique fixed point which gives rise to a unique relaxation oscillation cycle γε. Further from

Fenichel’s theory we infer that γε converges to γ0 as ε→ 0.

Now for the parameter values α = 0.5, β = 0.2, δ = 0.3, the unique attracting cycle γε for

ε = 0.1, is shown below which converges to γ0 as ε→ 0.

Figure 15: Singular trajectory γ0 (blue) and unique attracting limit cycle γε for ε = 0.1 (green)

for α = 0.5, β = 0.2, δ = 0.3.

40


	1 Introduction
	2 Temporal Model and its linear stability analysis
	3 Slow-fast system
	4 Analysis of slow-fast system
	4.1 Slow-fast normal form
	4.2 Blow-up transformation
	4.3 Entry-Exit Function
	4.4 Canard Explosion

	5 Spatio-temporal model
	5.1 Existence of Traveling wave
	5.2 Patterns in two dimension

	6 Discussion and Conclusions

