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TREES AND HOMOGENEOUS LOTS

ETHAN AKIN AND KAREL HRBACEK

Abstract. We describe those complete linearly ordered topolog-
ical spaces X which are homogeneous (=CHLOTS). That is, X
is order isomorphic with any nonempty open interval in X . Us-
ing countable tail-like ordinals as indices, we build towers of dis-
tinct CHLOTS. Using tree constructions we are able to extend the
towers and to describe an inductive procedure which yields every
CHLOTS.
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1. Introduction

At first glance the Cantor Set C ⊂ [0, 1] does not appear to be
homogeneous. Aside from the maximum and minimum there is the
countable family of endpoint pairs, each of which forms a gap x− < x+

such that the intersection C ∩ [x+,∞) is clopen in C. Then there is
the uncountable residuum of points whose very existence is not obvious
until the bijection from the set of zero/one sequences to C is revealed.
This bijection is in fact a homeomorphism of C with a topological group
from which topological homogeneity is clear as the automorphism group
H(C) contains all the translations of the group.
The original impression of non-homogeneity comes from the order

structure on C inherited from R. Indeed, if you restrict to H+(C),
the subgroup of order preserving automorphisms, then there are five
equivalence classes with respect to the action: {max}, {min}, the set
of left endpoints {x−}, the set of right endpoints {x+}, and the re-
maining residual subset. If you allow order reversing automorphisms,
using H±(C) which contains H+(C) as a subgroup of index two, then
the max and min pair up and the left and right endpoints are equiv-
alent, leading to three classes. Ignoring the extrema we focus on the
distinction between the gap pairs and the rest.
There is an interesting construction called the Alexandrov-Sorgenfrey

Double Arrow

(1.1) R′ =def R× {−1,+1}
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in which we denote by t− the point (t,−1) and similarly t+ = (t,+1).
On R′ we introduce the lexicographic ordering and use the associated
order topology. For every t ∈ R t− < t+ is a gap pair in R′ and so every
point is either a left or a right endpoint. Every closed, bounded subset
of R′ is compact and so the space is locally compact and σ-compact.
The family of clopen intervals B = {[t+, s−] : t < s in R} is uncountable
and so R′ is not metrizable although it is clearly separable. Since B is
a basis for the topology the space is zero-dimensional. The space R′

is a famous example in part because the subset {t− : t ∈ R} is order
isomorphic with R and so the order topology is the usual one on R,
but the subspace topology induced from R′ is the nonmetrizable, not
locally compact topology on R with basis the right-closed, left-open
intervals.
We denote by •R′• the two point compactification obtained by at-

taching a minimum m and a maximum M to R′. We call this space
the Fat Cantor Set . For every t < s in R there is an order preserving
homeomorphism

(1.2) f : •R′• → [t+, s−].

Clearly, the group H±(R′) acts transitively on R′.
Our work began with an analogy question: The Cantor Set is to the

real line as the Fat Cantor Set is to what?
There should be a linearly ordered space X with the order topology,

that is, a LOTS ,which is connected, which contains the Fat Cantor Set
and which is homogeneous in the sense that for all a < b in X there
exists an order preserving homeomorphism

(1.3) f : X → (a, b).

Our first thought was to use R × J with J = [−1,+1] ⊂ R with
the lexicographic ordering. This LOTS is connected but it is not ho-
mogeneous. However, equipped with the lexicographic ordering the
countably infinite product

(1.4) Rω = R× J × J × ...

with ω the first infinite ordinal. This is a connected and homogeneous
LOTS, which we call a CHLOTS. Define for t ∈ J

(1.5) j(t−) = (t,−1,−1, ...) and j(t+) = (t,+1,+1, ...).

Then j : [(−1)+, (+1)−] → Rω is an order preserving, topological em-
bedding onto a closed subset. Thus, Rω naturally contains the Fat
Cantor Set.
Looking for other examples of CHLOTS led us to look at products

like (1.4) but indexed by more general countable ordinals than ω. Over
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each CHLOTS we constructed a tower of distinct CHLOTS, increasing
in size in a suitable sense. The tower is indexed by the countable
ordinals, i.e. the ordinals less than Ω, the first uncountable ordinal.
In this way we re-discovered a construction begun by Arens [4] and

[5] and extended by Babcock [6], see also [20]. Their procedure was
also re-discovered by others, see e.g. [9].
We had nearly completed the initial phase of our work in 2001, [3],

when we were directed to the paper of Hart and van Mill [10] whose
work is complementary to ours, and of course to that of Arens and
Babcock. Hart and van Mill construct an uncountable family of distinct
CHLOTS no two of which have comparable size but all of which are
bigger than R but smaller than Rω. So their class of examples extends
horizontally where ours proceeds vertically.
We now apply trees to the study of CHLOTS.
A tree is a partially ordered set such that the set of the predecessors

of each point is well-ordered by the induced order and so is isomor-
phic to an ordinal. The relation between trees and general LOTS is
well-known, e.g. [19] and [7]. By using trees we develop a number
of constructions for building CHLOTS and extend the tower over a
CHLOTS to one indexed by Ω×Ω. In addition, we describe an induc-
tive tree construction from which every CHLOTS can be obtained.
We would like to thank Richard Wilson for some helpful discussions

as we began this work.

We now provide a brief sketch of what follows.

In Section 2 we introduce the elementary properties of LOTS and
ordinals.
A subset J of a LOTS is convex when a < c < b in X and a, b ∈ J

implies c ∈ J . An open or closed interval is convex. A LOTS X is order
dense when a < b in X implies that the interval (a, b) is infinite and
X is complete when every bounded set has a supremum and infimum.
A LOTS is connected iff it is a complete and order dense LOTS. An
order dense LOTS X is contained as a dense subset in an essentially
unique connected LOTS X̂ called its completion.
An order dense LOTS which is not complete contains holes. There is

a hole between a and b if there is a clopen convex set which contains a
and not b. A LOTS has dense holes when between any pair of distinct
points there are holes.
We call a LOTS unbounded when it has neither a maximum nor a

minimum and bounded when it has both.
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There is a rough notion of size for LOTS. In comparing two LOTS X
and X1 we say that X injects into X1 if there exists a, not necessarily
continuous, injective order map from X into X1. We say that X1

is bigger than X if X order injects into X1 but not vice-versa. For
example, any CHLOTS which is not R itself is bigger than R. If neither
injects into the other we say that they are not comparable.
In outlining the use of ordinals we pay special attention to those

which are tail-like.
An ordinal α is tail-like if β < α implies β +α = α, or, equivalently,

α = ωγ for some ordinal γ. For ordinal exponentiation, γ countable
implies ωγ is countable and so there are uncountably many countable
tail-like ordinals, indexed by the countable ordinals γ. We describe the
Cantor Normal Form which writes any ordinal uniquely as a sum of a
finite non-increasing sequence of tail-like ordinals.

In Section 3 we define various transitivity and homogeneity proper-
ties for LOTS.
A LOTS X is transitive when a, b ∈ X implies there exists an order

isomorphism f on X with f(a) = b, i.e. the group of order automor-
phisms acts transitively on X . A LOTS X is homogeneous when X is
order isomorphic with any nonempty, open, convex subset ofX in which
case we call it a HLOTS . In particular, we call X a CHLOTS when it
is a connected homogenous LOTS. If a HLOTS is not complete, then
it has dense holes and we call it an incomplete homogeneous LOTS, an
IHLOTS . An IHLOTS is order-dense and its completion is a CHLOTS.
Any HLOTS is first countable and σ-bounded. A CHLOTS is locally

compact and σ-compact.

In Section 4 we build over a given HLOTS X , a tower indexed by
the countable ordinals, i.e. by Ω , the first uncountable ordinal.
For a LOTS X and a positive ordinal α define Xα to be the set of

maps from α to X , thought of as the lexicographically ordered product.
In X we select a nontrivial closed interval J and then define Xα = {s ∈
Xα : s(i) ∈ J for all i > 0}. If X is order dense then Xα and Xα are
order dense. If, in addition, X is complete, then Xα is complete and
so is connected.
Call a LOTS X R-bounded if there exists an order injection of X

into Rδ for some countable ordinal δ.

Theorem 1.1. Assume that X is a HLOTS.
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(a) If α is a countable, tail-like ordinal, then Xα is a HLOTS and

so its completion X̂α is a CHLOTS. In particular, if X is a
CHLOTS, then Xα is a CHLOTS for each countable, tail-like
ordinal.

(b) Assume X is a CHLOTS, e.g. X = R. If α and β are positive
ordinals with α > β, then Xα is bigger than Xβ. That is, there
is an order injection from Xβ into Xa but no order injection
in the other direction. In addition, Xα is not homeomorphic to
Xβ.

(c) Assume X is an R-bounded IHLOTS. If α and β are sufficiently

large countable, tail-like ordinals with α > β, then X̂α is bigger

than X̂β.

Part (a) is essentially the result of Arens [4], [5] and Babcock [6].
In addition, they showed that for X = R the elements of the tower at
different heights are not isomorphic.

In Section 5 we describe the definitions and elementary results for
trees.
Let T be a tree. For a vertex p ∈ T we let Ap denote the set of

predecessors of p. This is isomorphic to a unique ordinal o(p), the
order of p. We let Tp consist of p together with all its successors. The
immediate successors of p are those q ∈ Tp with o(q) = o(p)+1; the set
of all immediate successors of p is denoted Sp. For any subset A of T
the height h(A) is the smallest ordinal greater than o(p) for all p ∈ A.
A subset T1 ⊂ T is a subtree if p ∈ T1 implies that all the T prede-

cessors lie in T1. So, for example, Tp is not a subtree if o(p) > 0. On
the other hand, the truncation T α = {p ∈ T : o(p) < α} is a subtree.
Our trees are all assumed to be at least semi-normal meaning:

• There is a unique root, 0 ∈ T , with o(0) = 0.
• For all p ∈ T , the set Sp is either empty or contains at least two
points.
• If for p, q ∈ T , Ap = Aq and o(p) = o(q) is a limit ordinal, then
p = q.

Notice that p, q ∈ T , Ap = Aq and o(p) = o(q) = β + 1 iff p, q ∈ Sr

for some r ∈ T with o(r) = β.
A tree is normal if, in addition:

• If p ∈ T and α is an ordinal with o(p) < α < h(T ), then there
exists a successor q of p with o(q) = α.



6 ETHAN AKIN AND KAREL HRBACEK

A branch is a maximal linearly ordered subset x ⊂ T . We denote by
X(T ) the branch space, i.e. the set of branches of T . We let xi ∈ T
denote the element of x with o(xi) = i.
We call the tree T Ω-bounded when h(x) < Ω for every x ∈ X(T ).

This implies h(T ) ≤ Ω, but a tree of height Ω can be Ω-bounded.
The tree T is bi-ordered when the successor set Sp has the structure

of a LOTS for all p ∈ T . In that case there is an induced order on
X(T ). For distinct branches x, y we write x < y when for some ǫ,
xǫ = yǫ and xǫ+1 < yǫ+1. The latter ordering is the LOTS ordering in
Sp with p = xǫ = yǫ. With the induced order X(T ) is a LOTS.

• X(T ) is order dense if either every Sp is order dense, or else,
every Sp is unbounded and h(T ) is a limit ordinal.
• X(T ) is complete if every Sp is complete and o(p) > 0 implies
Sp is bounded.

A bijection h : T1 → T2 is a tree isomorphism when it preserves both
orders. A tree isomorphism induces an order isomorphism between the
branch spaces.
A tree T is reproductive if for all p ∈ T there is an isomorphism

from T to Tp. A reproductive tree has height a tail-like ordinal. For a
reproductive tree, every Sp is order isomorphic to the LOTS S0.

Theorem 1.2. If T is an Ω-bounded, reproductive tree with S0 a HLOTS,
then X(T ) is a HLOTS.

In Section 6 a number of tree constructions are presented.
If X is a LOTS and α is a positive ordinal, then the simple tree on

X,α has vertices X i at level i < α, and for s ∈ X i the predecessor at
level j < i is the restriction s|j. The simple tree has height α and we
can identify the branch space with Xα.
For p ∈ X i, q ∈ Xj we define p+ q ∈ X i+j by

(1.6) (p+ q)(k) =

{
p(k) for k < i,

q(k \ i) for i ≤ k < i+ j.

Here k \ i = {ℓ : i ≤ ℓ < k} is identified with the ordinal with which it
is isomorphic so that, e.g. (i+ j) \ i = j.
A subtree T of the simple tree on X is called an additive tree if

• p, q ∈ T ⇐⇒ p+ q ∈ T.

The map ap : T → Tp given by ap(q) = p + q is then an isomorphism
from T to Tp and so an additive tree is reproductive. In particular, the
height of an additive tree is tail-like.
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For a CHLOTS X let •X• be the two point compactification of X
obtained by adding a minimum m and a maximum M . If p ∈ Xα we
define p̂ ∈ (•X•)α+1 by

(1.7) p̂(0) = m, p̂(i) = sup{p(j) : j < i} for 0 < i ≤ α.

We call p sharply increasing when for all i < α, p̂(i) < p(i). We
define the order tree T (X) to be the subtree of the simple tree on
X,Ω whose elements of order α are the bounded, sharply increasing
elements of Xα.

Theorem 1.3. If X is a CHLOTS the order tree T (X) is an Ω-bounded
reproductive tree of height Ω with S0

∼= X. The branch space of T (X)
is an IHLOTS with completion a CHLOTS.

We will denote by a(X) the completion of the branch space of T (X).

In Section 7 we build the Double Tower over a CHLOTS X .
Inductively, we let a0(X) = X and aα+1(X) = a(aα(X)). If α is

a countable limit ordinal we define the CHLOTS aα(X) as an inverse
limit of {aβ(X) : β < α}. For (α, β) ∈ Ω× Ω we obtain the CHLOTS
(aα(X))β.

Theorem 1.4. If (α′, β ′) > (α, β) in the lexicographical ordering on
Ω× Ω, then (aα′(X))β′ is bigger than (aα(X))β.

In particular, a(X) is bigger than Xβ for any countable ordinal β. It
follows that a(X) is not R-bounded.

In Section 8 for any given CHLOTS X we construct an Ω-bounded,
additive subtree of the simple tree on Z,Ω the completion of whose
branch space is isomorphic to X . From it we obtain the following.

Theorem 1.5. If X is a LOTS, then the following are equivalent.

• X is a CHLOTS.
• There exists an Ω-bounded, additive subtree of the simple tree
on Z,Ω the completion of whose branch space is isomorphic to
X.
• There exists an IHLOTS D, dense in R and an Ω-bounded,
additive subtree of the simple tree on D,Ω the completion of
whose branch space is isomorphic to X.
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• There exists an Ω-bounded, reproductive tree with S0 a HLOTS
the completion of whose branch space is isomorphic to X.

In addition, we show that a CHLOTS X is R-bounded if and only if
there exists a tree of countable height the completion of whose branch
space is isomorphic to X .

In Section 9 we describe the Hart-van Mill results.
A subset Y ⊂ R is a Bernstein subset (a B-set) if it meets every

Cantor subset of R. It is a Bi-Bernstein subset (a BB-set) when, in
addition, its complement is a Bernstein subset.
Let G denote the group of positive, rational, affine transformations

on R, i.e. maps of the form t 7→ at + b with a, b ∈ Q and a > 0. We
observe that nonempty subset of R which is G invariant is a HLOTS.
Let c = 2ℵ0 denote the cardinality of R.

Definition 1.6. A Hart-van Mill collection H with base V is a set of
cardinality c which satisfies the following conditions.

• H ∪ {V } is a collection of pairwise disjoint BB-subsets of R
each of which is G invariant.
• Q ⊂ V .
• Y ∈ H implies −Y ∈ H with −Y = {−x : x ∈ Y } distinct
from Y .
• Assume Y ∈ H and f is an order automorphism of R. If
f(Y ) \ Y has cardinality c, then f(Y ) ∩ V has cardinality c.

For any J ⊂ H, let X(J) denote the complement of the union of the
elements of J. Because it contains V and so Q, and because it is G

invariant, X(J) is a HLOTS.
Hart and van Mill show that such collections exist and prove the

following.

Theorem 1.7. For a Hart-van Mill collection, let J, J1 be distinct sub-
sets of H with associated HLOTS X,X1. For countable tail-like ordi-

nals α, α1 the CHLOTS X̂α and (̂X1)α1 are not order isomorphic. If
α = α1 = ω, then the two do not even have the same size.

It follows from Theorem 1.1 that for any subset J of H, we obtain a

tower X̂(J)α, indexed by the countable tail-like ordinals α. Each tower
consists of CHLOTS and is nondecreasing in size. For the 2c distinct
subsets, Theorem 1.7 implies that the towers are distinct, i.e. no two
contain any pairwise isomorphic elements.
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In Section 10 we conclude with some results on complete, perfect,
zero-dimensional LOTS, that is, complete LOTS with no isolated points
for which the clopen intervals form a basis. Thus, we return to gener-
alizations of the Cantor Set which motivated our original inquiry.
If T is a normal tree of type 2 = {0, 1} and of height a limit ordinal,

then the branch space is a compact, perfect, zero-dimensional LOTS
which is first countable if the tree is Ω-bounded. We let 0̄ and 1̄ denote
the minimum and maximum branches in X(T ), so that 0̄i = 0, or
1̄i = 1, for every successor ordinal i < h(0̄), resp. i < h(1̄).
We focus on those zero-dimensional LOTS which satisfy the clopen

interval condition which holds when any two clopen intervals are iso-
morphic. In particular, we prove the following.

Theorem 1.8. If T is an additive tree of type 2 = {0, 1} with height
α a tail-like ordinal, such that h(0̄) = h(1̄) = α, then the branch space
X(T ) is a compact, perfect, zero-dimensional LOTS which satisfies the
clopen interval condition. In addition, if α is countable, then X(T ) is
topologically homogeneous.

In particular, from this we recover results of Maurice [15], [16] on
the product space 2α for α a countable tail-like ordinal.

2. LOTS and Ordinals

2.1. The Category of LOTS. For a totally ordered set X we will
use the usual notation (a, b) for the open interval and [a, b] for the
closed interval with endpoints a ≤ b in X and we will write (a,+∞)
and (−∞, b) for unbounded open intervals. An interval is called proper
when it contains more than one point. A subset A of X is bounded
when A ⊂ [a, b] for some a, b ∈ X . So X itself is bounded iff it has
a maximum and a minimum (hereafter max and min). Somewhat
abusively, we will call X unbounded when it has neither max nor min.
As usual, we will let R,Q,Z,N stand for the set of reals, rationals,

integers and non-negative integers, respectively. In particular, 0 ∈ N.
They are all equipped with the usual order.
A linearly ordered topological space (hereafter a LOTS) is a totally

ordered set equipped with the order topology. That is, the set of open
intervals is a base for the topology. The topology is Hausdorff and the
order and topology properties are closely related.
A LOTS X is called order complete (hereafter complete)when every

bounded subset A has a supremum and an infimum (denoted sup A
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and inf A), or, equivalently, when every closed bounded interval [a, b]
is compact. Thus, a complete LOTS is locally compact. In particular,
X is compact iff it is complete and bounded. On the other hand, local
compactness is not sufficient for completeness. For example, X = R\Z
is locally compact, but not complete.
A LOTS X is called order dense when between any two points of

X there lie other points of X , or, equivalently, when every nonempty
open interval in X is infinite. X is connected iff it is complete and
order-dense, in which case, every subinterval is connected. If X is not
order-dense, then there exists a gap pair , a < b in X with (a, b) = ∅.
The point a is then called the left endpoint and b is called the right
endpoint of the pair. By convention the max of X , if it exists, is a left
endpoint and the min is a right endpoint. Thus, a ∈ X is a left (or
right) endpoint iff the closed interval (−∞, a] (resp. [a,+∞)) is open.
A point a is isolated, i.e. {a} is clopen, iff it is both a left and a right
endpoint.

Lemma 2.1. A subset A of a LOTS X is closed iff for all B ⊂ X,
a = sup(A ∩B) or a = inf(A ∩B) implies a ∈ A.

Proof. Assume the conditions hold and that a is a point of the closure
of A. Let a1 = sup(A ∩ (−∞, a)) and a2 = inf(A ∩ (a,∞)). If a = a1
or a = a2, then a ∈ A by hypothesis. If a is neither of these, then
a ∈ (a1, a2) and A ∩ (a1, a2) \ {a} = ∅. So a ∈ A implies a ∈ A.
The converse is clear.

�

A subset A of a LOTS X is convex if a < c < b and a, b ∈ A imply
c ∈ A. Intervals are convex subsets and if X is complete then every
convex subset is an interval. If a convex set J contains at least three
points a < c < b, then the nonempty open interval (a, b) is a subset of
J and so J has a nonempty interior.
A Dedekind cut in X is a partition of X by a pair of nonempty

disjoint sets (A1, A2) such that for all a < b in X , b ∈ A1 implies
a ∈ A1 and so a ∈ A2 implies b ∈ A2. A hole between a and b is a
Dedekind cut (A1, A2) with a ∈ A1, b ∈ A2 such that A1 and A2 are
clopen. For example, if a < b is a gap pair then ((−∞, a], [b,+∞))
is a hole between a and b. On the other hand, while the LOTS Q of
rational numbers is order dense, every irrational number creates a hole
in Q. We say that a LOTS X has dense holes if there is a hole between
every pair a < b in X . Thus Q and the Cantor Set have dense holes.
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Lemma 2.2. Let X1 be a subset of a LOTS X. If X is order dense
and the subset X1 is dense in a convex subset of X, then, regarded as
a LOTS in its own right, X1 is order dense.

Proof. If X1 is dense in J , a convex subset of X , and a < b in X1, then
because X is order dense the interval (a, b) in X is infinite. Since J is
convex, (a, b) is a subset of J . Between any two points of J there are
points of X1 because X1 is dense in J . Hence, (a, b) ∩X1 is infinite.

�

The reverse of a LOTS X , denoted X∗, is the set equipped with the
reverse order. Clearly, the intervals, and so the topology, for X and
X∗ are the same.
A function f : X1 → X2 between LOTS is an order map if it is

order preserving, i.e. a ≤ b implies f(a) ≤ f(b), while f is called
an order* map if it is order reversing, i.e. f : X∗

1 → X2 is an order
map or, equivalently, if f : X1 → X∗

2 is an order map. An injective
(or surjective) order map is called an order injection (resp. an order
surjection). A bijective order map is called an order isomorphism or
just an isomorphism. This is the isomorphism concept for the category
of LOTS with order maps. We say that order isomorphic LOTS X1, X2

have the same order type and we write X1
∼= X2.

While an order isomorphism is a homeomorphism, an order map
need not be continuous. In particular, if X1 is a subset of a LOTS
X , then with the induced order X1 is itself a LOTS. However, the
LOTS topology on X1 need not be the topology induced from X and
the inclusion map might not be continuous. For example, consider
X1 = [−∞, 0] ∪ (1,∞) in X = R. Clearly, the disconnected subset X1

is order isomorphic to R itself.
We will call a map f : X1 → X2 an order embedding if it is an

order map which is a topological embedding, i.e. f : X1 → f(X1) is a
homeomorphism with the topology on f(X1) induced from X2.

Proposition 2.3. Let f : X1 → X2 be an order map.

(a) Assume f is surjective.
(i) If each point-inverse is closed, then f is continuous. If

each point-inverse is compact, then the map f is closed as
well as continuous. If each point-inverse is compact and
X1 is complete, then the map f is topologically proper, i.e.
the preimage of every compact subset of X2 is a compact
subset of X1.

(ii) If X2 is order dense, then f is continuous.
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(iii) If X2 is unbounded, then X1 is unbounded and the preimage
of every bounded subset of X2 is a bounded subset of X1.

(iv) If X1 is complete, X2 is unbounded and f is continuous,
then f is topologically proper.

(b) Assume f is injective. If f is continuous, then it is an order
embedding. This occurs if one of the following holds.
(i) The image f(X1) is convex in X2.
(ii) X2 is complete and f(X1) is closed in X2.
(iii) X2 is order dense and f(X1) is dense in X2.

(c) Let A be a subset of X1. If A is bounded in X1 then the im-
age f(A) is bounded in X2. If f is continuous and x = infA
(or = supA) then f(x) = inff(A) (resp. = supf(A)) in X2.
Conversely, if for every bounded subset A of X1 x = infA (or
= supA) implies f(x) = inff(A) (resp. = supf(A)) in X2,
then f is continuous.

(d) If f is surjective, then there exists a map g : X2 → X1 such
that f ◦ g = 1X2. Any such map g is a (not usually continuous)
order injection.

(e) If X1 is order dense and f is injective on a dense subset D of
X1, then f is injective.

Proof. (a): If f(a1) = a2 and f(b1) = b2 then

(2.1) f−1((a2, b2)) = (a1, b1) \ (f
−1(a2) ∪ f−1(b2))

which is open if f has closed point inverses.
Now with f continuous assume that A is a subset of X1 with y a

limit point of f(A) not in f(A). By replacing A by A∩f−1((−∞, y]) or
by A ∩ f−1([y,∞)) (which are closed when A is) we may assume that
y = supf(A) or = inff(A). Assume the first. Since f−1(y) is compact
it has an infimum which we denote x. So a ∈ A implies f(a) < y = f(x)
and so a < x. For any z < x, f(z) < f(x) = y because x = inff−1(y).
Since y = supf(A) there exists az ∈ A such that f(z) < f(az) < f(x)
and so z < az < x. This means that x = supA. Since x 6∈ A, it
follows that A is not closed. Contrapositively, when all point inverses
are compact, A closed implies that f(A) contains all its limit points
and so is closed.
Now assume that all point inverses are compact and X1 is complete.

If B is a compact subset of X2, then it has a supremum y. Since f−1(y)
is compact, it has a supremum x. It is clear that x = supf−1(B).
Similarly, f−1(B) has an infimum. Since f is continuous, f−1(B) is
closed as well as bounded and so is compact by completeness of X1.
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(ii): If f(x) ∈ (a2, b2) and X2 is order dense then there exist a3, b3 in
X1 such that

a2 < f(a3) < f(x) < f(b3) < b2

and so

x ∈ (a3, b3) ⊂ f−1((a2, b2)).

(2.2)

Thus, the latter is a neighborhood of x in X .
(iii), (iv): If M is an upper bound for A ⊂ X1 then f(M) is an upper

bound for f(A). In particular, if M = maxX1 then f(M) = maxX2

since f is surjective. So if X2 is unbounded then X1 is. Furthermore,
if B is bounded above in X2, then because X2 has no max and f is
surjective, there exists a ∈ X1 such that y < f(a) for all y ∈ B. Hence,
x < a for all x ∈ f−1(B). If B is compact, then it is closed and bounded
in X2. If f is continuous, then f−1(B) is closed as well as bounded and
so is compact if X1 is complete.
(b): Let A = f(X1) ⊂ X2. The order injection f is an order isomor-

phism of X1 with A regarded as LOTS and so is a homeomorphism.
The problem concerns the comparison between the order topology on A
and the topology induced from X2. If a, b ∈ A then the interval (a, b)
in A is the intersection of A with the corresponding interval in X2.
Hence the topology on A is included in the topology induced from X2

and the two topologies agree exactly when the inclusion is continuous.
If a ∈ A, x ∈ X2\A and a < x then (−∞, x)∩A is a neighborhood in

the induced topology. If x is an upper bound for A then the intersection
is A. Otherwise, we require a point ã ∈ A with a < ã such that
(−∞, x) ∩ A ⊃ (−∞, ã) ∩ A. Such a point exists iff the following
condition holds:

a ∈ A, x ∈ X2, a < x, (a, x] ∩ A = ∅, [x,∞) ∩ A 6= ∅

=⇒

∃b ∈ A such that x ≤ b and (x, b) ∩ A = ∅.

(2.3)

This condition and its analogue for the reverse orders are those re-
quired for the two topologies to agree.
If A is convex then (a, x] ∩ A = ∅ implies [x,∞) ∩ A = ∅. If X2 is

order dense and A is dense in X2 then a < x implies (a, x)∩A 6= ∅. So
the conditions hold vacuously in these cases.
If X2 is complete and A is closed in X2, then b = inf [x,∞) ∩ A is

a point of A and (x, b) ∩A = ∅. So the conditions hold in this case as
well.
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(c): If x is a lower bound for A, then f(x) is a lower bound for f(A).
If f(x) < a2 and a2 is a lower bound for f(A), then f(x) is not in the
closure of f(A) and so by continuity x is not inf A.
For the converse, if A is a closed subset of X2 and for B ⊂ X1

x = inf(B ∩ f−1(A)) or x = sup(B ∩ f−1(A)), then, by assumption,
f(x) = inff(B ∩ f−1(A)) or f(x) = supf(B ∩ f−1(A)) and so f(x)
is in the closed set A. Hence, x ∈ f−1(A) and so f−1(A) is closed by
Lemma 2.1.
(d): We can define g(x) by choosing any element of f−1(x). Such

choices exactly define the functions g such that f ◦g = 1X . In that case,
if g(x1) ≤ g(x) then x1 = f(g(x1)) ≤ f(g(x2)) = x2. Contrapositively,
x1 > x2 implies g(x1) > g(x2).
(e): If y1 < y2 in X1, then there exist x1, x2 in the dense subset with

y1 < x1 < x2 < y2. Then f(y1) ≤ f(x1) < f(x2) ≤ f(y2). Thus, f is
injective on X1.

�

Corollary 2.4. If f : X1 → X is an order map with X order dense
and f(X1) is dense in a convex subset of X, then f is continuous.

Proof. Assume J is a convex subset of X and f(X1) is dense in J . By
Lemma 2.2, regarded as LOTS in their own right, both J and f(X)
are order dense. By Proposition 2.3(a)(ii) the order surjection f :
X1 → f(X1) is continuous. The inclusions f(X1)→ J and J → X are
continuous by (b)(iii) and (b)(i), respectively. Hence, the composition
f : X1 → X is continuous.

�

If I is a LOTS and {Xi : i ∈ I} is a family of nonempty LOTS
indexed by I (a LOTS indexed family ), then we define the order space
sum:

(2.4) Σi∈IXi =
⋃

i∈I

{i} ×Xi

with (i, x) < (j, y) if i < j or i = j and x < y in Xi. If I = {0, 1} then
we write X0 +X1 for the sum.
If {Xi : i ∈ I} and {Yj : j ∈ J} are LOTS indexed families of

nonempty LOTS and f : I → J and {gi : Xi → Yf(i)} are order
maps with f injective, then the sum order map is the map obtained by
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putting together the family {gi} :

g = Σfgi : Σi∈IXi → Σj∈JYj

g(i, x) = (f(i), gi(x)).
(2.5)

This is clearly an order map which is injective/surjective/bijective if f
and each gi satisfies the corresponding property.
The projection map

π : Σi∈IXi → I

π(i, x) = i
(2.6)

can be thought of as the special case of putting together the surjec-
tions from Xi to the singleton LOTS {i}. By Proposition 2.3(a), π is
continuous if I is order dense, or, more generally, when each Xi is a
closed subset of the sum.

Proposition 2.5. Let {Xi : i ∈ I} be a LOTS indexed family of
nonempty LOTS and let X = Σi∈IXi.

(a) A pair (i, x) < (j, y) is a gap pair in X iff either i = j and x < y
is a gap pair in Xi or i < j is a gap pair in I and x = maxXi

and y = minXj . So if X is order dense, then each Xi is order
dense. Conversely, assume that each Xi is order dense. If I is
also order dense or if each Xi is unbounded, then X is order
dense.

(b) If I is complete and each Xi is compact then X is complete.

Proof. (a): Obvious.
(b): If A ⊂ X is bounded then π(A) in I is by Proposition 2.3(c).

Let i = inf π(A). Because Xi is compact, π−1(i) ∩ A is bounded in
Xi. Let x be its inf in Xi. If π

−1(i) ∩A = ∅ let x = max Xi. Clearly,
(i, x) = inf A.

�

When it is identified with π−1(i) = {i} × Xi, Xi is a convex subset
of Σi∈IXi. By Proposition 2.3(b) the inclusion of Xi into the sum is an
embedding.
On the other hand, let {Xi : i ∈ I} be a family of nonempty convex

subsets which partition a LOTS X , i.e. an I indexed convex partition
of X . Observe that if A and B are disjoint convex subsets of X , then
x1 < y1 for some pair x1 ∈ A, y1 ∈ B implies x < y for all x ∈ A, y ∈ B.
Hence, I is a LOTS with ordering uniquely defined by i < j when x < y
for all x ∈ Xi, y ∈ Xj. A convex partition of X indexed by a LOTS I
is equivalent to an order surjection π : X → I.
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Clearly,we have an order isomorphism:

Σi∈IXi
∼= X

(i, x) 7→ x,
(2.7)

which we can regard as an identification.
This will allow us to put together a family of order isomorphisms

between elements of convex partitions, to obtain an order isomorphism
between the partitioned spaces.

2.2. Ordinal Constructions. Of special interest are the ordinals. As
usual we let 0 = ∅ and define the ordinal α to be the set of ordinals
smaller than α, with the ordering by set inclusion. The successor α+1
of α is α ∪ {α}. If A ⊂ α then inf A =

⋂
A is the first element of A

and sup A =
⋃

A. Thus, any ordinal is a complete LOTS.
Any well-ordered set has the order type of an ordinal. If A ⊂ α then

there is a unique order isomorphism of A onto an ordinal β ≤ α. We
will usually identify the subset A with the ordinal β whose order type
is that of A.
We let ω denote the first infinite ordinal and Ω denote the first

uncountable ordinal. We identify the ordinal ω with the set N by
letting n label the nth (finite) ordinal. Thus n = {0, 1, . . . , n− 1}.
For ordinal results we follow Rosenstein [17] and Jech [13]. The

arithmetic of ordinals is defined inductively so that α+ β, α · β and αβ

are continuous in the β variable.

α + 0 = α and α+ (β + 1) = (α + β) + 1.

α · 0 = 0 and α · (β + 1) = (α · β) + α.

α0 = 1 and α(β+1) = (αβ) · α.

(2.8)

In particular, if α and β are countable ordinals then the results of all
of these operations are countable ordinals. We will use the usual order
type sloppiness, writing A +B for well-ordered sets A and B to mean
the ordinal which is the sum of the ordinals having order types A and
B.
Notice that the ordinal sum is a special case of the two term order

space sum defined above. Also the product α · β is isomorphic to the
order space sum of the β indexed family of copies of α.
Ordinal addition and multiplication are associative and by induction

on β2 the following arithmetic identities hold
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α · (β1 + β2) = α · β1 + α · β2,

αβ1+β2 = αβ1 · αβ2,

(αβ1)β2 = αβ1·β2.

(2.9)

In addition, we have

0 < α, β =⇒ α < α + 1 ≤ α + β,

0 < α and 1 < β =⇒ α < α + α = α · 2 ≤ α · β,

1 < α, β =⇒ α < α · 2 ≤ α · α = α2 ≤ αβ,

1 < α and β1 < β2 =⇒ αβ1 < aβ1 · α = aβ1+1 ≤ aβ2.

(2.10)

If α is an ordinal and β < α then the tail

α \ β = {i : β ≤ i < α} ⊂ α,

so that β + (α \ β) = α.
(2.11)

As usual, we identify the subset α\β with the ordinal having the same
order type.
An ordinal α is called tail-like if it is positive and all of the tails of

α have order type α, i.e. α \ β = α for all β < α. Observe that if
β < α, then α \ β = α is equivalent to β + α = α. Thus, α is tail-like
iff β1 + β2 < α for all β1, β2 < α.
We recall from [17] Theorem 3.46 the Cantor Normal Form Theorem.

Proposition 2.6. An ordinal α is tail-like iff α = ωβ for some ordinal
β.
Any positive ordinal α can be written uniquely as the sum

α = ωβ1 + ...+ ωβN

with β1 ≥ ... ≥ βN

(2.12)

Proof. First observe that if γ < β < α and α \ β = α, then

(2.13) α = α \ β ≤ α \ γ ≤ α.

Clearly, 1 = ω0 is tail-like. It is the only tail-like ordinal which is
not a limit ordinal.
Inductively, we have, for ǫ < β and N < ω:

ωǫ + ωβ = ωǫ · (1 + ωβ\ǫ) = ωǫ · ωβ\ǫ = ωβ,

ωβ ·N + ωβ+1 = ωβ · (N + ω) = ωβ · ω = ωβ+1
(2.14)

Thus, ωβ \ ωǫ = ωβ and ωβ+1 \ ωβ · N = ωβ+1. It then follows from
(2.13) that ωβ is tail-like for any ordinal β.
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Continuity in β implies that the set {β : ωβ ≤ α} is closed and so we
can choose ωβ1 to be the largest ordinal of this form less than or equal
to α. We see that β1 is the unique ordinal such that ωβ1 ≤ α < ωβ1+1.
We proceed by induction on β1. Observe that if α satisfies (2.12),

then ωβ1 ≤ α ≤ ωβ1 · N < ωβ1+1. Thus, β1 is uniquely determined by
this inequality.
If α = ωβ1, then we have Cantor Normal Form Theorem for α with

N = 1.
If α > ωβ1, then since α < ωβ1+1, there exists k ∈ ω such that

α < ωβ1 · (k + 2). The minimum such value k = k(α) is uniquely
determined by α. We have α ≥ ωβ1 ·(k+1) and γ = α\ωβ1 ·(k+1) < ωβ1.
Let βi = β1 for 1 ≤ i ≤ k + 1.
Applying the induction hypothesis, let γ = ωβk+2 + ... + ωβN be the

unique Cantor Normal Form for γ. We have ωβk+2 ≤ γ < ωβ1 = ωβk+1

and so by (2.10) βk+2 < βk+1. Summing the two decompositions we
obtain the unique normal form for α.
Finally, observe that if N > 1, then by (2.10) ωβ1 < α. Clearly

α \ ωβ1 is equal to ωβ2 + ... + ωβN and by uniqueness of the Cantor
Normal Form this does not equal α. Hence, α is not tail-like.
It follows that the only tail-like ordinals are of the form ωγ.

�

Corollary 2.7. An ordinal α is a limit ordinal iff α = ω · β for some
positive ordinal β.
Any infinite ordinal α can be written uniquely as α = β + k with β

a limit ordinal and k < ω.

Proof. If ωβ1 + ...+ ωβN is Cantor Normal Form for α, then ωβ1 + ...+
ωβN + ω0 is Cantor Normal Form for α + 1. So we can uniquely write
α as

(2.15) ω · (ωβ1−1 + ...+ ωβN−k−1) + k

with βN−k > 0 and βi = 0 for N−k < i ≤ N . For α an infinite ordinal,
e.g. a limit ordinal, β1 > 0. It is a limit ordinal iff k = 0.

�

A cardinal ℵ is the ordinal which is minimum among the ordinals of
that cardinality. That is, if α < ℵ, then the cardinality of α is strictly
less than that of ℵ. By mapping β + k to β + 2k or to β + 2k + 1 for
β any limit ordinal less than ℵ, we see that an infinite cardinal can
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be written as the disjoint union of two sets of the same cardinality. It
follows that any infinite cardinal ℵ is tail-like.
The elements of ω are the finite cardinals, and ω,Ω are the infinite

cardinals ℵ0 and ℵ1, respectively.

If α is a positive ordinal and {Xi : i ∈ α} is an α indexed family
of nonempty LOTS then we define the order space product to be the
set Πi∈αXi with the lexicographic ordering . That is, for x 6= y in the
product

(2.16) x < y ⇐⇒ xβ < yβ with β = min{j : xj 6= yj}.

If α = 2, we write X0 ×X1 for the product.
When Xi = X for all i then we obtain Xα, the space of functions

from α to X , as a LOTS. Observe that the LOTS topology is not the
product topology.
If Xi = X for all i ∈ I in an I indexed family {Xi : i ∈ I} then the

order sum Σi∈IXi is the product I ×X .
If Y is a LOTS then (

⋃
i∈I{i} × Xi) × Y =

⋃
i∈I({i} × Xi) × Y )

implies

(2.17) (Σi∈IXi)× Y ∼= Σi∈I(Xi × Y ).

Furthermore, if {Xi : i ∈ I} is an arbitrary family of subsets of a LOTS
X and Y is a LOTS, then {Xi × Y : i ∈ I} is a family of subsets of
X × Y and regarded as LOTS in their own right, we have

(2.18) (
⋃

i∈I

Xi)× Y ∼=
⋃

i∈I

(Xi × Y ).

In contrast with the sum, the ordinal conventions for products and
powers given by (2.8) disagree with these new definitions.
It follows by induction on β using (2.17) and (2.18) that the order

space product β × α is the ordinal product α · β.
The order space power 2ω is the uncountable space of all zero/one

valued sequences. The ordinal 2ω is the limit of the finite ordinals 2N

and so is just ω.
If {Xi : i ∈ α} is an ordinal indexed family of nonempty LOTS and

0 < β ≤ α then we can write Πβ for the subproduct Πi∈βXi and if
0 < ǫ ≤ β ≤ α then we denote by

(2.19) πβ
ǫ : Πβ −→ Πǫ

the projection map obtained by forgetting the coordinates in β\ǫ. Since
ǫ is an initial segment of β it is clear that πβ

ǫ is an order surjection.
However, it need not be continuous. The first coordinate projection
ω × ω → ω does not have closed point inverses.
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Proposition 2.8. Let X = Πi∈αXi be an order space product of LOTS.

(a) If each Xi is order dense, then X is order dense. In that case,
each projection πβ

ǫ for 0 < ǫ ≤ β ≤ α is continuous.
(b) If each Xi for i > 0 is bounded, then each projection πβ

ǫ is
continuous. If, in addition, each Xi is complete, then X is
complete.

Proof. (a) If x < y in X , then with β = min{j : xj 6= yj} we can
choose zβ ∈ Xβ such that xβ < zβ < yβ. Define zj = xj for all j 6= β.
Then x < z < y in X . The projections are continuous by Proposition
2.3(a)(ii).
(b) Given a < b in Πǫ with ǫ > 0 define a+ and b− in Πβ by:

(2.20) (a+)i =

{
ai i ∈ ǫ

max Xi i ∈ β \ ǫ

(b−)i =

{
bi i ∈ ǫ

min Xi i ∈ β \ ǫ

Note that i ∈ β \ ǫ is positive and so Xi is bounded. Clearly,

(πβ
ǫ )

−1((a, b)) = (a+, b−),

(πβ
ǫ )

−1([a, b]) = [a−, b+].
(2.21)

Hence, πβ
ǫ is continuous.

If A ⊂ X is contained in [a, b] then by replacing X0 by [a0, b0] we can
assume that every Xi is bounded. We prove by induction on β that if
every Xi is compact, then A ⊂ Πβ has an inf . With similar results for
sup, completeness follows.
If β = 1 then Πβ = X0 which is compact.
Now assume that the result holds for all ǫ < β and let xǫ = inf πβ

ǫ (A)
in Πǫ. By Proposition 2.3(c) it is clear that δ ≤ ǫ implies

(2.22) πǫ
δ(x

ǫ) = xδ.

Case 1: If β is a limit ordinal then define xβ so that

(2.23) xβ
i = xǫ

i for i < ǫ < β,

which is well-defined by (2.22). Clearly, xβ = inf A in this case.

Case 2: If β = ǫ + 1 then Πβ is the order space sum of copies
of the compact LOTS Xǫ indexed by the points of Πǫ. By induction
hypothesis and Proposition 2.5(b) Πβ is complete. Hence, inf A exists
in this case as well.

�
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We will also use the inverse limit construction under special assump-
tions which we will refer to as a special inverse system. We begin
with an ordinal indexed family {Xi : i ∈ α} of connected LOTS. For
i < j < α we are given order surjections pji : Xj → Xi. such that

(2.24) pik ◦ p
j
i = pjk for k < i < j < α

We assume that each pji has compact point inverses and so each pji is
continuous and topologically proper by Proposition 2.3(a). If each Xi is
unbounded, i.e. has no max or min, then we call the system unbounded
and Proposition 2.3(a) implies directly that each pji is continuous and
topologically proper, i.e. the compact point inverses condition is auto-
matically satisfied.
We then define the inverse limit

(2.25)
←−−
Lim{Xi} = {x ∈ Πi∈αXi : xi = pji (xj) for all i < j < α}.

We denote by pj :
←−−
Lim{Xi} → Xj the projection to the j coordinate.

If x < y in
←−−
Lim then with ǫ = min{j : xj 6= yj}, xǫ < yǫ and xi = yi

for all i < ǫ. On the other hand, if j > ǫ then xj < yj because pjǫ is an
order map. It follows that each pj is an order map and we have

(2.26) x < y ⇐⇒ ∃ǫ < α such that

{
xi = yi for all i < ǫ,

xi < yi for all i ≥ ǫ.

Proposition 2.9. If ({Xi : i ∈ α}, {pji : i < j < α}) is a special inverse

system, then the inverse limit
←−−
Lim{Xi} is a connected LOTS and each

projection pj is a continuous, topologically proper order surjection. If
the system is unbounded, then the inverse limit is unbounded. If each
Xi is compact, then the inverse limit is compact.

Proof. Given a ∈ Xj we construct by the usual compactness argument

x ∈
←−−
Lim{Xi} such that pj(x) = a. We use the topological product

topology on Z =
∏

i Xi. For j ≤ i < α let

Qi = {z ∈ Z : zk ∈ (pki )
−1(zi) for k > i,

zk = pik(xi) for k ≤ i, and with zj = a}
(2.27)

Because each pik is a continuous, topologically proper map {Qi} is a
filterbase of nonempty compact sets in the topological product. Hence,
the intersection, which is (pj)

−1(a) is nonempty.

By Proposition 2.3(a) each pj is continuous and
←−−
Lim is unbounded

if some Xj is unbounded.
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If x < y in
←−−
Lim, then let ǫ satisfy (2.26). Because Xǫ is order dense,

we can choose zǫ ∈ Xǫ such that xǫ < zǫ < yǫ. Choose z ∈
←−−
Lim such

that pǫ(z) = zǫ. Because pǫi is order preserving, xi = zi = yi for all

i < ǫ. Hence, x < z < y in
←−−
Lim and so the inverse limit is order dense.

If A ⊂
←−−
Lim, let Aj = pj(A). Clearly, i < j implies Ai = pji (Aj). If

A is bounded in
←−−
Lim then by Proposition 2.3(c) each Aj is bounded in

Xj. If each Aj is bounded and if xj = infAj then xi = pji (xj). This

defines a point x of
←−−
Lim which is infA. With a similar argument for

the sup we see that
←−−
Lim is complete and so is connected.

If C ⊂ Aj is bounded, then let A = (pj)
−1(C) and Ai = pi(A) for

all i. In particular, since pj is surjective, Aj = C, Ai = pji (C) for
i < j and Ai = (pij)

−1(C) for i > j. Thus, each Aj is bounded because

every pij is a topologically proper, continuous map. It follows that

Hence, A = (pj)
−1(C) is bounded as well as closed and so is compact

by completeness. Thus, each pj is topologically proper.
It follows that if Xj is compact, then the inverse limit (= (pj)

−1(Xj))
is compact.

�

Remarks. While it is easy to show that
←−−
Lim{Xi} is a closed subset

of the order space product Πi∈αXi, the topology on the inverse limit is
not the relative topology induced from that product. For example, if
X0 = X1 = R and p10 is the identity map then the inverse limit is the
diagonal {(t, t) : t ∈ R} which is a discrete subset of the order space
product R×R. The topology on the inverse limit is instead the relative
topology induced from the topological product space.
Absent the assumption of connectedness, the inverse limit projec-

tions need not be continuous. Define the ω indexed inverse limit system
by

(2.28) Xn = {1, . . . , n} ∪ {ω} and pn+1
n (k) =

{
k for k ≤ n, k = ω,

n for k = n+ 1.

The inverse limit is isomorphic to ω + 1 with (p1)
−1(1) = ω.

Any LOTS X can be regarded as a subset of a smallest complete
LOTS X̂ called its completion, see [17] Theorem 2.32. We will only

need X̂ in the case when X is order dense.
First, assume that X is unbounded. In that case, define X̂ to be the

set of open subsets A of X such that (A,X \A) is a Dedekind cut in X ,



TREES AND HOMOGENEOUS LOTS 23

i.e. A is a proper open subset of X and x ∈ A implies (−∞, x) ⊂ A.

Order X̂ by inclusion and identify x ∈ X with (−∞, x) ∈ X̂ . Since X

is unbounded and A,X \ A are nonempty, X̂ is unbounded. The sup

of a bounded subset of X̂ is its union and the inf is the interior of its
intersection. If A2 < A1 in X̂ , then because A1 is open, there exist
x < y in A1 \A2. So A2 < (−∞, y) < A1 because x ∈ (−∞, y)\A2 and

y ∈ A1 \ (−∞, y). It follows that X̂ is order dense, and so is connected,

and that X is dense in X̂ .
IfX has amax ormin then we obtain X̂ by removing such endpoints,

completing, and then reattaching them. If M is maxX then we regard
M as maxX̂ and if m = minX then we regard m as minX̂ .
Let Y be a complete LOTS and f : X → Y be an order map with

X order dense. Define f̂ : X̂ → Y so that for x̂ ∈ X̂

(2.29) f̂(x̂) = sup{f(x) : x ∈ X ∩ (−∞, x̂]}.

Clearly, f̂ is an order map which extends f .

Proposition 2.10. Assume Y is a complete LOTS and f : X → Y is
an order map with X order dense.

(a) If f is injective, then f̂ is injective.
(b) If f(X) is dense in a connected subset of Y , then the map f and

its extension f̂ are continuous order maps with f̂(X̂) connected.
(c) Assume Y is connected and f(X) is dense in Y . If Y is un-

bounded, then f̂ is surjective and X is unbounded. More gen-
erally, if

max Y exists =⇒ max X exists and

min Y exists =⇒ min X exists,
(2.30)

then f̂ is surjective.

In particular, if X is a dense subset of a connected LOTS Y , then X
is order dense. If Y is unbounded or (2.30) holds, then X̂ ∼= Y .

Proof. (a): This follows from Proposition 2.3(e).
(b): Let Y0 be a connected subset of Y in which f(X) is dense. Since

the closure of a connected set is connected, we may assume that Y0 is
closed and so Y0 = f(X). Clearly, f(X) ⊂ f̂(X̂) ⊂ Y0. It then follows

from Corollary 2.4 that f : X → Y0 and f̂ : X̂ → Y0 are continuous
maps. By Proposition 2.3(b)(ii) the inclusion of Y0 into Y is continuous.

Composing we see that f and f̂ are continuous. Since X̂ is connected,
its image is connected.
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(c): By (b) f̂ is continuous and the subset f̂(X̂) is connected and

dense in Y . If Y is unbounded, f̂(X̂) = Y and so f̂ is surjective.
Also X is unbounded by Proposition 2.3(c). If maxX exists, then

by Proposition 2.3(c) again f̂(maxX) = maxY and similarly for the

minimum. Thus, (2.30) implies that f̂(X̂) ⊂ Y is dense and connected

and contains maxY or minY when they exist. Hence, f̂(X̂) = Y .
In particular, if f is injective and (2.30) holds, then from (a) it follows

that f̂ is bijective and so is an order isomorphism.
�

A bounded, convex subset J in a complete space is an interval with
endpoints infJ and supJ . With X ⊂ X̂ as above, a bounded, convex
subset J ⊂ X is equal to Ĵ ∩X where z ∈ Ĵ iff there exist x1, x2 ∈ J
such that x1 ≤ z ≤ x2. It follows that a convex set in X is the
intersection of an interval of X̂ with X .

2.3. Countability Conditions. A topological space X is separable
if it has a countable dense subset. X satisfies the countable chain
condition, hereafter denoted c.c.c, if any collection of pairwise disjoint,
nonempty open subsets is countable. A LOTS X satisfies c.c.c. if any
collection of pairwise disjoint, nonempty open subintervals is countable
because the subintervals form a base for the topology.
A subset A of a LOTSX is cofinal if for any x ∈ X there exists a ∈ A

such that x ≤ a. If M = maxX exists then A is cofinal iff M ∈ A.
If X has no max then any dense subset of X is cofinal. A is coinitial
if it is cofinal for the reverse X∗. A is ±cofinal if it is both cofinal
and coinitial. X is called σ-bounded if it admits countable ±cofinal
subsets. If X is complete then it is σ-bounded iff it is σ-compact.
A point x in a LOTS X has a countable neighborhood base iff the in-

terval (−∞, x) has a countable cofinal subset and the interval (x,+∞)
has a countable coinitial subset. Thus, X is first countable iff for every
point x ∈ X, x is either a right endpoint or the limit of an increasing
sequence, and x is either a left endpoint or the limit of a decreasing
sequence. Equivalently, X is first countable iff every bounded interval
in X is a σ-bounded LOTS in its own right.
We say that a LOTS X has countable type if every convex subset

of X is a σ-bounded LOTS. It clearly suffices that every open, convex
subset of X be σ-bounded.
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Proposition 2.11. Let X be a LOTS.

(a) X satisfies c.c.c. iff there does not exist an order injection into
X of a LOTS with uncountably many isolated points.

(b) X is of countable type iff there does not exist an injective order
map or order* map of the first uncountable ordinal Ω into X.

(c) If X satisfies c.c.c., then it has only countably many isolated
points.

(d) If X is of countable type, then it is first countable and σ-bounded.
If X is complete, first countable and σ-bounded then it is of
countable type.

(e) If X is separable, then it satisfies c.c.c. If X satisfies c.c.c.,
then it is of countable type.

(f) Let f : X1 → X be an order injection. If X is separable,
satisfies c.c.c. or is of countable type, then X1 satisfies the
corresponding property.

(g) Let f : X → X1 be an order surjection. If X is separable,
satisfies c.c.c. or is of countable type, then X1 satisfies the
corresponding property.

(h) Let f : X → X1 be an order map with image f(X) dense in
X1. If X is of countable type, then X1 is. If X1 has only count-
ably many isolated points and X is separable or satisfies c.c.c.,
then X1 satisfies the corresponding property. If f is continu-
ous and X is separable or satisfies c.c.c., then X1 satisfies the
corresponding property.

Proof. (a): Suppose f : A → X is an order injection and with I ⊂ A
defined to be the set of isolated points in A, excluding the max and
min if any, suppose that I is uncountable. For each x ∈ I there are
unique x−, x+ ∈ A such that x− < x < x+ and x is the only point in
the interval (x−, x+). By Zorn’s Lemma we can choose Ĩ ⊂ I maximal

with respect to the property that x ∈ Ĩ ⇒ x−, x+ 6∈ Ĩ. By maximality
x ∈ I implies that either x, x− or x+ ∈ Ĩ. Hence, Ĩ is uncountable.
If x1 < x2 in Ĩ, then x1+ ≤ x2 and the inequality is strict because
x1+ 6∈ Ĩ. Hence, x1+ ≤ x2−. It follows that {(f(x−), f(x+)) : i ∈ Ĩ}
is an uncountable family of pairwise disjoint, nonempty open intervals
in X . Thus, X does not satisfy c.c.c.
Now assume that X does not satisfy c.c.c. If X has uncountably

many isolated points, then the identity on X is the required order
injection. So we can assume that X itself has only countably many
isolated points and that {Ji} is an uncountable family of pairwise dis-
joint open subintervals in X . If Ji is finite, then it consists of isolated
points and there are only countably many such. Thus, we can assume
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that each Ji is infinite. For each i choose points xi− < xi < xi+ in Ji.
The collection of all these points is a subset A of X and the inclusion
f : A→ X is a, not necessarily continuous, order injection of LOTS. In
A each xi is an isolated point and so A has uncountably many isolated
points.
(b): If f : Ω → X is an order injection, then J = {x : x < f(i)

for some i ∈ Ω} is a nonempty, open convex subset of X and if A is
a countable subset of J , then we can choose for each a ∈ A, i(a) ∈ Ω
such that a < f(i(a)). Let j ∈ Ω with j > sup {i(a) : a ∈ A}. Then
f(j) > a for all a ∈ A and f(j) < f(j + 1) so that f(j) ∈ J . Thus, A
is not cofinal in J .
Conversely, if J is a nonempty, open convex subset of X with no

countable cofinal subset, then we can construct an order injection
f : Ω → J inductively by choosing f(j) ∈ J larger than all the f(i)
previously chosen for i < j.
Similarly, every nonempty, open convex subset of X has countable

coinitial subsets iff there does not exist an order injection of the reverse
Ω∗ into X .
(c): This follows from (a) or directly because the isolated points form

a pairwise disjoint collection of open singletons.
(d): If X is of countable type, then X is a convex subset and so is

σ-bounded. Every interval is σ-bounded and so X is first countable.
Conversely, if X is first countable and complete then every bounded
convex set is an interval and so is σ-bounded by first countability. If,
in addition, X is σ-bounded, then every interval is σ-bounded and so
X is of countable type.
(e): Disjoint nonempty open sets contain distinct elements of any

dense subset. Hence separability implies c.c.c. Ω and Ω∗ contain un-
countably many isolated points and so c.c.c. implies countable type by
(a) and (b).
(f): If g : A → X1 is an order injection, then f ◦ g : A → X is an

order injection. By (a) and (b) X is not c.c.c. or of countable type if
X1 is not.
Now assume that D is a countable dense subset of X . For every

pair d1 < d2 in D with f(X1) ∩ (d1, d2) 6= ∅ choose a point x ∈ X
such that d1 < f(x) < d2. The collection of such points is a countable
subset D1 of X1. Since X is separable it satisfies c.c.c. and so X1

satisfies c.c.c. by what we have already shown. Thus, the set D2 of
isolated points of X1 is countable by (c). We show that the countable
set D1 ∪D2 is dense in X1. Let a < b in X1. If the interval (a, b) ⊂ X1

is finite but nonempty, then it consists of isolated points and so meets
D2. If it is infinite then we can choose c1 < c2 < c3 in (a, b). The
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open subintervals (f(a), f(c2)) and (f(c2), f(b)) contain f(c1) and f(c3)
respectively and so they meet D. That is, there exist d1, d2 ∈ D such
that f(a) < d1 < f(c2) < d2 < f(b). By definition there exists x ∈ D1

such that f(x) ∈ (d1, d2). Hence, a < x < b and so (a, b) meets D1.
(g): Choose for each x ∈ X1 a point g(x) ∈ f−1(x) ⊂ X , which is

nonempty since f is surjective. We obtain an order injection g : X1 →
X and so the results follow from (f) applied to g.
(h): Suppose that g̃ : Ω → X is an order injection. We will define,

by induction, an order injection g : Ω→ X1 such that

(2.31) g̃(i) < f ◦ g(i) < g̃(i+ 2) for all i ∈ Ω.

For i = 0 or i a limit ordinal, g̃(i + 1) in the interval (g̃(i), g̃(i + 2))
implies that the dense set f(X1) meets the interval and so we can
choose g(i) so that f(g(i)) is in the interval. If i = β + 1 and g has
been defined through β, then

(2.32) f ◦ g(β) < g̃(β + 2) = g̃(i+ 1)

implies that g̃(i+ 1) lies in the interval between max (g̃((i), f ◦ g(β))
and g̃(i + 2). Choose g(i) so that f(g(i)) lies in this interval. With a
similar argument for Ω∗ we use (b) to see that if X is not of countable
type then X1 is not of countable type.
Now assume that X1 has only countably many isolated points and

let D2 denote the set of isolated points of X1 together with its max
and min if any. So D2 is countable by assumption.
If X1 does not satisfy c.c.c., then there exists an uncountable family
{Ji} of pairwise disjoint, nonempty open intervals in X1. Since D2 is
countable we can assume that Ji ∩ D2 = ∅ for all i and so each Ji is
infinite. In Ji choose y1 < ... < y4. Because f(X) is dense there exist
x1, x2, x3 in X such that

(2.33) y1 < f(x1) < y2 < f(x2) < y3 < f(x3) < y4.

Hence, (x1, x3) is a nonempty open interval contained in f−1(Ji). Thus,
we have constructed a pairwise disjoint,uncountable family of nonempty
open intervals in X . Thus, X does not satisfy c.c.c.
Now assume that X contains a countable dense subset D. I claim

that D2 ∪ f(D) is dense in X1, which will prove that X1 is separable.
If J is a nonempty open subinterval of X1 and J is finite, then J

meets D2. Choose y1 < ... < y4 in J as before and get x1, x2, x3 in X
which satisfies (2.33). The interval (x1, x3) in X is nonempty and so
meets D. Thus, J meets f(D).
If f is continuous and D is dense in X , then f(D) is dense in f(X)

and hence in X1. If {O1} is a pairwise disjoint family of nonempty
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open subsets of X1 then {f−1(Oi} is such a family in X . So if f is
continuous with a dense image then X1 is separable or c.c.c. if X is.
This does not even require that f be order preserving.

�

Remark. Here is an example which illustrates why the extra condition
is required in part (h). The order space product X = R× {−1,+1} is
separable but the points (t, 0) in X1 = R×{−1, 0,+1} are all isolated.
Mapping (t,−1) to (t, 0) and (t,+1) to (t,+1) for all t ∈ R we obtain
a discontinuous order injection f : X → X1 with a dense image.

Corollary 2.12. If f : Ω→ X is an order map or an order* map and
X is of countable type, then f is eventually constant. That is, there
exists α ∈ Ω such that f(i) = f(α) for all i ∈ Ω with i ≥ α.

Proof. If f is not eventually constant, then we can define an order map
q : Ω→ Ω so that f◦g is injective. We consider the case when f is order
preserving. Define q(0) = 0. If q has been defined for all j < i, then
let i∗ = sup{q(i) : i < j} and define q(i) = min{k ∈ Ω : f(k) > f(i∗)}.
This set is nonempty because f is not eventually constant. Clearly,
f ◦ g is strictly increasing and so is an order injection. Since X is of
countable type, this contradicts Proposition 2.11(b).

�

Proposition 2.13. Let {Xi : i ∈ I} be a LOTS indexed family of
nonempty LOTS.

(a) The order space sum Σi∈IXi is of countable type iff I and each
Xi is of countable type.

(b) Assume I = α is a positive ordinal. If α is countable, then
the order space product Πi∈IXi is of countable type iff each Xi

is of countable type. If each Xi is nontrivial and Πi∈IXi is of
countable type then α is countable.

(c) Assume I = α is a positive ordinal and that ({Xi : i ∈ α}, {pji :
i < j < α}) is a special inverse family. If α is countable and

each Xi is of countable type, then the inverse limit
←−−
Lim{Xi} is

of countable type. If
←−−
Lim{Xi} is of countable type, then each

Xi is of countable type.

Proof. (a): Each Xi is a convex subset of Σ and the sum admits an
order surjection π : Σ → I. So if the sum is of countable type, I and
each Xi is of countable type by Proposition 2.11(f),(g).
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Conversely, assume that I and each Xi is of countable type. Suppose
that f : Ω→ Σ is an order map. By Corollary 2.12 the order map π ◦f
is eventually constant, i.e. for some β ∈ Ω, π ◦ f takes the constant
value i ∈ I on the tail Ω \ β. Then on the tail Ω \ β, f itself maps into
Xi, regarded as a subset of the sum. Because Ω \β ∼= Ω Corollary 2.12
applied to Xi implies that f is eventually constant. Applying a similar
argument to the reverse Ω∗ it follows from Proposition 2.11(b) that Σ
is of countable type.
(b): Assume that α is a countable ordinal. We prove the result by

induction on α. If α = 1, then the product Π is X0 and so the product
is of countable type iff X0 is.
Now assume, inductively, that the equivalence holds for all β < α.

Case 1: If α = β + 1, then Πi∈αXi is order isomorphic to the order
sum indexed by Πi∈βXi with each term a copy of Xβ. So by part (a)
Πi∈αXi is of countable type iff Xβ and Πi∈βXi are. By the inductive
hypothesis this holds iff Xi is of countable type for all i ∈ α = β ∪{β}.

Case 2: Assume now that α is a limit ordinal.
If Πi∈αXi is of countable type, then by Proposition 2.11(g) applied

to the order surjections πβ
α : Πi∈αXi → Πi∈βXi the latter are all of

countable type. By inductive hypothesis this implies that Xi is of
countable type for all i < β < α and so for all i ∈ α since α is a limit
ordinal.
On the other hand, if each Xi is of countable type and f : Ω →

Πi∈αXi is an order map, then for each β < α we can apply the inductive
hypothesis and Corollary 2.12 to see that each πβ

α ◦ f : Ω→ Πi∈βXi is
eventually constant, i.e. there exists ǫ(β) such that πβ

α ◦ f is constant
on the tail Ω\ ǫ(β). Because α is a countable ordinal ǫ(α) = sup{ǫ(β) :
β < α} is a countable ordinal. Clearly, f is constant on the tail Ω\ǫ(α).
Together with a similar argument for Ω∗, this shows that Πi∈αXi is of
countable type.

This completes the induction for the case when α is assumed to be
countable.
Finally, suppose that each Xi is nontrivial. There exist a, b ∈ Πi∈αXi

such that ai < bi for all i ∈ α. Define f : α + 1→ Πi∈αXi by

(2.34) f(β)i =

{
bi i < β

ai β ≤ i < α.

f is an order injection and if α is uncountable then it restricts to an
order injection of Ω into Π.
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(c): If
←−−
Lim is of countable type, then by Proposition 2.11(g) applied

to the surjection pj :
←−−
Lim→ Xj , each Xj is of countable type.

Now assume that α is countable and each Xj is of countable type.

If f : Ω →
←−−
Lim is an order map or an order* map, then by Corollary

2.12 each pj ◦ f is eventually constant. That is, there exist ǫ(j) ∈ Ω
and xj ∈ Xj such that pjf(β) = xj for all β ∈ Ω \ ǫ(j). Since i < j

implies pji ◦pj = pi, it follows that p
j
i (xj) = xi. Hence, there is a unique

x ∈
←−−
Lim such that pj(x) = xj for all j ∈ Ω. Since α is countable there

exists ǫ ∈ Ω such that ǫ > ǫ(j) for all j ∈ α. Clearly, f(β) = x for all

β ∈ Ω \ ǫ. By Proposition 2.11(b),
←−−
Lim is of countable type.

�

Proposition 2.14. Let {Xi : i ∈ α} be an ordinal indexed family of
nonempty LOTS with α countable. If each Xi is first countable, then
X = Πi∈αXi is first countable and order dense.

Proof. For x ∈ X with x 6= maxX , we show that x is the limit of a
decreasing sequence in X .
Let K = {i < α : xi 6= maxXi}. Since x is not a maximum point,

K ⊂ α is nonempty and so is isomorphic to an ordinal γ.

Case 1: γ = β + 1. If xβ a left endpoint of a gap with associated
right end-point a, then with z zi = xi for i 6= β and zβ = a, the pair
x < z is a gap pair.

Case 2: γ = β+1. If xβ not the left endpoint of a gap, then we can
choose {an} be a sequence in Xβ decreasing and with limit xβ. Define
yni = xi for i 6= β and ynβ = an.

Case 3: γ is a limit ordinal. Choose βn an increasing sequence in K
converging to γ. For each βn choose an ∈ Xβn

with xβn
< an. Define

yni = xi for i 6= βn and ynβn
= an.

In cases 2 and 3, {yn} is a decreasing sequence in X converging to
x.
Similarly, for x 6= minX , we can construct an increasing sequence in

X converging to x or find a left endpoint for a gap pair with x on the
right.

�

Proposition 2.15. Let X be an unbounded, order dense LOTS. Let
X̂ be the completion of X and let a < b be points in X.
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(a) If A is a countable LOTS, then there exists an order injection
f : A→ (a, b). If X is countable and A is order dense, then f
can be chosen to be an order isomorphism.

(b) There exists a continuous order map f : [a, b] → I where I is
the unit interval in R and with f((a, b)) dense in I. If X is
complete, then f is surjective. If X is complete and separable,
then f can be chosen to be an isomorphism.

(c) If α is a positive ordinal and f : α+1→ X is an order embed-
ding with f(0) = a and f(α) = b, then {[f(i), f(i+ 1)) : i ∈ α}
is a convex partition of [a, b) and so we can identify

(2.35) [a, b) ∼= Σi∈α [f(i), f(i+ 1))

expressing [a, b) as the order sum of an α indexed family of
intervals.

(d) If X is first countable and α is a positive, countable ordinal, then
there exists an order embedding f : α + 1 → X with f(0) = a
and f(α) = b.

(e) The following conditions are equivalent.
(i) X is of countable type.

(ii) X̂ is of countable type.

(iii) X̂ is first countable and σ-bounded.

(iv) There does not exist f : Ω→ X̂ a continuous injective map
which is either order preserving or order reversing.

Proof. (a): This is a standard inductive argument using a counting of
the points of A. If A is order dense and X , too, is countable, then one
counts X as well and proceeds back and forth between A and X to
build the isomorphism.
(b): With A the set of rationals in I, use (a) to get an order injection

g : A→ [a, b] such that g(0) = a and g(1) = b. Define for x ∈ [a, b]

(2.36) f(x) = sup g−1([a, x]) = inf g−1([x, b]).

By Proposition 2.3(a), f is continuous with f(g(c)) = c for c ∈ A.
If X is complete, then it is connected and so the connected dense

image is I.
If X is separable, choose g with a dense image in [a, b], then f is

injective by Proposition 2.3 (e).
(c): If x ∈ [a, b), then b = f(α) > x. Let β = min{j ∈ α+1 : f(j) >

x}. Since a = f(0) ≤ x, β is positive and by continuity of f , β is not a
limit ordinal. Hence, β = i+ 1 for some i ∈ α and x ∈ [f(i), f(i+ 1)).
(d): We construct the embedding f by induction on α. If α = 1, let

f(0) = a and f(1) = b. Now assume the result is true for all β < α.
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Case 1: If α = β+1, then choose b̃ so that a < b̃ < b. By inductive
hypothesis there exists an order embedding f̃ : β + 1 → [a, b̃] with

f̃(0) = a and f̃(β) = b̃. Extend the definition by f(α) = b to get f .

Case 2: If α is a limit ordinal, then because it is countable, there
exists an increasing cofinal sequence {βn} in α. Because X is first
countable and order dense there exists an increasing sequence {xn} in
(a, b) with limit b. By inductive hypothesis there exists an order em-
bedding of the interval (βn, βn+1] in α to (xn, xn+1] with βn+1 mapped
to xn+1. Put these together and map 0 to a and α to b to get f .

(e): (1)⇔(ii) by Proposition 2.11(f)(h) since the inclusion of X into

X̂ is continuous by Proposition 2.3(a).
(ii)⇔(iii) by Proposition 2.11(d).
(ii)⇒(iv) by Proposition 2.11(b).

(iv)⇒(ii) If X̂ is not of countable type, then by Proposition 2.11(b)

there exists an injective map f̃ : Ω→ X̂ which is either order preserving
or order reversing. Without loss of generality assume that f̃ is an order
map. Define f : Ω→ X̂ by

(2.37) f(β) =

{
sup {f̃(i) : i < β} β is a limit ordinal

f̃(β) otherwise.

It is easy to check that f is a continuous, injective order map.
�

3. Complete Homogeneous LOTS

3.1. Doubly Transitive and Homogeneous LOTS. If a group G
acts on a set S, then we say that s1 and s2 in S are G equivalent if
g(s1) = s2 for some g ∈ G. We say that G acts transitively on S when
all points are G equivalent.
For a topological space X we let H(X) denote the automorphism

group of X , i.e. the group of homeomorphisms from X to itself. We
call X topologically homogeneous if H(X) acts transitively on X . If X
is a LOTS, then any order automorphism of X , i.e. order preserving
bijection of X to itself, is a homeomorphism. We denote by H+(X)
the subgroup of order automorphisms and by H±(X) the subgroup
of bijections which either preserve or reverse order. If X admits an
order reversing homeomorphism then we call X a symmetric LOTS
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in which case H+(X) is a subgroup of H±(X) of index 2. Otherwise,
H+(X) = H±(X).
We call a LOTS X ±transitive if H±(X) acts transitively on X and

transitive if H+(X) acts transitively on X . X is doubly transitive if
H+(X) acts transitively, via the diagonal action, on the set {(x1, x2) :
x1 < x2} ⊂ X × X . Since any order automorphism of X is also
an order automorphism of the reverse X∗, i.e.H+(X) = H+(X

∗), the
reverse LOTS X∗ is ±transitive, transitive or doubly transitive when
the corresponding property holds for X .

Lemma 3.1. If X1 and X2 are LOTS with X1 connected and f : X1 →
X2 is a continuous map then the image f(X1) is a convex subset of X2.
If, in addition f is injective, then it is either order preserving or order
reversing.

Proof. The image of f is connected by continuity. Any connected sub-
set of a LOTS is convex.
Assume now that f is injective. If f(a) < f(c) < f(b), then the

image of the open interval between a and b is connected and so contains
f(c). Since f is injective, c must therefore lie in the interval. That is,
either a < c < b or a > c > b. Thus, on each triple of points in X1 f
either preserves or reverses order. If f preserves the order of some pair
a, b in X1 then it preserves the order of every triple which includes a, b
and so of every pair which includes either a or b. So it preserves every
triple which includes a and so preserves every pair. The remaining
possibility is that f reverses every pair.

�

Proposition 3.2. Let X be a LOTS with at least three points.

(a) If X is connected, then H(X) = H±(X) and any order reversing
homeomorphism has a unique fixed point. In addition, X is
transitive if it is topologically homogeneous.

(b) If X is ±transitive, then it is unbounded. If X is transitive,
then it is ±transitive.

(c) X is transitive iff for all a, b ∈ X

(3.1) (a,∞) ∼= (b,∞) and (−∞, a) ∼= (−∞, b).

If X is transitive, then it is either discrete, i.e. every point is
isolated, or it is order dense. If X is transitive and complete,
then X is first countable and it is either order isomorphic to Z,
the LOTS of integers, or it is connected.

(d) The following conditions are equivalent.
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(i) X is doubly transitive.
(ii) X and every nonempty open subinterval of X are transi-

tive.
(iii) X has no min and (a,∞) is transitive for every a ∈ X.
(iv) X has no max and (−∞, a) is transitive for every a ∈ X.
(v) X is transitive and (a,∞) is transitive for some a ∈ X.
(vi) X is transitive and (−∞, a) is transitive for some a ∈ X.
(vii) X is unbounded and any two nontrivial, closed, bounded

subintervals of X are order isomorphic.
(viii) For every positive integer n, H+(X) acts transitively on

{(x1, ..., xn) : x1 < ... < xn} ⊂ Xn.

(e) If X is doubly transitive, then it is order dense and unbounded
and every nonempty convex open subset is doubly transitive.

Proof. (a): H(X) = H±(X) by Lemma 3.1. If f is order reversing on
X and y = f(x) > x, then f(y) < f(x) = y. Since f is not the identity
{x : f(x) > x} and {x : f(x) < x} are disjoint nonempty open subsets
of X . Because X is connected their union is a proper subset and so
some fixed point e exists. If x > e, then f(x) < f(e) = e and so x is
not a fixed point. Similarly, if x < e. Thus, e is the unique fixed point.
IfH(X) acts transitively, thenH(X) = H±(X) impliesX is±transitive.

If H+ = H±, then X is transitive. On the other hand, if X is sym-
metric, let f0 be an order reversing homeomorphism with fixed point
e. If x ∈ X , then there exists f ∈ H± such that f(x) = e. Also,
f0 ◦ f(x) = e and either f or f0 ◦ f is in H+(X). Thus, every x ∈ X is
H+(X) equivalent to e and so X is transitive.
(b): If X has a max, then the max is fixed by any element of H+(X)

and is mapped to min by any order reversing isomorphism. Hence, if
X is ±transitive and has at least three points, then it is unbounded.
Since H+ ⊂ H±, transitivity implies ±transitivity.
(c): If f ∈ H+(X) maps a to b, then it restricts to an order isomor-

phism of (a,∞) with (b,∞) and of (−∞, a) with (−∞, b). Conversely,
we can put together isomorphisms (a,∞) ∼= (b,∞) and (−∞, a) ∼=
(−∞, b) to get an automorphism which maps a to b.
Now assume that X is transitive but not order dense. There exists a

gap pair with a < b left and right endpoints, respectively. As all points
of X are H+ equivalent all points are both left and right endpoints.
That is, every point of X is isolated. If, in addition, X is complete,
choose f(0) ∈ X and inductively define f(n + 1) = inf(f(n),∞) and
f(−n − 1) = sup(−∞, f(−n)) for every nonnegative integer n. This
defines an order injection f : Z → X . Since X is discrete, f(Z) has
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no sup or inf and so is ±cofinal in X . For x ∈ X , f(n) < x for some
n ∈ Z but not for all. If n is the largest such, then f(n+ 1) ≤ x since
the interval (f(n), f(n+1)) is empty. By maximality of n, x = f(n+1).
Hence, f is surjective and so is an order isomorphism of Z with X . On
the other hand, if X is order dense and complete then it is connected.
Z is first countable and in the connected case there exists a bounded

increasing sequence which converges to some point a by completeness.
Similarly, some bounded decreasing sequence converges to a point b.
As every x ∈ X is H+ equivalent to both a and b, every x is the limit
of increasing and decreasing sequences. Thus, X is first countable.
(d) (i)⇒(iii)&(iv): If a < b < c in X then the pair a, b is H+

equivalent to b, c by double transitivity. Hence, a is not the min and
c is not the max. Thus, X is unbounded. If x1, x2 ∈ (a,∞) and
f ∈ H+ maps the pair a, x1 to the pair a, x2, then f restricts to an
automorphism of (a,∞) which maps x1 to x2, proving (iii). Similarly,
for (iv).
(ii)⇒(iii)&(iv): By (b) X is unbounded. Hence, (a,∞) and (−∞, a)

are open, nonempty subintervals of X and they are transitive by as-
sumption (ii).
(iii)⇔ (v) and (iv)⇔ (vi): If X is transitive, then it is unbounded

and all (a,∞) intervals are isomorphic. Hence (v) ⇒ (iii). On the
other hand, if x < y in X and X has no min, then there exists a < x
and so (iii) implies there exists an automorphism of (a,∞) which maps
x to y. Extend by the identity on (−∞, a]. Hence, X is transitive. The
proof of (iv)⇔ (vi) is similar.
(iii)⇒(viii): Given x1 < ... < xn and y1 < ... < yn choose a smaller

than all of them. We construct, by induction on n, f ∈ H+((a,∞)) such
that f(xi) = yi for i = 1, ..., n. Assume that f1 ∈ H+((a,∞)) satisfies
f(xi) = yi for i = 1, ...n − 1 and let x̃n = f1(xn) > f1(xn−1) = yn−1.
Choose f2 ∈ H+((yn−1,∞)) such that f2(x̃n) = yn and extend f2 by the
identity on (a, yn−1] to get f2 ∈ H+((a,∞)). Let f = f2 ◦ f1. Having
obtained f , extend by the identity on (−∞, a] to get f ∈ H+(X)
mapping x1 < ... < xn to y1 < ... < yn.
(iv)⇒(viii): Use a similar proof or apply (iii)⇒ (viii) to X∗.
(viii)⇒(vii): Since condition (viii) clearly implies double transitivity,

X is unbounded by (i)⇒(iii)&(iv). If x1 < x2 and y1 < y2, then f ∈
H+(X) which maps the pair x1, x2 to y1, y2 restricts to an isomorphism
from [x1, x2] to [y1, y2], proving (vii).
(vii)⇒ X is order dense and (i)&(ii): Given x1, x2 ∈ X we can choose

a, b ∈ X with a < x1, x2 < b because X is unbounded. Put together
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order isomorphisms

(3.2) [a, x1] ∼= [a, x2] [x1, b] ∼= [x2, b]

and extend by the identity outside (a, b) to get f ∈ H+(X) which maps
x1 to x2. This proves that X is transitive.
If X were discrete, then we could choose points a < b < c with

(a, b) = (b, c) = ∅. But then [a, b] = {a, b} is not be isomorphic to
[a, c] = {a, b, c}. So by (c) X is order dense.
Now we show that if J is a nonempty, open convex subset of X , then

J is doubly transitive. and x1, x2 ∈ J , then because X is unbounded
and order dense, we can choose a, b ∈ J such that a < x1, x2 < b and
just as before get f ∈ H+((a, b)) mapping x1 to x2. Extend by the
identity outside of (a, b) to get f ∈ H+(J). Hence, J is transitive.
Assume x1 < x2 and y1 < y2 in J , choose a smaller and b larger than
all four of them. Put together isomorphisms

(3.3) [a, x1] ∼= [a, y1] [x1, x2] ∼= [y1, y2] [x2, b] ∼= [y2, b]

and extend by the identity outside (a, b) to get f ∈ H+(J) which maps
the pair x1, x2 to y1, y2. Observe that all these intervals are nonempty
because X is order dense. Thus, J is doubly transitive.
In particulary, all this proves (e).

�

We call X weakly homogeneous if it has at least three points and is
order isomorphic with every nonempty, bounded, open subinterval of
itself. Clearly, the reverse LOTS X∗ is weakly homogeneous when X
is.

Proposition 3.3. Let X be a LOTS with at least three points.

(a) X is weakly homogeneous iff for every a ∈ X

(3.4) (a,∞) ∼= X ∼= (−∞, a).

If X is weakly homogeneous, then it is doubly transitive and it
is order isomorphic with every nonempty, open subinterval of
itself (whether bounded or not).

(b) If X is doubly transitive, then every nonempty, bounded, open
subinterval of X is weakly homogeneous. If X is doubly transi-
tive and first countable, then it is weakly homogeneous iff it is
σ-bounded.

(c) Assume X is transitive. If for a ∈ X, (−∞, a) is symmetric,
then X is doubly transitive. If for a ∈ X, (−∞, a) and (a,∞)
are symmetric, then X is weakly homogeneous.
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Proof. (a): Assume that for all a ∈ X , (−∞, a) ∼= X ∼= (a,∞). If a < b

inX , let f : (a,∞)→ X be an order isomorphism and let b̃ = f(b). Let

f̃ : X → (−∞, b̃) be an order isomorphism. Then f−1 ◦ f̃ : X → (a, b)
is an order isomorphism. It follows that X is weakly homogeneous.
Conversely, assume that X is weakly homogeneous. We prove first

that if a < x < b in X then x is not an isolated point. If it were then we
could choose a and b so that (a, x) = (x, b) = ∅ and so (a, b) = {x} could
not be isomorphic to X . It follows that X is infinite. If b were the max
of X then we could choose a and x so that (a, x) and (x, b) are infinite.
Since (a, x) ∼= X the interval (a, x) has a max which we call y. Hence,
(y, x) = ∅ and (a, y) is infinite. Since (a, y) ∼= X the interval (a, y) has
a max and so the point y is isolated. This contradiction implies that
X has no max. Similarly, there is no min. Now Proposition 3.2(d)
(vii)⇒(i) shows that X is doubly transitive and so it is order dense by
Proposition 3.2(e).
Now given a ∈ X , (a,∞) and (−∞, a) are nonempty since a is

neither max nor min. Choose f : X → (b, c) an isomorphism with
b < c in X and let ã = f(a). f induces isomorphisms (−∞, a) ∼= (b, ã)
and (a,∞) ∼= (ã, c). Since neither is empty, each is isomorphic with X .
Thus, X is isomorphic with every nonempty, open subinterval of itself.
(b): If X is doubly transitive and a < x1 < x2 < b then there exists

f ∈ H+(X) which maps the pair a, b to x1, x2. This restricts to an order
isomorphism (a, b) ∼= (x1, x2). Hence, (a, b) is weakly homogeneous.
If X is first countable then we can use Proposition 2.15(d) to con-

struct an order injection f : Z→ (a, b) whose image is ±cofinal. Simi-

larly, if X is σ-bounded we can construct an order injection f̃ : Z→ X
whose image is ±cofinal. If, in addition, X is doubly transitive, then
we can choose for each i ∈ Z an order isomorphism [f(i), f(i + 1)] ∼=
[f̃(i), f̃(i + 1)] and put them together to get an order isomorphism
(a, b) ∼= X . Hence, X is weakly homogeneous.
If X is weakly homogeneous then X ∼= (a, b) for a < b and the latter

is σ-bounded if X is first countable.
(c): Since X is transitive it is unbounded. In addition, given a1 < b1

and a2 < b2 in X we can apply an element of H+(X) to move the
pair a1, b1 so that we can assume b1 = b2 (hereafter denoted b). Let q
be an orientation reversing homeomorphism of (−∞, b). Define ãi =
q(ai) for i = 1, 2. Since X is transitive there exists an isomorphism
f : (−∞, ã1) → (−∞, ã2). Then q−1 ◦ f ◦ q restricts to an isomor-
phism (a1, b) ∼= (a2, b). So X is doubly transitive by Proposition 3.2(d)
(vii)⇒(i). If, instead, we use an isomorphism f1 : (−∞, ã1)→ (−∞, b)
then q−1 ◦ f1 ◦ q restricts to an isomorphism (a1, b) ∼= (−∞, b).
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Now if (b,∞) is symmetric as well then we can similarly construct
an isomorphism (b, a3) ∼= (b,∞) with b < a3. Putting this together
with the isomorphism (a1, b) ∼= (−∞, b) above we get an isomorphism
(a1, a3) ∼= X . Thus, X is isomorphic to nonempty, bounded, open
subintervals of itself and so is weakly homogeneous. Since X ∼= (a, b) ∼=
(−∞, b) it is symmetric as well.

�

Since a nontrivial transitive LOTS X is unbounded, it cannot be
compact. There is a condition due to G. D. Birkhoff, [8] page 47,
which we will call the closed interval condition. A LOTS X satisfies
the closed interval condition when any two nontrivial, closed bounded
subintervals are isomorphic. Clearly, any nontrivial convex subset of
such a LOTS satisfies the closed interval condition as well.
By Proposition 3.2(d) an unbounded LOTS satisfies the closed inter-

val condition iff it is doubly transitive. If X is bounded with min = m
and max = M and X satisfies the closed interval condition, then
X \ {m.M} is weakly homogeneous. Conversely, if X0 is weakly homo-
geneous and X = {m}+X0+{M}, then X satisfies the closed interval
condition.

Example 3.4. Linearly ordered groups, fields and products

An ordered group is a group with a linear order such that the trans-
lation maps are order isomorphisms. Since a group acts transitively on
itself by translation, it follows that an ordered group, like Z, is a transi-
tive LOTS. An ordered field is a field with a linear order such that the
additive translation maps, and multiplication by positive elements are
order isomorphisms. An ordered field, like Q and R, is doubly transi-
tive. Observe that if x1 < x2 in the field, then x 7→ (x−x1) ·(x2−x1)

−1

maps (x1, x2) isomorphically onto (0, 1). In fact, an ordered field is
weakly homogeneous, because the map:

(3.5) f(x) =

{
x · (1 + x)−1 for − 1 < x ≤ 0,

x · (1− x)−1 for 0 ≤ x < 1,

is an isomorphism from (−1, 1) to the entire field.
If {Xi : i ∈ I} is a family of LOTS indexed by an ordinal I, and hi is

an automorphism of Xi for each i, then
∏

i hi is an automorphism of
the order space product

∏
i Xi. It follows if each Xi is transitive, then

the product is transitive as well. If each Xi is an ordered group, then
the product is an ordered group with coordinate-wise addition.
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On the other hand, since a discrete LOTS with at least three points
is never doubly transitive, it follows that the discrete, linearly ordered
groups Z, Z× Z and R× Z are not doubly transitive.
The groups Q × Q and R × R are order dense. Because Q × Q is

a countable order dense LOTS, it is order isomorphic to the ordered
field Q by Proposition 2.15 (a) and so it is doubly transitive. On the
other hand, R × R is not doubly transitive. Let x1 = (0, 0), x2 =
(0, 1), x3 = (1, 0). The map t 7→ (0, t) is an order isomorphism from
the unit interval (0, 1) in R onto the interval (x1, x2) and, in particular,
the latter interval is separable. On the other hand, if D is a countable
subset of (x1, x3), then we can choose t such that 0 < t < 1 and t
is not the first coordinate of a point of D. Hence, the open interval
((t, 0), (t, 1)) is disjoint from D. It follows that (x1, x3) is not separable
and so is not isomorphic to (x1, x2).
With −1,+1 ∈ R the order space product R×(−1,+1) is isomorphic

to R×R and so is transitive, locally connected and of countable type.
Its completion is the order product R × [−1,+1] which is connected
and of countable type, but not transitive. Observe that the union of
the separable open subsets of R× [−1,+1] is R× (−1,+1). That is, a
point of the form (t,±1) does not have any separable neighborhood.
The product Z×R is isomorphic to the complement of Z in R andQ×

R is isomorphic to the complement of the Cantor Set C in [0, 1]. Both
of these are transitive, but not doubly transitive. Any homeomorphism
maps components to components and so cannot map a pair of points
contained in a component to a pair in different components. Both of
these provide examples of dense, transitive subsets of R which are not
doubly transitive. However, neither of these has dense holes.
Finally, we will see below that because its complement Q is doubly

transitive, the set I of irrationals is doubly transitive. Hence, the prod-
uct Q×I is transitive. It is isomorphic to X = [0, 1]\(Q∪C). Between
any two points of X in the same component of [0, 1] \C there are only
countably many holes, whereas between two points of X in different
components of [0, 1] \ C there are uncountably many holes. Hence, X
provides an example in (0, 1) ∼= R of a dense, transitive subset with
dense holes, but which is not doubly transitive.
We do not know whether or not a dense additive subgroup of R is

necessarily doubly transitive.

In contrast with the above examples Treybig proved the following
beautiful result which we state using our language.
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Theorem 3.5. If X is a connected, unbounded transitive LOTS, then
X is doubly transitive.

Proof. See [20]. As we will not need the result below, we include the
proof in an Appendix.

�

The following uses the easy part of an argument due to Babcock [6].

Theorem 3.6. If α is a tail-like ordinal and X is doubly transitive,
then Xα is doubly transitive.

Proof. Choose two points of X which we label −1 < +1. Let x± be
defined by x+

i = +1, x−
i = −1 for all i < α. Using transitivity of

X we choose for any a ∈ X automorphisms g±a of X with g+a (+1) =
a, g−a (−1) = a. Given y < z ∈ Xα we construct an isomorphism
f : [x−, x+]→ [y, z].
Let β = min{i : yi 6= zi} < α so that yi = zi for all i < β and

yβ < zβ. Let g0 : [−1,+1] → [yβ, zβ] be an isomorphism. Because α
is tail-like there is an isomorphism γ : α → α \ β. For x ∈ [x−, x+]
define f(x) by:

• f(x)i = yi = zi for i < β.
• f(x)β = g0(x0) = g0(xγ(β)).
• f(x)i = g−yi(xγ(i)) if β < i < α and xγ(j) = −1 for all β ≤ j < i.
• f(x)i = g+zi(xγ(i)) if β < i < α and xγ(j) = +1 for all β ≤ j < i.
• f(x)i = xγ(i) otherwise.

For β ≤ i < α, f(x)i depends only on the values of xk with k ≤ γ(i)
and so it easily follows that f is an order injection of [x−, x+] into
[y, z]. On the other hand, it is easy to reverse the procedure to see that
f is surjective and so is an isomorphism.

�

Remark. Since α need not be countable, beginning with X = R this
constructs doubly transitive LOTS of arbitrary cardinality.

Using the completion X̂ for an order dense LOTSX , we now describe
the strong homogeneity condition that we want to focus on.

Proposition 3.7. Let X̂ be the completion of X, a nontrivial, order
dense LOTS.

(a) The following conditions are equivalent.

(i) X and X̂ are doubly transitive.
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(ii) X is doubly transitive and X̂ is first countable.
(iii) Any two nonempty, open, bounded, convex subsets of X are

order isomorphic.
(b) The following conditions are equivalent.

(i) X and X̂ are weakly homogeneous.
(ii) X is doubly transitive and of countable type.
(iii) X is order isomorphic with every nonempty, open, convex

subset of X.

Proof. Since X is order dense and nontrivial, it is infinite.
(a)(i)⇒(ii): Since X̂ is doubly transitive, it is transitive. Complete-

ness implies first countability by Proposition 3.2(c).
(ii)⇒(iii): Bounded open convex sets are of the form (z1, z2)∩X and

(w1, w2)∩X with z1 < z2 and w1 < w2 in X̂ . Because X̂ is first count-

able and connected there exist order injections g̃, f̃ : Z → X̂ whose
images are ±cofinal in (z1, z2) and (w1, w2), respectively. We choose

for each i ∈ Z, f(i) ∈ (f̃(i), f̃(i + 1)) ∩ X and g(i) similarly so as to
get g, f : Z → X . In the now familiar way we put together isomor-
phisms (f(i), f(i+1)) ∼= (g(i), g(i+1)) to get the required isomorphism
between the open convex sets.
(iii)⇒(i): If X had a max = b and a < b then (a, b) and (a, b] are

both bounded, open convex subsets of X . Since X is order dense (a, b)
has no max and so cannot be isomorphic to (a, b]. Thus, condition
(iii) implies that X has no max and similarly no min. If z1 < z2 and

w1 < w2 in X̂ , then any isomorphism (z1, z2)∩X ∼= (w1, w2)∩X extends

as in (2.29) to an isomorphism (z1, z2) ∼= (w1, w2) in X̂ . Hence, both

X and X̂ satisfy condition (vii) of Proposition 3.2(d). Since (vii)⇒(i)

there, X and X̂ are doubly transitive.
(b): By Proposition 3.3(a) (i) here implies condition (i) of (a). By

Proposition 2.15(d) (ii) here implies condition (ii) of (a). Clearly, (iii)
here implies condition (iii) of (a). Hence, in proving the equivalences
we can use all of the conditions of (a).

(i)⇒(ii): By weak homogeneity of X̂, X̂ is isomorphic to any bounded,

nonempty, open interval and such an interval is σ-bounded because X̂
is first countable. Hence, X̂ is first countable and σ-bounded. Thus,
X is of countable type by Proposition 2.15(d).

(ii)⇒(iii): Because X̂ is first countable, X is and X is σ-bounded
as well as doubly transitive by assumption. Therefore, it is weakly
homogeneous by Proposition 3.3(b). Let J be any nonempty, open,
convex subset of X and a < b in X . By weak homogeneity there is
an isomorphism f : X → (a, b) and f(J) is a bounded, open, convex
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subset of X . So by condition (iii) of (a) f(J) ∼= (a, b). So J ∼= f(J) ∼=
(a, b) ∼= X .

(iii)⇒(i): Clearly, X is weakly homogeneous. If w1 < w2 in X̂ then
(w1, w2)∩X is a nonempty, open, convex subset which is isomorphic to
X . The isomorphism extends to the completions so that the interval
(w1, w2) in X̂ is isomorphic to X̂. Thus, X̂ is weakly homogeneous as
well.

�

We call X a homogeneous LOTS , written HLOTS, if X contains
at least three points and it is order isomorphic with every nonempty,
open, convex subset of itself. If a HLOTS is complete then we call it
a CHLOTS, a complete homogeneous LOTS . Otherwise, we call it an
IHLOTS, an incomplete homogeneous LOTS .

Proposition 3.8. Let X be a nontrivial LOTS.

(a) X is a HLOTS if and only if X is doubly transitive, of countable
type and contains at least three points.

(b) If X is a HLOTS, then it is order dense, unbounded, σ-bounded
and first countable.

(c) The completion X̂ of a HLOTS X is a CHLOTS and a HLOTS

X is a CHLOTS iff X = X̂. If X is a CHLOTS, then it is
connected, locally compact and σ-compact.

(d) A HLOTS X is an IHLOTS iff it is a proper subset of X̂. If

X is an IHLOTS then it has dense holes. Furthermore, X̂ \X

is an IHLOTS which is dense in X̂, and so the completion of
X̂ \X is X̂.

Proof. (a), (b): A HLOTS is clearly weakly homogeneous. A finite
LOTS is not isomorphic to its singleton subsets and so a HLOTS is
infinite. It follows from Proposition 3.3(a) that a HLOTS is doubly
transitive and so by Proposition 3.2(e) it is order dense and unbounded.
Now Proposition 3.7(b) (ii)⇔(iii) implies the equivalence in (a). Since
a HLOTS is of countable type, it is first countable and σ-bounded by
Proposition 2.11(d).

(c), (d): X is complete iff X = X̂ . Completeness implies local
compactness. If, in addition, it is order dense, then it is connected
and then σ-boundedness implies σ-compactness. In general, if X is a
HLOTS, then by (a) and (b) it is order dense, doubly transitive and of

countable type. By Proposition 2.15(e) X̂ is of countable type and by
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Proposition 3.7(a) it is doubly transitive. By (a) above, X̂ is a HLOTS
and so is a CHLOTS.
Now assume that X is a proper subset of X̂ with z ∈ X̂ \X . Choose

a, b ∈ X so that a < z < b. For any c < d in X there exists f ∈ H+(X)

mapping the pair a, b to c, d. The completion f̂ ∈ H+(X̂) maps z to

a point of X̂ \X between c and d. Thus, X has dense holes. That is,

X̂ \X is dense in X̂ and so it is order dense with completion X̂. Now

if J̃ is a nonempty, open, convex subset of X̂ \ X , then there exists

an open, convex subset J of X̂ such that J̃ = J ∩ (X̂ \ X). There
exists an isomorphism f of the IHLOTS X with the nonempty, open,
convex subset J ∩X of itself. The completion f̂ : X̂ ∼= J restricts to an
isomorphism X̂ \X ∼= J̃ . Thus, X̂ \X is a HLOTS, indeed an IHLOTS
since X is nonempty.

�

Remark: From Treybig’s Theorem 3.5 it follows that a nontrivial,
transitive, connected, σ-compact LOTS is a CHLOTS.

The motivating example of an IHLOTS is the set of rationals Q
with completion the CHLOTS R and with complementary IHLOTS
the irrationals I in R.

Example 3.9. HLOTS ultraproduct

On ω, the first infinite ordinal, we choose an ultrafilter U which is
nonprincipal, i.e. U contains all cofinite sets. For a CHLOTS F we
define the ultraproduct construction on F associated with U.
On the, unordered, set of maps F ω we define the equivalence relation
≡U

(3.6) a ≡U b ⇐⇒ {i : ai = bi} ∈ U,

which is an equivalence relation because U is a filter. We let FU denote
the LOTS of equivalence classes with the order

(3.7) a < b ⇐⇒ {i : ai < bi} ∈ U.

This definition is independent of the choice of a and b in the equivalence
classes, but we can then choose representatives such that ai < bi for all
i ∈ ω. The relation on FU is a total order because U is an ultrafilter, i.e.
if D1 ∪ ... ∪Dn ∈ U, then Dk ∈ U for some k = 1, ..., n. In particular,
if ai < bi for all i, then we can choose for each i an order isomorphism
fi : F ∼= (ai, bi). The product

∏
i fi is an order isomorphism FU ∼=
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(a, b) ⊂ FU. Thus, FU is weakly homogeneous. In the case F = R this
is the ordered field of hyperreal numbers.
FU is order dense but not complete. Its completion is not even

transitive.
We show that if A = {a1, a2, ..}, B = {b1, b2, ..} are nonempty count-

able subsets of FU with a < b for all a ∈ A, b ∈ B, then there exists
w ∈ FU with a < w < b for all a ∈ A, b ∈ B.
By replacing ak by maxℓ≤ka

ℓ and eliminating any repeats we may
assume that {ak} is a finite or infinite increasing sequence. Similarly, we
may assume that {bk} is a finite or infinite decreasing sequence. Assume
that representatives of ak and bk have been chosen so that aki < bki for
all i ∈ ω. Now choose a representative ak+1 so that aki < ak+1

i < bki for
all i. Then choose a representative bk+1 so that ak+1

i < bk+1
i < bki for

all i. We do the obvious adjustments if either sequence is finite, ending
at the k level.
We have thus obtained representatives of the elements of A and B

so that ai < bi for all a ∈ A, b ∈ B, i ∈ ω. Choose wi so that

(3.8) aki < wi < bki for k = 1, ..., i.

For each k, {i : aki < wi} includes all i ≥ k and so is in U. Hence,
each ak < w for each k. Similarly, bk > w for each k.
An obvious adjustment covers the case when A or B is empty.
Using the case when A or B is a singleton, we see that no increasing

or decreasing sequence converges in FU.

If x in the completion F̂U is the limit of an increasing sequence {ak},
then we can choose the sequence to be in FU because the latter meets
(ak, ak+1). So if {bk} is any decreasing sequence with bk > x for all k,
then there exists w ∈ FU with ak < w < bk for all k. Since x 6∈ FU,
w 6= x. Since {ak} converges to x, it cannot be that w < x. Hence,
w > x and so {bk} does not converge to x.

Thus, F̂U is partitioned by three dense sets, namely F̂U
− consist-

ing of the limits of increasing sequences, F̂U
+ the limits of decreasing

sequences and the remaining set F̂U
0 which contains FU. Each auto-

morphism of F̂U preserves each of these sets.
In general, Hausdorff defines an α-set X to be a linearly ordered set

of cardinality ℵα such that A,B ⊂ X with A < B and the cardinality
of A∪B less than ℵα implies there exists x ∈ X such that A < x < B.
See [11] and also section 4 or [12]. The isomorphism between any two
α-sets is proved using the transfinite analogue of the back and forth
argument which gives the uniqueness up to isomorphism of countable,
unbounded, order dense sets, see, e.g. Proposition 2.15(a).
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The cardinality of FU is c which equals ℵ1 if one assumes the Con-
tinuum Hypothesis. It then follows that FU is a 1-set (assuming CH).
Any open convex subset of FU which has neither a countable cofinal
nor a countable coinitial subset is also a 1-set and so is isomorphic to
FU by uniqueness. Of course, we already know that if a < b ∈ FU, then

the interval is a isomorphic to FU and so is a 1-set, but for a < b ∈ F̂U
0

the interval (a, b) is a 1-set as well.

Now suppose that a < b ∈ F̂U
−. Let {an} be an increasing sequence

in FU which converges to a and {bn} be an increasing sequence in
(a, b) ∩ FU which converges to b. Each of the open intervals

(3.9) (−∞, a1), . . . , (ak, ak+1), . . . , (a, b1), . . . , (bk, bk+1), . . . , (b,∞)

is a 1-set.
It easily follows that for a < b, c < d ∈ F̂U

− we can complete an

automorphism of FU to obtain an automorphism of F̂U which maps
[a, b] onto [c, d].

With a similar argument for F̂U
+, it follows that three sets F̂U

±, F̂U
0

are the orbits of the action of H+(F̂U) on F̂U. Separately, each is a
doubly transitive LOTS.

Thus, assuming CH, we see that the LOTS F̂U
− is a doubly tran-

sitive LOTS with every increasing sequence convergent, but with no
convergent decreasing sequences.

3.2. The Double Arrow of a LOTS. For any LOTS X we define
the Alexandrov-Sorgenfrey Double Arrow of X , hereafter the AS double
of X , to be the order space product

(3.10) X ′ = X × {−1,+1},

regarding {−1,+1} as a two point LOTS. For x in X we denote by
x± the pair (x,±1) and we define the first coordinate projection map

π′ : X ′ → X

π′(x±) = x.
(3.11)

Clearly, we have for a < b in X :

(π′)−1((a, b)) = (a+, b−)

(π′)−1([a, b]) = [a−, b+].
(3.12)

Since (π′)−1(a) is the compact set {a−, a+}, Proposition 2.3(a) implies
that the surjective order map π′ is closed and continuous.
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For each x ∈ X , x− < x+ is a gap pair in X ′ so that x− is a left
endpoint and x+ is a right endpoint. x− is also a right endpoint, and
so is an isolated point of X ′, iff x is a right endpoint in X , i.e. [x,∞) is
open. For if [x.∞) is open then by (3.12), {x−} = (−∞, x+)∩ [x−,∞)
is open, while if A ⊂ X \ {x} with x = supA then x− = sup(π′)−1(A).
Similarly, x+ is isolated iff x is a left endpoint in X . In particular, if
X has a max = M (or a min = m) then M+ (resp. m−) is an isolated
point in X ′.
If f : X1 → X2 is an order injection then we define

f ′ : X ′
1 → X ′

2

f ′(x±) = f(x)±.
(3.13)

Clearly, f ′ is the unique order injection such that the diagram

X ′
1

f ′

−−−→ X ′
2

π′
y

y π′

X1
f

−−−→ X2

commutes. If f is not injective then the map defined by (3.13) does not
preserve order. If f is a continuous, noninjective, order map we can
obtain many continuous order maps f ′ which make the above diagram
commute. If X1 is complete, then for each y ∈ f(X1) the set f−1(y)
is a closed interval [x1, x2]. Choose a point x̃ ∈ [x1, x2] = f−1(y)
and then map [x−

1 , x̃
−] to y− and [x̃+, x+

2 ] to y+. In general,f−1(y)
is a closed, convex set and with the choice of x̃ ∈ f−1(y) we map
(−∞, x̃−] ∩ (f ◦ π′)−1(y) to y− and [x̃+,∞) ∩ (f ◦ π′)−1(y) to y+.
To check that such maps f ′ are continuous, observe that

(f ′)−1((−∞, y−)) = (f ◦ π′)−1((−∞, y))

(f ′)−1((−∞, y+)) = (f ′)−1((−∞, y−)) if y 6∈ f(X),

(f ′)−1((−∞, y+)) = (−∞, x̃+) if y ∈ f(X).

(3.14)

Use a similar argument for the open intervals unbounded above.
If r : X1 → X2 is an injective order* map then we define the contin-

uous injective order* map

r∗ : X ′
1 → X ′

2

r∗(x±) = r(x)∓.
(3.15)

If f (or r) is bijective, then f ′ (resp. r∗) is.

Lemma 3.10. Let X be an unbounded, order dense LOTS.
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(a) Let X1 be a LOTS and g : X ′ → X ′
1 be a homeomorphism. The

LOTS X1 is order dense and unbounded. If g is an order map,
then there exists f : X → X1 an order isomorphism such that
g = f ′. If g is an order∗ map, then there exists r : X → X1 an
order∗ homeomorphism such that g = r∗.

In particular, we have

(3.16) X ′ ∼= X ′
1 ⇐⇒ X ∼= X1.

(b) Assume that X is complete and so is connected. The bounded
clopen subintervals of X ′ are compact sets which form a base
for X ′, and so X ′ is zero-dimensional. If C is any nonempty,
bounded, clopen subset of X ′, then there is a unique finite se-
quence a1 < b1 < a2... < bn in X such that

(3.17) C =
n⋃

i=1

[a+i , b
−
i ].

Proof. (a): X ′ has no isolated points and so X ′
1 has none. Hence, X1

has no left or right endpoints. If g is either order preserving or order
reversing then gap pairs are mapped to gap pairs. Hence g induces a
bijection from X to X1 which preserves or reverses order according to
which g does.
(b): Since X is connected with no max or min, any bounded clopen

interval of X ′ is of the form [a+, b−] with a < b in X . These form a
base.
Let C be a nonempty, bounded, clopen subset of X ′. Since C is

open it is a union of such subintervals and since C compact it is a
finite union of them. If two such intervals intersect, or if the max of
one and the min of another form a gap pair, then the union of the two
is a clopen interval. Combining in this way we obtain C as the finite,
disjoint union of clopen intervals with points of X ′\C between any two
successive intervals, i.e. (3.17) holds. Furthermore, the intervals [ai, bi]
are the components of the image π′(C) in X . Uniqueness follows.

�

We now describe the gap between ±transitivity and transitivity in
the complete case.

Proposition 3.11. A complete LOTS X is ±transitive but not tran-
sitive iff X ∼= X ′

0 with X0 a connected, symmetric, transitive LOTS.

Proof. If X were trivial it would be transitive. If X is the two point
LOTS, then X ∼= X ′

0 with X0 trivial. So we can assume that X has at
least three points so that Proposition 3.2 applies.



48 ETHAN AKIN AND KAREL HRBACEK

Assume that X0 is a nontrivial, order dense, symmetric, transitive
LOTS. If f ∈ H+(X0) maps x to y, then f ′ in H+(X

′
0) maps x+ to

y+ and x− to y−. Thus, the right endpoints x+ and the left endpoints
x− in X ′

0 form H+(X
′
0) classes which are distinct because X ′

0 has no
isolated points. Thus, X ′

0 is not transitive. If r is an order reversing
homeomorphism on X0, then r∗ maps x+ to r(x)− and so X ′

0 consists
of a single H±(X

′
0) equivalence class. If, in addition, X0 is connected,

then X ′
0 is complete.

Conversely, if X is ±transitive, complete, not transitive and contains
at least three points, then by Proposition 3.2(b) it is unbounded. If
there were any isolated points, then by transitivity X would be discrete
and we could apply the argument in the proof of Proposition 3.2(c) to
show that X ∼= Z which is transitive. If X were connected, then by
Proposition 3.2(a) it would be transitive. Hence, X contains gap pairs
but no isolated points. It follows from ±transitivity that every point is
either a left or right endpoint and that no point is both. Since X is un-
bounded, all of the endpoints occur in gap pairs. Let X0 be the LOTS
of gap pairs. Every element of H±(X) induces an element of H±(X0)
and so X0 is ±transitive. Completeness of X0 follows from complete-
ness of X . For each pair z in X0 let z+ be the right and z− be the left
endpoint of the pair. This yields an isomorphism X ∼= X ′

0. Since X
has no isolated points, X0 is order dense and so is connected. Hence,
X0 is transitive by Proposition 3.2(a). Finally, since X is ±transitive
but not transitive, it admits some order reversing homeomorphism g.
By Lemma 3.10(a) g = r∗ for r an order reversing homeomorphism of
X0. Hence, X0 is symmetric.

�

Remark. Notice that for the case of Z we can define the order iso-
morphism:

f : Z′ → Z

f(n−) = 2n and f(n+) = 2n+ 1.
(3.18)

For X a complete LOTS with no max or min the two-point com-
pactification, denoted •X•, is the LOTS obtained by attaching a max
and a min, i.e. the order sum

(3.19) •X• = {m}+X + {M}.
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Proposition 3.12. If X is a CHLOTS and C is a nonempty, bounded,
clopen subset of X ′ then

(3.20) C ∼= •X ′ • .

Proof. Let a1 < b1 < a2... < bn be the sequence in X such that (3.17)
holds. Let fi : [ai, bi] ∼= [ai, ai+1] for i = 1, ..., n − 1. Each f ′

i restricts
to an isomorphism [a+i , b

−
i ]
∼= [a+i , a

−
i+1]. Put them together to get an

isomorphism:

(3.21) C ∼= (

n−1⋃

i

[a+i , a
−
i+1]) ∪ [a+n , b

−
n ] = [a+1 , b

−
n ].

If g : X → (a1, bn) is an order isomorphism, then so is

(3.22) g′ : X ′ → (a1, bn)
′ = (a+1 , b

−
n ).

Attaching the endpoints we obtain an isomorphism •X ′• ∼= [a+1 , b
−
n ].

�

If X has no isolated points, then the isolated points of X ′ are of the
form x+ where x is a left endpoint of X and x− where x is a right
endpoint. We define for a LOTS X ′′ with no isolated points:
(3.23)
X ′′ = X ′ \ ({x+ : x a left endpoint} ∪ {x− : x a right endpoint}).

That is, X ′′ is the subset of X ′ obtained by removing the isolated
points. Note that if X is unbounded and order dense then X ′′ = X ′.
In general, if x1 < x2 is a gap pair in X , then since x1 is not a right

endpoint and x2 is not a left endpoint (neither is isolated) we see that
x−
1 < x+

2 is a gap pair in X ′′. If M = maxX , then M− = maxX ′′ and
similarly, m+ = minX ′′ if m = minX . If x is not an endpoint in X ,
then x− < x+ is a gap pair in X ′′. Thus, every point of X ′′ is a right
or a left endpoint. Let

(3.24) π′′ : X ′′ → X

denote the restriction of the projection π′ : X ′ → X . For every x ∈ X
either x+ or x− or both lies in X ′′ and so π′′ is an order surjection.
Since (π′′)−1(x) is either a singleton or a pair for every x ∈ X it follows
from Proposition 2.3(a) that π′′ is continuous and closed.
If x = supA with A ⊂ (−∞, x) in X , then x is not a right endpoint

and so x− ∈ X ′′. Furthermore,

(3.25) x− = supπ′′−1(A).
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Similarly, x = infB with B ⊂ (x,∞) ⊂ X implies

(3.26) x+ = infπ′′−1(B).

In particular, X ′′ has no isolated points.
Now for a useful construction:
Assume X is a complete LOTS with no isolated points, X1 is an

unbounded LOTS with no isolated points, A is a dense subset of X1

and g : A→ X is an order injection.
First, define

G : X ′
1 → X, by

G(x−) = supg((−∞, x) ∩ A)

G(x+) = infg((x,∞) ∩ A).

(3.27)

So that G(x−) ≤ G(x+).
Assume x1 < x2 in X1.
If x1, x2 is not a gap pair, then the interval (x1, x2) in X1 is nonempty

and so is infinite because X1 has no finite nonempty open set. Because
A is dense, (x1, x2) ∩ A is infinite. Thus, there exist a1, a2 ∈ A such
that x1 < a1 < a2 < x2. It follows that

(3.28) G(x−
1 ) ≤ G(x+

1 ) ≤ g(a1) < g(a2) ≤ G(x−
2 ) ≤ G(x+

2 ).

If x1, x2 is a gap pair, then at least

(3.29) G(x−
1 ) ≤ G(x+

2 ).

It can happen that in the gap pair case, G(x−
2 ) < G(x+

1 ). On the other
hand, if x1, x2 is a gap pair, then x+

1 , x
−
2 6∈ X ′′

1 .
It follows that the restriction of G to X ′′

1 is an order map.
Now define the lift g′′.

g′′ : X ′′
1 → X ′′, by

g′′(x−) = sup (π′′)−1(g((−∞, x) ∩A))

g′′(x+) = inf (π′′)−1(g((x,∞) ∩A)).

(3.30)

Notice that if x− ∈ X ′′
1 , then x is not a right endpoint and so x =

sup ((−∞, x) ∩A) and similarly for x+.
It follows from (3.25) and (3.26) that on X ′′

1 ⊂ X ′
1 we have

g′′(x−) = G(x−)−

g′′(x+) = G(x+)+.

and so π′′ ◦ g′′ = G.

(3.31)

Assume that x1 < x2 in X1.
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If x−
1 , x

+
2 ∈ X ′′

1 , then by (3.31) together with (3.28) or (3.29)

(3.32) g′′(x−
1 ) < g′′(x+

2 ).

If x+
1 or x−

2 ∈ X ′′
1 , then x1, x2 is not a gap pair So from (3.28) and

(3.31) again, we have

(3.33) g′′(x−
1 ) < g′′(x+

1 ) < g′′(x−
2 ) < g′′(x+

2 )

omitting whichever terms are undefined.
It follows that g′′ is an order injection.
Now assume that x ∈ X1 is not a right endpoint so that x− ∈

X ′′
1 . By definition, G(x−) is not a right endpoint and so g′′(x−) =

G(x−)− = sup{y− : y < G(x−)}. For y < G(x−) the interval (y,G(x−))
is infinite and we need only consider such points y which are also not
right endpoints. There exists a ∈ (−∞, x) ∩ A such that y < g(a).
There exists x1 ∈ (a, x) ⊂ X1 not a right endpoint so that x−

1 ∈ X ′′
1 as

well. Since x1, x is not a gap pair, (3.28) implies that

y < g(a) ≤ G(x−
1 ) < G(x−), and so

y− < G(x−
1 )

− < G(x−)−, i.e. y− < g′′(x−
1 ) < g′′(x−),

(3.34)

and so

(3.35) g′′(x−) = sup {g′′(x−
1 ) : x

−
1 ∈ X ′′

1 , and x1 < x}.

From this together with a similar argument for g′′(x+) when x is
not a left endpoint, it follows that g′′ is continuous and so is an order
embedding. Since π′′ is continuous, it follows from (3.31) that G :
X ′′

1 → X is a continuous order map.
In particular, we obtain:

Lemma 3.13. If X and X1 are connected LOTS, A ⊂ X is dense
and g : A → X1 is an order injection, then g′′ : X ′ → X ′

1 is an order
embedding.

Now we apply this construction.

Theorem 3.14. (a) If X is a connected, nontrivial LOTS, then X
contains a closed subset A which is a compact, separable LOTS with
no isolated points.

(b) If C is a separable, compact LOTS with no isolated points, then
C ′′ has the order type of the Fat Cantor Set, i.e.

(3.36) C ′′ ∼= •R′ • .
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Proof. (a): Let a < b in X . By Proposition 2.15(a) there exists an
order injection g : Q → (a, b) where Q is the LOTS of rationals in R.
By replacing a, b if necessary we can assume that g(Q) is ±cofinal in
(a, b). Since R and (a, b) are order dense and unbounded, R′ = R′′ and
(a, b)′ = (a, b)′′. The above construction yields an order embedding

(3.37) g′′ : R′ → (a, b)′.

Extend to •R′• by mappingm to a+ andM to b−. Because the image of
g is ±cofinal we obtain an order embedding of •R′• into [a+, b−] ⊂ X ′.
A = (π′ ◦ g′′)(•R′•) is compact and separable by continuity. Since the
Fat Cantor Set, •R′•, has no isolated points and π′ has finite point
inverses, A has no isolated points.
(b): If C is compact with no isolated points, let

(3.38) L = C \ ({right endpoints of C} ∪ {max C}).

Regarded as a LOTS L is unbounded and it is order dense because if
x1 < x2 in L, then x2 is not a right endpoint and so (x1, x2) is infinite
in C. If y1 < y2 are both right endpoints in this interval, then between
them there is a left endpoint. Since C has no isolated points it follows
that (x1, x2) meets L. Similarly, if y is a right endpoint of C and y < x
in C, then the infinite interval (y, x) meets L. Finally, if x ∈ C is not
the maximum, then the infinite interval (x,max) meets L. It follows
that L is dense in C.
If C is separable, then by Proposition 2.11(f) L is separable and so

contains a countable dense set D. So D is countable, order dense and
unbounded. By Proposition 2.15(a) there exists an order isomorphism
g : Q → D ⊂ C. Regarded as a not necessarily continuous order
injection into C, g induces, as above, g′′ : R′ → C ′′ an order embedding.
Extend by mapping m to (min C)+ and M to (max C)−. We thus
have an order embedding g′′ : •R′• → C ′′. By continuity the image is
compact and hence closed in C ′′. If x− ∈ C ′′, then x is the limit of an
increasing sequence in D. If x 6= max C, then the sequence is bounded
in D. Let t ∈ R be the limit of the corresponding increasing sequence
in Q. Clearly, x− = g′′(t−). With a similar argument for x+ in C ′′ with
x 6= min A, we see that g′′ is onto. It is thus an order isomorphism.

�

Example 3.15. Embedding the Fat Cantor Set.

Suppose that g : Q→ X is an order injection with image a bounded,
countable discrete subset. For example, if X = R × [−1, 1] we can
let g(a) = (a, 0) for a ∈ Q ∩ (0, 1) ⊂ R. Then for each t ∈ (0, 1),
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G(t−) < G(t+) and so G : (0, 1)′ = (0, 1)′′ → X is injective by (3.28).
Since g′′ : R′ → X ′′ = X ′ is an order embedding, G = π′′ ◦ g′′ is
continuous and so is an order embedding of (0, 1)′. Extending to the
two-point compactification we obtain an embedding of the Fat Cantor
Set into X . In the case of X = R × [−1, 1] with g(a) = (a, 0) the
embedding is given by G(t±) = (t,±1) for t ∈ [0, 1] (omitting 0− and
1+).

3.3. The CHLOTS Long Line. In a CHLOTS F we label two points
−1 < +1. With Ω the first uncountable ordinal we use the order
product to define

(3.39) FΩ∞ = (Ω× [−1,+1)) \ {(0,−1)}

In the case when F = R this is the Long Line.
If α < Ω, then α is a countable ordinal and so by Proposition 2.15(d)

there exists an order embedding fα : α + 1 → [−1,+1] with fα(0) =
−1 and fα(α) = +1. Choose for each i ∈ α an order isomorphism
{i} × [−1,+1) ∼= [fα(i), fα(i + 1)) and put them together to get an
order isomorphism between the intervals (−∞, (α,−1)) ⊂ FΩ∞ and
(−1. + 1) ⊂ F which is isomorphic to F itself. It follows that every
nonempty, open interval which is bounded above in FΩ∞ is isomorphic
to F . By Proposition 3.2(d)(vii)⇒(i) FΩ∞ is doubly transitive. It is
connected and first countable, but not σ-compact. It has countable
coinitial subsets but every countable subset is bounded above.
If we apply the above construction to F ∗ and then reverse it, then

we obtain −∞ΩF which has countable cofinal sets but no countable
coinitial sets. Using the order sum we define

(3.40) −∞ΩFΩ∞ = −∞ΩF + {0}+ FΩ∞

with every countable subset bounded. In each case all of the nonempty,
bounded, open subintervals are isomorphic to F and the entire space
is doubly transitive but not weakly homogeneous.
We can extend Proposition 3.3 to completely describe the gap be-

tween double transitivity and homogeneity in the complete case.

Theorem 3.16. Let X be a complete, doubly transitive LOTS and let
F be a nonempty, bounded, open subinterval of X. F is a CHLOTS
and X is order isomorphic to exactly one of the four spaces: F, FΩ∞,
−∞ΩF, or −∞ΩFΩ∞.

Proof. For a complete LOTS homogeneity is equivalent to weak ho-
mogeneity. Since X is complete, F is complete and so by Proposition
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3.3(b) F is a CHLOTS. Also if X has countable coinitial and cofinal
subsets, then it is σ-bounded and so is homogeneous by Proposition
3.3(b) again. In that case, X ∼= F . Similarly, if X has countable
coinitial subsets, then X ∼= (−∞, a) for every a ∈ X .
Now assume that X has countable coinitial subsets but that every

countable subset is bounded above. Inductively, we can construct an
order embedding f : Ω → X . Since X is first countable the image of
Ω cannot be bounded in X and so it is cofinal in X . By Proposition
2.15(c) continuity of f implies that

(3.41) [f(1),∞) =
⋃
{[f(i), f(i+ 1)) : 0 < i < Ω}.

With points −1 < +1 fixed in F , choose for each i an isomorphism
{i} × [−1,+1) ∼= [f(i), f(i + 1)) and put them together to get an
isomorphism from [(1,−1),∞) ⊂ FΩ∞ onto [f(1),∞) ⊂ X . Put this
together with an isomorphism {0} × (−1,+1) ∼= (−∞, f(1)) to get an
isomorphism FΩ∞ ∼= X .
Applying this result to X∗ we see that if X has countable cofinal

subsets but no countable coinitial subsets, then −∞ΩF ∼= X . Finally,
if every countable subset is bounded in X , then we can pick a ∈ X
and apply the previous results to show (a,∞) ∼= FΩ∞ and (−∞, a) ∼=
−∞ΩF . So directly from (3.40) we see that X ∼= −∞ΩFΩ∞ in this case.

�

Example 3.17. A first countable, doubly transitive LOTS whose com-
pletion is not first countable and so is not transitive.

With X one of the long line examples above and α a countable tail-
like ordinal with α > 1, Z = Xα is first countable by Proposition 2.14
and is doubly transitive by Theorem 3.6.
Consider X = FΩ∞. There is an embedding g : Ω→ X . Now choose

x ∈ X and let g̃ : Ω → Z be defined for β < Ω by g̃(β)1 = g(β) and
g̃(β)i = x for i 6= 1. In particular, g̃(β)0 = x for all β < Ω and so the
image of g̃ is bounded in Z. Let x̂ be the supremum of the image in the
completion Ẑ. Clearly, x̂ is not the limit of any countable increasing
sequence.
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4. Towers of CHLOTS

4.1. The LOTS Xα. In an unbounded LOTS X we pick out a distin-
guished closed, bounded subinterval J containing at least three points.
We label the endpoints ±1. Thus, J = [−1,+1] and its interior
J◦ = (−1,+1) is nonempty.
For every positive ordinal α we define the subset of the order space

product Xα

(4.1) Xα = {x ∈ Xα : xi ∈ J for all 0 < i < α}.

Thus, Xα is the order space product indexed by α with the first factor
X and the remaining factors copies of J . In particular,

X1 = X

X2 = X × J

Xω = X × J × J × ...

(4.2)

When X is weakly homogeneous, e.g. if X is a HLOTS, then it is
order isomorphic to J◦ and so the space Xα is independent of the choice
of interval J .
For 0 < β ≤ α we have projections πα

β : Xα → Xβ. Identifying X1

with X we have the special case πα : Xα → X , the projection to the
first coordinate.
Following (2.20) we define for z ∈ Xβ with 0 < β < α the points z+

and z− in Xα by

(4.3) (z±)i =

{
zi i < β

±1 β ≤ i < α.

As in (2.21) we have for a < b in Xβ

(πα
β )

−1((a, b)) = (a+, b−)

(πα
β )

−1([a, b]) = [a−, b+].
(4.4)

Using (4.3) we define for 0 < β < α

jβα : (Xβ)
′ → Xα

jβα(z
±) = z ± .

(4.5)

Proposition 4.1. Let X be an unbounded, σ-bounded, order dense
LOTS with distinguished subinterval J = [−1,+1] and let α be a posi-
tive ordinal.

(a) Xα is unbounded, order dense and σ-bounded.
(b) If X is an IHLOTS, then Xα has dense holes.
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(c) If X is connected, then Xα is connected and σ-compact.
(d) If X has countable type and α is countable, then Xα is of count-

able type. If α is uncountable then Xα is not even first count-
able.

(e) If 0 < β < α, then πα
β is a continuous order surjection, closed

whenX is connected, and jβα is an order embedding onto a closed
subset of Xα.

(f) If X is a HLOTS and a < b in X, then (a+, b−) ⊂ Xα is order
isomorphic with Xα itself.

Proof. (a): Xα is order dense by Proposition 2.8(a) which also shows
that each πα

β is a continuous order surjection. Since X is unbounded
and σ-bounded, Xα is unbounded and σ-bounded by Proposition 2.3(a)
applied to the order surjection πα : Xα → X .
(b): If z < w in Xα, let β = min{j : zj 6= wj} so that zβ < wβ

and zi = wi for i < β. By Proposition 3.8(d) X has dense holes and
so there exists a clopen subset A of X such that zβ ∈ A,wβ 6∈ A, and
x ∈ A ⇒ (−∞, x) ⊂ A. Define

(4.6) Ã = {x ∈ Xα : x < z}∪{x ∈ Xα : xi = zi for i < β and xβ ∈ A}.

It is clear that Ã defines a hole in Xα between z and w.
(c): If X is complete, then J is compact and so Xα is complete

by Proposition 2.8(b). As Xα is order dense and σ-bounded, it is
connected and σ-compact.
(d): Since X and J are of countable type, the first result follows from

Proposition 2.13(b). If α is uncountable, then define f : α + 1 → Xα

as in (2.34) with a = (−1)− and b = (+1)+. Then f is an order
embedding and since Ω ≤ α the point f(Ω) is defined in Xα. It is not
the limit of any increasing sequence.
(e): For z ∈ Xβ the pre-image (πα

β )
−1(z) = [z−, z+] which is closed

and is compact when X , and therefore Xα, are connected. So πα
β is

continuous, and is closed in the connected case, by Proposition 2.3(a).
The complement of the image of jβα is the union of the collection of

open intervals {(z−, z+) : z ∈ Xβ}. In the case when X is complete,
continuity follows from Proposition 2.3(b). In the general case, one
checks directly that condition (2.2) holds for the image, i.e. if a ∈
jβα(Xβ) and x ∈ Xα with a < x and (a, x] ∩ jβα(Xβ) = ∅ then a = z−
and zi = xi for all i ∈ β. The required b is z+.
(f): If f̃ : X → (a, b) is an order isomorphism, then

(4.7) f(x)i =

{
f̃(x0) i = 0

xi 0 < i < α
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defines the required isomorphism f : Xα → (a+, b−).
�

Theorem 4.2. Let α be a countable, tail-like ordinal and X be a LOTS.

(i) If X is doubly transitive and first countable, then Xα is doubly
transitive and first countable.

(ii) If X is an IHLOTS, then Xα is an IHLOTS.
(iii) If X is a CHLOTS, then Xα is a CHLOTS.

Proof. In any case Xα is first countable by Proposition 2.14. By Propo-
sition 4.1 Xα has dense holes if X is an IHLOTS and it is complete if
X is a CHLOTS. Furthermore, in the HLOTS cases Xα has countable
type. We will show that if α is countable and tail-like and X is dou-
bly transitive, then Xα is doubly transitive. The HLOTS results then
follow from Proposition 3.8.
If α = 1 then Xα = X which is doubly transitive. Thus, we can

assume that α > 1 and so that α is a limit ordinal.
Choose 0 ∈ J◦ so that −1 < 0 < +1. Define ã < c̃ < b̃ in Xα by

ã0 = −1 c̃0 = 0 b̃0 = +1

ãi = +1 c̃i = 0 b̃i = −1 0 < i < α.
(4.8)

Given an arbitrary pair a < b in Xα, it suffices to prove (a, b) ∼= (ã, b̃).
Let β = min {j : aj 6= bj}, so that aβ < bβ and aj = bj for j < β.

Because X is order dense, we can choose c ∈ Xα such that

ai = ci = bi for i < β

aβ < cβ < bβ for i = β

ci = 0 for β < i < α.

(4.9)

We will construct an order isomorphism [c, b) ∼= [c̃, b̃). Applying a
similar argument (or the same argument to X∗) we obtain an isomor-

phism (a, c] ∼= (ã, c̃]. Putting them together we get (a, b) ∼= (ã, b̃) as
required.
Now define for the purposes of this proof (i.e. ignore (3.10) for the

duration)

K = {β} ∪ {k : β < k < α and bk > −1 in J}

K ′ = K ∪ {α}.
(4.10)
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Thus, K ′ is a subset of α + 1 and so is a countable well-ordered set.
We define f : K ′ → Xα by

f(β) = c

f(k)i =

{
bi i < k

−1 k ≤ i < α
for β < k ≤ α.

(4.11)

In particular, f(α) = b.
For k ∈ K ′ let k′ denote its successor in the well-ordered set K ′. For

k ∈ K ′ \ {β} we have

f(k)i = f(k′)i = bi for i < k

−1 = f(k)k < f(k′)k = bk

f(k)i = −1 = bi = f(k′)i for k < i < k′

f(k)i = −1 = f(k′)i for k′ ≤ i < α.

(4.12)

Thus, f is an order injection.
Notice that if x ∈ Xα and k ∈ K with k > β, then xj ≥ f(k)j = −1

for all j ≥ k and xj ≥ −1 for all j > β with j 6∈ K.
Thus, if k is a limit element ofK and x ∈ Xα with x < f(k) and j the

minimum at which xj 6= f(k)j, then xj < f(k)j. So either j ≤ β < k

or else j ∈ K with j < k. In either case, there exists some k̃ ∈ K with
max(j, β) < k̃ < k so that xj < f(k̃)j = f(k)j and so x < f(k̃). It
follows that f is continuous and so Proposition 2.15(c) implies that

(4.13) [c, b) =
⋃

k∈K

[f(k), f(k′)).

By Proposition 2.15(d) there exists an order embedding f̃0 : K ′ →
[0,+1] with f̃0(β) = 0 and f̃0(α) = +1. Now define f̃ : K ′ → Xα by

f̃(k)0 = f̃0(k) for k ∈ K ′

f̃(β)i = 0 for 0 < i < α

f̃(k)i = −1 for 0 < i < α and k ∈ K ′ \ {β}.

(4.14)

Clearly, f̃ is an order embedding and again continuity implies

(4.15) [c̃, b̃) =
⋃

k∈K

[f̃(k), f̃(k′)).

Notice that f̃(β) = c̃ and f̃(α) = b̃.
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Because X is doubly transitive, we can choose for each k ∈ K an
order isomorphism between intervals in J :
(4.16)

qk : [f(k)k, f(k
′)k) = [−1, bk)→ [f̃(k)0, f̃(k

′)0) = [f̃0(k), f̃0(k
′)).

Because α is tail-like, there exists for each k ∈ K a unique order
isomorphism τk : α → α \ k = {ǫ : k ≤ ǫ < α}. Define for each k ∈ K
the map between intervals of Xα

Qk : [f(k), f(k′))→ [f̃(k), f̃(k′))

Qk(x)i =

{
qk(xk) for i = 0

xτk(i) for 0 < i < α.

(4.17)

Notice that by (4.12) xi = bi for all i < k when x ∈ [f(k), f(k′)). It
follows that each Qk is an order isomorphism.
Putting together these isomorphisms we obtain the required isomor-

phism [c, b) ∼= [c̃, b̃).
�

4.2. Size Comparisons. In distinguishing between CHLOTS we de-
fine a rough order of size.

Definition 4.3. For LOTS X and X1 we say that X injects into X1

if there exists an order injection g : X → X1. We say that X1 is
bigger than X if X injects into X1 but not the reverse. When neither
injects into the other we say their sizes are not comparable. On the
other hand, we say that X has the same size as X1 when each injects
into the other. Finally, we say that the size of X lies between X1 and
X2 when X1 injects into X and X injects into X2.

This is the usual crude partial ordering used to compare order types.
We will now see that for CHLOTS X and X1, X injects into X1 iff
there exists an order surjection f : X1 → X . By Proposition 2.3(a)
such a surjection is always continuous. On the other hand, there exists
a continuous order injection, i.e. an order embedding, g : X → X1 iff
X ∼= X1.

Proposition 4.4. (a) If f : X1 → X is an order surjection of
LOTS then there exists a map g : X → X1 such that f ◦g = 1X .
Any such map g is an order injection.
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(b) Assume X is connected. If g : X → X1 is an order injection
with image g(X) ±cofinal in X1, then there exists a continuous
order surjection f : X1 → X such that f ◦ g = 1X .

(c) Assume that X1 is a HLOTS and that X is unbounded. If there
exists an order injection of X into X1, then there exists an order
injection with image ±cofinal in X1.

(d) Assume that X1 and X are CHLOTS. If there exists a non-
constant, continuous order map from X1 to X, then X injects
into X1. If there exists an order embedding of X into X1, then
X1
∼= X.

Proof. (a): This is a repeat of Proposition 2.3(d).
(b): Define for x ∈ X the closed convex set Jx ⊂ X1 by

(4.18) X1\Jx = (
⋃
{(−∞, g(a)) : a < x})∪(

⋃
{(g(b),∞) : b > x}).

If x1 < x2 in X then because X is order dense we can choose a, b
such that x1 < b < a < x2. Since g(b) < g(a)

(4.19) (−∞, g(a)) ∪ (g(b),∞) = X1

and so Jx1 ∩ Jx2 = ∅.
If y ∈ X1 equals g(x) then y ∈ Jx. In particular, Jx is nonempty.

If y 6∈ g(X) then because the image is cofinal and coinitial, the pair
g−1((−∞, y)), g−1((y,∞)) is a partition of X by nonempty convex sets.
By completeness of X we can define x = inf g−1((y,∞)). If g(b) < y,
then b is a lower bound for g−1((y,∞)) and so b ≤ x. Contrapositively,
b > x implies g(b) > y. If g(a) > y, then a ∈ g−1((y,∞)) and so x ≤ a.
Contrapositively, a < x implies g(a) ≤ y. Thus, y ∈ Jx.
It follows that {Jx : x ∈ X} is an X indexed family of nonempty,

closed convex sets with union X1. So mapping Jx to x defines an
order surjection f : X1 → X which is continuous by Proposition 2.3(a)
because each f−1(x) = Jx is closed. If x ∈ X , then g(x) ∈ Jx implies
f(g(x)) = x.
(c): Define J = {y ∈ X1 : for some x1, x2 ∈ X g(x1) < y < g(x2)}.

J is an open, convex subset of X1. Because X is unbounded, g(X) is
a subset of J which is ±cofinal in J . Because X1 is a HLOTS there
exists an order isomorphism q : J → X1. Replace g by q ◦ g.
(d): If f : X1 → X is a continuous order map and c < d in the image

f(X1), then let a = supf−1(c) and b = inff−1(d). The interval [a, b] is
compact and connected and so by continuity of f the image is as well.
Since f is an order map f([a, b]) is a compact, connected subset of [c, d]
which contains c and d. Hence, f([a, b]) = [c, d] and so, by definition
of a and b, f((a, b)) = (c, d). Let h1 : X1 → (a, b) and h : (c, d) → X
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be order isomorphisms. Then f1 = h ◦ f ◦ h1 is an order surjection of
X1 onto X and so X injects into X1 by (a).
If, in addition, f is injective then the restriction to (a, b) is an order

isomorphism to (c, d) and so f1 is an isomorphism.
�

As an immediate consequence we obtain the following.

Corollary 4.5. If X and X1 are CHLOTS then X injects into X1 iff
there exists an order surjection g : X1 → X. Such an order surjection
is necessarily continuous.

We can strengthen this result.

Theorem 4.6. If X and X1 are connected LOTS and f : X1 → X is
a non-constant continuous map, then either f is an order∗ map onto
a non-trivial interval in X, or there exists an order surjection from
X1 onto a non-trivial interval in X. If X is a CHLOTS, then there
exists an injection from X to X1 which is either order-preserving or
order-reversing.

Proof. Because the LOTS are connected and f is continuous and non-
constant the image of f is an interval in X in any case. If f is order-
reversing then by applying Proposition 4.4 to the reverse order, we
obtain an order∗ injection to X1 from an interval in X .
Assume f is not order-reversing so that there exist a < b in X1 such

that with c = f(a), d = f(b) we have c < d. We will construct an order
preserving injection g : [c, d] → [a, b]. Let g(c) = a, g(d) = b. For x ∈
(c, d), let g(x) = supf−1(x)∩ [a, b] which is not empty because f([a, b])
is connected and contains [c, d]. Because f is continuous, f−1(x) is
closed and so f(g(x)) = x. If x < x1 < d then f([g(x), b]) contains
[x, d] and so there exist points of f−1(x1) between g(x) and b. Hence,
g(x) < g(x1) < b. That is, g is an order injection.
It now follows from Proposition 4.4(b) that with a1 = infg((c, d))

and b1 = supg((c, d)) there exists a - necessarily continuous - order
surjection from [a1, b1] to [c, d]. Extending by constants below a1 and
above b1 we obtain an order surjection from X1 onto [c, d].
Thus, we obtain an injection to X1 from a non-trivial open interval

in X . If X is a CHLOTS we can precede by an isomorphism from X
to the open interval and get an injection from X to X1.

�
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Proposition 4.7. Let X and X1 be LOTS.

(a) Let f : X → X1 be an order map. Assume that X is order
dense and that D is a dense subset of X. If the restriction f |D
is injective, then f is an order injection, i.e. it is injective on
all of X.

(b) Assume that X is order dense and unbounded and that X1 is

complete. If X injects into X1, then the completion X̂ injects
into X1.

(c) Let α ≤ β be positive ordinals. If X injects into X1 then Xα

injects into Xβ
1 . If, in addition, X and X1 are HLOTS then Xα

injects into (X1)β.
(d) If α and β are positive ordinals then

(4.20) (Xα)β ∼= Xα·β.

If, in addition, X is a HLOTS then

(4.21) (Xα)β ∼= Xα·β.

Proof. (a): This is a repeat of Proposition 2.3 (e).

(b): If f : X → X1 is an order injection, then f̂ is an order injection
by Proposition 2.9.
(c): If f : X → X1 is an order injection and z ∈ X1 then we can

define the injection f̃ : Xβ → Xα
1 by

(4.22) f̃(x)i =

{
f(xi) for i < β

z for β ≤ i < α.

In the HLOTS case, we can assume that the distinguished intervals
have been chosen so that f(J) ⊂ J1 and that z ∈ J1. Then f̃ restricts
to an injection of Xβ into (X1)α.
(d): We see first that the natural bijection q : (Xα)β → Xβ×α given

by q(x)(i, j) = x(i)(j) preserves the orders.
For q(x1) < q(x2) means that for some (i, j) ∈ β × α q(x1)(i, j) <

q(x2)(i, j) and q(x1)(k, ℓ) = q(x2)(k, ℓ) for all (k, ℓ) < (i, j). So for
k < i, x1(k) = x2(k). Furthermore, x1(i)(ℓ) = x2(i)(ℓ) for ℓ < j, while
x1(i)(j) < x2(i)(j). That is, x1(i) < x2(i). Consequently, x1 < x2.
Since q is a bijection it is an order isomorphism.
The result follows because β × α = α · β.
In the HLOTS case with J the distinguished interval in X we choose

Jα = (πα)−1(J) as the distinguished interval in Xα. It is an interval
by (4.4). Then q maps (Xα)β onto Xα·β.

�
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Remark. Notice that for an unbounded, connected LOTS X the pro-
jection π′ : X ′ → X is injective on the dense subset D = X×{−1} but
not itself injective. Thus, the order dense hypothesis in (a) is required.

We will now show that for a CHLOTS X and positive ordinals α > β
it is always true that Xα is bigger than Xβ.

Definition 4.8. A LOTS X is called order simple if X ′ is bigger than
X where X ′ is the AS double of X.

It is always true that X injects into X ′, e.g. use x 7→ x−. So X is
order simple when X ′ does not inject into X .

Proposition 4.9. (a) If X is an uncountable, order dense LOTS
which satisfies the countable chain condition, then X is order
simple.

(b) If X1 and X2 are LOTS of the same size, then X1 is order
simple iff X2 is.

(c) If X is order simple, then the reverse X∗ is order simple.
(d) If X is order simple, then there does not exist an injective order*

map from X ′ into X.

Proof. (a) If f : X ′ → X is an order injection for any LOTS X , then
{(f(z−), f(z+)) : z ∈ X} is a family of open intervals in X and each
is nonempty if X is order dense. If z1 < z2 in X , then f(z+1 ) < f(z−2 )
so that the intervals are pairwise disjoint. If X satisfies c.c.c., then X
must be countable.
(b) If f : X2 → X1 is an order injection, then from (3.13) we obtain

the order injection f ′ : X ′
2 → X ′

1. So if X1 is at least as big as X2 then
X ′

1 is at least as big as X ′
2. Thus, if X1 and X2 have the same size and

X ′
1 has the same size as X1, then X ′

2 has the same size as well.
(c) It is clear that

(4.23) (X∗)′ = (X ′)∗.

So any order injection of X ′ into X is an order injection of (X∗)′ into
X∗.
(d) Define the map

q : X ′ → (X ′)′

q(x±) = (x±)±.
(4.24)

This is an order embedding ofX ′ onto the closed set whose complement
is the open set of isolated points {(x+)−, (x−)+ : x ∈ X}. Now if
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g : X ′ → X is an order reversing injection, then we use (3.15) to define
an order injection from X ′ to X as the composition:

X ′ q
−−−→ (X ′)′

g∗

−−−→ X ′ g
−−−→ X.

�

Remark. IfX is unbounded and order dense so thatX ′ has no isolated
points, then the map q of (4.24) is actually an order isomorphism of
X ′ onto (X ′)′′ defined via (3.23).

In the Remark after Proposition 3.11 we observed that Z′ ∼= Z and
so Z is not order simple. By Proposition 2.15(a) Q is not order simple.
There exist connected LOTS which are not order simple as well. With
J = [−1,+1] ⊂ R define

Xn = [n, n + 1)× Jn

X = Σn∈ωXn.
(4.25)

It is easy to see that X is connected with min = 0 in X0 = [0, 1). The
order isomorphisms

fn : Xn × J → Xn+1 for n ∈ ω

fn(x, t)i =





x0 + 1 i = 0

xi 0 < i ≤ n

t i = n+ 1

(4.26)

can be put together to get an order embedding of X ×J into X . Since
X ′ ⊂ X × J , it follows that X is not order simple. Notice that X has
no max.

Lemma 4.10. (The Shift Lemma) Let X be a complete LOTS with
min = m. If f : X ′ → X is an order injection, then for all x ∈ X

(4.27) f(x+) > x.

In particular, X has no max.

Proof. Define S = {a ∈ X : f(x+) > x for all x ≤ a}. Hence, a ∈ S
implies (−∞, a] ⊂ S. Since m = min X

(4.28) m ≤ f(m−) < f(m+)

and so m ∈ S. It suffices to show that S is unbounded as this implies
S = X .
Assume S is bounded and let z = sup S.
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First we show that z ∈ S. If not, then a < z for all a ∈ S and so
a+ < z−. Hence

(4.29) a < f(a+) < f(z−) < f(z+).

Thus, f(z−) is an upper bound for S. Since z = sup S

(4.30) z ≤ f(z−) < f(z+).

As all x < z are not upper bounds for S they are elements of S. It
follows that z ∈ S after all.
Now let y = f(z+) > z. If z < x ≤ y then z+ < x+ and so

(4.31) x ≤ y = f(z+) < f(x+).

Thus, y ∈ S. Since y > z, this contradicts the assumption that z =
sup S.
X has no max because S is unbounded. Also, x = max could not

satisfy (4.27).
�

Corollary 4.11. A LOTS X is order simple if it satisfies one of the
following conditions:

(i) X is compact.
(ii) X is doubly transitive and complete.
(iii) X ∼= (X1)α where X1 is any CHLOTS and α is any positive

ordinal.

Proof. (i) The Shift Lemma implies that if a complete LOTS X is not
order simple and has a min, then it has no max. In particular, a
compact LOTS is order simple.
(ii) Assume that f : X ′ → X is an order map with X doubly tran-

sitive and complete. For any pair a < b in X define ã = f(a−) and

b̃ = f(b+). If ã = b̃, then f is not injective. If ã 6= b̃, then f maps

[a, b]′ into [ã, b̃]. Because X is doubly transitive we can choose an order

isomorphism g : [ã, b̃]→ [a, b]. The composition g ◦ f : [a, b]′ → [a, b] is
an order map. Since [a, b] is compact, (i) implies that this map is not
injective and so f is not injective. It follows that X is order simple.
(iii) For the closed interval J in X1,the subset J

α of (X1)α is compact
and so is order simple. If a < b in J then Proposition 4.1(f) implies
that (X1)α is order isomorphic to the subset (a+, b−) of Jα. Hence,
(X1)α has the same size as Jα and so is order simple by Proposition
4.9(b).

�
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Theorem 4.12. Assume that X is a CHLOTS. If α > β are positive
ordinals then Xα is bigger than Xβ. Furthermore, Xα is not homeo-
morphic to Xβ.

Proof. Recall that jβα injects X ′
β into Xα, see (4.5). If f : Xα → Xβ is

an injective map then the composite f ◦ jβα : X ′
β → Xβ is an injection

which is order preserving or order reversing if f is. Because Xβ is
order simple by Corollary 4.11, f cannot be order preserving and by
Proposition 4.9(d) it cannot be order reversing either.
If f : Xα → Xβ were a homeomorphism, then by Lemma 3.1 it would

be either order preserving or reversing.
�

Corollary 4.13. If X is a CHLOTS and α is a positive ordinal such
that Xα is transitive, then α is countable and tail-like.

Proof. Since Xα is connected, transitivity implies first countability by
Proposition 3.2(c). By Proposition 4.1(d), α is countable.
Now assume that α is not tail-like. This means that there exists

β < α and ǫ < α such that ǫ ∼= α \ β = {i : β ≤ i < α}. Choose
b ∈ Xα such that bβ ∈ J◦, i.e. −1 < bβ < +1 in X . Define a = (−1)−
in Xα, i.e. ai = −1 for all i < α. We will obtain a contradiction from
the assumption that there exists f ∈ H+(Xα) such that f(a) = b.
Define c, d ∈ Xα by

ci = di = bi for i < β

cβ = −1, dβ = +1

ci = +1, di = −1 for β < i < α.

(4.32)

Clearly, we have c < b < d and since ǫ ∼= α \ β Proposition 4.1 (f)
implies

(4.33) (c, d) ∼= Xǫ.

By continuity of f , f−1((c, d)) contains a neighborhood of a and so
contains some interval (x, a) with x < a in Xα. This implies x0 < a0 =

−1 in X and so we can choose ã, b̃ ∈ X such that x0 < ã < b̃ < a0 in
X . Because x < ã+ < b̃− < a in Xα we have

(4.34) (ã+, b̃−) ⊂ f−1((c, d)).

By Proposition 4.1(f) again

(4.35) Xα
∼= (ã+, b̃−).
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Composing the isomorphism of (4.35) with the restriction of f and
the isomorphism of (4.33) we get an order injection of Xα into Xǫ

contradicting Theorem 4.12.
�

For any connected unbounded LOTS X , e.g. any CHLOTS, the
associated Cantor Space for X , denoted C(X), is the two point
compactification

(4.36) C(X) = •X ′•

where X ′ is the AS double. In particular, the Cantor Space for R is
the Fat Cantor Set.
Because an isomorphism maps max to max and min to min,(3.16)

implies for connected unbounded LOTS X,X1

(4.37) C(X) ∼= C(X1) ⇐⇒ X ∼= X1.

For any positive ordinal α we have

(4.38) C(Xα) = •(Xα)
′ • .

If X is a CHLOTS, then for a < b in X the isomorphism f :
Xα → (a+, b−) of Proposition 4.1(f) induces the isomorphism f ′ :
(Xα)

′ → ((a+)+, (b−)−) which extends to the two-point compactifica-
tion to show

(4.39) C(Xα) ∼= [(a+)+, (b−)−].

Theorem 4.14. Assume that X is a CHLOTS. If α > β are positive
ordinals then C(Xα) is bigger than Xα which is bigger than C(Xβ).

Proof. Because Xα is order simple, there is no order injection from
(Xα)

′ into it. C(Xα) projects onto Xα and contains (Xα)
′. Hence,

C(Xα) is bigger than Xα.
By (4.39) C(Xβ) is the same size as (Xβ)

′. Now choose a < b in
J◦ ⊂ X . Clearly, we have

{−1,+1} × {−1,+1} ∼= {−1, a, b,+1} and so

((Xβ)
′)′ ∼= Xβ × {−1, a, b,+1} ⊂ Xβ+1.

(4.40)

Hence, there is an order injection from C(Xβ)
′ into Xβ+1 which injects

into Xα. If Xα were to inject into C(Xβ), then C(Xβ) would not be
order simple, contradicting Corollary 4.11.

�
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Remark. Because C(Xα) and C(Xβ) are not connected, we cannot
use Lemma 3.1 to show that they are topologically distinct. As far as
we know it may happen that for some α 6= β C(Xα) and C(Xβ) are
homeomorphic. On the other hand, it is clear that C(X) is separable
or satisfies c.c.c. iff X satisfies the corresponding property. So the
original Fat Cantor Set C(R) is the only Cantor Space of a CHLOTS
which is separable.
In summary, we have the following.

Theorem 4.15. If F is a CHLOTS, then Fωγ is a tower of CHLOTS
strictly increasing in size and no two distinct members of which are
homeomorphic. The tower C(Fωγ) of CHLOTS Cantor Spaces is also
strictly increasing in size.

5. Trees

5.1. Trees and Bi-Ordered Trees. For the theory of trees we follow
[13] Section 22.
If (T,≻) is a partially ordered set then for p ∈ T we define the tail

set, the predecessor set and the successor set of p:

Tp = {q ∈ T : q � p}

Ap = {q ∈ T : q ≺ p}

Sp = {q ∈ T : q ≻ p and 6 ∃r ∈ T such that q ≻ r ≻ p}.

(5.1)

A non-empty, partially ordered set (T,≻) is called a tree when Ap

is well-ordered by ≺ for each p ∈ T . The elements of T are then
called the vertices of T . If p ∈ T then the order of p, denoted o(p)
is the ordinal whose order type is that of Ap, i.e. there is a unique
order isomorphism from o(p) onto Ap. The bijection can be extended
to o(p) + 1 by mapping o(p) to p. For any ordinal α the level α set is

(5.2) Lα = {p ∈ T : o(p) = α}.

The successors of p are the points of Tp at the next level, i.e.

(5.3) o(p) = α =⇒ Sp = Tp ∩ Lα+1.

If A is a nonempty subset of T then we define its height by

h(A) = sup{o(p) + 1 : p ∈ A}

= min{α : o(p) < α for all p ∈ A}.
(5.4)
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Any subset of a tree is a tree in its own right, leading to different
notions of order and height for elements of the subset. The two concepts
agree when R ⊂ T is a subtree defined by the condition

(5.5) p ∈ R =⇒ Ap ⊂ R.

For example, for each positive ordinal α we define the α truncation
subtree

(5.6) T α = {p ∈ T : o(p) < α} =
⋃

β<α

Lβ.

A branch x of a tree T is a maximal, linearly ordered subset of T .
Because the set of predecessors of any vertex p of T is totally ordered,
any branch of T is a subtree by maximality. A branch x is a well-
ordered set whose order type is that of the ordinal h(x). By Zorn’s
Lemma every subset of T linearly ordered by ≻ is contained in some
branch. In particular, each vertex lies in some branch.
We denote by X(T ) the branch space of the tree T , i.e. the set of

branches of T .
Since there is a branch through every vertex

(5.7) h(T ) = sup{h(x) : x ∈ X(T )}.

We define for a branch x and any ordinal α < h(x) the vertex xα to be
the - unique - level α element of x, i.e.

(5.8) {xα} = x ∩ Lα.

Let p be a vertex of T . The tail set Tp is a tree but not a subtree of
T . For q ∈ Tp let op(q) denote its order in the tree Tp. Clearly,

(5.9) o(q) = o(p) + op(q),

using ordinal addition.
If x is a branch of T then

x ∩ Tp 6= ∅ ⇐⇒ p ∈ x

in which case p = xo(p).
(5.10)

In that case, x ∩ Tp is a branch of Tp. On the other hand, if y is a
branch of Tp then

(5.11) jp(y) = y ∪Ap

is a branch of T . Hence, (5.11) defines a bijection

(5.12) jp : X(Tp)→ {x ∈ X(T ) : p ∈ x},

and we have for all y ∈ X(Tp)

(5.13) h(jp(y)) = o(p) + hp(y),
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where hp denotes the height with respect to Tp.
We call a subset A of a tree T an antichain if no two vertices in A

are comparable with respect to ≻. For example, Lα is an antichain for
any ordinal α.
Let #S denote the cardinality of a set S. Following [13] Chapter 4:

Definition 5.1. A tree T is called a semi-normal tree when it satisfies
the following conditions

(i) #L0 = 1, i.e. T has a root which we denote 0 ∈ T .
(ii) For all p ∈ T , #Sp 6= 1.
(iii) If p, q ∈ T with o(p) = o(q) a limit ordinal and with Ap = Aq,

then p = q.

T is called a normal tree when it is semi-normal and, in addition,
satisfies the condition

(iv) If p ∈ T and α is an ordinal with o(p) ≤ α < h(T ), then there
exists q ∈ Tp with o(q) = α.

This implies

(v) If p ∈ T and o(p) + 1 < h(T ), then Sp 6= ∅ and so #Sp > 1.

We call a tree Ω-bounded when it satisfies

(vi) h(x) < Ω for all x ∈ X(T ) and so h(T ) ≤ Ω.

An Aronszajn tree is a normal tree of height Ω, the first uncountable
ordinal, which satisfies (vi) and

(vii) If p ∈ T and o(p) + 1 < h(T ), then Sp is an infinite set.
(viii) Lα is a countable set for each α < Ω.

A Suslin tree is a normal tree of height Ω which satisfies (vii) and

(ix) Every antichain in T is a countable set.

N. B. From now on we will assume that all trees are at least

semi-normal, unless otherwise mentioned.

Notice that a branch x is a subtree which is not semi-normal as each
vertex p ∈ x with o(p) + 1 < h(x) has a single successor in the branch.

Condition (ii) says that if p ∈ T has any successors then it has at
least two. Thus, a vertex is either terminal, i.e. Sp = ∅ or the tree
branches in at least two directions after p. For a normal tree, the latter
always happens unless o(p) + 1 = h(T ).
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If T is a normal tree, 0 < α < h(T ) and p ∈ Lα then T α and Tp are
normal trees with

h(T α) = α

h(Tp) ∼= h(T ) \ α.
(5.14)

Since Lα is an antichain, (ix) implies (viii) in Definition 5.1. Fur-
thermore, if x ∈ X(T ) then we can choose for each α with α+1 < h(x)
a successor yα of xα different from xα+1. The set {yα : α+1 < h(x)} is
an antichain. It follows that (ix) implies (vi). Thus, every Suslin tree
is Aronszajn.
If T is normal and x ∈ X(T ), then by (v) either h(x) = h(T ) or h(x)

is a limit ordinal less than h(T ).
If x and y are two distinct branches of a tree T , then by (i) the set

(5.15) Eq(x, y) = {i : xi = yi} 6= ∅.

Furthermore, i ∈ Eq(x, y) and j < i imply j ∈ Eq(x, y) and so Eq(x, y)
is an ordinal and by condition (iii) it is not a limit ordinal. So we can
define

ǫ(x, y) = maxEq(x, y) so that

Eq(x, y) = ǫ(x, y) + 1 ∼= x ∩ y.
(5.16)

We call ǫ(x, y) the equality level of the pair x, y. Clearly, the equality
level ǫ is the unique ordinal ǫ such that

(5.17) xǫ = yǫ and xǫ+1 6= yǫ+1.

Since both x and y extend to the ǫ+ 1 level we have

(5.18) ǫ(x, y) + 1 < h(x), h(y).

Definition 5.2. A bi-ordered tree T is a tree of height greater than 1
with a linear order on each nonempty set of successors Sp.
We will say that a bi-ordered tree T is of Y type for a LOTS Y if

for p ∈ T

(5.19) Sp 6= ∅ ⇒ Sp
∼= Y.

We will say that a bi-ordered tree T is of unbounded type, of dense
type, of separable type or of countable type if each nonempty succes-
sor set is a LOTS which is unbounded, order dense, separable or of
countable type, respectively.

For example, a normal bi-ordered tree is of Q type if p ∈ T and
o(p) + 1 < h(T ) implies that Sp is an unbounded, countable, order
dense LOTS.
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For a bi-ordered tree T the induced order on the branch space X(T )
is defined by

(5.20) x < y ⇐⇒ xǫ = yǫ and xǫ+1 < yǫ+1 for some ordinal ǫ.

Note that at the ǫ+1 level we are using the LOTS ordering. By (5.17)
the ordinal ǫ is the equality level of x, y. Conversely, if x 6= y and x, y
have equality level ǫ, then both xǫ+1 and yǫ+1 are successors of xǫ and
so either xǫ+1 < yǫ+1 or the reverse. Furthermore, it is easy to check
that

(5.21) x < z < y ⇒ ǫ(x, y) = min(ǫ(x, z), ǫ(z, y))

and from this that x < y. Consequently, with the induced order X(T )
is a LOTS.
If T is a bi-ordered tree, then by retaining the LOTS structure on

each Sp we give each tail tree Tp and any subtree, e.g. any truncated
tree T α, the structure of a bi-ordered tree of the same type (i.e. normal,
of Y type, or of unbounded, dense, separable or countable type).

Proposition 5.3. Let T be a bi-ordered tree with p ∈ T and R a subtree
of T .

(a) The injection jp : X(Tp) → X(T ) of (5.12) is an order embed-
ding with a convex image.

(b) The map π : X(T ) → X(R) defined by x 7→ x ∩ R is an order
surjection.

Proof. (a): If x < z < y in T with x, y ∈ Tp, then ǫ(x, y) ≥ o(p) and so
by (5.21), z ∈ Tp and so x < z < y in Tp. Thus, jp is an order injection
with a convex image and so an embedding by Proposition 2.3(b).
(b): Because R is a subtree it is clear that π(x) < π(y) in R implies

x < y in T . It follows that π is an order map. By Zorn’s Lemma any
branch of R extends to a branch of T . Hence, π is surjective.

�

Remark. It follows from Proposition 2.3(d) that there exists an order
injection from X(R) into X(T ) for any subtree R of T .

In particular, for 0 < β ≤ α ≤ h(T ) the projection map

πα
β : X(T α)→ X(T β)

πα
β (z) = z ∩ T β

(5.22)

is an order surjection. When α = h(T ) we will omit the superscript,
writing πβ : X(T )→ X(T β).
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If T is a bi-ordered tree, then we denote by T ∗ the same tree with
the reverse LOTS order on each nonempty Sp. It is clear the T ∗ is a
bi-ordered tree of Y ∗ type if T is of Y type and is otherwise of the same
type (normal, unbounded, dense, etc.). The branch space X(T ∗) is the
branch space X(T ) with the reverse ordering, ie. X(T ∗) = X(T )∗.

Proposition 5.4. If T is a bi-ordered tree, then X(T ) is an order
dense LOTS when either of the following two conditions hold.

(i) The tree T is of dense type, i.e. each nonempty Sp is order
dense.

(ii) T is normal and there exists a limit ordinal α such that h(T ) =
α or h(T ) = α+ 1 and Sp has no max for any p ∈ T (e.g. if T
is of unbounded type).

Proof. For x < y in X(T ) let ǫ be the x, y equality level. Because
x 6= y, ǫ < h(x).
(i): If Sp is order dense, then with p = xǫ = yǫ we can choose q ∈ Sp

so that

(5.23) xǫ+1 < q < yǫ+1.

(ii): If h(x) = α+1, then condition (iii) of Definition 5.1 implies that
ǫ < α. If h(x) ≤ α, then h(x) is a limit ordinal because T is normal.
So in either case, ǫ+2 < h(x). We have xǫ+1 < yǫ+1 and with p = xǫ+1,
o(p) + 1 < h(x) implies that Sp is nonempty. If Sp has no max, then
we can choose q ∈ Sp such that xǫ+2 < q.
In either case, if z is a branch through q, then x < z < y.

�

When X(T ) is an order dense LOTS, we will denote by X̂(T ) its
completion. In particular when T is of dense type, we will write π̂α

β :

X̂(T α) → X̂(T β) and ĵp : X̂(Tp) → X̂(T ) for the extensions to the
completions of the maps defined above.

Proposition 5.5. Let T be a bi-ordered tree.

(a) For each p ∈ T the inclusion jp is an order embedding onto a
convex subset of X(T ).

If o(p) + 1 = h(T ), then Tp = {p} and the image of jp is the
unique branch through p.

Assume that for every p ∈ T with o(p) + 1 < h(T ) , #Sp > 1
(i.e. condition (v) of Definition 5.1 holds), e.g. T is normal.
If o(p) + 2 < h(T ) or if o(p) + 2 = h(T ) and #Sp > 2, then
jp(X(Tp)) has a nonempty interior in X(T ).
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(b) The following equivalence holds:

For all p ∈ T, α with o(p) + 1 ≤ α ≤ h(T )

jp(X(T α
p )) is a closed subset of X(T α).

⇐⇒

For all β ≤ α ≤ h(T ), πα
β : X(T α)→ X(T β) is continuous .

(5.24)

These are both true when any of the following three conditions
hold.
(i) Every successor set Sp with o(p) > 1 is either empty or

bounded.
(ii) T is normal and of dense type.
(iii) T is normal and of unbounded type.

(c) Assume T is normal and of unbounded type, and p ∈ T with
o(p) + 1 < h(T ). The image jp(X(Tp)) is a nonempty, infinite,
clopen, convex set in X(T ). If, in addition, X(T ) is order

dense, then X(Tp) is order dense and the image ĵp(X̂(Tp)) is a

nonempty, open interval in X̂(T ).
(d) If S0, the successor set to the root, is unbounded, then X(T ) is

unbounded. If S0 is unbounded and is σ-bounded, then X(T ) is

σ-bounded. If, in addition, X(T ) is order dense, then X̂(T ) is
unbounded and σ-compact.

(e) Assume there exists a limit ordinal α such that h(T ) = α or
h(T ) = α + 1. If T is normal and of unbounded type, then
X(T ) is order dense and has dense holes.

(f) Assume T is normal and of dense type. For each 0 < β ≤ α ≤
h(T ) the projection πα

β and its extension π̂α
β to the completions

are continuous order surjections. The extension ĵp is an order

embedding onto an interval in X̂(T ).
(g) A subset W of X(T ) is dense in X(T ) if for every p ∈ T with

o(p) + 1 < h(T ) the set {q ∈ Sp : ∃x ∈ W with q ∈ x} is dense
in Sp. In particular, if for every p ∈ T there exists x ∈ W such
that p ∈ x, then W is dense in X(T ).

Conversely, assume for every p ∈ T with o(p) + 1 < h(T ),
#Sp > 1 and if o(p) + 2 = h(T ), then #Sp > 2. If W ⊂ X(T )
is dense in X(T ), then for every p ∈ T there exists x ∈ W such
that p ∈ x.

Proof. (a): By Proposition 5.3(a) jp is an order embedding with a
convex image.
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Now assume that (v) of Definition 5.1 holds. If o(p) + 2 < h(T ),
then we can choose q1 < q4 ∈ Sp and q2 < q3 ∈ Sq4. If Sp contains at
least three points, then there exist q1 < q2 < q3 in Sp. In either case,
let zi ∈ X(T ) be a branch containing qi for i = 1, 2, 3. So z1 < z2 < z3
and thus the interval (z1, z3) ⊂ jp(X(Tp)) is nonempty.

(b): We are writing T α
p for (T α)p.

Assume that every jp has a closed image.
For x ∈ T β, (πα

β )
−1(x) =

⋂
p∈x jp(X(T α

p )). Hence, the order surjec-
tion πα

β has closed point-inverses and so is continuous by Proposition
2.3(a).
Assume that every πα

β is continuous. If p = 0, then X(Tp) = X(T )
is closed. If o(p) + 1 = h(T ), then jp(X(Tp)) is a singleton and so is
closed.
Assume that 1 ≤ o(p), o(p) + 1 < h(T ). Let β = o(p) + 1 and

x = x(p). jp(X(T α
p )) = (πα

β )
−1(x) and so is closed.

Assume (i): Replacing T by T α we prove that jp(X(Tp)) is closed.
We may assume 1 ≤ o(p), o(p) + 1 < h(T ).
We show that the convex set jp(X(Tp)) has a max and min and so

is closed.
Inductively, we define a collection of points pα totally ordered by ≻

and use it to define the max M of jp(X(Tp)).
Begin with α = o(p) and pα = p.
If α = β+1 and Spβ = ∅ then the process stops and we letM = x(pβ).

Otherwise, let pα be the maximum element of Spβ .
If α is a limit ordinal, then {pβ : o(p) ≤ β < α} is contained in

a branch x ∈ X(T ). Clearly, x ∈ jp(X(Tp)). If h(x) = α, then the
process stops and we let M = x. Otherwise, let pα = xα.
The process stops at or before α = h(T ) and definesM . If y ∈ X(Tp),

then ǫ = ǫ(y,M) has o(p) ≤ ǫ. Hence, yǫ = pǫ and so yǫ+1 < Mǫ+1 since
the latter is the maximum element of Spǫ. Thus, M is the maximum
element of jp(X(Tp)).

Assume (ii): By Proposition 5.4, X(T β) is order dense and so the
surjection πα

β is continuous by Proposition 2.3(a).

Assume (iii): Replacing T by T α we prove that jp(X(Tp)) is closed.
We may assume 1 ≤ o(p), o(p) + 1 < h(T ).
If x < y, p ∈ x and p 6∈ y, then with ǫ = ǫ(x, y), the equality level of

x, y, ǫ+1 ≤ o(p). By assumption o(p) + 1 < h(T ), Either h(y) = h(T )
or h(y) is a limit ordinal. In either case, with p1 = yǫ+1, yǫ+2 ∈ Sp1

and, by assumption, Sp1 is unbounded. So we can choose q ∈ Sp1 with
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q < yǫ+2. A branch z through a point q satisfies x < z < y and p 6∈ z,
because p1 = yǫ+1 ∈ z. It follows that the open interval (z,∞) in X(T )
contains y and is disjoint from the image of jp. Arguing similarly if
y < x we see that jp has a closed image in X(T).

(c): Since o(p)+1 < h(T ), p ∈ x and Sp is unbounded, for x ∈ X(Tp)
we can choose q1, q2 ∈ Sp so that q1 < xα+1 < q2 where α = o(p).
Choosing branches zi through qi for i = 1, 2 we see that the image of
jp contains the open interval (z1, z2). Hence, the image of jp is open.
It is closed by (b).
If X(T ) is order dense, then the convex subset jp(X(Tp)) is order

dense and it is isomorphic to X(Tp) via jp. Hence, X(Tp) is order
dense.
Furthermore, the image of ĵp is the completion of the image of jp

and so it is an interval in X̂(T ). The completion of an open convex set

in X(T ) is an open interval in X̂(T ). Hence, the image of ĵp is open in

X̂(T ).
Since o(p) + 1 < h(T ) Sp is unbounded and so Tp is infinite. Hence,

the image of jp is infinite.

(d): Since the root 0 is the unique element of level 0 in T , X(T 2) ∼=
S0.
Since π2 : X(T ) → X(T 2) is an order surjection the results for

X(T ) follow from Proposition 2.3(a). If X(T ) is unbounded, then its
completion is. If X(T ) is σ-bounded then its completion is,too, and so
is σ-compact.

(e): If T is of unbounded type, X(T ) is order dense by Proposition
5.4. It is unbounded by (d).
Let x, y be elements ofX(T ) with x < y, ǫ = ǫ(x, y), and p = xǫ = yǫ.

Since X(T ) is order dense we choose z ∈ X(T ) such that x < z < y.
By (5.21) ǫ1 = ǫ(z, y) ≥ ǫ. With q = zǫ1+1 we have q < yǫ1+1.
Define the set

(5.25) G = (−∞, z) ∪ jq(Tq) = (−∞, z] ∪ jq(Tq) ⊂ X(T ).

G is a convex set in X(T ) which contains x but not the upper bound
y.
If h(y) = α + 1, then ǫ1 + 1 ≤ h(y) implies ǫ1 ≤ α. But (iii) of

Definition 5.1 then implies ǫ1 < α. If h(y) ≤ α, then ǫ1 + 1 ≤ h(y)
implies ǫ1 < α. Consequently, ǫ1 + 2 < α ≤ h(T ) because α is a limit
ordinal. Because o(q) + 1 = ǫ1 +2 < h(T ), jq(Tq) is clopen in X(T ) by
(c). Since (−∞, z) is open and (−∞, z] is closed, it follows that G is
clopen in X(T ).
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We show that G has no supremum and so reveals a hole between x
and y.
Since G is closed, if w were the supremum of G, then w would be an

element of G and so would be the max of G.
On the other hand, X(T ) is unbounded. So w ∈ G and G open

implies there exist z1, z2 ∈ X(T ) such that w ∈ (z1, z2) ⊂ G. Since
X(T ) is order dense, we can take z1, z2 to lie in G. Hence, G has no
max.

(f): Each πα
β is continuous by (b). The extensions to the completions

are therefore well-defined, surjective and continuous by Proposition
2.10.

(g): Assume that {q ∈ Sp : ∃z ∈ W with q ∈ z} is dense in Sp for all
p.
For x < y in X(T ) with (x, y) nonempty there exists z ∈ X(T ) such

that x < z < y. Let ǫ1 = ǫ(z, y) ≥ ǫ(x, y) and p = zǫ1 = yǫ1.
If ǫ1 > ǫ, then zǫ1+1 < yǫ1+1 implies that there exists w ∈ W with

wǫ1+1 < yǫ1+1 in Sp. Because ǫ1 > ǫ, xǫ+1 < yǫ+1 = wǫ+1 and so
x < w < y.
If ǫ1 = ǫ, then xǫ+1 < zǫ+1 < yǫ+1 implies that there exists w ∈ W

with xǫ+1 < wǫ+1 < yǫ1+1 in Sp and so again x < w < y. So the
condition is sufficient for density.
In particular, if p ∈ T implies there exists x ∈ W with p ∈ x, then

W is dense.
Now assume that o(p) + 1 < h(T ) implies #Sp > 1 and o(p) + 2 =

h(T ) implies #Sp > 2. Further, assume that W is dense.
By (a) jp(X(Tp)) has a nonempty interior and so meets W . It follows

that there exists w ∈ W with p ∈ w.
�

If α + 1 ≤ h(T ) and p ∈ Lα, then

(5.26) x(p) = {p} ∪ Ap

is a branch in X(T α+1) of height α+1. So p 7→ x(p) defines an injective

map from Lα into X(T α+1) and so into ̂X(T α+1) when T is of dense
type. Regarding this map as an inclusion, we will regard Lα as a subset
of these LOTS and so induce an order upon it. Since (πα+1)

−1(x(p))
in X(T ) consists of the branches which contain p we have

(5.27) jp(X(Tp)) = (πα+1)
−1(x(p)) ⊂ X(T ) with α = o(p).
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If α is a limit ordinal with α + 1 ≤ h(T ) then condition (iii) of
Definition 5.1 implies that

(5.28) πα+1
α : X(T α+1) ∼= X(T α).

πα+1
α maps x(p) = {p}∪Ap to Ap which is a branch in X(T α) of height

α.
When T is of dense type, this order isomorphism extends to π̂α+1

α ,
an order isomorphism between the completions.
If α ≤ h(T ) is a limit ordinal then we define

(5.29) L̃α = {x ∈ X(T α) : h(x) = α}.

If α < h(T ), then

(5.30) πα+1
α (Lα) ⊂ L̃α.

Lemma 5.6. Let T be a bi-ordered normal tree and let α be an ordinal.

(a) If α < h(T ), then for all p ∈ T there exists x ∈ X(T ) such that
p ∈ x and h(x) > α. Furthermore, the subset (πα+1)

−1(Lα) is

dense in X(T ) (and hence in X̂(T ) when X(T ) is order dense).
(b) If α = h(T ) and α is a countable limit ordinal, then for all

p ∈ T there exists x ∈ X(T ) such that p ∈ x and h(x) = α.

Furthermore, the subset L̃α is dense in X(T ) (and hence in

X̂(T ) when X(T ) is order dense).

Proof. (a) If o(p) < α then by condition (iv) of Definition 5.1 there
exists q ∈ Lα such that p ≺ q. If o(p) ≥ α then there exists a unique
q ∈ Lα such that p � q. Any branch x containing p and q satisfies
h(x) > α. Density follows from Proposition 5.5(g).
(b) Let {αn} be an increasing sequence of ordinals with o(p) < α1 and

sup{αn} = α. Apply condition (iv) inductively to choose a sequence
of vertices {pn} such that

p = p0 ≺ p1 ≺ ...

o(pn) = αn.
(5.31)

The unique branch x which contains {p0, p1, ...} has height α. Density
again follows from Proposition 5.5(g)

�

Proposition 5.7. Let T be a bi-ordered tree.
If for each p ∈ T the successor set Sp is a, possibly empty, com-

plete LOTS and is bounded and so compact if o(p) > 0, then X(T ) is
complete. If, in addition, T is of dense type, then X(T ) is connected.
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Proof. By Proposition 5.4 X(T ) is order dense when T is of dense type.
So X(T ) is connected when it is complete.
We prove by induction on α that X(T α) is complete and connected

when the successor sets are connected.
Case 1: α = 2: X(T α) ∼= S0 and so it is complete.

Case 2: α = β + 1 with β a limit ordinal: then πα
β : X(T α) →

X(T β) is an order isomorphism and so X(T α) is complete by induction
hypothesis.

Case 3: α = β + 1 with β = ǫ + 1: we define a family of compact
LOTS indexed by the LOTS X(T β). For x ∈ X(T β) with h(x) < β
let Xx = {x} the trivial LOTS. If x ∈ X(T β) with h(x) = β, then
x = x(p) with p ∈ T and o(p) = ǫ. Let Xx = {x} if Sp = ∅ and
Xx = Sp otherwise. It is easy to see that

(5.32) X(T α) ∼= Σ{Xx : x ∈ X(T β)}.

X(T α) is complete by Proposition 2.5.

Case 4: α is a limit ordinal: Let A ⊂ X(T α) which is bounded. For
each β < α Aβ = πα

β (A) is bounded and so has a supremum sβ ∈ X(T β)

by inductive hypothesis. If β1 < β < α, then Aβ1 = πβ
β1
(Aβ). By

Proposition 5.5(b) each πβ
β1

is continuous and so by Proposition 2.3

(c) sβ1 = πβ
β1
(sβ). Hence, s =

⋃
β<α sβ is a branch of X(T α). If

y < s ∈ X(T α), then with ǫ = ǫ(y, s), yǫ+1 < sǫ+1 and so πα
ǫ+1(y) <

πα
ǫ+1(s) = sǫ+1. So there exists a ∈ A such that πα

ǫ+1(y) < πα
ǫ+1(a) and

so y < a. Similarly, one shows that y ∈ A with y 6= s implies y > s.
Hence, s = supA. With a similar argument for the infimum we see
that X(T α) is complete.

�

It will be helpful to describe the completion of the branch space
of a bi-ordered normal tree T of dense type as a branch space itself.
Recall that the completion X̂ of an order dense LOTS X is a connected
LOTS which has a max or min iff X does. We call a LOTS Y the
completion with endpoints of X if Y is the completion of X with max
(and min) attached if X did not already have a max (resp. a min).
So Y is compact as well as connected. If X had neither max nor min
to begin with, then the completion with endpoints is the two-point
compactification •X̂•. In general, if X is a dense subset of a compact
LOTS Y , then Y is isomorphic to the completion with endpoints of X .
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Definition 5.8. Let T be a bi-ordered normal tree of dense type. We
define its completion, denoted T̂ , to be the tree which contains T as
follows:

(a) For the root 0 in T and T̂ , the successor set in T̂ , denoted Ŝ0,
is the completion of the order dense LOTS S0.

(b) For p ∈ T with o(p) > 0 the successor set in T̂ , denoted Ŝp, is
the completion with endpoints of the order dense LOTS Sp.

(c) If q ∈ Ŝp \Sp for any p ∈ T , then q is called a new vertex of T̂ .

If q is a new vertex of T̂ , then its successor set in T̂ , denoted
Ŝq, is empty.

Proposition 5.9. Let T be a bi-ordered normal tree of dense type and
let T̂ be its completion.

(a) T̂ is a bi-ordered tree with h(T̂ ) = h(T ).

(b) For each p ∈ T the successor set Ŝp is a connected LOTS which
is compact if o(p) > 0.

(c) If q ∈ Ŝp is a new vertex in T̂ , then q is the end-point of a

unique branch of T̂ namely x(q) = {q} ∪ Aq with

(5.33) h(x(q)) = o(q) + 1 = o(p) + 2,

and so h(x(q)) is a successor ordinal. No two new vertices lie
on the same branch, i.e. the set of new vertices is an anti-chain
in T̂ .

(d) Each branch of T is a branch of T̂ of the same height, i.e.

X(T ) ⊂ X(T̂ ).

(e) If S0 is unbounded, then so are Ŝ0, X(T ) and X(T̂ ).

(f) If S0 is unbounded, then X(T̂ ) is the completion X̂(T ). If S0 has

both max and min, then X(T̂ ) is compact and is the completion

with endpoints of X(T ). In either case, X̂(T ) is connected.
(g) If for each p ∈ T the successor set Sp is a connected LOTS

which is compact if o(p) > 0, then T̂ = T and so X(T ) is
connected.

Proof. It is clear that T̂ is semi-normal and so is a bi-ordered tree,
although it is usually not normal. If q is a new vertex, then x(q) is a
branch since the successor set for q is empty. The results of (a),(b),(c)
and (d) follow easily.

(e): If S0 is unbounded, then its completion Ŝ0 is and so X(T ) and

X(T̂ ) are by Proposition 5.5(d).
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(f): From Proposition 5.7 (b) it follows that X(T̂ ) is connected.

If q ∈ Ŝp is a new vertex and x(q) < x ∈ X(T̂ ), then let ǫ = ǫ(x(q), x)
and r = xǫ ∈ {p} ∪ Ap. If r = p, then because Sp is order dense and

dense in Ŝp we can choose q1 ∈ Sp and x1 ∈ X(T ) with q1 ∈ x1 so
that q < q1 < xǫ+1 and so x(q) < x1 < x. On the other hand, if
ǫ = o(r) < o(p), then because Sr is order dense we can choose q1 ∈ Sr

so that x(q)ǫ+1 = x(p)ǫ+1 < q1 < xǫ+1. Again if x1 ∈ X(T ) with

q1 ∈ x1, then x(q) < x1 < x. Similarly, if x(q) > x ∈ X(T̂ ), then there

exists x1 ∈ X(T ) with x(q) > x1 > x. Hence, X(T ) is dense in X(T̂ ).

Thus, X(T̂ ) is connected and contains the order dense LOTS X(T )

as a dense subset. If S0 is unbounded, it follows that X(T̂ ) is the
completion of X(T ).

Now assume that S0 has a maximum M . Define xM ∈ X(T̂ ) in-
ductively with (xM)1 = M . If (xM)i is defined and is a new vertex or
i+ 1 = h(T ), then xM terminates with height i + 1. If p = (xM )i ∈ T

with i + 1 < h(T ), then (xM)i+1 is chosen to be the maximum of Ŝp.
If for a limit ordinal α ≤ h(T ) (xM )i is defined for all i < α, then
all such (xM )i ∈ T . By (iii) of Definition 5.1 there exists at most one
vertex p ∈ T with o(p) = α and p ≻ (xM)i for all i < α. If no such
p exists, then {(xM)i} defines the branch xM of height α. If such a p
exists, let (xM)α = p.

It is easy to see that xM = maxX(T̂ ) and so is maxX(T ) if it does
not terminate at a new vertex. It it does terminate at a new vertex
(xM)i+1, then with p = (xM )i ∈ T , Sp has no maximum and so X(T )
has no maximum.
With a similar construction for the minimum, we see that if S0 has

both a maximum and a minimum, then X(T̂ ) does so as well and so is

compact as well as connected. It follows that X(T̂ ) is the completion
with endpoints of X(T ).
(g): Obvious.

�

Remark. If T is a bi-ordered normal tree of dense type and x ∈ X(T̂ )
with h(x) < h(T ), then h(x) is a limit ordinal iff x ∈ X(T ).

Clearly, for any ordinal α the completion of T α is (T̂ )α with the new
vertices attached which have order less than α. The situation for the
tail trees requires a bit of quibbling.



82 ETHAN AKIN AND KAREL HRBACEK

Lemma 5.10. Let T be a bi-ordered normal tree of dense, unbounded
type. If p ∈ T with o(p) > 0 then X((T̂ )p) is a compact, connected
LOTS. It is the two-point compactification of the completion of X(Tp).
That is,

(5.34) X((T̂ )p) ∼= •X(T̂p) • .

Proof. Since o(p) > 0 the successor space Ŝp is the compact LOTS with
the max = Mp and min = mp attached as two new vertices. In Tp the
vertex p is the root and so the max and min are not included in the
completion. That is,

(5.35) (T̂ )p = T̂p ∪ {mp,Mp}

from which the result clearly follows.
�

If x < y in X(T ) and q ∈ Lǫ+1 is between xǫ+1 and yǫ+1 with ǫ =
ǫ(x, y), then every branch through q lies between x and y. Furthermore,
since the completion π̂ǫ+2 is order preserving we have

(5.36) xǫ+1 < q < yǫ+1 =⇒ (π̂ǫ+2)
−1(x(q)) ⊂ (x, y) ⊂ X̂(T ).

Lemma 5.11. Assume that T is a bi-ordered normal tree of dense type
and that S0 is unbounded. Let α be a positive ordinal with α+1 < h(T ).

Let π̂α+1 : X̂(T )→ ̂X(T α+1) be the canonical projection.

If x ∈ ̂X(T α+1) but x 6= x(p) for any p ∈ Lα then x is the image

under π̂α+1 of a unique point in X̂(T ), i.e.

(5.37) #(π̂α+1)
−1(x) = 1.

The collection {(π̂α+1)
−1(x(p)) : p ∈ Lα} is a pairwise disjoint family

of closed, nontrivial subintervals of X̂(T ), and the open set

(5.38) Oα+1 =
⋃
{[(π̂α+1)

−1(x(p))]◦ : p ∈ Lα}

is dense in X̂(T ).
Furthermore, the open set

(5.39) Oα+2
α+1 =

⋃
{[(π̂α+2

α+1)
−1(x(p))]◦ : p ∈ Lα}

is dense in ̂X(T α+2) and the restriction

(5.40) π̂α+2 : X̂(T ) \Oα+1 → ̂X(T α+2) \Oα+2
α+1

is a homeomorphism.
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Proof. By Proposition 5.9 X̂(T ) = X(T̂ ). Let x be a branch of T̂ . If

h(x) ≤ α then x regarded as a branch of T̂ is the unique branch which

contains x regarded as a branch of T̂ α+1. If h(x) > α then p = xα ∈ T̂

is defined and π̂α+1 maps x to x(p). If p is a new vertex of T̂ then
x = x(p) is the unique branch which contains p. Otherwise, p ∈ Lα.
By (5.27) and Proposition 5.5 (a) the interval (π̂α+1)

−1(x(p)) is non-
trivial for p ∈ Lα because α + 1 < h(T ) and by Lemma 5.6(a) the

union of these intervals is dense in X̂(T ). If the union of a family of
nontrivial intervals is dense then the union of the interiors is dense,
since each interval is contained in the closure of its interior, provided
that the LOTS is order dense.
We can apply the result to T α+2 whose height is α + 2 > α + 1.

By (5.37) the map in (5.40) is a bijection. The closed subsets of the
completions are locally compact spaces and the map is topologically
proper. Hence, it is a homeomorphism.

�

5.2. Countability Conditions.

Proposition 5.12. Let T be a bi-ordered normal tree of dense type
with S0 unbounded. Assume that the height of T is not the successor
of a limit ordinal. Define ǫ = h(T ) if h(T ) is a limit ordinal and by
ǫ+ 2 = h(T ) if the height is a successor.

(a) The following conditions are equivalent.
(i) X(T ) is separable.

(ii) X̂(T ) is separable.

(iii) X̂(T ) ∼= R.
(iv) h(T ) is a countable ordinal, for all α ≤ ǫ the level set Lα is

countable, and for each p ∈ Lǫ the LOTS Sp is separable.
(v) T ǫ+1 is a countable tree and for each p ∈ Lǫ the LOTS Sp

is separable.
(b) The following conditions are equivalent.

(i) X(T ) satisfies the countable chain condition.

(ii) X̂(T ) satisfies the countable chain condition.
(iii) The tree T ǫ+1 satisfies condition (ix) of Definition 5.1, i.e.

every anti-chain is countable, and for each p ∈ Lǫ the
LOTS Sp satisfies the countable chain condition.
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These conditions imply that T ǫ+1 satisfies conditions (vi) and
(viii) of Definition 5.1 and, in particular, that h(T ) ≤ Ω. If
h(T ) = Ω, then T is a Suslin tree.

(c) The following conditions are equivalent.
(i) X(T ) is of countable type.

(ii) X̂(T ) is first countable and σ-compact.
(iii) The tree T is of countable type and is Ω bounded, i.e.

h(x) < Ω for all x ∈ X(T ) (condition (vi) of Definition
5.1).

(iv) The tree T is of countable type and h(x) < Ω for all x ∈

X(T̂ ).

Proof. When h(T ) = ǫ+ 2, let Sx = Sp for x = x(p) with o(p) = ǫ and
let Sx = {x} for x ∈ X(T ǫ+1) \ Lǫ. Each branch in X(T ) extends its
projection x ∈ X(T ǫ+1) by a point in Sx. Thus, in this case we have
the order sum isomorphism

(5.41) X(T ) ∼= Σ{Sx : x ∈ X(T ǫ+1)}.

(b) (i)⇔(ii): By Proposition 2.3(b) the inclusion of X(T ) into X̂(T )
is continuous and so the equivalence follows from Proposition 2.11(f),(h).
(iii)⇒(i): Let {Ji : i ∈ I} be a pairwise disjoint family of nonempty

open intervals in X(T ). By (5.36) there exists a vertex qi ∈ T such
that every branch through qi is contained in Ji. If o(qi) < ǫ+1 then let
p(qi) = qi. If o(qi) = ǫ+ 1 then let p(qi) be the immediate predecessor
of qi. In that case, Ji meets Sp(qi) which satisfies c.c.c. Consequently,
for each p ∈ Lǫ the set {i ∈ I : p(qi) = p} is countable. The set
{p(qi) : i ∈ I} is an anti-chain in T ǫ+1 since the intervals Ji are disjoint.
So by assumption this set is countable and consequently I itself is
countable.
(i)⇒(iii): By (5.41) each Sp for p ∈ Lǫ is isomorphic to a subinterval

of X(T ). So if X(T ) satisfies c.c.c. then each such Sp does. If A is an
anti-chain in T ǫ+1 then o(p)+1 < h(T ) implies that {[(πo(p)+1)−1(x(p))]◦ :
p ∈ A} is a family of nonempty open intervals in X(T ) by Lemma 5.11.
The family is pairwise disjoint since A is an anti-chain. Because X(T )
satisfies c.c.c. A is countable.
We proved after Definition 5.1 that condition (ix) implies (vi) and

(viii). Thus h(X(T ǫ+1)) ≤ Ω. So if h(T ) is not a limit ordinal, then
ǫ+ 1 < Ω and so h(T ) = ǫ+ 2 < Ω.

(a) (i)⇒(ii): X(T ) is dense in X̂(T ).

(ii)⇒(iii): This follows from Proposition 2.15(b) since X̂(T ) is sep-
arable, connected and is unbounded.
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(iii)⇒(i): By Proposition 2.3(b) the topology on X(T ) is inherited

from X̂(T ). Any subset of R is second countable and so is separable.
(i)⇒(iv): Since separability implies c.c.c. the results of (b) can be

applied and so T ǫ+1 satisfies (vi) and (viii) of Definition 5.1. In particu-
lar, for each α ≤ ǫ the set Lα is countable. Let D be a countable dense
subset of X(T ). If J is any nontrivial interval in X(T ), then J◦ ∩D is
dense in J◦ and so in J . By (5.41) Sp is separable for each p ∈ Lǫ. Now
let α = sup{h(x) : x ∈ D}. By condition (vi) each h(x) is countable
and so α < Ω. I claim that h(T ) ≤ α + 1, for if α + 1 < h(T ) and
o(p) = α, then by Lemma 5.11 [πα+1)−1(x(p))]◦ is a nonempty open
interval and so contains some point y ∈ D. But then p ∈ y implies
h(y) ≥ α+ 1 which contradicts the definition of α.
(iv)⇒(v): T ǫ+1 has countably many levels and each level is count-

able.
(v)⇒(i): If h(T ) = ǫ+2, then we choose for each p in the countable

set Lǫ a countable dense subset of Sp. The union is a countable set
which is dense in Oǫ+1 (see Equation (5.38)) which is dense in X(T ) by
Lemma 5.11. If h(T ) = ǫ is a limit ordinal, then T = T ǫ+1 is countable.
Choose a branch through each vertex to get a countable set which is
dense in X(T ) by Proposition 5.5(g).
(c) (i)⇔(ii): By Proposition 2.15(d).
(i)⇒(iii): Assume that f : Ω→ Sp is an order preserving or reversing

injection for some p ∈ T . For each i ∈ Ω choose f̃(i) a branch through

f(i). Then f̃ : Ω → X(T ) is an injection which similarly preserves or
reverses order. Hence, X(T ) is not of countable type.
On the other hand, suppose that x ∈ X(T ) with h(x) ≥ Ω. Define

K+ = {j ∈ Ω : xj+1 6= minSxj
}

K− = {j ∈ Ω : xj+1 6= maxSxj
}.

(5.42)

Either K+ or K− is uncountable since max 6= min for any Sp. Suppose
K+ is uncountable. For each i ∈ K+ choose f(i) ∈ X(T ) such that

(5.43) f(i)i+1 ∈ Sxi
with f(i)i+1 < xi+1.

If i < j in K+, then the equality level for f(i), f(j) is i and

(5.44) f(i)i+1 < xi+1 = f(j)i+1.

Thus, f : K+ → X(T ) is an order injection. Since K+
∼= Ω, X(T ) is

not of countable type.
(iii)⇔(iv): It is clear from Proposition 5.9 that h(x) < Ω for all

x ∈ X(T ) implies h(x) < Ω for all x ∈ X(T̂ ) and the converse is
obvious.
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(iii)⇒(i): If X(T ) is not of countable type, then there exists an
injective map f : Ω → X(T ) which we can assume without loss of
generality to be order preserving.
We now prove by induction on α ∈ Ω that there exist ǫ(α) ∈ Ω and

p(α) ∈ Lα such that

(5.45) πα+1 ◦ f(β) = x(p(α)) for all β ∈ Ω \ ǫ(α).

If α = 0, then π1 ◦ f is constantly the root 0. Let ǫ(0) = 0 and
p(0) = 0.
Now assume that for all i < α, ǫ(i) ∈ Ω and p(i) ∈ Li have been

defined so that (5.45) holds with α replaced by i.

Case 1: If α = α̃+ 1, then πα̃+1 ◦ f is constant on the tail Ω \ ǫ(α̃)
with value x(p(α̃)). Hence, if j < k in the tail, then the equality
level of f(j) and f(k) is at least α̃. Hence, f(j) < f(k) in X(T )
implies f(j)α ≤ f(k)α. Thus, j 7→ f(j)α defines an order map from
Ω \ ǫ(α̃) ∼= Ω to the LOTS of countable type Sp with p = p(α̃). By
Corollary 2.12 this map is eventually constant. Hence there exists
ǫ(α) ≥ ǫ(α̃) such that for all j ∈ Ω \ ǫ(α) f(j)α is a common vertex
p(α) ∈ Sp(α̃) and so (5.45) holds.

Case 2: If α is a limit ordinal, then define ǫ(α) = sup{ǫ(i) : i <
α}. For β > ǫ(α), f(β) and f(ǫ(α)) are distinct points with f(β)i =
f(ǫ(α))i for all i < α. Hence, the equality level is at least α. In
particular, f(β)α = f(ǫ(α))α. Let p(α) be this common vertex. Again
(5.45) holds.

Having proved (5.45) for all α we can restate it as

(5.46) f(β)α = p(α) for all β ∈ Ω \ ǫ(α).

It follows that if α̃ < α and β ≥ ǫ(α), then p(α̃) and p(α) both lie
on the branch f(β). Hence, p(α̃) ≺ p(α). Thus, {p(α) : α ∈ Ω} is a
linearly ordered collection of vertices . Hence, it is contained in some
branch x and any such branch satisfies h(x) ≥ Ω. This completes the
proof that (iii) ⇒ (i).

�

Remark. In the case excluded by the hypothesis, h(T ) = ǫ+1 with ǫ a
limit ordinal, πǫ : X(T )→ X(T ǫ) is an order isomorphism and h(T ǫ) =
ǫ. We obtain results for T in this case by applying the proposition to
T ǫ.
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Corollary 5.13. If T is a bi-ordered Aronszajn tree of Q type, then
X(T ) is an order dense LOTS of countable type with dense holes and

X̂(T ) is a σ-compact, connected, first countable LOTS. Neither is sep-

arable. For each 1 < α < Ω, X̂(T α) ∼= R. If T is a Suslin tree, then

X̂(T ) satisfies the countable chain condition.

Proof. X(T ) is order dense, unbounded and with dense holes by Propo-
sition 5.5(d) and (e). It is of countable type by Proposition 5.12(c).

Hence, its completion X̂(T ) is σ-compact, connected and first count-
able. Because h(T ) = Ω, it is not separable by Proposition 5.12(a)

and the same result implies that for countable α, X̂(T α) ∼= R. By

Proposition 5.12(b), X̂(T ) for a Suslin tree satisfies c.c.c.
�

5.3. Homogeneous and Reproductive Trees. If T1 and T2 are bi-
ordered trees, then an isomorphism f : T1 → T2 is a bijection which
preserves both orders, i.e.

p ≺1 q ⇐⇒ f(p) ≺2 f(q)

q <1 r in Sp ⇐⇒ f(q) <2 f(r) in Sf(p).
(5.47)

The first condition says that f relates the tree structures. Hence, it
maps the vertices of level α in T1 to those of level α in T2 and also f
induces a bijection of branch spaces, denoted f∗ : X(T1)→ X(T2). The
second condition implies that f∗ is an order isomorphism with respect
to the induced orders and so, in the order dense case, extends to an
order isomorphism on the completions, which we will also denote by
f∗. When T1 = T2 such an isomorphism is called an automorphism.

Definition 5.14. A bi-ordered tree T is called homogeneous if for all
p, q ∈ T such that o(p) = o(q) there exists an automorphism f of T
such that f(p) = q.
A bi-ordered tree T is called reproductive if for all p ∈ T the tail

tree Tp is isomorphic to T .

Theorem 5.15. If T is a homogeneous, bi-ordered Aronszajn tree of

dense type, then X̂(T ) is a nonseparable CHLOTS.

Proof. Homogeneity clearly implies that no Sp has a max or min and

so T is of Q type. By Corollary 5.13 X̂(T ) is first countable, σ-compact
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and nonseparable. By Proposition 3.8(a) it suffices to prove that X̂(T )

is doubly transitive. Given x < y and z < w in X̂(T ) we construct an

order isomorphism on X̂(T ) which maps the pair x, y to z, w.
Because T is an Aronszajn tree, it satisfies condition (vi) of Definition

5.1 and so every height h < Ω on X̂(T ) = X(T̂ ). Choose a countable
ordinal α > h(x), h(y), h(z), h(w) so that

(5.48) π̂α+1(r) ∈ ̂X(T α+1) \ Lα for r = x, y, z, w.

By Lemma 5.11 π̂α+1 is injective on the complement of (π̂α+1)
−1(Lα)

we have

(5.49) π̂α+1(x) < π̂α+1(y) and π̂α+1(z) < π̂α+1(w).

By Corollary 5.13 X̂(T α) ∼= R and by condition (vii) or Definition

5.1 and Lemma 5.6(a), Lα is a countable dense subset of X̂(T α). We
can choose an order isomorphism of Lα which maps the convex set
Lα ∩ (π̂α+1(x), π̂α+1(y)) to Lα ∩ (π̂α+1(z), π̂α+1(w)) because Lα is order
isomorphic to the IHLOTS Q. Extending to the completion we obtain

an order isomorphism f̃ : X̂(T α)→ X̂(T α) such that
(5.50)

f̃(Lα) = Lα, f̃(π̂α+1(x)) = π̂α+1(y), f̃(π̂α+1(z)) = π̂α+1(w).

We can regard the LOTS X̂(T ) as the order space sum

(5.51) X̂(T ) = Σ{(π̂α+1)
−1(p) : p ∈ ̂X(T α+1)},

where for p 6∈ Lα, (π̂α+1)
−1(p) is a single point and for p ∈ Lα it is a

closed interval with nonempty interior, consisting of the branches of T̂
which contain p.
For each p ∈ Lα choose an automorphism g̃p of T which maps the

vertex p to the vertex f̃(p). We can restrict the order isomorphism

(g̃p)∗ on X̂(T ) to define for p ∈ Lα an order isomorphism

(5.52) gp : (π̂α+1)
−1(p)→ (π̂α+1)

−1(f̃(p))

and for p 6∈ Lα let gp denote the unique map between the singletons.

The required isomorphism on X̂(T ) is

(5.53) g = Σ{gp : p ∈ X̂(T α)}.

�

Proposition 5.16. Let T be a bi-ordered Aronszajn tree of Q type.
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(a) Let g : Y → X̂(T ) be a continuous, injective map with Y an
arbitrary separable topological space. There exists a countable

ordinal β such that π̂β+1◦g : Y → ̂X(T β+1) is injective. In par-
ticular, any separable space which can be continuously injected

into X̂(T ) can be continuously injected as well into R.
(b) Let the LOTS X1 be an uncountable, dense subset of R . The

AS double X ′
1 does not inject into X̂(T ).

Proof. (a): Let D be a countable dense subset of Y . Since h < Ω on

X̂(T ) = X(T̂ ),

(5.54) α = sup{h(g(y)) : y ∈ D}

is a countable ordinal and we have

(5.55) π̂α+1(g(y)) ∈ ̂X(T α+1) \ Lα for y ∈ D.

In the notation of Lemma 5.10, this implies that g(D) is disjoint from
the open set Oα+1. Because D is dense in Y and g is continuous it
follows that g(Y ) is disjoint from Oα+1. By Lemma 5.10 the restriction

of π̂α+2 to X̂(T ) \ Oα+1 is injective and so the result follows with β =
α+ 2.

(b): We will assume that G1 : X ′
1 → X̂(T ) is an order injection

and use it to construct a separable, compact nonmetrizable subset C

of X̂(T ). Since a compact space which continuously injects into R is
second countable this will contradict part (a).
We will use the fact that a second countable, compact space has only

countably many clopen sets. If B is a countable basis, then any clopen
set U is a union of members of B. Since U is closed, and hence compact,
it is a union of finitely many members of B. So the cardinality of the
set of clopens is bounded by that of the collection of finite subsets of
B which is countable.
The LOTS X1 is order dense. Let D be a countable, dense subset of

X1 which we can identify with the countable dense subset D×{−1} of

X ′
1 so define the order injection g : D → X̂(T ) by g(t) = G1(t

−). Use

g to define G : X ′
1 → X̂(T ) by using (3.27). Because G1 is injective,

we have for any x ∈ X1

(5.56) G(x−) ≤ G1(x
−) < G1(x

+) ≤ G(x+).

Combined with (3.28) we see that the continuous order map G is injec-

tive. Choose a < b ∈ X1 and let C be the closure in X̂(T ) of the image
G([a+, b−]). For any x ∈ (a, b) (5.56) implies that G(x−) < G(x+) is a
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gap pair in the image and so in C. Since X ′
1 is separable and G is con-

tinuous, C is separable. Since X̂(T ) is complete and C is bounded, it is
compact. Since it has uncountably many gap pairs, it has uncountably
many clopen subsets and so is not metrizable.

�

For the following recall from (4.1) the definition of Yα for a nontrivial
connected LOTS Y .

Corollary 5.17. Let T be a bi-ordered Aronszajn tree of Q type, and
α > 1 be an ordinal.

(a) If Y is a nontrivial, connected LOTS, then Yα does not inject

into X̂(T ).

(b) If a LOTS Y is an uncountable, dense subset of R, then Ŷα does

not inject into X̂(T ).

Proof. (a): By Theorem 3.14, Y contains a compact subset A such that
A′′ ⊂ A′ is order isomorphic to the Fat Cantor Set •R′•. Since α > 1,
ĵ1α : Y ′ → Yα restricts to an order embedding of A′′ into Yα. So an

order injection of Yα into X̂(T ) would restrict to an order injection of

A′′ into X̂(T ). But by Proposition 5.16(b) the Fat Cantor Set cannot

be order injected into X̂(T ).

(b): Similarly, an order injection of Ŷα into X̂(T ) would restrict to

an order injection of Y ′ into X̂(T ) which again contradicts Proposition
5.16(b).

�

Lemma 5.18. Let T be a bi-ordered normal tree, p ∈ T and α a
positive ordinal with α < h(T ).

(a) Assume T is homogeneous. If o(p) + 1 < h(T ), then Sp is a
transitive LOTS and so is unbounded, i.e. T is of unbounded
type, and the tail tree Tp is homogeneous. If q ∈ T with o(q) =
o(p), then as LOTS Sp

∼= Sq. The subtree T α is homogeneous.
Regarded as a subset of X(T α+1), Lα is a transitive LOTS.

(b) Assume T is reproductive. The height h(T ) is a tail-like ordinal.
As LOTS Sp

∼= S0 where 0 is the root of T . Hence, with Y ∼= S0

T is of Y type. The tail tree Tp is reproductive and if α is tail-
like, then T α is reproductive.
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(c) Assume T is homogeneous and reproductive. The tail tree Tp is
homogeneous and reproductive and if α is tail-like, then T α is
homogeneous and reproductive.

Proof. (a): If q1, q2 ∈ Sp, then o(q1) = o(q2) = o(p) + 1 and so there
exists an automorphism f of T such that f(q1) = q2. Since f preserves
≺, f(Sp) = Sp and so f restricts to an order automorphism on Sp.
Similarly, if f(p) = q then f restricts to an order isomorphism Sp

∼= Sq.
In general, if q1, q2 ∈ Tp with op(q1) = op(q2), then o(q1) = o(q2)

and so there exists an automorphism f of T such that f(q1) = q2.
Since f preserves ≺, f fixes p and so maps Tp to itself. Hence, Tp is
homogeneous.
Since any automorphism of T preserves T α, the latter is homoge-

neous. Using the induced isomorphisms on X(T α+1), which preserve
Lα, we see that Lα is transitive as well.
(b): An isomorphism of Tp with T restricts to an isomorphism of

Sp with S0. If h(T ) = 1, then T = {0} and S0 = ∅. Otherwise,
all successor sets are of S0 type and h(T ) is an infinite limit ordinal.
Furthermore, by (5.11)

(5.57) h(T ) = h(Tp) ∼= h(T ) \ o(p).

Thus, h(T ) is tail-like.
Now assume that α is an infinite tail-like ordinal (the case α = 1 is

trivial). If o(p) < α ≤ β, then (5.9) implies that o(q) < β iff op(q) < β.
This shows that for α tail-like:

(5.58) o(p) < α ≤ β ⇒ (T β)p = (Tp)
β.

In particular, if p ∈ T α then an isomorphism from T to Tp restricts to
an isomorphism from T α to (T α)p which shows that T α is reproductive.
Since Tp is isomorphic to T it is reproductive.
(c): If α is tail-like, then T α is homogeneous and reproductive by (a)

and (b). Since Tp is isomorphic to T it is homogeneous and reproduc-
tive.

�

Proposition 5.19. If T is a bi-ordered tree which is reproductive and
with S0 a transitive LOTS, then T is a normal, homogeneous tree of
unbounded type with height an infinite, tail-like ordinal. Furthermore,
if x, y ∈ X(T ) with h(x) = h(y), then there exists an automorphism f
of T such that f∗(x) = y.

Proof. Since S0 is a transitive LOTS it is nonempty. By condition
(ii) of Definition 5.1 it contains at least two points. As the two point
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LOTS is not transitive, Proposition 3.2(b) implies that S0 is infinite
with no max or min. For every p ∈ T , there exists an isomorphism
f : T → Tp and so Sp = f(S0) is infinite. Furthermore, for every
ordinal α < h(T ), there exists q ∈ T with o(q) = α and so f(q) ∈ Tp

with o(f(q)) = o(p)+ o(q). Thus, condition (iv) of Definition 5.1 holds
and so T is a normal tree. Since T is reproductive, h(T ) is tail-like and
since S0 6= ∅, h(T ) > 1. Hence, h(T ) is infinite.
We now have to show that if p, q ∈ T with o(p) = o(q) then there

exists an automorphism f of T such that f(p) = q. We will call this
the vertex case and use x, y to stand for the linearly ordered sets x =
{p} ∪Ap and y = {q} ∪Aq. Let α = h(x) = h(y) = o(p) + 1 so that in
the vertex case α is a successor. When x and y are branches, that is
the branch case, then α = h(x) = h(y) is a limit ordinal. In the vertex
case, let Tx = Tp and Ty = Tq. In the branch case, let Tx = Ty = ∅. In
either case,

Tx = {r ∈ T : x ⊂ {r} ∪ Ar}

Ty = {r ∈ T : y ⊂ {r} ∪ Ar}.
(5.59)

For any r ∈ T we can define by analogy with (5.16) the r, y equality
level to be ǫ = ǫ(r, y) where

(5.60) y ∩ ({r} ∪Ar) ∼= ǫ+ 1.

So ǫ = α if r ∈ Ty and ǫ < α otherwise. Similarly, define ǫ(r, x).
Since the results are obvious for the trivial tree we will assume that

h(T ) is an infinite, tail-like ordinal and Sr
∼= S0 is infinite for each

r ∈ T .
By induction on β ≤ α we will construct automorphisms fβ of T

which satisfy:

(5.61) δ ≤ β ⇒ fβ(yδ) = xδ,

and for all r ∈ T

(5.62) ǫ(r, y) ≤ δ < β ⇒ fδ(r) = fβ(r)

In the final step, when β = α, the inequality in (5.61) is replaced by
the strict inequality δ < α since yα and xα are not defined. The final
automorphism fα is the one which maps x to y (and p to q in the vertex
case).
Begin with f0 = 1T , the identity. Condition (5.61) holds since y0 =

x0 = 0 and condition (5.62) holds vacuously. Now assume that fδ has
been constructed for all δ < β.
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Case 1: If β = δ + 1, then the automorphism fδ maps yδ to xδ

and so xβ and fδ(yβ) both lie in the transitive LOTS Sp with p = xδ.
Choose g a LOTS automorphism of Sp which maps fδ(yβ) to xβ .
Because T is reproductive we can choose for each r ∈ Sp a tree

isomorphism gr : Tr → Tg(r). We define the tree automorphism g̃ to be
gr on each such Tr and to be the identity on the rest of T . Then define
fβ = g̃ ◦ fδ. By construction (5.61) holds and if ǫ(r, y) < β then fδ(r)
does not lie in Tp \ {p} and so g̃ is the identity on fδ(r) from which
(5.62) follows.

Case 2: If β is a limit ordinal, then define fβ(r) = fδ(r) whenever
ǫ(r, y) ≤ δ < β. By (5.62) this definition is independent of the choice of
δ and defines fβ whenever ǫ(r, y) < β. Furthermore, by (5.62) fβ(yδ) =
xδ for all δ < β.
If β = α, then, since β is a limit ordinal, we are in the branch case

with Ty = Tx = ∅. So fβ is defined on all of T and satisfies (5.62) and
the adjusted version of (5.61).
If β < α, then fβ maps the predecessors of yβ to the corresponding

predecessors of xβ . Because T is reproductive we can finish our def-
inition of fβ by choosing an isomorphism fβ : Tyβ → Txβ

. This tree
isomorphism maps the root yβ to the root xβ and so (5.61) holds.

This finishes the inductive construction and so completes the proof.
�

Lemma 5.20. Let T be a reproductive, bi-ordered tree with S0 a doubly
transitive LOTS containing at least three points.

(a) Let α = h(T ). If x, y, z, w ∈ L̃α with x < y and z < w, then
there exists an order isomorphism k : (x, y)→ (z, w) (intervals
in X(T )) such that

(5.63) k((x, y) ∩ L̃α) = (z, w) ∩ L̃α.

(b) Let α be an infinite, tail-like ordinal with α < h(T ). If x, y, z, w ∈
Lα with x < y and z < w, then there exists an order isomor-
phism k : (x, y)→ (z, w) (intervals in X(T α+1)) such that

(5.64) k((x, y) ∩ Lα) = (z, w) ∩ Lα.

Proof. (a): With β and ǫ the x, y and z, w equality levels, respectively,
we let

(5.65) p = xβ = yβ and q = zǫ = wǫ.
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Note that x < y and z < w imply

β, ǫ < α

xβ+1 < yβ+1 in Sp

zǫ+1 < wǫ+1 in Sq.

(5.66)

Because T is reproductive there exist isomorphisms g1 : Tp → T and
g2 : Tq → T . Define

x̃ = g1(x ∩ Tp) ỹ = g1(y ∩ Tp)

z̃ = g2(z ∩ Tq) w̃ = g2(w ∩ Tq).
(5.67)

Because α is tail-like, x̃, ỹ, z̃, w̃ are branches in X(T ) of height α. The
pairs x̃, ỹ and z̃, w̃ have equality level 0 and by (5.66)

(5.68) x̃1 < ỹ1 and z̃1 < w̃1 in S0.

Because S0 is doubly transitive there exists a LOTS automorphism
g of S0 such that

(5.69) g(x̃1) = z̃1 and g(ỹ1) = w̃1.

Now choose for each r ∈ S0 a tree isomorphism

(5.70) gr : Tr → Tg(r).

Before putting these together in the now familiar way, we make one
last pair of adjustments.
With r1 = x̃1 and r2 = z̃1 we have that (gr1)∗(x̃ ∩ Tr1) and z̃ ∩ Tr2

are both branches of height α in the tree Tr2
∼= T . By Proposition 5.19

there is an automorphism of Tr2 which maps one branch to the other.
By composing with such an automorphism we can adjust gr1 so that

(5.71) (gx̃1)∗(x̃ ∩ Tx̃1) = z̃ ∩ Tz̃1 .

Similarly, since w̃1 6= z̃1 we can make an independent adjustment on
Tw̃1 to get

(5.72) (gỹ1)∗(ỹ ∩ Tỹ1) = w̃ ∩ Tw̃1.

Now put together the tree isomorphisms gr to get a tree automor-
phism g of T such that

(5.73) g∗(x̃) = z̃ and g∗(ỹ) = w̃.

Define f = (g2)
−1 ◦ g ◦ g1 : Tp → Tq a tree isomorphism such that

(5.74) f∗(x ∩ Tp) = z ∩ Tq and f∗(y ∩ Tp) = w ∩ Tq.
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Let k = jq ◦ f∗ ◦ (jp)
−1 so that k is an order isomorphism from

jp(X(Tp)) ⊂ X(T ) to jq(X(Tq)) ⊂ X(T ). From (5.74) and the defini-
tion (5.8) and (5.9) of jp and jq we have

(5.75) k(x) = z and k(y) = w.

By (5.27) the open interval (x, y) is contained in jp(X(Tp)) and k re-
stricts to an isomorphism of (x, y) to (z, w). Since jp, f∗ and jq map
branches of height α to branches of height α we have that

(5.76) k(jp(X(Tp) ∩ L̃α)) = X(Tq) ∩ L̃α

which implies (5.63).
(b): In this case the branches x, y, z, w in X(T α+1) correspond to

vertices in T of level α. We mimic the proof of part (a) defining β,
ǫ and vertices p, q as before. x̃, ỹ, z̃, w̃ are branches of height α in
X(T α+1). However, when we define the tree isomorphisms gr as before
they are isomorphisms of the entire tail tree not just of the level α
truncation. In making the adjustment to gr1 with r1 = x̃1, we think of
x̃ and z̃ not as branches but as vertices of the tree T at level α. Then
gr1(x̃) and z̃ are both level α vertices of Tr2

∼= T . By Proposition 5.19
we may use homogeneity of T to adjust gr1 and similarly adjust gr2 so
that

(5.77) gx̃1(x̃) = z̃ and gỹ1(ỹ) = w̃.

Assemble the maps gr to form the automorphism g of T and define
f = (g2)

−1 ◦ g ◦ g1 : Tp → Tq as before. Regarding x, y, z, w as vertices,
f satisfies

(5.78) f(x) = z and f(y) = w.

Because α is tail-like and o(p) < α (5.58) implies that (T α+1)p =
(Tp)

α+1 and similarly for q since o(q) < α as well.
Thus, we can define f∗ : X((T α+1)p)→ X((T α+1)q) and let k = jq ◦

f∗ ◦ (jp)
−1 an order isomorphism between the intervals jp(X((T α+1)p))

and jq(X((T α+1)q)) in X(T α+1) so that

(5.79) k(jp(X((T α+1)p)) ∩ Lα) = jq(X((T α+1)q)) ∩ Lα.

As before, (5.78) implies that k maps the branches x and y to z and
w, respectively. Finally, (5.27) again implies that the interval (x, y) is
contained in jp(X((T α+1)p)).

�

We illustrate the use of this result with the following.
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Proposition 5.21. Let T be a reproductive, bi-ordered tree with S0 a
doubly transitive LOTS with at least three elements. Let α = h(T ). If

L̃α = {x ∈ X(T ) : h(x) = α} is nonempty, then it is a doubly transitive
LOTS which is dense in X(T ).

Proof. If x ∈ L̃α and p ∈ T , then there exists q ∈ x such that
o(q) = o(p). By Proposition 5.19 there exists an automorphism f of T

such that f(q) = p. Then f∗(x) ∈ L̃α with p ∈ f∗(x). It follows from
Proposition 5.5(g) that L̃α is dense in X(T ). Since S0 is doubly transi-
tive and infinite it is unbounded. Hence, by Proposition 5.5(d), X(T )
is unbounded. Since L̃α is dense in X(T ) it is unbounded. That L̃α

is doubly transitive then follows from Lemma 5.20(a) and Proposition
3.2(d) (vii)⇒(i).

�

Our main application of Lemma 5.20 requires the following technical
result.

Lemma 5.22. Let X be an unbounded, order dense LOTS of countable
type and let W be a dense subset of X. If for every x < y, z < w in
W there exists an order isomorphism k : (x, y) → (z, w) (intervals in
X) such that

(5.80) k((x, y) ∩W ) = (z, w) ∩W,

then the same is true for any x < y, z < w in X. In particular, W
and X are HLOTS.

Proof. W is unbounded and so is doubly transitive by Proposition
3.2(d)(v)⇒(i). By Proposition 2.11(f), W has countable type and so
is a HLOTS by Proposition 3.8(a).
If x < y, z < w in X , then since X is order dense, W is dense in X

and X has countable type, there exist f, g : Z→W with f(Z) ±cofinal
in (x, y) and with g(Z) ±cofinal in (z, w). Put together isomorphisms
(f(i), f(i + 1)) ∼= (g(i), g(i + 1)) to get the required k. X is doubly
transitive and so is a HLOTS by Proposition 3.2(d) and Proposition
3.8(a) again.

�

Theorem 5.23. If T is a reproductive, Ω bounded, bi-ordered tree with

S0 a HLOTS, then X(T ) is an IHLOTS and X̂(T ) is a CHLOTS.
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Proof. By Lemma 5.18(b) T is of S0 type. Proposition 5.12(c) and

Proposition 2.15(c) then imply that X(T ) and X̂(T ) are of countable
type. By Proposition 5.5 X(T ) is unbounded, order dense and has

dense holes. So the completion X̂(T ) is unbounded and connected.
If W is any dense subset of X(T ), then it is of countable type by
Proposition 2.11(f). Since such a W is a proper subset of its completion

X̂(T ) it is an IHLOTS if it is doubly transitive by Proposition 3.8. Then

the completion X̂(T ) is a CHLOTS by the same proposition.
Since T is Ω bounded, we have h(T ) ≤ Ω with h(T ) an infinite

tail-like ordinal. There are two cases.

Case 1: If α = h(T ) is countable, then by Lemma 5.6(b) L̃α is dense
in X(T ). As in Proposition 5.21, Lemma 5.20(a) allows us to conclude
that L̃α is doubly transitive, using Proposition 3.2(d). Lemma 5.20(a)

together with Lemma 5.22 implies that L̃α and X(T ) are HLOTS in
this case.

Case 2: If h(T ) = Ω, then given x < y and z < w in X(T ) we can
choose α a countable tail-like ordinal such that

(5.81) α > h(x), h(y), h(z), h(w)

because h takes only countable values on X(T ) and h(T ) = Ω is the
limit of countable, tail-like ordinals.
Now we apply Lemma 5.20(b) to see that W = Lα ⊂ X(T α+1)

satisfies the hypotheses of Lemma 5.22. From (5.81) we clearly have

(5.82) πα+1(x) < πα+1(y) and πα+1(z) < πα+1(w) inX(T α+1).

It follows that there exists an order isomorphism k : (πα+1(x), πα+1(y))→
(πα+1(z), πα+1(w)), intervals in X(T α+1), which preserves Lα.

We finish up as in the proof of Theorem 5.15. As we did there, write

(5.83) X(T ) = Σ{(πα+1)−1(r) : r ∈ X(T α+1)}.

Recall that for r = x(p) with o(p) = α, (πα+1)−1(r) = jp(Tp) while for
r 6∈ Lα (πα+1)−1(r) is a singleton.
For x(p) ∈ (πα+1(x), πα+1(y)) ∩ Lα let k(p) denote the vertex of

level α such that k(x(p)) = x(k(p)). For each such p choose a tree
isomorphism gp : Tp → Tk(p).
For r = x(p) let

(5.84) kr = jk(p) ◦ (gp)∗ ◦ (jp)
−1 : (πα+1)−1(r)→ (πα+1)−1(k(r)).
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and for r 6∈ Lα let kr be the map of singletons given by (πα+1)−1(r) 7→
(πα+1)−1(k(πα+1(r))). Putting these together using (5.83) we obtain

an isomorphism k̃ : (x, y)→ (z, w), intervals in X(T ).
Thus, X(T ) is doubly transitive in this case as well by Proposition

3.2(d).
�

Adapting the proof, we obtain the first part of the following.

Theorem 5.24. Assume that T is a reproductive, bi-ordered tree of
height Ω with S0 a HLOTS.

(a) If L̃Ω is nonempty, i.e. there exist branches of height Ω, then

L̃Ω is dense in X(T ) and is doubly transitive. If, in addition,
X(T ) \ L̃Ω is nonempty, then X(T ) \ L̃Ω is dense in X(T ) and
is first countable and weakly homogeneous.

(b) Assume that L̃Ω and X(T ) \ L̃Ω are nonempty and that X =

X̂(T ) \ L̃Ω with X̂(T ) the completion of X(T ). The LOTS X
is first countable and weakly homogeneous. In addition, X is
countably complete. That is, if A ⊂ X is a bounded, countable
set, then sup A, inf A ∈ X. On the other hand, X is not
complete.

Proof. (a): If L̃Ω is nonempty, then it is dense in X(T ) and is doubly
transitive by Proposition 5.21.
Since S0 is a HLOTS, X(T ) is unbounded and is σ-bounded. If

x ∈ X(T ) with h(x) < Ω, then because X(T ) is unbounded and L̃Ω is

dense there exist z1, z2 ∈ L̃Ω such that z1 < x < z2. Now let w1 < w2 ∈
L̃Ω be arbitrary. By Lemma 5.20 there exists an order isomorphism
k : (z1, z2) → (w1, w2) which maps (z1, z2) ∩ L̃Ω to (w1, w2) ∩ L̃Ω.
Hence, k(x) 6∈ L̃Ω, i.e. w1 < k(x) < w2 with h(k(x)) < Ω. It follows

that X(T ) \ L̃Ω is dense in X(T ).
The proof of Case 2 in the proof of Theorem 5.23 directly shows that

X(T ) \ L̃Ω is doubly transitive.
Let α be a countable tail-like ordinal with α > h(x). By Lemma 5.18

(b), T α is reproductive and so by Theorem 5.23 X(T α) is a HLOTS
and so is first countable. Hence, x is the limit of increasing and de-
creasing sequences in X(T α). So there exist sequences in X(T ) whose
projections via πα are strictly monotone sequences X(T α) converging
to x. Furthermore, (π̂α)−1(x) is a singleton in the complete LOTS

X̂(T ). It follows that the sequences in X(T ) converge to x. Thus,
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X(T ) \ L̃Ω is doubly transitive, first countable and σ-bounded. It is
weakly homogeneous by Proposition 3.3(b).

(b): Applying Proposition 5.9 we identify the completion X̂(T ) with

the branch space X(T̂ ) where T̂ is the tree completion of Definition

5.8. Every branch of X(T̂ ) \ X(T ) is of the form x(q) with q a new
vertex. These branches have countable height and each is clearly the
limit of increasing and decreasing sequences because S0 is of countable
type. From (a) it follows that X is first countable.

On the other hand, let x ∈ L̃Ω and A be a countable subset of X(T̂ )
with a < x for all a ∈ A. The equality level of a and x is a countable
ordinal for each a. We can choose α < Ω which is greater than all of
these equality levels. The successor set in T for xα is isomorphic to
S0 and so is unbounded. Choose y in the successor set with y < xα+1.
Thus, a branch b of X(T ) which contains y satisfies b < x and a < b

for all a ∈ A. Thus, sup A in the complete space X(T̂ ) is not equal
to x. Hence, sup A ∈ X . Similarly, if A is bounded below then inf A
lies in X . That is, X is countably compact. In particular, x is not a
limit of an increasing or decreasing sequence in X(T̂ ). It follows that

any automorphism of X(T̂ ) maps L̃Ω to itself and so restricts to an
automorphism of X .
If a < b, c < d in X(T ) \ L̃Ω, then from (a) there exists an automor-

phism of X(T ) \ L̃Ω which maps [a, b] to [c, d]. Because X(T ) \ L̃Ω is

dense in X(T ) which is dense in X(T̂ ) the automorphism extends to

an automorphism of X(T̂ ) and then restricts to an automorphism of
X .
Now let a < b in X . Because X(T ) is σ-bounded and X(T ) \ L̃Ω is

dense in X(T ) we can choose an embedding q : Z→ X(T ) \ L̃Ω which
is ± cofinal in X . Similarly, because X is first countable, we can choose
an embedding r : Z→ (a, b) ∩ (X(T ) \ L̃Ω) which is ± cofinal in (a, b).
Choose an isomorphism from [q(i), q(i + 1)] to [r(i), r(i + 1)] for each
i ∈ Z and concatenate to obtain an isomorphism from X to (a, b)∩X .
Thus, X is weakly homogeneous.

�

Remark. Since X is invariant for every automorphism of X̂(T ) it

follows that X(T ) and its completion are not transitive. If x < z ∈ L̃Ω,
then the convex set X1 = (x, z) ∩X is not σ-bounded. So while X1 is
unbounded, every countable subset is bounded and so has a sup and
inf in X1. X1 is doubly transitive, but not weakly homogeneous.
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6. Tree Constructions

6.1. The Simple Trees on a LOTS. Throughout this section X will
be a nontrivial LOTS, i.e. with at least two points. For any ordinal α,
the set of maps Xα is a LOTS with the order space product structure,
see (2.16). If p ∈ Xα and β ≤ α, then the restriction p|β ∈ Xβ. For
p ∈ Xα, q ∈ Xβ we write

(6.1) q ≺ p ⇐⇒ β < α and p|β = q.

Accordingly, we define the simple tree on X,α by letting X i be the
set of vertices of level i for i < α and using the restriction partial order
of (6.1). If p ∈ X i and i+1 < α then we can identify the successor set
Sp ⊂ X i+1 with X by

Sp
∼= X

q 7→ q(i).
(6.2)

We use the LOTS ordering on X and the identification of (6.2) to
give the simple tree on X,α the structure of a normal tree, bi-ordered
and of X type. Conditions (i)-(iv) of Definition 5.1 are easy to check.
Every branch has height α. Such a branch is a coherent collection
{pǫ : ǫ < α} of functions whose union is a unique element x ∈ Xα.
Thus, we can identify Xα with the branch space of the simple tree on
X,α.
For p ∈ Xα and q ∈ Xβ we define the sum p + q ∈ Xα+β by

(6.3) (p+ q)(i) =

{
p(i) i < α

q(i \ α) α ≤ i < α + β

where, as usual, we identify the tail set i \ α with the ordinal which
has its order type.
For ordinals α < ǫ we define the translation map

τα : Xǫ → Xǫ\α

τα(r)(i) = r(α+ i) for i < ǫ \ α.
(6.4)

If p ∈ Xα, q ∈ Xβ and p+ q ∈ Xǫ so that ǫ = α+ β, then β = ǫ \ α
and

(6.5) (p+ q)|α = p and τα(p+ q) = q.

. Conversely, if r ∈ Xǫ and ǫ = α + β, then β = ǫ \ α and

(6.6) r = (r|α) + τα(r).
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Clearly, if o(p) = α and o(r) = ǫ, then

(6.7) p ≺ r ⇐⇒ r = p+ q

for some q ∈ Xǫ\α in which case, by (6.5) τα(r) = q.
The map τα is clearly surjective, but is not order preserving and need

not be continuous.

Proposition 6.1. Let α be a positive ordinal.

(a) If X is transitive, then the simple tree on X,α is homogeneous.
(b) If α is tail-like, then the simple tree on X,α is reproductive.

Proof. (a) If p, q ∈ X i, then there exists for each j < i, gj ∈ H+(X)
such that gj(p(j)) = q(j). For i ≤ j < α let gj be the identity. On Xk

for k < α the product map Πj<kgj defines a tree automorphism which
maps p to q.
(b) For p in the simple tree o(p) < α and α tail-like implies that

o(p) + β < α whenever β < α. So we can define the canonical tree
isomorphism at p by

ap : T → Tp

ap(q) = p+ q.
(6.8)

�

As a corollary we obtain a tree proof of Theorem 3.6.

Corollary 6.2. Let α be an infinite, tail-like ordinal.

(a) If X is doubly transitive, then Xα is doubly transitive.
(b) If α is countable and X is a HLOTS, then Xα is a HLOTS.

Proof. Xα is the branch space of the simple tree on X,α. By Proposi-
tion 6.1(b) the simple tree is reproductive.

In this case every branch has height α, i.e. Xα = L̃α. If X is
doubly transitive, then Xα is doubly transitive by Proposition 5.21.
If, in addition, α is countable and X has countable type, then by
Proposition 2.13(b), Xα has countable type. So it is a HLOTS by
Proposition 3.8(a).

�

Recall from Section 4 that if X is a HLOTS, then we choose a non-
trivial, bounded subinterval J = [−1,+1] in X to define Xα for every
positive ordinal α. If α is an infinite limit ordinal, then we define

(6.9) X<α =
⋃

β<α

jβα((Xβ)
′)
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using the inclusion maps of (4.5). So x ∈ X<α iff there exists β < α
such that

(6.10) xi = −1 for all β ≤ i < α or xi = +1 for all β ≤ i < α.

Clearly, X<α and its complement are dense in Xα.

Proposition 6.3. If X is a HLOTS and α is an infinite, tail-like
ordinal, then

(6.11) Xα ∼= Xα \X<α.

In particular, Xα, X<α, Xα \ X<α and Xα all have order isomorphic
completions.

Proof. For i ∈ α\1 = {j : 0 < j < α} we denote by i∗ the corresponding
element of the reverse (α \ 1)∗ and we write

(6.12) |i| = i = |i∗| for i ∈ α.

Apply Proposition 2.15(d) to •X• to get an order embedding

g̃ : (α \ 1)∗ + (α \ 1)→ X with

g̃(1) = +1, g̃(α \ 1) cofinal in X,

g̃(1∗) = −1, and g̃((α \ 1)∗) coinitial in X.

(6.13)

We define the intervals {Ji∗ : i∗ ∈ (α \ 1)∗} ∪ {J0} ∪ {Ji : i ∈ (α \ 1)}
and choose isomorphisms:

g0 = identity on J0 = (−1,+1).

gi : [−1,+1)→ Ji = [g̃(i), g̃(i+ 1))

gi∗ : (−1,+1]→ Ji∗ = (g̃((i+ 1)∗), g̃(i∗)]

(6.14)

This defines an (α\1)∗+{0}+(α\1) indexed family of pairwise disjoint,
nontrivial subintervals of X with union X .
Now for each x ∈ Xα \ X<α we define an order embedding from α

into itself:

β(x, 0) = 0

β(x, i) = sup{β(x, j) : j < i} when i is a limit ordinal.
(6.15)

The remaining values are defined inductively. Assuming β(x, i) is
defined we construct β(x, i+ 1).
First, we set m(x, 0) = 0 and for i ∈ α \ 1:

m(x, i) = 0 if − 1 < xβ(x,i) < +1,

m(x, i) = j if xβ(x,i) = +1 and j = min {k : xβ(x,i)+k < +1},

m(x, i) = j∗ if xβ(x,i) = −1 and j = min {k : xβ(x,i)+k > −1}.

(6.16)
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Observe that x 6∈ X<α implies that the sets used to define j in the
latter cases are nonempty. Complete the inductive definition of β by

(6.17) β(x, i+ 1) = β(x, i) + |m(x, i)|+ 1,

so that, for example, β(x, 1) = 1.
Since x ∈ Xα, x0 ∈ X and xi ∈ J = [−1,+1] for all i ∈ α \ 1. We

define f(x) ∈ Xα by

(6.18) f(x)0 = x0 and f(x)i = gm(x,i)(xβ(x,i)+|m(x,i)|) for i ∈ α \ 1.

If xβ(x,i) ∈ (−1,+1), then m(x, i) = 0 and f(x)i = xβ(x,i).
If xβ(x,i) = +1, then j = m(x, i) ∈ α \ 1 and xβ(x,i)+k = +1 for all

k < j while xβ(x,i)+j ∈ [−1,+1). The map gj moves xβ(x,i)+j to the
interval Jj in X .
Similarly, if xβ(x,i) = −1 then j∗ = m(x, i) ∈ (α \ 1)∗ and gj∗ moves

xβ(x,i)+j to Jj∗ .
Thus, we have defined a map f : Xα \X<α → Xα.
Suppose that x < y. If x0 < y0, then f(x) < f(y). Otherwise, let

ǫ = min {j : xj 6= yj} so that ǫ ∈ α \ 1 and xǫ < yǫ. By Proposition
2.15(c) applied to the order embedding i 7→ β(x, i) there exists i ∈ α
such that

(6.19) β(x, i) ≤ ǫ < β(x, i+ 1).

Since ǫ ∈ α \ 1 and β(x, 1) = 1, we have i ∈ α \ 1. Notice that the
inductive definitions imply that

(6.20) m(x, j) = m(y, j) j < i and β(x, j) = β(y, j) j ≤ i

and so we have f(x)j = f(y)j for all j < i and by considering the
various cases we check that f(x)i < f(y)i.

Case 1: If β(x, i) = β(y, i) = ǫ, then xβ(x,i) < yβ(y,i) and so m(y, i) ∈
α and m(x, i) ∈ α∗. Hence, m(x, i) ≤ m(y, i).

Case 2: If β(x, i) = β(y, i) < ǫ, then xβ(x,i) = yβ(y,i) and the common
value cannot lie in (−1,+1) since ǫ < β(x, i + 1). If xβ(x,i) = yβ(y,i) =
+1, then m(x, i) < m(y, i) ∈ α \ 1. If xβ(x,i) = yβ(y,i) = −1, then
m(x, i) < m(y, i) ∈ (α \ 1)∗.

In either case, f(x)i < f(y)i and so f(x) < f(y). Thus, f is an order
injection.
To reverse the procedure, start with z ∈ Xα and let x0 = z0. Then

for any i ∈ α \ 1, {zj : 0 ≤ j < i} determines, inductively, the sets
{m(x, j) : j < i}, {β(x, j) : j ≤ i} and {xk : k < β(x, i)}. Now if
zi ∈ J0, then m(x, i) = 0, xβ(x,i) = zi and β(x, i + 1) = β(x, i) + 1.
If zi ∈ Jj for some j ∈ α \ 1 then m(x, i) = j, xβ(x,i)+k = +1 for
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0 ≤ k < j, xβ(x,i)+j = (gj)
−1(zi) and β(x, i + 1) = β(x, i) + j + 1.

Similarly, if zi ∈ Jj∗.
Thus, f is surjective and so is an order isomorphism.

�

We can use this result to get an alternative proof of the CHLOTS
portion of Theorem 4.2.

Corollary 6.4. Let X be a CHLOTS and α be a countably infinite,
tail-like ordinal. Xα and X<α are IHLOTS with completion isomorphic
to the CHLOTS Xα.

Proof. Xα is a HLOTS by Corollary 6.2(b) and it is isomorphic to a
dense proper subset of Xα by Proposition 6.3. Since X is complete,
Xα is complete by Proposition 2.8(b) and so Xα is the completion of
the image of Xα. By Proposition 3.8 Xα is a CHLOTS and Xα and its
complement in Xα, which is X<α, are IHLOTS.

�

Proposition 6.5. Assume X is a LOTS. Let T be a bi-ordered tree
of Y type. If Y injects into X and the height of the tree is at most α,
then the branch space X(T ) injects into Xα. If, in addition, X is a
CHLOTS, Y is unbounded and h(T ) is a limit ordinal, then X(T ) and
its completion inject into Xα.

Proof. We identify each nonempty successor set Sp with Y . Let j :
Y → X be an order injection and let z ∈ X .
Define jα : X(T )→ Xα by

(6.21) jα(x)(i) =

{
j(x(i)) for i < h(x),

z for h(x) ≤ i < α.

This is clearly an order injection.
If X is a CHLOTS, then X ∼= J◦ implies that Xα injects into Xα.

Hence, X(T ) injects into Xα.
If Y is unbounded and h(T ) is a limit ordinal, then X(T ) is order

dense by Proposition 5.4. Since Xα is complete, the order injection

ĵα : X̂(T )→ Xα is defined by Proposition 2.10.
�
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Contrast these results with those for XΩ. We can split X<Ω into two
disjoint pieces X±

<Ω with

(6.22) x ∈ X+
<Ω ⇐⇒ xi = +1 for i ∈ Ω sufficiently large,

and similarly, for X−
<Ω. Each of these is a dense subset of XΩ and by

Proposition 6.3 we can identify XΩ with the complement of their union.
It is easy to check that z ∈ XΩ is the limit of some increasing (or of
some decreasing) sequence iff z ∈ X−

<Ω (resp. z ∈ X+
<Ω ). It follows

that if f ∈ H+(XΩ), then

(6.23) f(X−
<Ω) = X−

<Ω, f(XΩ) = XΩ, f(X+
<Ω) = X+

<Ω.

That is, the decomposition of XΩ into three pairwise disjoint, dense
subsets is invariant with respect to the action of the automorphism
group H+(XΩ).
By Corollary 6.2(a), XΩ is doubly transitive. Using the proof of

Proposition 3.8(d) and H+ invariance it is easy to show that X+
<Ω and

X−
<Ω are doubly transitive as well.
Moreover, if X is symmetric, e.g. X = R, then XΩ is symmetric

and any orientation reversing isomorphism interchanges X+
<Ω and X−

<Ω

while preserving XΩ. In that case, X<Ω is ±transitive but not transi-
tive. Any dense subset of XΩ is order dense and so has no gap pairs.
Contrast this with the complete case in Proposition 3.11.

6.2. Additive Trees. Now we introduce an important class of sub-
trees of the simple tree.

Definition 6.6. For a positive ordinal α let T be a subset of the simple
tree on X,α. T is called an additive X tree when T contains the root
0, the level 1 vertices X1 of the simple tree and for all vertices p, q of
the simple tree

(6.24) p+ q ∈ T ⇐⇒ p, q ∈ T.

T is called a partially additive X tree when T contains {0}∪X1 and
for all vertices p, q of the simple tree

(6.25) p+ q ∈ T ⇐⇒ p, q ∈ T and o(p) + o(q) < h(T ).

Clearly, p+ q ∈ T always implies

(6.26) o(p) + o(q) = o(p+ q) < h(T ),

and so, as the name suggests, condition (6.25) is a weakening of con-
dition (6.24).
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Proposition 6.7. Let α, β > 1 be ordinals.

(a) The simple tree on X,α is a partially additive X tree. It is
additive iff α is tail-like.

(b) If T is contained in the simple tree on X,α, then h(T ) ≤ α.
Conversely, if T is a partially additive X tree with h(T ) ≤ α,
then T is a normal subtree of the simple tree on X,α.

(c) If T is a partially additive X tree, then T β is a partially additive
X tree.

(d) Assume T is a partially additive X tree and p ∈ T . If β < o(p),
then

(6.27) p|β, τβ(p) ∈ T.

If o(p) + 1 < h(T ), then the successor set Sp in T consists of
all successors of p in the simple tree.

(e) A partially additive tree T is additive iff h(T ) is a tail-like or-
dinal.

(f) If T is an additive X tree, then T is a reproductive tree and for
every finite n the set Xn of level n vertices in the simple tree is
the set of level n vertices in T .

Proof. (a),(b),(d): That the simple tree is partially additive is obvious.
Condition (6.25) and (6.6) imply (6.27) which implies that a partially
additive T is a subtree of the simple tree on X,α when α ≥ h(T ).
Clearly, for p in the simple tree the successor set is given by

(6.28) Sp = {p+ q : q ∈ X1}.

So p ∈ T and o(p) + 1 < h(T ) implies this is a subset of T by (6.25).
Furthermore, if p ∈ T and o(p) < α < h(T ), then there exists q ∈ T
with o(q) = α \ o(p) and so p+ q ∈ T by (6.25). Hence, T is a normal
tree.
(c): Since β > 1, X1 ⊂ T β. Condition (6.25) for T β follows from the

condition on T .
(e),(f): If T is additive, then the canonical isomorphism (6.8) re-

stricts to an isomorphism of T with Tp for any p ∈ T . Hence, T is
reproductive and so h(T ) is tail-like by Lemma 5.18(b). Since h(T ) > 1
it is infinite and so by induction on n using (d), Xn ⊂ T for every finite
n.
On the other hand, if h(T ) is tail-like, then p, q ∈ T implies o(p) +

o(q) < h(T ) and so p+ q ∈ T by (6.25) and so (6.24) holds.
In particular, the simple tree T on X,α is additive iff α = h(T ) is

tail-like.
�
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Corollary 6.8. If X is a HLOTS and T is an additive Ω bounded X

tree, then X(T ) is an IHLOTS with completion X̂(T ) a CHLOTS.

Proof. T is reproductive by Proposition 6.7(f) and so the result follows
from Theorem 5.23.

�

Lemma 6.9. Let T be an additive X tree. We can identify the branch
space X(T ) with the set

{x ∈ Xβ : β is an infinite limit ordinal, x 6∈ T,

and x|ǫ ∈ T for all ǫ < β}.
(6.29)

With this identification we have, for p ∈ T and x ∈ Xβ

(6.30) x ∈ X(T ) ⇐⇒ p+ x ∈ X(T ).

For x ∈ Xβ and ǫ < β

(6.31) x ∈ X(T ) ⇐⇒ x|ǫ ∈ T and τǫ(x) ∈ X(T ).

Proof. Any branch of height less than h(T ) has height an infinite limit
ordinal. Since T is reproductive, h(T ) is also an infinite limit ordinal.
A branch of height β is a coherent collection {xǫ ∈ Xǫ : ǫ < β} which
fits together to define an element x ∈ Xβ such that x|ǫ = xǫ for all
ǫ < β. Hence the restrictions are all in T . If x itself were in T , then we
could extend the branch by adjoining x which violates the maximality
condition of the branch. Hence, x 6∈ T . Conversely, if x lies in the set
described by (6.29), then {x|ǫ : ǫ < β} is a maximal totally ordered set
of vertices of T and so is the corresponding branch.
The characterization of (6.29) together with (6.24) easily implies

(6.30). Then (6.31) follows from (6.6).
�

We now present the inductive construction which shows how all ad-
ditive trees are built. We use the translation maps defined by (6.4).
Recall that if ǫ is tail-like and α < ǫ, then ǫ = ǫ \ α and so τα maps
Xǫ to itself. If ǫ is tail-like and W ⊂ Xǫ, then we call W translation
invariant if

(6.32) τα(W ) ⊂ W for all α < ǫ.
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A collection of trees {Tδ : β ≤ δ < ǫ} is called a coherent collection
of trees indexed by [β, ǫ) if

h(Tδ) = δ for β ≤ δ < ǫ, and

Tδ = (Tρ)
δ for β ≤ δ ≤ ρ < ǫ.

(6.33)

Theorem 6.10. Let α be a tail-like ordinal and T be a partially additive
X tree with h(T ) = β < α.

(a) Let ǫ be a limit ordinal with β < ǫ ≤ α. If {Tδ} is a coherent
collection of partially additive X trees indexed by [β, ǫ) then

(6.34) Tǫ =
⋃
{Tδ : β ≤ δ < ǫ}

is a partially additive X tree. It defines the unique tree such
that {Tδ : β ≤ δ ≤ ǫ} is a coherent collection of trees indexed
by [β, ǫ] = [β, ǫ+ 1).

(b) Let ǫ(β) = min {i : β ≤ i ≤ α and i is tail-like }. For each
δ such that β ≤ δ ≤ ǫ(β) there is a unique partially additive X
tree Tδ of height δ and such that

(6.35) (Tδ)
β = T for β ≤ δ ≤ ǫ(β).

The collection {Tδ : β ≤ δ ≤ ǫ(β)} is a coherent collection of
trees indexed by [β, ǫ(β)]. The tree Tǫ(β) is an additive X tree
with

(6.36) Tǫ(β) = {p1 + · · ·+ pn : pi ∈ Tβ for i = 1, . . . , n < ω}.

(c) Assume that T is an additive X tree so that the height β is
tail-like.

The set L̃β = {x ∈ X(T ) : h(x) = β} is a translation invari-
ant subset of Xβ.

If L̃β = ∅, then the only subtree T̃ of the simple tree on X,α

which satisfies (T̃ )β = T is T̃ = T itself.
If L̃β 6= ∅ and W is any nonempty, translation invariant

subset of L̃β, then

(6.37) Tβ+1 = T ∪ {p+ x : p ∈ T and x ∈ W}

is a partially additive tree of height β + 1 such that

(6.38) (Tβ+1)
β = T.

Conversely, if Tβ+1 is a partially additive tree of height β+1
which satisfies (6.38), then

(6.39) W = {q|β : q ∈ Tβ+1 with o(q) = β}
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is a nonempty, translation invariant subset of L̃β and p + x ∈
Tβ+1 for all p ∈ T and x ∈ W .

Proof. (a): Since each Tδ has height δ, Tǫ has height ǫ = sup {δ : δ < ǫ}
and (Tǫ)

δ = Tδ is clear for β ≤ δ ≤ ǫ.
If p + q ∈ Tǫ, then for some δ < ǫ p + q ∈ Tδ and so p, q ∈ Tδ ⊂

Tǫ by partial additivity of Tδ. On the other hand, if p, q ∈ Tǫ and
o(p) + o(q) = o(p+ q) < ǫ, then for some δ < ǫ o(p) + o(q) < δ. Hence,
p+ q ∈ Tδ ⊂ Tǫ. Thus, Tǫ is partially additive.
(b): By induction on ρ with β ≤ ρ ≤ ǫ(β) we construct the trees Tρ

verifying (6.35) and uniqueness and coherence at each stage.
Begin with Tβ = T and assume that Tδ has been constructed for

β ≤ δ < ρ.

Case 1: If ρ is a limit ordinal, define Tρ using (6.34) with ρ = ǫ.
By (a) it is a partially additive X tree and the collection is coherent,
indexed by [β, ρ].

If T̃ is a partially additive X tree of height ǫ with T̃ β = T , then for
δ ∈ [β, ǫ) T̃ δ is partially additive and satisfies (T̃ δ)β = T̃ β = T . So by
uniqueness at the δ level T̃ δ = Tδ. Since ρ is a limit ordinal, h(T̃ ) = ρ
implies

(6.40) T̃ =
⋃
{T̃ δ} =

⋃
{Tδ} = Tǫ.

Uniqueness follows.

Case 2: If ρ = δ + 1, define

(6.41) Tρ = Tδ ∪ {p+ q : p, q ∈ Tδ and o(p) + o(q) = δ}.

Since β ≤ δ < ǫ(β), δ is not a tail-like ordinal and so there exist
ordinals i, j < δ with i+ j = δ. Because h(Tδ) = δ there exist p, q ∈ Tδ

with o(p) = i and o(q) = j. Hence, p+q ∈ Tρ with o(p+q) = δ. Hence,
Tρ has height ρ and coherence is clear. In particular, (Tρ)

β = T .
If o(p)+ o(q) < δ, then p, q ∈ Tρ iff p, q ∈ Tδ iff p+ q ∈ Tδ (by partial

additivity of Tδ) iff p + q ∈ Tρ. Thus in checking (6.25) for Tρ we can
restrict attention to the case o(p + q) = o(p) + o(q) = δ and o(q) > 0
so that o(p) < δ.
If p, q ∈ Tρ, then o(p) < δ implies that p ∈ Tδ. If o(q) < δ, then

q ∈ Tδ and so p+ q ∈ Tρ by (6.41). If o(q) = δ, then by (6.41) q = p̃+ q̃
with p̃, q̃ ∈ Tδ. Since o(q) = δ, o(q̃) > 0.

(6.42) p+ q = (p+ p̃) + q̃.

Since o(q̃) > 0, o(p+ p̃) = o(p) + o(p̃) < δ. By partial additivity of Tδ,
p+ p̃ ∈ Tδ. By (6.42) and (6.41) p+ q ∈ Tρ.
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On the other hand, if p+ q ∈ Tρ with o(p)+ o(q) = δ, then by (6.41)
there exist p̃, q̃ ∈ Tδ such that

(6.43) p+ q = p̃+ q̃.

Now if o(p) = i ≥ o(p̃) and ĩ = i \ o(p̃), then

(6.44) p = p̃+ (q̃|̃i) and q = τĩ(q̃).

Since p̃, q̃|̃i ∈ Tδ and o(p) < δ, p ∈ Tδ because Tδ is partially additive.
By (6.27) q ∈ Tδ as well.
If, instead, o(p) = i < o(p̃), then

(6.45) p = p̃|i and q = τi(p̃) + q̃.

By (6.27) p, τi(p̃) ∈ Tδ. Since q̃ ∈ Tδ, o(q) < δ implies q ∈ Tδ because
Tδ is partially additive, while o(q) = δ implies q ∈ Tρ by (6.45).
Thus, Tρ is partially additive.

On the other hand, if T̃ has height ρ and T̃ β = T , then as in the
limit case T̃ δ = Tδ by uniqueness at the δ height. If p, q ∈ Tδ with
o(p) + o(q) = δ < ρ, then p + q ∈ T̃ because T̃ is partially additive.

Hence, Tρ ⊂ T̃ . On the other hand, if r ∈ T̃ with o(r) = δ, then we
can choose i < δ such that δ \ i < δ, because δ is not tail-like. By (6.6)

r = r|i + τi(r). Because T̃ is partially additive, (6.27) implies that
r|i, τi(r) ∈ T̃ δ = Tδ. Hence, r ∈ Tǫ by (6.41). Hence, T̃ ⊂ Tρ which
proves uniqueness.

This completes the induction. At the final stage, Tǫ(β) is partially
additive with height ǫ(β) tail-like so that it is additive by Proposition
6.7(e).
Since Tǫ is additive and contains Tβ it clearly contains any finite sum

p1 + · · ·+ pn with pi ∈ Tβ.
Conversely, if p ∈ Tǫ, then o(p) < ǫ and we can use Cantor Normal

Form, Proposition 2.6, to write o(p) = α1 + α2 + · · · + αn with β ≥
α1 ≥ α2 · · · ≥ αn. Let σ0 = 0 and σi = α1 + . . . αi for i = 1, . . . , n− 1.
p = p1 + p2 + . . . pn where pi = (τσi−1

(p))|αi for i = 1, . . . , n. By
additivity, each pi ∈ Tǫ. Since o(pi) = αi ≤ β and (Tǫ)

β = Tβ it follows
that each pi ∈ Tβ .

(c): If x ∈ L̃β and i < β, then β = β \ i and τi(x) ∈ X(T ) by (6.31).

Hence, τi(x) ∈ L̃β . Thus, L̃β is translation invariant.

If T̃ is a subtree of the simple tree with T̃ β = T and p ∈ T̃ \ T , then
o(p) ≥ β and so Ap ∩ T̃ β = Ap ∩ T is a branch of T with height β. So

if such a T̃ exists, then L̃β 6= ∅.
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Assume W is a nonempty, translation invariant subset of L̃β and that
Tβ+1 is defined by (6.37). Clearly, (6.38) holds. It remains to verify
(6.25).
Consider vertices p, q of the simple tree. As before it suffices to

consider the case o(p) + o(q) = β and o(q) > 0 so that o(p) < β.
If p, q ∈ Tβ+1, then o(p) < β implies p ∈ T . Since o(p) + o(q) = β

and β is tail-like, o(q) = β and so q = p̃ + x with p̃ ∈ T and x ∈ W .
Since T is additive, p+ p̃ ∈ T and so

(6.46) p + q = (p+ p̃) + x ∈ Tβ+1,

by definition (6.37).
On the other hand, if p + q ∈ Tβ+1, then o(p + q) = o(p) + o(q) = β

implies p+ q = p̃+ x for some p̃ ∈ T and x ∈ W .
As with (6.44), o(p) ≥ o(p̃) and ĩ = i \ o(p) implies

(6.47) p = p̃+ (x|̃i) and q = τĩ(x).

Since ĩ < β, x|̃i ∈ T by Lemma 6.9 and so p ∈ T by additivity. Because
W is translation invariant q ∈ W ⊂ Tβ+1.
As in (6.45), o(p) = i < o(p̃) implies

(6.48) p = p̃|i and q = τi(p̃) + x.

Hence, p, τi(p̃) ∈ T and so q ∈ Tβ+1.
This completes the proof of partial additivity for Tβ+1

For the converse, it is clear that W of (6.39) is a subset of L̃β. It is
nonempty since Tβ+1 has height β. For q ∈ Tβ+1 with o(q) = β and
i < β, τi(q) ∈ Tβ+1 by partial additivity and o(τi(q)) = β \ i = β. So
τi(q)|β = τi(q|β) ∈ W . Thus, W is translation invariant. If p ∈ T
and x ∈ Tβ+1 with o(x) = β, then by partial additivity o(p + x) =
o(p) + β = β implies p+ x ∈ Tβ+1.

�

Remark. Recall that if T is a tree of height α a countable limit ordinal,
then L̃α 6= ∅ by Lemma 5.6(b). Thus, the extension process of part
(c) can go beyond any countable level. On the other hand, an additive
tree of height Ω is Ω-bounded precisely when it cannot be continued to
level Ω + 1.

Corollary 6.11. There exists a LOTSX which is weakly homogeneous,
first countable and countably complete, but which is not complete.
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Proof. Because an additive tree is reproductive, it suffices by Theorem
5.24 to construct an additive tree of Q type which has height Ω and
which contains branches of countable height and branches of height Ω.
Let 0̄ ∈ QΩ with 0̄i = 0 ∈ Q for every i < Ω. For p ∈ Qα with α a

limit ordinal, we say that p eventually equals 0 if there exists β < α
such that pi = 0 for all i with β ≤ i < α.
We use that inductive construction of Theorem 6.10 to build a co-

herent collection Tα of partially additive trees such that 0̄|β ∈ Tα for
all β < α. This condition is clearly preserved in steps (a) and (b). For
the choice step (c) with β tail-like, we have that 0̄|β ∈ L̃β. The set
W = {0̄|β} is translation invariant and we let Tβ+1 = T ∪ {p + (0̄|β) :
p ∈ T}. Thus, Lβ consists of the elements of L̃β which eventually equal
0.
With T =

⋃
Tα we identify X(T ) as in Lemma 6.9. So 0̄ ∈ X(T )

with h(0̄) = Ω. On the other hand suppose x ∈ Qα with α < Ω a
tail-like ordinal and x is not eventually 0 and x|β ∈ T for all β < α,

then x is a branch with height α, i.e. it is an element of L̃α which is
not in Lα. In particular, if x ∈ Qω is not eventually 0, then x ∈ X(T )
with h(x) = ω.

�

This result answers a question raised by Babcock [6] Section 2. A
closed, bounded interval in a LOTS X given by Corollary 6.11 satisfies
his Linear Homogeneity Condition 2, but not his Linear Homogeneity
Condition 3.
There is a different way of looking at additive trees.
Let Ω̃ be the set of infinite tail-like ordinals in Ω so that

(6.49) Ω̃ = {ωγ : 0 < γ < Ω}.

We write ǫ(s, t) for the equality level for a pair s, t ∈ XΩ so that with
ǫ = ǫ(s, t)

(6.50) si = ti for i < ǫ, and sǫ 6= tǫ.

Thus, s|ǫ = t|ǫ and s|(ǫ+ 1) 6= t|(ǫ+ 1).

Definition 6.12. Let H be a function from XΩ to Ω \ 1. We call H a
height function when it satisfies:

(i) For all s, t ∈ XΩ, ǫ(s, t) ≥ H(s) implies H(t) = H(s).

We call it an Ω̃ height function when it takes values in Ω̃.
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The function H is called an additive height function when it is a Ω̃
height function which also satisfies:

(ii) For all s ∈ XΩ, α < H(s) implies H(τα(s)) = H(s).

Lemma 6.13. Assume that H is an additive height function. Let s, t ∈
XΩ, p ∈ Xα.

(a) If p = t|α with α < H(t), then α < H(p+ s).
(b) If α < H(s), then α < H(p+ s) implies H(p+ s) = H(s).

Proof. (a): ǫ(p + s, t) ≥ α, so H(p + s) ≤ α would imply, by (i),
H(p+ s) = H(t) which is larger than α.
(b): By (ii), α < H(p + s) implies that H(s) = H(τα(p + s)) =

H(p+ s).
�

Theorem 6.14. If T is an Ω-bounded subtree of the simple tree on
X,Ω, then the associated height function is given by

(6.51) H(s) = min{α : s|α 6∈ T}.

Conversely, if H is a height function, then T = {s|α : α < H(s)} is
an Ω-bounded (not necessarily semi-normal) subtree of the simple tree
on X,Ω. The branch space is given by

(6.52) X(T ) = {s|H(s) : s ∈ XΩ}.

The tree T is an additive, Ω-bounded subtree of the simple tree on
X,Ω iff the associated height function H is an additive height function.

Proof. If T is an Ω-bounded subtree, and α < β < Ω, then s|α 6∈ T
implies s|β 6∈ T . If T is Ω-bounded then for every s ∈ XΩ s|α 6∈ T for
some α < Ω. It follows that H defined by (6.51) is a height function.
Conversely, if H is a height function, then s|α = t|α implies ǫ(s, t) ≥

α. Hence, if α ≥ H(s), then H(s) = H(t) and so α ≥ H(t). It follows
that T is a subtree with associated height function H . The description
of the branch space follows as in Lemma 6.9.
If T is additive, then the height of every branch is an infinite, tail-like

ordinal. From the description (6.52) it follows that H is an Ω̃ height
function. Furthermore, if x = s|H(s) is a branch and α < H(s), then by
Lemma 6.9 τα(x) = (τα(s))|H(s) is a branch and so H(τα(s)) = H(s).
Now let H be an additive height function and that p = t|o(p), q =

s|o(q) with s, t ∈ XΩ and o(p), o(q) < Ω.
First, assume p, q ∈ T , so that o(p) < H(t), o(q) < H(s).
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By Lemma 6.13 (a) H(p + s) > o(p) and so by Lemma 6.13 (b)
H(p + s) = H(s). Similarly, H(q + t) > o(q) and H(q + t) = H(t).
Finally, H(p+ q + t) = H(q + t) = H(t).
If o(p) < H(s), then since H(s) is tail-like, o(p + q) = o(p) + o(q) <

H(s) = H(p+ s). Hence, p+ q = (p+ s)|(o(p) + o(q)) ∈ T .
If, instead, o(p) ≥ H(s), then H(t) > o(p) ≥ H(s) > o(q) implies

that o(p) + o(q) is less than the tail-like ordinal H(t) = H(p + q + t).
Hence, p+ q = (p+ q + t)|(o(p) + o(q)) ∈ T .
Conversely, assume that p+q ∈ T so that p+q = r|(o(p)+o(q)) with

o(p) + o(q) < H(r). Since o(p) ≤ o(p) + o(q) < H(r), p = r|o(p) ∈ T .
By condition (ii) H(τo(p)r) = H(r). So o(q) ≤ o(p) + o(q) < H(r)
implies q = (τo(p)(r))|o(q) ∈ T .
It follows that the tree associated to the additive height function H

is additive.
�

Proposition 6.15. Let H0 : XΩ → Ω \ 1 be an arbitrary function.
There exists H a maximum height function with H ≤ H0. Furthermore,
if H0 takes values in Ω̃, then H is an Ω̃ height function.

Proof. Let {H i} be the set of all height functions with H i < H0. This
set is nonempty since the constant function with value 1 is in it. Define
H(s) = supi H

i(s).
If ǫ(s, t) ≥ H(s) then ǫ(s, t) ≥ H i(s) for all i and so H i(s) = H i(t)

since each H i is a height function. Hence, H(t) = H(s). That is, H is
a height function.
We can describe H by a finitely inductive construction. For n ≥ 0,

define

(6.53) Hn+1(s) = min{Hn(t) : ǫ(s, t) ≥ min(Hn(s), Hn(t))}.

In particular, Hn+1(s) ≤ Hn(s).
Define H∞(s) = minnHn(s). By well-ordering, there exists for each

s a positive integer Ns such that H∞(s) = Hk(s) for all k ≥ Ns.
IfHn ≥ H i for a height functionH i, then ǫ(s, t) ≥ min(Hn(s), Hn(t)) ≥

min(H i(s), H i(t)) implies Hn(t) ≥ H i(t) = H i(s). Hence, Hn+1(s) ≥
H i(s). It follows that H∞ ≥ H .
Now suppose ǫ(s, t) ≥ H∞(s) which equalsHk(s) ≥ min(Hk(s), Hk(t))

for k ≥ max(Ns, Nt). It follows that Hk+1(s) ≤ Hk(t) and Hk+1(t) ≤
Hk(s). Since k ≥ max(Ns, Nt), Hk(s) = Hk+1(s) = H∞(s) and
Hk(t) = Hk+1(t) = H∞(t). Thus, H∞(s) = H∞(t). This means that
H∞ is a height function and so equals H .
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Finally, ifH0 takes values in Ω̃, then so does each Hn and so H∞ = H
is an Ω̃ height function.

�

The difficulty with the inductive construction of Theorem 6.10 is
that we don’t have a convenient method for making the choices along
the way so that the resulting tree is Ω-bounded.
There is an inconvenient method. If we begin with any function

from XΩ to Ω̃, the construction of Proposition 6.15 yields an Ω̃ height
function with associated Ω-bounded tree R having all branch heights
tail-like. Any Ω-bounded additive tree is such a tree. On the other
hand, beginning with such a tree R we can use the construction of
Theorem 6.10 to build an additive tree contained in R. The process
will terminate at a countable tail-like ordinal β if either we cannot
choose W as a nonempty, translation invariant subset of L̃β, so that
{p+x : p ∈ T and x ∈ W} ⊂ R, or else, if such a choice is possible but
the extension to the successor tail-like ordinal given by (6.36) is not
contained in R. If the process does not terminate at a countable level,
then we obtain an additive tree of height Ω, but which is Ω-bounded
since it is contained in R.

6.3. Special Trees for HLOTS. For a HLOTS X there is a special
class of trees whose construction parallels that of the additive trees.
For a HLOTS X the completion X̂ is a CHLOTS and •X̂• = {m}+

X̂ + {M} is its two point compactification. If p ∈ Xα for any positive

ordinal α, define p̂ ∈ (•X̂•)α+1 by

(6.54) p̂(0) = m, p̂(i) = sup {p(j) : j < i} for 0 < i ≤ α.

We say that p ∈ Xα is sharply increasing when

(6.55) p̂(i) < p(i) for i < α.

Notice that if p : α→ X is an order map, then

(6.56) p̂(i+ 1) = p(i) for i < α,

and if p is injective, then p(i) < p(i + 1). That is, if p is any order
injection then (6.55) holds for any successor ordinal i < α. On the
other hand, if p is an order embedding, then p̂(i) = p(i) for any limit
ordinal i < α. Thus, p is sharply increasing exactly when it is an order
injection which is discontinuous at each limit ordinal. In general, p̂ is
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a continuous order map and it is an order embedding into •X̂• if p is
an injective order map.
We define the order tree on a HLOTS X , denoted T (X), whose

vertices at level α are the bounded, sharply increasing maps from α to
X . That is, we define

(6.57) Lα(X) = {p ∈ Xα : p̂(i) < p(i) for i < α and p̂(α) < M}.

Theorem 6.16. For a HLOTS X the order tree T (X) is a subtree of
the simple tree on X,Ω. T (X) is a reproductive tree of X type. The
height of T (X) is Ω but every branch has countable height, i.e. T (X)
is Ω-bounded. We can identify the branch space with the set

{x ∈ Xβ : β is a countable, limit ordinal,

x̂(i) < x(i) for i < β and x̂(β) = M}.
(6.58)

The branch space of T (X) is an IHLOTS and its completion is a
CHLOTS.

Proof. Since X is of countable type, only countable ordinals admit
order injections into X . Hence, Lα = ∅ if α is uncountable. If p ∈ Lα

and β < α, then p|β ∈ Lβ(X) because for any p ∈ Xα

(6.59) p̂|(β + 1) = (p̂|β).

Thus, T (X) is a subtree of the simple tree on X,Ω.
If p ∈ Lα and s = p̂(α), then because X is a HLOTS there exists

an order isomorphism fs : X → (s,M) ∩ X and it extends to the

isomorphism f̂s : •X̂• → [s,M ]. For any q ∈ Xβ

(6.60) f̂s ◦ q̂ = (f̂s ◦ q) on β \ 1

and so q ∈ Lβ iff fs ◦ q ∈ Lβ.
Now define the analogue of the canonical inclusion of (6.8)

fp : T (X)→ T (X)p

fp(q) = p+ (fs ◦ q).
(6.61)

Notice that

(6.62) p̂(α) = s = f̂s(m) < fs(q(0))

and so p+ (fs ◦ q) ∈ Lα+β.
Conversely, r ∈ T (X)p implies

(6.63) r̂(α) = p̂(α) = s

and so f−1
s ◦ (τα(r)) ∈ T (X). Thus, fp is a tree isomorphism and so

T (X) is reproductive.
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Since L1 = X1 ∼= X we see that the tree is of X type because it is
reproductive.
The identification of the branch space with the set described in (6.58)

is now routine using an argument similar to that of Lemma 6.9. Because
X is of countable type it follows that if x ∈ Xβ is a branch, then β is
countable. Hence, every branch has countable height.
It follows from Theorem 5.23 that the branch space is an IHLOTS

and its completion is a CHLOTS.
It remains to show that the height of T (X) is Ω, i.e. Lα 6= ∅ for

every countable ordinal α. We use a construction which we will apply
again later.
By Proposition 2.15(d) there exists an order embedding p̃ : α+ 1→

X . Choose for each i < α, an isomorphism gi : X → (p̃(i), p̃(i + 1)).
For any z ∈ Xα define

(6.64) p(z)(i) = gi(z(i)).

It is easy to see that p(z) is an order injection and for each limit ordinal
i ≤ α

(6.65) p̂(z)(i) = p̃(i)

and so if i < α, p̂(z)(i) < p(z)(i). Thus, z 7→ p(z) is an injective map
from Xα into Lα.

�

Remark. We can apply this last construction as well when p̃ : α+1→
•X̂• is an order embedding with

(6.66) p̃(0) = m and p̃(α) = M.

If α is a limit ordinal, then z 7→ p(z) defines an order injection from
Xα into the branch space of T (X) as identified in (6.58).

In order to define the analogue for T (X) of additive subtrees, we
need a piece of auxiliary equipment.

Definition 6.17. For a HLOTS X a set S of maps from X to X is
called a special semigroup when it satisfies the following conditions

(i) Each f ∈ S is either an order isomorphism f : X → X or an
order isomorphism f : X → (x,∞) with x ∈ X. The former
are called the invertible elements of S and included among them
is the identity 1X .
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(ii) If f, g ∈ S, then f ◦ g ∈ S. If f is an invertible element of S,
then f−1 ∈ S. Thus, the invertible elements of S form a group
under composition.

(iii) The group of invertible elements acts transitively on X.
(iv) The set of noninvertible elements of S is nonempty.

Notice that each f ∈ S is an order embedding by Proposition 2.3(b).

Lemma 6.18. If S is a special semigroup for a HLOTS X, x < y in
X and z ∈ X, then there exists f ∈ S such that f(X) = (x,∞) and
f(z) = y.

Proof. There exists f1 : X → (x̃,∞) in S for some x̃ ∈ X by condition
(iv). By (iii) there exists an invertible element f2 such that f2(x̃) = x.
Let ỹ = (f−1

1 ◦f
−1
2 )(y). By (iii) again there exists an invertible element

f3 such that f3(z) = ỹ. The composite f = f2 ◦ f1 ◦ f3 is the required
element of S.

�

A subset W of Xβ is called S invariant if for all f ∈ S

(6.67) x ∈ W ⇐⇒ f ◦ x ∈ W.

Definition 6.19. Let S be a special semigroup for a HLOTS X and
let T be a subset of the order tree T (X). T is called an S tree when it
satisfies the following conditions.

(i) The root 0 and the level 1 vertices X1 of T (X) are contained in
T .

(ii) For every p ∈ T with o(p) = α

(6.68) p̂(i) ∈ X for 1 ≤ i ≤ α.

(iii) For all f ∈ S and p ∈ T (X)

(6.69) p ∈ T ⇐⇒ f ◦ p ∈ T.

(iv) For all p, q ∈ T (X) with o(p) = α, o(q) = β

(6.70) p+ q ∈ T ⇐⇒ p, q ∈ T, p̂(α) < q(0), α + β < h(T ).

Proposition 6.20. Let T be an S tree with S a special semigroup for
a HLOTS X.

(a) T is a normal subtree of T (X).
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(b) If p ∈ T and β ≤ o(p), then

(6.71) p|β ∈ T and τβ(p) ∈ T.

If o(p) + 1 < h(T ), then the successor set Sp in T consists of
all of the successors of p in T (X).

(c) T is a tree of X type and T is reproductive iff h(T ) is tail-like.
(d) If 1 < β ≤ h(T ), then T β is an S tree.
(e) We can identify the branch space of T with the set

{x ∈ Xβ : β = h(T ) or an infinite limit ordinal,

x 6∈ T and x|γ ∈ T for all γ < β}.
(6.72)

(f) Assume that h(T ) is tail-like. For p, q ∈ T (X) with o(p) = α,

(6.73) p+ q ∈ T ⇐⇒ p, q ∈ T and p̂(α) < q(0).

Furthermore, if x ∈ Xβ with β > 0, then
(6.74)
p+ x ∈ X(T ) ⇐⇒ p ∈ T, x ∈ X(T ) and p̂(α) < x(0),

and so if γ < β, then

(6.75) x ∈ X(T ) =⇒ x|γ ∈ T, τγ(x) ∈ X(T ).

(g) If h(T ) is tail-like, then the branch space X(T ) is an IHLOTS

and its completion X̂(T ) is a CHLOTS.

Proof. (a), (b), (d) and (6.71) follow from condition (iv) of Definition
6.19 and (6.6). Furthermore, (6.71) implies that T is a subtree of T (X).
For p ∈ Lα the successor set in T (X) is given by

(6.76) Sp = {p+ q : q ∈ X1 and p̂(α) < q(0)}.

If p ∈ T and o(p) + 1 < h(T ) , then conditions (i) and (iv) imply that
this set is contained in T . Normality of the tree is clear from this and
condition (iv).
With β > 1 to retain condition (i), (d) is obvious.
(e) and (f) follow as in Lemma 6.9. When h(T ) is tail-like p, q ∈ T

implies o(p) + o(q) < h(T ) and x ∈ X(T ) implies o(p) + h(x) ≤ h(T ).
(c),(g): If T is reproductive, then h(T ) is tail-like. For the converse

let p ∈ T with o(p) = α. By condition (ii) s = p̂(α) ∈ X . By Lemma
6.18 there exists fs : X → (s,∞) in S. By (6.73) and condition (iii) the
map fp of (6.61) restricts to a tree isomorphism of T onto Tp. Thus, T
is reproductive. Since T ⊂ T (X), h(x) < Ω for all x ∈ X(T ). Hence,
(g) follows from Theorem 5.23.

�
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When X̂ = X , i.e. X is a CHLOTS, then the order tree T (X) is an
S tree for any special semigroup S. However, if X is an IHLOTS, then
condition (ii) fails for T (X). In that case, the reduced order tree is
defined to be

(6.77) {p ∈ T (X) : p̂(i) ∈ X for all 1 ≤ i ≤ o(p)}

is an S tree for any special semigroup S and it contains all other S trees.
In general, T (X)2 = {0}∪X1 is the unique S tree of height 2 for any

special semigroup and from T (X)2 we can build all S trees by using an
inductive construction completely analogous to that of Theorem 6.10.

Theorem 6.21. Let S be a special semigroup for a HLOTS X, α ≤ Ω
be a tail-like ordinal and T be an S tree with h(T ) = β < α.

(a) Let ǫ be a limit ordinal with β < ǫ ≤ α. If {Tδ} is a coherent
collection of S trees indexed by [β, ǫ), then

(6.78) Tǫ =
⋃
{Tδ : β ≤ δ < ǫ}

is an S tree. It defines the unique tree such that {Tδ : β ≤ δ ≤ ǫ}
is a coherent collection of trees indexed by [β, ǫ] = [β, ǫ+ 1).

(b) Let ǫ(β) = min {i : β ≤ i ≤ α and i is tail-like }. For each δ
such that β ≤ δ ≤ ǫ(β) there is a unique S tree such that

(6.79) (Tδ)
β = T for β ≤ δ ≤ ǫ(β).

The collection {Tδ : β ≤ δ ≤ ǫ(β)} is a coherent collection of
trees indexed by [β, ǫ(β)].

(c) Assume that h(T ) = β is tail-like. Using the description (6.54)
we define L̈β = {x ∈ X(T ) : h(x) = β and x̂(β) ∈ X} , a

subset of L̃β = {x ∈ X(T ) : h(x) = β}. Both L̈β and L̃β are
nonempty, S invariant, translation invariant subsets of Xβ.

If W is any nonempty, S invariant, translation invariant sub-
set of L̈β, then

(6.80) Tβ+1 = T ∪ {p+ x : p ∈ T, x ∈ W, o(p) = α and p̂(α) < x(0)}

is an S tree of height β + 1 such that

(6.81) (Tβ+1)
β = T.

Proof. The proof parallels that of Theorem 6.10 with a few adjustments
which we will note.
(a): Conditions (ii) and (iii) are obviously preserved in the union.

Condition (iv) and uniqueness are proved as in Theorem 6.10.
(b): In the inductive construction the limit stage follows from (a)

as before and the uniqueness arguments in each case are completely
analogous.
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If ǫ = δ + 1, then we define

Tǫ = Tδ ∪ {p+ q : p, q ∈ Tδ, o(p) = α, o(q) = β,

p̂(α) < q(0) and α + β = δ}.
(6.82)

Condition (ii) is clear and condition (iv) is checked as was partial ad-
ditivity before.
If f ∈ S and p, q ∈ T (X), then

(6.83) f ◦ (p+ q) = (f ◦ p) + (f ◦ q),

and with f̂ : •X̂• → •X̂• the extension of f

(6.84) (f̂ ◦ p̂) = f̂ ◦ p,

except at 0.
These let us verify condition (iii) for Tǫ and so complete the inductive

construction.
(c): From (6.72) we have for f ∈ S that

(6.85) x ∈ X(T ) ⇐⇒ f ◦ x ∈ X(T ).

Notice that here we use the fact that

(6.86) f̂(M) = M for all f ∈ S.

It follows that L̃β and L̈β are S invariant. Translation invariance follows
from (6.75).

From (6.80), (6.81) is clear. We requireW ⊂ L̈β so that condition (ii)
holds for Tβ+1. Condition (iii) uses (6.83), (6.84) and (6.85). Condition
(iv) is checked just as partial additivity was in Theorem 6.10(c).

It remains to prove that L̈β 6= ∅.
Choose a sequence a0 < a1 < ... in X with limit a ∈ X . Because β

is a countable limit ordinal we can choose a sequence 1 = β0 < β1 < ...
in Ω with limit β. We inductively construct p0, p1, ... in T such that for
i = 0, 1, ...

(6.87) o(pi) = βi, pi+1|βi = pi, p̂i(βi) = ai.

There is, then, a unique branch x of height β with x|βi = pi. Since

x̂(β) = a, we have x ∈ L̈β .
For the induction, begin with p0 ∈ X1 with p0(0) = a0. Assume that

pi is defined and choose q ∈ T such that o(q) = βi+1 \ βi which exists
because T has height β. By Lemma 5.12 and condition (ii) applied to
q there exists f ∈ S such that f(X) = (ai,∞) and

(6.88) f(q̂(βi+1 \ βi)) = ai+1.
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Define

(6.89) pi+1 = pi + f ◦ q

which lies in T by conditions (iii) and (iv). By (6.84) pi+1 satisfies
(6.87) as required.

�

Corollary 6.22. There exist countable special semigroups for the HLOTS
of rationals Q. For any countable special semigroup S for Q there ex-
ist S trees which are Aronszajn. In particular, reproductive Aronszajn
trees exist.

Proof. Choose f0 : Q → (0,∞) ∩ Q an order isomorphism. Let H

be the countable group of translations on Q. Let S be the smallest
semigroup containing {f0} ∪H. S is countable and is clearly a special
semigroup for Q.
Assume S is a countable special semigroup for Q. We will use The-

orem 6.21 to construct a coherent family {Tδ : δ < Ω} of countable S

trees.
At the infinite, tail-like ordinal β stage, it suffices to construct W ⊂

L̈β which is countably infinite, S invariant and translation invariant.

To do so, choose x ∈ L̈β and let W0 = {τi(x) : i < β} so that W0

is a countably infinite, translation invariant subset of L̈β . Then define
W0 ⊂W1 ⊂ ... by

Wn+1 = {f ◦ x : x ∈ Wn and f ∈ S}∪

{x : there exists f ∈ S such that f ◦ x ∈ Wn}.
(6.90)

Each Wn+1 is translation invariant. Since 1Q ∈ S, Wn+1 ⊃ Wn and

since L̈β is S invariant, Wn+1 ⊂ L̈β . W = ∪nWn which is S invariant
as well as translation invariant. Because S and W0 are countable, each
Wn is. Thus, W is the required countable subset of L̈β.
By Theorem 6.21(a) T = ∪{Tδ : δ < Ω} is an S tree of height Ω.

Since every branch of an S tree has countable height it follows that T
is Aronszajn. �

6.4. The Omega Thinning Construction. Recall from Proposition
2.6 the Cantor Normal Form which implies that for an ordinal α ≥ 1:
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α = ωγ1 + · · ·+ ωγk+ℓ with k, ℓ ∈ N, k + ℓ ≥ 1,

and γ1 ≥ . . . γk ≥ ω > γk+1 ≥ . . . γk+ℓ ≥ 0,

=⇒ ω · α = ωγ1 + · · ·+ ωγk + ωγk+1+1 + · · ·+ ωγk+ℓ+1.

(6.91)

In particular, α is a limit ordinal iff α = ω · β for some β ≥ 1, see
Corollary 2.7.

Definition 6.23. Assume that T is a normal bi-ordered tree with height
h(T ) a tail-like ordinal satisfying ω < h(T ) ≤ Ω and so ω2 ≤ h(T ).
Let the Omega Thinning be the tree ωT with

(6.92) ωT = {p ∈ T : o(p) is a limit ordinal}.

We will write (ωS)p for the successor set of p in the tree ωT .
So (ωS)0 = Lω and for p ∈ ωT , (ωS)p = Tp ∩ Lo(p)+ω.

If p ∈ ωT , then o(p) = ω · β for some β ≥ 1 and it follows that its
order in ωT , oω(p) = β.
So if h(T ) = ωγ, then h(ωT ) = h(T ) if γ ≥ ω and h(ωT ) = ωγ−1 if

2 ≤ γ < ω.
For p ∈ T , o(p) < h(T ) and ω < h(T ). Since h(T ) is tail-like,

o(p) + ω < h(T ) and so normality implies there exists q ∈ Tp with
o(q) = o(p) + ω. Thus condition (iv) of Definition 5.1 follows for ωT
from the same condition for T . Thus, ωT is a normal tree.

Proposition 6.24. If Sp has no max for each p ∈ T , e.g. if T is of
unbounded type, then ωT is of dense type, i.e. (ωS)p is order dense for
each p ∈ ωT .
In particular, if T is of Z type or N type, then ωT is of dense type.

Proof. We proceed as in Proposition 5.4. Let q < r ∈ (ωS)p for p ∈ ωT .
So q, r ∈ Tp and with ǫ = ǫ(q, r), we have o(p) ≤ ǫ < o(p) + ω and so
ǫ+ 2 < o(p) + ω.
qi = ri for all i ≤ ǫ and qǫ+1 < rǫ+1. Because Sqǫ+1 has no max, there

exists a ∈ Sqǫ+1 with qǫ+2 < a. By normality we can choose s ∈ T with
o(s) = o(p)+ω and sǫ+2 = a. It follows that s ∈ (ωS)p with q < s < r.

�

Since h(T ) is assumed to be a limit ordinal, and T is normal, it
follows that for any branch x ∈ X(T ) h(x) is a limit ordinal and so
from (6.91) h(x) = ω · β with β ≥ 1. A branch of ωT is of the form
x∩ ωT for a unique branch x of T which has h(x) = ω2 · β with β ≥ 1
and so that h(x) is a limit of limit ordinals. The order of x∩ωT in ωT
is then ω · β.
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The map defined by x ∩ ωT 7→ x is an order injection from X(ωT )
into X(T ). We identify X(ωT ) with its image under this map and so
regard X(ωT ) ⊂ X(T ).

Corollary 6.25. If Sp has no max for each p ∈ T , e.g. if T is of
unbounded type, then X(T ) and X(ωT ) are order dense LOTS and
X(ωT ) is a dense subset of X(T ). In particular, they have a common
connected completion.

Proof. Both X(T ) and X(ωT ) are order dense by Proposition 5.4 and
Proposition 6.24.
For any p ∈ T we show there exists x ∈ X(T ) with p ∈ x and with

h(x) a tail-like ordinal ωγ, γ ≥ 2 and so x ∩ ωT ∈ X(ωT ). It then
follows from Proposition 5.5 (g) that X(ωT ) is dense in X(T ).

Case 1 h(T ) is a countable ordinal: By Lemma 5.6, there exists
x ∈ X(T ) such that h(x) = h(T ) and p ∈ x. Since h(T ) is a tail-like
ordinal with h(T ) > ω, x ∈ X(ωT ).

Case 2 h(T ) = Ω = ωΩ : Choose γ1 > 2 so that o(p) < ωγ1. Choose
p(γ1) such that p ≺ p(γ1) and o(p(γ1)) = ωγ1. Assume that for all δ
with γ1 ≤ δ < γ, p(δ) has been chosen with o(p(δ)) = ωδ and if δ1 < δ2,
then p(δ1) ≺ p(δ2).
If γ = δ+1, then choose p(γ) such that p(δ) ≺ p(γ) and o(p(γ)) = ωγ.
If γ is a limit ordinal, then there exists a branch z ∈ X(T ) with

p(δ) ∈ z for all δ < γ. If h(z) = ωγ, then the process stops and z = x
is the required element of X(T ). Otherwise, h(z) > ωγ and we let
p(γ) = zωγ .
If the process never stops, then we obtain p(γ) for all γ with γ1 ≤

γ < Ω and these define a branch z of X(T ) with height Ω and z = x is
the required element of X(T ).

�

Proposition 6.26. If T is homogeneous or reproductive, then ωT is
homogeneous or reproductive, respectively.

Proof. Any automorphism f of T restricts to an automorphism of ωT
because o(f(p)) = o(p). So if T is homogeneous, then ωT is. In
particular, it then follows that each successor LOTS (ωS)p is transitive.
Now assume that T is reproductive and that p ∈ T . The isomorphism

jp : T → Tp induces an isomorphism of ωT onto {p} ∪ [(ωT ) ∩ Tp)].
Notice that if o(q) is a limit ordinal if and only if o(jp(q)) = o(p)+ o(q)
is a limit ordinal. If p ∈ ωT , then (ωT )p = {p}∪ [(ωT )∩Tp)]. It follows
that ωT is reproductive.
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�

We now assume for a LOTS X that T is an additive subtree of
the simple tree on X,Ω. We would like to say that ωT is then an
additive tree and indeed it is, but to make sense of this requires a bit
of preliminary work.
The set Lω of vertices of T at level ω is a subset of T ω+1 and πω+1

ω :
T ω+1 → T ω is an isomorphism. Moreover, additivity implies that T ω

is the entire simple tree on X,ω by Proposition 6.7 (f). So p 7→ Ap is
an order injection of Lω into Xω.
Because it is additive, T is reproductive by Proposition 6.7 (f) and

so ωT is reproductive by Proposition 6.26. So it follows that ωT is a
tree of (ωS)0 = Lω type. We want to identify ωT with a subtree of the
simple tree on Lω,Ω.
Using (4.20) we can identify (Lω)

α ⊂ (Xω)α = Xω·α.

Lemma 6.27. For all α with 1 ≤ α < Ω, the set of level ω · α vertices
of T , i.e. Lω·α ⊂ Xω·α, is a subset of (Lω)

α.

Proof. This is trivial for α = 1.
If α is a limit ordinal, then Lω·α ⊂ {s ∈ Xω·α : s|(ω · β) ∈ Lω·β for

all β < α}. On the other hand, (Lω)
α = {s ∈ Xω·α : s|(ω · β) ∈ (Lω)

β

for all β < α}.
If α = β + 1, then Lω·α =

⋃
(Tp ∩ Lo(p)+ω) with p varying over Lω·β.

By additivity, Tp ∩ Lo(p)+ω = {p+ q : q ∈ Lω}. So Lω·α consists of the
successors of Lω·β in the Lω,Ω simple tree.
Thus, the result follows by induction.

�

With these identifications we have:

Proposition 6.28. If T is an additive subtree of the simple tree on
X,Ω, then ωT is an additive subtree of the simple tree on Lω,Ω. If, in
addition, X is transitive, then ωT is homogeneous with Lω transitive
and order dense.

Proof. Additivity is clear and only requires identifying addition in Xω·α

with addition in (Xω)α.
If X is transitive, then T is homogeneous by Proposition 5.19 and so

ωT is homogeneous by Proposition 6.26. This implies that (ωS)0 = Lω

is transitive. Since X is transitive it has no max and so Lω is order
dense by Proposition 6.24. �
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7. The Double Tower for a CHLOTS

Given a CHLOTS F we constructed in Section 4 a tower of CHLOTS,
defining for every positive ordinal α

(7.1) Fα = {x ∈ F α : x(i) ∈ J for 1 ≤ i < α},

where J = [−1,+1] is a distinguished, nontrivial, closed interval in F .
By Theorem 4.2 each Fα is a CHLOTS when α is a countable, tail-like
ordinal. In particular, with α = 1, Fα = F . By Proposition 6.3 Fα is
order isomorphic to the completion of F α.
In Section 6.3 we defined the order tree T (F ) associated with F . We

define the arborization of a CHLOTS F to be the completion of the
branch space of its order tree. We use the notation

(7.2) a(F ) = X(T (F )) and â(F ) = ̂X(T (F )).

The order tree is of type F with X(T (F )2) ∼= S0
∼= F in a natural

way. Thus, from the projection map π2 of (5.22) we can define the
continuous order surjections

(7.3) πF : a(F )→ F and π̂F : â(F )→ F.

In Definition 4.3 we called a CHLOTS F at least as big as a CHLOTS
F1 if there exists an order injection of F1 into F . By Corollary 4.5 this is
equivalent to the existence of a, necessarily continuous, order surjection
of F onto F1. We summarize and extend some earlier results using this
comparison concept.

Proposition 7.1. Let F and F1 be CHLOTS and R be the CHLOTS
of real numbers.

(a) If F is not order isomorphic to R, then F is bigger than R.
(b) If F1 is at least as big as F and F1 satisfies the countable chain

condition, then so does F .
(c) If F1 is the completion of the branch space of an Aronszajn tree

and α is an infinite, tail-like ordinal, then F1 is not as big as
Fα.

(d) If β < α are countable, tail-like ordinals, then Fα is bigger than

Fβ and â(F ) is bigger than Fα.

Proof. (a), (b): If f : F2 → F1 is an order surjection and F2 is separa-
ble or satisfies c.c.c., then F1 satisfies the corresponding condition by
Proposition 2.11(g). If F is any CHLOTS, then by Proposition 2.15
there exists an order surjection of F onto R and so F is at least as big
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as R. If R is as big as F , then F is separable and so is order isomorphic
to R by Proposition 2.15.
(c): This is a restatement of Corollary 5.17.
(d): Since πα

β : Fα → Fβ is an order surjection, Fα is at least as big
as Fβ . By Theorem 4.12 Fβ is not as big as Fα.
Now choose an order embedding p̃ : α+1→ •F• with p̃(0) = m and

p̃(α) = M as in (6.66). The map z 7→ p(z) of (6.64) associates to each
z ∈ F α a branch of height α for the tree T (F ). We thus have an order

injection from F α ⊃ Fα into L̃α ⊂ a(F ) ⊂ â(F ). Thus, â(F ) is at least
as big as Fα. Furthermore, if γ > α is a countable, tail-like ordinal,

then â(F ) is at least as big as Fγ which is bigger than Fα. Hence, â(F )
is bigger than Fα.

�

Theorem 7.2. Let F be a CHLOTS. For every countable ordinal α

there exists a HLOTS aα(F ) with completion âα(F ) and for each pair of
countable ordinals β < α there exists an order surjection pαβ : aα(F )→

âβ(F ) with completion p̂αβ : âα(F ) → âβ(F ) so that the following con-
ditions hold.

(i) For γ < β < α < Ω we have

(7.4) pαγ = pβγ ◦ p
α
β .

(ii) For β < α < Ω define aβα(F ) ⊂ aα(F ) by

(7.5) aβα(F ) =

{
aα(F ) for β + 1 = α

∩{(pαi )
−1(ai(F )) : β < i < α} for β + 1 < α.

The restriction of pαβ to aβα(F ) is surjective. That is,

(7.6) pαβ(a
β
α(F )) = âβ(F ).

(iii) a0(F ) = â0(F ) = F .
(iv) If α = γ + 1, then

aα(F ) = a(âγ(F )).

âα(F ) = â(âγ(F )).

pαγ = π
âγ (F )

.

(7.7)
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(v) If α is a countable limit ordinal, then ({âi(F ) : i < α}, {p̂ij :
j < i < α}) is an unbounded, special inverse system and

âα(F ) =
←−−
Lim({âi(F ) : i < α}, {p̂ij : j < i < α}).

p̂αβ = coordinate projection to âβ(F ).

aα(F ) =
⋃

i<α

aiα(F ).

pαβ = p̂αβ |aα(F ).

(7.8)

Proof. Conditions (iii),(iv) and (v) define an inductive construction and
we show, inductively that at each stage aα the properties described
above hold, i.e. each aα is a HLOTS and each pαβ is an order surjection
which satisfies (7.4) and (7.6).
The construction begins with condition (iii).

Case 1: α = γ + 1. aα is an IHLOTS by Theorem 6.16, and pαγ is
the surjective order map to the level 1 vertex set of the order tree. By
Proposition 2.3(a) such a surjective order map is continuous and so its
completion is defined. For β < γ define

(7.9) pαβ = pγβ ◦ p
α
γ .

As the composition of order surjections, each pαβ is an order surjection
and (7.4) for α follows from the corresponding condition for γ.
If β = γ, then aβα = aα and (7.6) is clear from what we have already

shown. If β < γ then by (7.9) and (7.5)

(7.10) aβα(F ) = (pαγ )
−1(aβγ(F )).

Hence, (7.6) for α follows from (7.6) for γ together with (7.9).

Case 2: α is a limit ordinal. Our inductive hypothesis implies that
({âi : i < α}, {p̂ij : j < i < α}) is an unbounded, special inverse
limit system. By Proposition 2.9 the inverse limit âα is an unbounded,
connected LOTS and each p̂αβ is a continuous order surjection. By
Proposition 2.13(c) α < Ω implies that âα is of countable type and
hence, by Proposition 2.11(f), any subset has countable type.
For any β < α we can choose an increasing sequence of ordinals

β = β0 < β1 < ... with supremum α.
If z0 ∈ âβ, then because pβn

βn−1
satisfies (7.6) we can choose a sequence

z1, z2, ... such that

(7.11) zn ∈ a
βn−1

βn
with pβn

βn−1
(zn) = zn−1 for i = 1, 2, ...
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Because the sequence {βn} is cofinal in α the sequence {zn} defines a
unique element z of the inverse limit. By (7.11)

(7.12) pαi (z) ∈ ai for βn−1 < i ≤ βn, n = 1, 2, ...

So by definition (7.5) z ∈ aβα with p̂αβ(z) = z0. Strictly speaking the
maps p̂αi are used in (7.5) to define aαβ because aα and pαβ are defined
subsequently in (7.8). It follows that aα defined in (7.8) is dense in âα
and so has completion âα. Furthermore, (7.6) holds at the α level. By
definition of the inverse limit projections (7.4) holds for α.

It remains to prove that aα is doubly transitive which will imply it
is a HLOTS since it is of countable type.
Assume x < y and z < w in aα. Because α is a limit ordinal there

exists β < α such that x, y, z, w ∈ aβα with

(7.13) pαβ(x) < pαβ(y) and pαβ(z) < pαβ(w).

By definition of aβα we have

(7.14) pαi (x), p
α
i (y), p

α
i (z), p

α
i (w) ∈ aiα for β < i < α.

Since âβ is a CHLOTS there exists f̂β ∈ H+(âβ) such that

(7.15) f̂β(p
α
β(x)) = pαβ(z) and f̂β(p

α
β(y)) = pαβ(w).

By induction we will construct for β < i ≤ α, fi ∈ H+(ai) so that

(7.16) piβ ◦ fi = f̂β ◦ p
i
β and pij ◦ fi = fj ◦ p

i
j for β < j < i.

and

(7.17) fi(p
α
i (x)) = pαi (z) and fi(p

α
i (y)) = pαi (w).

If i is a limit ordinal, e.g. i = α, then we define f̂i ∈ H+(âi) to

be the inverse limit of {f̂j : β < j < i|]. That is, f̂i(z) is the unique

element of âi which projects via p̂ij to f̂j(p̂
α
j (z)). Since each f̂j is the

completion of an isomorphism fj, it follows that f̂i maps ai to ai. The

restriction of f̂i to ai defines fi so that (7.16) holds and the original f̂i is
the completion of fi. Because âi is the inverse limit of its predecessors,
pαi (r) is determined by the maps pαj (r) for β < j < i. Hence, (7.17) for
i follows from the inductively assumed equations for j < i.
Finally, assume that i = k+1 and that fj is defined for all β < j ≤ k

so that (7.16) and (7.17) hold.
Now we use the tree structure: ai is the branch space of the order

tree on âk. We can regard f̂k as an order isomorphism on the level 1
vertices of the tree. By (7.14) pαi (x), ..., p

α
i (w) are branches in ai with

vertices at the 1 level pαk (x), ..., p
α
k (w).
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By Theorem 6.16 the order tree T (âk) is reproductive and so is ho-
mogeneous by Proposition 5.19. We use a variation of the proof of
Lemma 5.20(a).
For each r ∈ S0 = âk we choose a tree isomorphism gr : Tr → Tf̂k(r)

.

With r1 = pαk (x), f̂k(r1) = r2 = pαk (z). So the branches (gr1)∗(p
α
i (x) ∩

Tr1) and pαi (z)∩Tr2 both lie in the branch space of the homogeneous tree
Tr2. We can adjust gr1 so that these two are in fact equal. Similarly,
for pαi (y) and pαi (w). Assemble the maps gr to get a tree isomorphism
g. Then g∗ ∈ H+(ai) so that

(7.18) pik ◦ g∗ = f̂k ◦ p
i
k.

We let fi = g∗. From the construction (7.17) is clear and (7.16) for
i follows from (7.16) for k together with condition (i).
This completes the inductive construction. The case i = α yields fα

which is the required order isomorphism of aα which maps the pair x, y
to the pair z, w.

�

Theorem 7.3. For a CHLOTS F and (i, j) ∈ Ω × Ω define the
CHLOTS

(7.19) F(i,j) = (âi(F ))ωj .

F(0,0)
∼= F and if (i, j) < (̃i, j̃) in Ω×Ω, then F(̃i,j̃) is bigger than F(i,j).

In particular, F(̃i,j̃) is not homeomorphic to F(i,j).

Proof. Recall that as j varies through the countable ordinals, ωj varies
through the countable, tail-like ordinals and j < j̃ iff ωj < ωj̃. Also,
ω0 = 1. For any countable, tail-like ordinal α Fα defined by (6.1) is a
CHLOTS and F1

∼= F . So by Theorem 7.2, F(i,j) is a CHLOTS for all
(i, j) ∈ Ω× Ω.

If i = ĩ and F̃ = âi(F ), then j < j̃ implies F̃β is bigger than F̃α with

β = ωj̃ and α = ωj by Theorem 4.12. Thus, F(̃i,j̃) is bigger than F(i,j).

Now suppose that i < ĩ so that i+ 1 ≤ ĩ.
First, F(̃i,j̃) is at least as big as F(̃i,0) and so by using the projections

of Theorem 7.2 we see that F(̃i,0) is as big as F(i+1,0) = ̂a(F(i,0)). By

Proposition 7.1(d), F(i+1,0) is bigger than F(i,j). Thus, F(̃i,j̃) is bigger
than F(i,j).
That F(i,j) and F(̃i,j̃) are not homeomorphic follows just as in Theo-

rem 4.12 because F ′
(i,j) injects into F(̃i,j̃).

�
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For the associated Cantor spaces which are the compactifications of
the AS doubles we have the following extension of Theorem 4.14.

Corollary 7.4. For a CHLOTS F and (i, j), (̃i, j̃) ∈ Ω× Ω if (i, j) <
(̃i, j̃) in Ω × Ω, then C(F(̃i,j̃)) is bigger than C(F(i,j)). In particular,

C(F(̃i,j̃)) is not isomorphic to C(F(i,j)).

Proof. If i = ĩ this follows directly from in Theorem 4.14.
If i < ĩ, then by Theorem 7.3 F(̃i,j̃) is bigger than F(i,j+1) and so

C(F(̃i,j̃)) is at least as big as C(F(i,j+1)). By Theorem 4.14 again

C(F(i,j+1)) is bigger than C(F(i,j)).
�

We call a LOTS X R-bounded if it admits an order injection into Rδ

for some countable ordinal δ.

Corollary 7.5. For a CHLOTS F and (i, j) ∈ Ω × Ω with 0 < i, the
CHLOTS F(i,j) is not R-bounded.

Proof. F(i,j) is at least as large as â(F ) = F(1,0) which is larger than Fα

for every countable α and Fα is at least as large as Rα.
�

8. The Tree Characterization of a CHLOTS

8.1. A Tree for a LOTS and the IHLOTS Tower. We begin with
a version of the partition tree for a LOTS, described in [19] and in [7].
Throughout this section, all intervals in a LOTS X will be assumed

nonempty. A singleton is an improper closed interval and so an interval
with at least two points is a proper interval. If I is a proper interval
with endpoints a < b then we let I◦ = (a, b).
For intervals I1, I2 in a LOTS we will write

(8.1) I1 < I2 ⇐⇒ I1 6= I2 and c1 ≤ c2 for all c1 ∈ I1, c2 ∈ I2,

and so I1 ∩ I2 is either empty or consists of a single common endpoint.
Recall that we use #X for the cardinality of a set X .

Theorem 8.1. If X is a connected, first countable, bounded LOTS
X, there is an Ω bounded subtree T of the simple tree on Z,Ω whose
branch space is order isomorphic to a dense subset of X. In particular,
#X ≤ 2ℵ0.
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Proof. We let m,M be the minimum and maximum of X , respectively,
so that X = [m,M ]. If X is a singleton, then the subtree consisting of
the root of the simple tree has branch space isomorphic to X and so
we may assume that m < M .
For α ≤ Ω, s ∈ Zα we will associate a closed interval Is = [as, bs] in

X . We will call s proper when the interval Is is proper and so as < bs.
The construction will satisfy the following properties.

(i) I∅ = [m,M ].
(ii) If β < α ≤ Ω and s ∈ Zα, then Is ⊂ Is|β and if s|β is proper,

then Is ⊂ I◦s|β.

(iii) If α ≤ Ω is a limit ordinal and s ∈ Zα, then Is =
⋂

β<α Is|β.

(iv) If s1 < s2 in Zα, then Is1 < Is2 .

If s ∈ Xα is proper with Is = [as, bs], then in Is we choose a ±cofinal
embedding of z : Z→ (as, bs). If s′ ∈ Zα+1 with s′|α = s and s′(α) = n,
then we let Is′ = [zn, zn+1]. The set of successors Ss

∼= Z and if s′′ ∈ Ss

has s′′|α = s and s′′(α) = n + 1, then bs
′

= as
′′

. It follows that if s is
proper, then all of its successors are proper. Observe that Is′ ⊂ I◦s .
If s ∈ Xα is improper, then we let Is′ = Is for all s

′ ∈ Ss.
The construction is completed by using (iii) for limit ordinals.

Conditions (i) - (iv) are easy to check from the inductive construc-
tion.
The subtree T = {s : s is proper }, i.e. s ∈ T iff Is is a proper

interval. It is clear from (i) and (ii) that T is a nonempty subtree of
the simple tree.
We can identify the branch space X(T ) with

(8.2) {x ∈ Zα : x|β ∈ T for all β < α, and x 6∈ T}.

That is,

(8.3) x ∈ X(T ) ⇔ Ix|β is proper for all β < α and Ix is not proper.

Since every successor of a proper element is proper, it follows that h(x)
is a limit ordinal for all x ∈ X(T ).
For x ∈ X(T ) we let f(x) = ax ∈ X so that Ix is the singleton {ax}.

Furthermore, β 7→ ax|β is an embedding of the ordinal h(x) into X with
limit (= sup) ax and β 7→ bx|β is an embedding of h(x)∗ into X with
limit (= inf) ax. Because X is first countable, Ω does not inject into
X . It follows that h(x) is a countable ordinal. Hence, T is Ω bounded.
Observe that if s ∈ T α and β < α, then Is ⊂ I◦s|β and so as|β < as <

bs < bs|β. Also if s1 < s2 ∈ T α, then by (iv) I◦s1 < I◦s2 in X .



TREES AND HOMOGENEOUS LOTS 133

It follows that x1 < x2 in X(T ) implies ax1 < ax2 and so f is an
order injection from X(T ) into X .
For α a countable ordinal, we let Cα = {as : s ∈ T α} ∪ {bs : s ∈ T α}

and C =
⋃

α<Ω Cα so that C is the set of endpoints of the proper
intervals. Because we are taking the union over the countable ordinals,
we have #C ≤ 2ℵ0 .
By induction on α we see that for each α ≤ Ω the set X is partitioned

into three subsets:

(8.4)
⋃

β≤α

Cβ, {ax : x ∈ X(T ) with height ≤ α},
⋃

s∈Tα

I◦s .

So with α = Ω we obtain X is the disjoint union of C and f(X(T )).
Since every ax is a limit of elements of C, it follows that C is dense in
X . Because every element of X is thus a limit of a sequence in C it
follows that #X ≤ 2ℵ0 .
If s ∈ T α then s is contained in some branch x and so as < ax < bs.

If s < s1 ∈ T with as < as1 , then as < bs ≤ as1 and so as < ax < as1.
It follows that f(X(T )) is dense in X and so is order dense because
X is connected. It follows that f : X(T ) → X is an order embedding
onto a dense subset.

�

The cardinality result is well-known. See, e.g. [6] Section 4.
We will require a height estimate for a special case.

Theorem 8.2. If α is a positive ordinal, then Rα
∼= X̂(T ) with T a

tree of Z type with height h(T ) ≤ ω · α.

Proof. With J = [−1,+1] ⊂ R we can replace Rα by the isomorph
{x ∈ Jα : −1 < x0 < +1}, ie. the interval (−1+,+1−) ⊂ Jα. We let
X be the closed interval [−1+,+1−] ⊂ Jα, which is isomorphic to the
two point compactification of Rα.
For a < b in X let ǫ = min{i : ai 6= bi} so that ai = bi for all i < ǫ

and aǫ < bǫ. We define the midpoint of the interval [a, b] to be the
point c with

(8.5) ci =





ai = bi for i < ǫ,
1
2
(aǫ + bǫ) for i = ǫ,

0 for ǫ < i < α.

Notice that on J ⊂ R algebraic notions and length are defined.
Now we apply the above construction to X with the proviso that if

Is = [as, bs] is a proper interval, then the ±cofinal sequence z : Z →
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(as, bs) maps 0 ∈ Z to the midpoint of [as, bs]. This then implies for all
n ∈ Z

(8.6) (zn+1)ǫ − (zn)ǫ ≤
1

2
(bsǫ − asǫ).

We now show, by induction, that for all β with 0 < β ≤ α

(8.7) s ∈ Zω·β =⇒ asi = bsi for all i < β.

Case 1 β = γ + 1:
Let s ∈ Zω·β. The induction hypothesis applied to s0 = s|ω·γ implies

that as0i = bs0i for all i < γ. Since, [as, bs] ⊂ [as0, bs0], as0γ = bs0γ implies
asγ = bsγ and so asi = bsi for all i < β.

Assume, instead, that as0γ < bs0γ . Let sn = s|(ω · γ + n) for n < ω. It

follows from (8.6) bsnγ − asnγ ≤
1
2n
(bs0γ − as0γ ).

Because ω · β = ω · γ + ω, Is =
⋂

n Isn and it follows that bsγ = asγ.
Hence, again asi = bsi for all i < β.

Case 2 β is a limit ordinal:
If γ < β, then with s′ = s|ω · γ we have Is ⊂ Is′. So the induction

hypothesis applied to s′ implies that bsi = asi for all i < γ. Since β is
a limit ordinal and γ < β is arbitrary, it follows that asi = bsi for all
i < β.

From (8.7) applied with β = α we see that for all s ∈ Zω·α, asi = bsi
for all i < α. Since as, bs ∈ Jα this means as = bs. Hence, the interval
Is is improper.
Thus, the tree T consisting of those s with Is proper is a subtree of

the simple tree on Z, ω · α and so has height at most ω · α.
�

Corollary 8.3. If α is a positive ordinal and X is an unbounded LOTS,

then there exists an order injection from Rα into the completion X̂ω·α.

Proof. We can identify Xω·α with the branch space on the simple tree
on X,ω · α. Since X is unbounded and ω · α is a limit ordinal, Xω·α is
order dense by Proposition 5.4. In particular, Zω·α is order dense.
By Theorem 8.2 Rα is the completion of the branch space of a tree T

which is a subtree of the simple tree on on Z, ω ·α. From the inclusion
of T into the simple tree we obtain an order injection from the branch
space X(T ) into Zω·α from Proposition 6.5. By Proposition 2.10 the
extension to the completions is injective. That is, we obtain an order

injection from Rα to Ẑω·α.
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Since X is unbounded, there is an order injection from Z to X . From
it we obtain an order injection from Zω·α to Xω·α which extends to an
injection between the completions.
Composing, we obtain the required order injection.

�

Corollary 8.4. Assume that X,X1 are HLOTS and that X1 admits an
order injection into Rδ for some countable ordinal δ. If β is a positive
ordinal and α is a countable, tail-like ordinal such that α > ω · δ · β,
then there does not exist an order injection of the completions from X̂α

into (̂X1)β nor an order injection of the Cantor Spaces from C(X̂α)

into C((̂X1)β).

Proof. The injection of X1 into Rδ induces an injection from (̂X1)β to
(Rδ)β which is isomorphic to Rδ·β by (4.21). So there is an injection

from C((̂X1)β) to C(Rδ·β) which in turn injects into R(δ·β)+1.
Since α is tail-like and β, δ > 0, α > ω ·δ ·β implies α > ω ·δ ·β+ω =

ω · (δ · β + 1). Hence, there is an order injection from ̂Xω·(δ·β+1) into

X̂α.
By Proposition 6.3, X̂α ∼= X̂α.

Hence, from an order injection from X̂α to (̂X1)β we would obtain

an order injection from ̂Xω·(δ·β+1) into Rδ·β.
By Corollary 8.3 there exists an order injection from Rδ·β+1 into
̂Xω·(δ·β+1).
The composition would contradict Theorem 4.12.

The order injection from Rδ·β+1 into ̂Xω·(δ·β+1) induces an order in-

jection from C(Rδ·β+1) into C( ̂Xω·(δ·β+1)).

As above, from an order injection from C(X̂α) to C((̂X1)β) we would

obtain an order injection from C( ̂Xω·(δ·β+1)) into R(δ·β)+1.
Since R′

δ·β+1 ⊂ C(Rδ·β+1), the composition would yield an injection
from R′

δ·β+1 to Rδ·β+1. This contradicts Corollary 4.11 which says that
Rδ·β+1 is order simple.

�

Recall that a LOTS X is R-bounded if it admits an order injection
into Rδ for some countable ordinal δ. Of course, it then injects into
any Rγ with δ ≤ γ < Ω.
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Proposition 8.5. Assume X is an R-bounded LOTS.

(a) For any countable ordinal α, Xα and Xα are R-bounded LOTS.
(b) If X is order dense, then its completion is R-bounded.
(c) If T is a tree of X type h(T ) < Ω, then X(T ) is R-bounded.

Proof. On the one hand, Rδ ⊂ Rδ. On the other, R ∼= J◦ implies that
Rδ injects into Rδ, i.e. they have the same size. So X injects into Rδ

iff it injects into Rδ.
(a): If X injects into Rδ, then Xα injects into (Rδ)α ∼= Rδ·α (see

Proposition 4.7(d)). So Xα is R-bounded when X is and α is countable.
Since Xα ⊂ Xα it is R-bounded as well.
(b): If X is an order dense LOTS, and j : X → Rδ is an order

injection, then ĵ is an order injection on the completion by Proposition
2.10.
(c): By Proposition 6.5 X(T ) injects into Xα if h(T ) = α. So by

(a), X(T ) is R-bounded.
�

In particular, Proposition 8.5 implies that if T is a tree of Z type
with height a countable limit ordinal, then X(T ) and its completion
are R-bounded. By sharpening the proof of Theorem 8.2 we obtain the
following converse.

Theorem 8.6. If X is a connected LOTS which admits an order in-

jection f : X → Rα with α a positive ordinal, then X ∼= X̂(T ) with T
a tree of Z type with height h(T ) ≤ ω · α.

Proof. With J = [−1,+1] ⊂ R we can, as before, replace Rα by the
isomorph {x ∈ Jα : −1 < x0 < +1}, ie. the interval (−1+,+1−) ⊂ Jα.
We let Z be the closed interval [−1+,+1−] ⊂ Jα, which is isomorphic
to the two point compactification of Rα. Assume that f : X → Z is an
order injection. Let πi : Z → J be the projection to the i coordinate
with i < α.
For a < b inX let ǫ = min{i : f(a)i 6= f(b)i} so that f(a)i = f(b)i for

all i < ǫ and f(a)ǫ < f(b)ǫ. We again have that πǫ ◦ f([a, b]) ⊂ J ⊂ R
and so again algebraic notions and length are defined there. Notice
that the order preserving map πǫ ◦ f need not be continuous and so its
image on [a, b] need not be connected. So we have to consider some
cases.
Let t1 = f(a)ǫ +

1
3
(f(b)ǫ − f(a)ǫ) and t2 = f(a)ǫ +

2
3
(f(b)ǫ − f(a)ǫ).

Case 1 (midpoint case): If πǫ◦f([a, b])∩[t1, t2] 6= ∅, then let c ∈ (a, b)
such that f(c)ǫ ∈ [t1, t2]. Because πǫ ◦ f is order preserving we have
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that [a1, b1] ⊂ [a, c] or [a1, b1] ⊂ [c, b] implies f(b1)ǫ−f(a1)ǫ ≤
2
3
(f(b)ǫ−

f(a)ǫ).

Case 2 (edge cases): The left edge case applies when πǫ ◦ f((a, b))∩
(f(a)ǫ, t1) = ∅ whereas the right edge case applies when πǫ ◦ f((a, b))∩
(t2, f(b)ǫ) = ∅. For either edge case, [a1, b1] ⊂ (a, b) implies f(b1)ǫ −
f(a1)ǫ ≤

2
3
(f(b)ǫ − f(a)ǫ).

Case 3 (boundary cases): If neither Case 1 nor Case 2 applies,
then A1 = [a, b] ∩ (πǫ ◦ f)

−1[f(a)ǫ, t1) is a proper convex set which
contain a and A2 = [a, b] ∩ (πǫ ◦ f)

−1(t2, f(b)ǫ] is a proper convex set
which contains b and their union is [a, b] since Case 1 does not apply.
Because X is connected, there exists a unique c ∈ (a, b) such that
[a, c) ⊂ A1 and (c, b] ⊂ A2. If [a1, b1] ⊂ [a, c) or [a1, b1] ⊂ (c, b], then
f(b1)ǫ − f(a1)ǫ ≤

2
3
(f(b)ǫ − f(a)ǫ). The inequality also holds if b1 = c

with c ∈ A1 and if a1 = c with c ∈ A2.
Finally, if c ∈ A1, then the inequality does not hold for [c, b1], but

now the interval [c, b1] is itself a left edge case. Similarly, if c ∈ A2,
then the inequality does not hold for [a1, c], but the interval [a1, c] is a
right edge case.

As we did for Theorem 8.2, we apply the construction from the proof
of Theorem 8.1to X with the proviso that if Is = [as, bs] is a proper
interval, then the ±cofinal sequence z : Z → (as, bs) maps 0 ∈ Z to
the choice c ∈ (as, bs) when either Case 1 or Case 3 applies. This then
implies for all n ∈ Z

(8.8) (zn+1)ǫ − (zn)ǫ ≤
2

3
(bsǫ − asǫ),

except that in the boundary Case 3 with n = 0, we have for c = z0 ∈ A1,
the interval [z0, z1] is a left edge case and for c = z0 ∈ A2, [z−1, z0] is a
right edge case.
Now we proceed as before showing, by induction, that for all β with

0 < β ≤ α

(8.9) s ∈ Zω·β =⇒ f(as)i = f(bs)i for all i < β.

Case 1 β = γ + 1:
Let s ∈ Zω·β. The induction hypothesis applied to s0 = s|ω · γ

implies that f(as0)i = f(bs0)i for all i < γ. Since, [as, bs] ⊂ [as0, bs0],
f(as0)γ = f(bs0)γ implies f(as)γ = f(bs)γ and so asi = bsi for all i < β.
Assume, instead, that f(as0)γ < f(bs0)γ so that ǫ = γ for the interval

[as0, bs0]. Let sn = s|(ω · γ + n) for n < ω. At worst, every other step
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shrinks length by a factor of 2/3. This suffices to show, as before, that
ω · β = ω · γ + ω, Is =

⋂
n Isn implies f(bs)γ = f(as)γ. Hence, again

f(as)i = f(bs)i for all i < β.

Case 2 β is a limit ordinal:
If γ < β, then with s′ = s|ω · γ we have Is ⊂ Is′. So the induction

hypothesis applied to s′ implies that f(bs)i = f(as)i for all i < γ. Since
β is a limit ordinal and γ < β is arbitrary, it follows that f(as)i = f(bs)i
for all i < β.

From (8.9) applied with β = α we see that for all s ∈ Zω·α, f(as)i =
f(bs)i for all i < α. Since f(as), f(bs) ∈ Jα this means f(as) = f(bs).
Because f is injective, as = bs. Hence, the interval Is is improper.
Thus, the tree T consisting of those s with Is proper is a subtree of

the simple tree on Z, ω · α and so has height at most ω · α.
�

Theorem 8.7. If X is an R-bounded IHLOTS, then the tower of

CHLOTS X̂ωγ is nondecreasing in size and is strictly increasing in
size for sufficiently large γ and the tower of CHLOTS Cantor Spaces

C(X̂ωγ ) is nondecreasing in size and is strictly increasing in size for
sufficiently large γ.

To be precise, if X injects into Rωγ0 , then X̂ωγ1 is strictly bigger than

X̂ωγ2 and C(X̂ωγ1 ) is strictly bigger than C(X̂ωγ2 ) when γ1 > 1+γ0+γ2.

Proof. The precise estimate is clear from Corollary 8.4. In particular,
if γ3 is the smallest tail-like ordinal larger than γ0, then 1+γ0+γ2 = γ2
when γ2 ≥ γ3. That is, beyond γ3 the sequences are strictly increasing
in size.

�

By Corollary 7.5 there exist CHLOTS which are not R-bounded, e.g.

â(R).

Now with X a CHLOTS we want to sharpen the tree construction
from Theorem 8.1 so that we obtain T as an additive tree.
We begin by choosing two points labeled −1 < 1 ∈ X and apply

the construction to I = [−1, 1]. The image f(X(T )) of the branch
space of the tree constructed in Theorem 8.1 is dense in (−1, 1) which
is isomorphic to X .
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In order to obtain an additive tree we will have to choose the ±cofinal
embeddings of Z in a coherent way. We will inductively define ts : I →
Is which is the constant map when Is is improper and is an isomorphism
when Is is proper.

8.2. The Alphabet Construction. Regard a set A as an alphabet
and for every a ∈ A there is defined a map ta : I → Ia with Ia
an interval contained in I◦. If Ia is a proper interval, then ta is an
isomorphism. If Ia is improper, then ta is the constant map. In either
case, ta is continuous. In addition, we let I∅ = I with t∅ the identity
1I . We call A+ = {a ∈ A : Ia is a proper interval } ⊂ A the proper
alphabet .
We will extend these to Ak for k < ω and to Aω, i.e. the spaces of

finite and infinite sequences.
A word w ∈ Ak is a finite sequence a0a2 . . . ak−1 in A with ∅ the

empty word of length 0. For a word w ∈ Ak with k ≥ 1, we define the
map tw = ta0 ◦ ta1 ◦ . . . tak−1

from I onto its image denoted Iw. We call
the word proper when all of its letters lie in the proper alphabet. In
that case, tw is an isomorphism. If the interval Iai is improper, then tw
is the constant map onto the singleton Iw = (ta0 ◦ · · · ◦ tai−1

)(Iai).
If w is the concatenation w1w2 and w1 is proper, then Iw ⊂ I◦w1

. No-
tice that for proper words w1, w2, w, the composition tw1w ◦ (tw2w)

−1 :
Iw2w → Iw1w is an isomorphism which is the restriction of the isomor-
phism tw1 ◦ (tw2)

−1 : Iw2 → Iw1.
We now consider the space of infinite sequences Aω. Let τ denote

the shift map on Aω with τ(s)i = si+1.
For s ∈ Aω we define the associated interval Is =

⋂
n Is|n with s|n

equal to the word s0 . . . sn−1. Because a continuous map commutes
with the decreasing intersection of compacta, we have for a word w
and z ∈ Aω

(8.10) Iwz = tw(Iz).

Hence, Iwz is proper if and only if Iz is proper and the word w is proper.
When Is is improper, we let ts : I → Is be the constant map. In

particular, this applies to any sequence s ∈ Aω \ Aω
+.

Now we restrict attention to sequences in the proper alphabet A+.
We call two sequences s1, s2 ∈ Aω

+ end-equivalent if there exist i1, i2 ∈
ω such that τ i1(s1) = τ i2(s2), or, equivalently, when there exist proper
words w1, w2 and z ∈ Aω

+ such that s1 = w1z, s2 = w2z. We call them
level end-equivalent when, in addition, i1 and i2 can be chosen equal,
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or, equivalently, the words w1 and w2 have the same length. We call the
end-equivalence class of s the class of s. The class of s is subdivided
into level classes .
If for a sequence s the interval Is is proper, then by (8.10) Is1 is

proper for every sequence s1 end-equivalent to s. We will call the class
proper when it consists of sequences with proper associated intervals.
A sequence s is eventually periodic if there exist i, p ∈ N with p > 0

such that τ i(s) = τ i+p(s) and so τ i(s) = τ i+np(s) for all n ∈ N. The
minimum such p is called the period of s. Clearly if s1 is end-equivalent
to s and s is eventually periodic then s1 is eventually periodic with the
same period. We call a class periodic if it consists of eventually periodic
sequences. Otherwise we call the class nonperiodic.
If s is not eventually periodic then the sequences τ i(s) are all distinct.

In fact, all lie in different level classes. So if s1, s2 are in a nonperiodic
class and k1, k2, j1, j2 ≥ 0, then

(8.11) τk1(s1) = τk2(s2) and τk1+j1(s1) = τk2+j2(s2) =⇒ j1 = j2.

When a class is proper, we will choose a representative element s for
the class and choose ts : I → Is an isomorphism for this representative.

Case 1 Nonperiodic Proper Class: For a nonperiodic proper class
let ts : I → Is be the chosen isomorphism for the chosen representative.
If s1 is end-equivalent to s then we let k be the minimum such that

τk(s) = τk1(s1) for some k1 and then choose k1 minimum. Thus, there
are unique words w,w1 of length k, k1 and z ∈ AN

+ such that s =
wz, s1 = w1z. By (8.10) tw|Iz : Iz → Is and tw1 |Iz : Iz → Is1 are
isomorphisms. We define ts1 = tw1 ◦ (tw)

−1 ◦ ts.
If s = w′z′, s1 = w′

1z
′ for finite words w′, w′

1 and z′ ∈ Aω
+ then by

minimality there exists a word u such that w′ = wu and z = uz′. So
by (8.11) it follows that w′

1 = w1u. Again tw ◦ tu = tw′ restricts to an
isomorphism from Iz′ to Is and tw1◦tu = tw′

1
restricts to an isomorphism

from Iz′ to Is1. So we have

(8.12) tw′

1
◦(tw′)−1◦ts = tw1 ◦tu◦(tw ◦tu)

−1◦ts = tw1 ◦(tw)
−1◦ts = ts1.

So if s2 = w2 s1 = w2w1z, then s2 is end-equivalent to s1 and

(8.13) ts2 = tw2w1 ◦ (tw)
−1 ◦ ts = tw2 ◦ ts1.

It follows that

(8.14) s1 = w1z, s2 = w2z =⇒ ts1 = tw1 ◦ tz = tw1 ◦ (tw2)
−1 ◦ ts2.
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Case 2 Periodic Proper Class: If s is eventually periodic with period
p, and so for some i τ i(s) = τ i+p(s) then there exists a finite word e =
e0e1 . . . ep−1 such that τ i(s) = eτ i+p(s). We let ē ∈ Aω

+ be the periodic
element in the class with ēi = ej if i is congruent to j mod p. Since
ē = eē we have te(Iē) = Iē. That is, te restricts to an automorphism of
Iē and so, in particular, fixes the endpoints of Iē.
While the period p is uniquely associated with all members of the

class, the minimum block e is not unique when p > 1. For i = 1, . . . , p−
1 cyclic permutations ei . . . ep−1e0 . . . ei−1 are blocks of length p with
ei . . . ep−1e0 . . . ei−1 end-equivalent to ē. To be precise, ei . . . ep−1ē =
ei . . . ep−1e0 . . . ei−1.
The periodic class of period p consists of p level classes, each con-

taining one of the periodic elements ei . . . ep−1e0 . . . ei−1.
Assume that the periodic class is proper. We fix a minimum block e

and use ē as the representative of the class. Then we choose the isomor-
phism tē : I → Iē. We choose ei . . . ep−1e0 . . . ei−1 as the representative
of its level class and define tei...ep−1e0...ei−1

= tei...ep−1 ◦ tē.
Now we operate in each level class separately using its unique peri-

odic element as representative. We look at the level class containing
ē.
A sequence s1 is in the level class of ē if and only if there exists

a word w of length |w| = np for some n ∈ ω such that s1 = wē.
We choose w to be the unique such word with n minimum and define
ts1 = tw ◦ (te)

−n ◦ tē, with (te)
−n the n-fold iterate of (te)

−1 (= identity
when n = 0).
If s1 = w′ē then |w′| = n′p for some n′ ∈ ω. It follows that n′ = n+k

for some k ∈ ω and w′ = w(e)k.

(8.15) tw′ ◦ (te)
−n′

◦ tē = tw ◦ t
k
e ◦ (te)

−(n+k) ◦ tē = ts1.

So we have

s1 = w1ē, s2 = w2ē, and |w1| = np = |w2| =⇒

ts1 = tw1 ◦ (te)
−n ◦ tē = tw1 ◦ t

−1
w2
◦ ts2 .

(8.16)

This completes the Alphabet Construction.

Example 8.8. Proper intervals and fixed points.

If, in the Alphabet Construction, e is a finite word with ē the asso-
ciated periodic sequence and Iē = [a, b] interval, then te is an automor-
phism of [a, b] and so the endpoints are fixed points of te. They are
distinct if the interval is proper.
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The set of fixed points {x ∈ I : te(x) = x} is closed with minimum m
and maximum M . If m < M , then te(I) is an interval which contains
m and M and so [m,M ] ⊂ te(I) and so by induction [m,M ] ⊂ tke(I)
for all k ∈ ω. It follows that [a, b] = [m.M ]. Thus, ē is improper
if and only if te has a unique fixed point. Finally, if [a, b] ⊂ [a1, b1]

◦

and [a1, b1] ⊂ I◦, then there exist isomorphisms [−1, a] → [a1, a] and
[b, 1]→ [b, b1]. Combining these with the identity on [a, b] we can define
te : I → [a1, b1] which fixes [a, b].

8.3. The Additive Tree for a CHLOTS. We now proceed with our
inductive construction of the mappings ts. As part of the construction
we will prove the following:

Composition Property Let s1, s2 ∈ Zα. If β is an ordinal with
β < α such that τβ(s1) = τβ(s2), and s1|β and s2|β are proper, then s1
is proper if and only if s2 is proper and in that case then

(8.17) ts1 = (ts1|β) ◦ (ts2|β)
−1 ◦ ts2.

If an ordinal α is a sum of ordinals α = α1 + α2 + . . . αk, we will
write σi = α1 + . . . αi for i = 1, . . . k and for s ∈ Zα we will write

s1 = s|α1, s2 = τα1(s)|α2, s3 = τσ2(s)|α3, . . . , sk = τσk−1
(s).(8.18)

So that s = s1 + s2 + . . . sk in the simple tree.

Step 1 α ≤ ω :
We first let t∅ be the identity on I.
We then choose a ±cofinal embedding of Z into (−1, 1) and for each

n ∈ Z we choose an isomorphism tn : I → [zn, zn+1].
We apply the Alphabet Construction with A = Z and using tn for

n ∈ Z. So in this case, the entire alphabet is proper and from the
Alphabet Construction we obtain ts : I → Is for every s ∈ Zα with
α ≤ ω. Because a class is either entirely proper or entirely improper,
the Composition Property follows from (8.14) in the nonperiodic case
and from (8.16) in the periodic case.

Step 2 ωγ < α < ωγ+1 with γ ≥ 1 :
For α between ωγ and ωγ+1 Cantor Normal Form is α = α1 + α2 +

. . . αk with ωγ = α1 ≥ α2 ≥ . . . αk tail-like. As in (8.18) for s ∈ Zα we
have the decomposition s = s1 + s2 + . . . sk.
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We use the induction hypothesis to define

(8.19) ts = ts1 ◦ ts2 ◦ . . . tsk : I → Is

with Is the image of ts.
Thus, s is proper if and only if each si is proper and the composition

is then an isomorphism. If, instead, i is the smallest index such that
si is improper, then Is is the singleton ts1 ◦ ts2 ◦ . . . tsi−1

(Isi) and the
constant map ts is the composition ts1 ◦ ts2 ◦ . . . tsi.
For the Composition Property let s1, s2 ∈ Zα and for ǫ = 1, 2 we

decompose sǫ = sǫ1 + sǫ2 + . . . sǫk. Assume β < α such that τβ(s1) =
τβ(s2) and sǫ|β is proper for ǫ = 1, 2.
Let i ≤ k be the minimum such that β < σi and let β1 = β \ σi−1. If

i = 1, then σ0 = 0 by convention and β1 = β.
Since τβ(s1) = τβ(s2) we have s1j = s2j for j = i + 1, . . . k and for

such j we will write sj for s1j = s2j . In addition, τβ1(s1i) = τβ1(s2i).
So from (8.19) we obtain (since β1 < αi):

tsǫ|σi = tsǫ1 ◦ . . . tsǫi ,

tsǫ|β = tsǫ1 ◦ . . . tsǫ(i−1)
◦ tsǫi|β1,

tsǫ = tsǫ|σi ◦ tsi+1
◦ . . . tsk .

(8.20)

Because s1|β and s2|β are proper, the maps tsǫ1, tsǫ(i−1)
, tsǫi|β1 are

isomorphisms.
By the Composition Property for s1i, s2i ∈ Zαi we have that s1i is

improper if and only if s2i is improper in which case s1 and s2 are both
improper. In addition if any of si+1, . . . , sk are improper, then both s1
and s2 are improper.
Assume, instead, that both s1i and s2i as well as si+1, . . . , sk are

proper. The Composition Property for s1i, s2i implies

ts1i = (ts1i|β1) ◦ (ts2i|β1)
−1 ◦ ts2i .

From this and (8.20) it follows that

ts1|σi = (ts1|β) ◦ (ts2|β)
−1 ◦ ts2|σi .

and we compose with tsi+1
◦ . . . tsk to obtain the Composition Property

for s1 and s2.
If α′ = α + 1 is the successor of α, then the Cantor Normal Form

for α′ is α′ = α1 + α2 + . . . αk + αk+1 with αk+1 = 1. Recall that 1
is the unique tail-like ordinal which is not a limit ordinal. If s′ ∈ Zα′

with s′|α = s, then ts′ = ts ◦ tn where n = s′(α). Thus, in both Step
1 and Step 2, we are using the ±cofinal map ts ◦ z : Z → I◦s for Is,
where z : Z → I is the ±cofinal map with which we began. so that,
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inductively, the intervals Is are those obtained in the construction of
Theorem 8.1. As before, each successor s′ is proper when s is.

Step 3 α = ωγ+1 :
We have Zωγ+1

= Zωγ ·ω which we identify with (Zωγ

)ω as in (4.20).

That is, we regard an element of Zωγ+1
as a sequence of elements of

the alphabet A = Zωγ

. The proper alphabet consists of the proper
elements of Zωγ

.
We now apply the Alphabet Construction to define ts : I → Is for

all s ∈ Zωγ+1
. In particular, from the Alphabet Construction we obtain

(iii) of the construction for Theorem 8.1.

For the Composition Property, let s1, s2 ∈ Zωγ+1
and β be an ordinal

less than ωγ+1. Assume that τβ(s1) = τβ(s2) and that s1|β and s2|β
are proper.
Let k be the minimum in ω such that β ≤ ωγ ·k. Regarding s1 and s2

as sequences, then τβ(s1) = τβ(s2) implies that s1 = w1z, s2 = w2z with

z ∈ Zωγ+1
and w1, w2 words of length k in the alphabet, or equivalently

elements of Zωγ ·k. Furthermore, sǫ|β = wǫ|β for ǫ = 1, 2 and we are
assuming that these are proper.
From the Composition Property applied to w1, w2 ∈ Zωγ ·k we have

that w1 is improper if and only if w2 is improper in which case both
s1 and s2 are improper. In addition if any of the Zωγ

terms of the
sequence z is improper, then both s1 and s2 are improper.
Assume, instead, that all of the terms of the sequences s1 and s2 lie

in the proper alphabet. The Composition Property applied to w1, w2

then implies

(8.21) tw1 = tw1|β ◦ t
−1
w2|β
◦ tw2 .

Since s1 and s2 are end-equivalent sequences in the proper alphabet,
we can apply the Alphabet Construction results. From (8.14), or in
the eventually periodic case from (8.16), we obtain from (8.21)

ts1 = tw1 ◦ t
−1
w2
◦ ts2 =

tw1|β ◦ t
−1
w2|β
◦ tw2 ◦ t

−1
w2
◦ ts2

= tw1|β ◦ t
−1
w2|β
◦ ts2 ,

= ts1|β ◦ t
−1
s2|β
◦ ts2 ,

(8.22)

proving the Composition Property for s1 and s2.

Step 4 α = ωγ with γ a countable limit ordinal :
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For s ∈ Zωγ

if s|α is improper for some α < ωγ then s is improper
with a constant ts. We call s limit proper if, instead, s|α is proper for
all α < ωγ.
Call two elements s1, s2 ∈ Zωγ

end-equivalent if there exists β < ωγ

such that τβ(s1) = τβ(s2).
We consider an end-equivalence class of limit proper elements. From

the Composition Property, it follows that for every α with β < α < ωγ,
ts1|α = (ts1|β) ◦ (ts2|β)

−1 ◦ ts2|α and so Is1|α = (ts1|β) ◦ (ts2|β)
−1(Is2|α).

Intersecting as α→ ωγ we obtain

(8.23) Is1 = (ts1|β) ◦ (ts2|β)
−1(Is2)

In particular, s1 is improper if and only if s2 is improper.
Assume, instead, that the end-equivalence class consists of proper

elements. We choose a representative s and an isomorphism ts : I → Is.
For s1 end-equivalent to s let β1 be the smallest ordinal such that
τβ1(s) = τβ1(s1). We define ts1 = (ts1|β1

) ◦ (ts|β1
)−1 ◦ ts.

If β2 > β1 then τβ2(s) = τβ2(s1) and by the Composition Property for
s1|β2 and s2|β2, ts1|β2 = (ts1|β1)◦(ts|β1)

−1◦ts|β2. That is, (ts1|β2)◦(ts|β2)
−1

is a restriction of (ts1|β1) ◦ (ts|β1)
−1 and so

(8.24) ts1 = (ts1|β2) ◦ (ts|β2)
−1 ◦ ts.

Finally, for the Composition Property let s1, s2 ∈ ωγ and β < ωγ be
an ordinal such that τβ(s1) = τβ(s2) with both s1|β and s2|β proper.
If neither s1 nor s2 is limit proper then both Is1 and Is2 are improper.

Now assume that s1 is limit proper. If α ≤ β then s2|α = (s2|β)|α is
proper. If β < α, then by the Composition Property applied to s1|α
and s2|α, s2|α is proper because s1|α is proper. So we may assume
that both s1 and s2 are limit proper. They are clearly end-equivalent.
If the end-equivalence class consists of improper elements, then both
s1 and s2 are improper.
Assume, instead, that the class consists of proper elements and let s

be the representative of the class.
We can choose β1 > β so that τβ1(s1) = τβ1(s2) = τβ1(s).

ts1 = (ts1|β1
) ◦ (ts|β1

)−1 ◦ ts =

(ts1|β1) ◦ (ts|β1)
−1 ◦ (ts|β1) ◦ (ts2|β1)

−1 ◦ ts2 =

(ts1|β1) ◦ (ts2|β1)
−1 ◦ ts2 = (ts1|β) ◦ (ts2|β)

−1 ◦ ts2 ,

(8.25)

completing the proof of the Composition Property for s1 and s2.

Step 5 α = Ω :
Because the tree T is Ω bounded, every s ∈ ZΩ is improper and so

ts is the constant map onto Is.
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This completes the inductive construction of the tree T .

Theorem 8.9. The tree T is an Ω bounded additive tree of Z type.

Proof. We saw in Theorem 8.1 that the tree is Ω bounded.
We must show that if s ∈ Zα and α = α1+α2, then s is proper if and

only if both s|α1 and τα1(s) are proper. Since s proper implies s|α1 is
proper, we assume that s1 = s|α1 is proper and prove that s2 = τα1(s)
is proper if and only if s = s1 + s2 is proper.

First we reduce to the case when α1 is tail-like. That is, assume the
result is true when α1 is tail-like and in general write α1 = α11 +α12 +
. . . α1k in Cantor Normal Form and so write s1 = s11 + s12 + . . . s1k.
Because s1 is proper, the definition (8.19) implies that s11, s12, . . . s1k

are all proper and so are the partial sums. We then complete the proof
by induction on k with k = 1 the assumed, tail-like, case. We have

(8.26) s = s1 + s2 = (s11 + . . . s1(k−1)) + (s1k + s2).

By the inductive hypothesis, s is proper if and only if s1k + s2 is
proper and so, by the initial case, if and only if s2 is proper.

Now we prove the result assuming that α1 is tail-like and so equals
some ωγ1. Now we proceed by induction on α2.

Step 1 α2 < ωγ1+1 = (α1)
ω :

Write α2 = α21 + α22 + . . . α2ℓ in Cantor Normal Form and so write
s2 = s21 + s22 + . . . s2ℓ.
The assumption α2 < (α1)

ω implies that α1 ≥ α21 and so α1 +
α21 + α22 + . . . α2ℓ is Cantor Normal Form for α = α1 + α2. Hence,
(8.19) implies that s is proper if and only if s1 and s21, s22, . . . s2ℓ are
all proper. Furthermore, s2 is proper if and only if s21, s22, . . . s2ℓ are
all proper. Since s1 is assumed proper, it follows that s is proper if and
only if s2 is proper, as required.

Step 2 α2 = ωγ+1 with γ1 ≤ γ :
As before we identify Zωγ+1

= Zωγ ·ω with (Zωγ

)ω and so regard Zωγ+1

as sequences on the alphabet Zωγ

with the proper alphabet consisting
of the proper elements of Zωγ

. Now we split into two subcases.

Step 2a γ1 = γ :
In this case, s1 is a letter in the proper alphabet which we label w,

s2 = z is a sequence in the alphabet and s = wz. If any of the terms
in z is not proper, then both s and s2 are improper.
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Assume instead that z is a sequence in the proper alphabet, and so
wz is a sequence in the proper alphabet as well. Because wz and z are
end-equivalent sequences, it follows from the Alphabet Construction
that s2 is proper if and only if s is.

Step 2b γ1 < γ :
This time we write s2 = wz for the sequence in the alphabet where

we use w to label the first term. So w ∈ Zωγ

and since α1 < ωγ,
w1 = s1 + w is an element of Zωγ

as well, with s = w1z.
By the inductive hypothesis, w is improper if and only w1 is improper

in which case both s and s2 are improper. In addition, if any term in
z is improper, then both s and s2 are improper.
Assume, instead, that both s and s2 are sequences in the Proper

Alphabet. Because wz and w1z are end-equivalent sequences, it follows
from the Alphabet Construction that s2 is proper if and only if s is.

Step 3 ωγ < α2 < ωγ+1 with γ1 < γ :
We return to Cantor Normal Form α2 = α21 + α22 + . . . α2ℓ with

α21 = ωγ and we write s2 = s21 + s22 + . . . s2ℓ. Again s2 is proper if
and only if s21, s22, . . . s2ℓ are all proper.
By inductive hypothesis, s21 is proper if and only if s1+s21 is proper.

But α1 + α21 = α21 because α1 < α21 and α21 is tail-like. Hence,
α1 + α2 = α21 + α22 + . . . α2ℓ in Cantor Normal Form with s1 + s2 =
(s1 + s21) + s22 + . . . s2ℓ. Thus, s = s1 + s2 if proper if and only if
(s1 + s21), s22, . . . s2ℓ are all proper. It follows that s2 is proper if and
only if s is proper.

Step 4 α2 = ωγ with γ a limit ordinal such that γ1 < γ :
Because γ is a limit ordinal larger than γ1, it is larger than γ1 + 1.

So β = ωγ1+1 is a tail-like ordinal with α1 < β < α2. Hence α1+β = β
and α1 + α2 = α2.
Because α1 + α2 = α2, s, s2 ∈ Zωγ

.
Because α1 + β = β, τβ(s) = τβ(s2) and s|β = s1 + (s2|β).
By inductive hypothesis, s|β is proper if and only if s2|β is proper.

If these are improper then both s and s2 are improper.
Assume, instead, that both s|β and s2|β are proper.
For any β1 with β < β1 < α2, the Composition Property for s|β1

and s2|β1 implies that s|β1 is proper if and only if s2|β1 is proper. If
these are improper then both s and s2 are improper.
Assume, instead, that both s|β1 and s2|β1 are proper for all β1 < α2.

That is, s and s2 are end-equivalent limit proper elements of Zωγ

. From
Step 4 of the above construction of the tree, it follows that s is proper
if and only if s2 is proper.
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�

Example 8.10. Trees for X = R.

If F is a countable unbounded LOTS, like Z or Q, then F ω can be
regarded as the branch space of the simple tree on F, ω. By Proposition
5.4 it is order dense. We can also think of F as an alphabet and
F ω as the space of sequences on F . Any end equivalence class is a
countable dense set and so F ω is separable. By Proposition 2.15(b) the

compactification •F̂ ω• is isomorphic to the unit interval in R and so

F̂ ω ∼= R. It follows that F ω is order isomorphic to a dense subset of R.

In the F = Z case we let

(8.27) zn =

{
−1 + 2n for n < 0,

1− 2−n for n ≥ 0.
.

This defines a ±cofinal embedding of Z into I = (−1, 1) ⊂ R. Let tn
from I onto In = [zn, zn+1] be the restriction of the affine map on R
given by

(8.28) tn(z) =
1

2
[(zn+1 + zn) + z · (zn+1 − zn)].

So the derivative t′n (equals the slope) is bounded by 1/4 for all n. If
w ∈ Zk, then the length in R of the interval Iw is bounded by 4−k. It
follows that for every s ∈ Zω, Is is improper. Hence, T is the simple
tree on Z, ω and X(T ) = Zω.
Because there are countably many finite words, C is a countable

dense subset of [−1, 1], including −1 and 1 and I is the disjoint union
of X(T ) and C. Since C is order-isomorphic to Q ∩ I, it follows that
X(T ) ∼= Zω is order-isomorphic to the set of irrationals in I and so to
the set of irrationals in R.

If F = N, the map z : N → [0, 1) defined by the restriction of the

map in (8.27) is a cofinal embedding into Ĩ = [0, 1). Now we apply the
Alphabet Construction with A = N and t̃n given by

(8.29) t̃n(z) = zn + z · (zn+1 − zn).

For every finite word w let Ĩw = t̃w(Ĩ). For each k < ω, [0, 1) is
the disjoint union of {Ĩw : w ∈ Nk}. As above for every s ∈ Nω,

Ĩs =
⋃

k<ω Ĩs|k is a singleton and so the branch space of the tree can be

identified with Nω. This time the map f̃ : X(T )→ Ĩ given by x 7→ ax
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is surjective as well as injective. Thus, Nω is order isomorphic with
[0, 1) ⊂ R.

8.4. Subsets of Zω. We regard Zω on the one hand as the branch space
of the simple tree on Z, ω and on the other as the space of sequences
on the alphabet Z.
We first characterize the subsets W of Zω which can occur as the set

Lω of ω level vertices of some additive Z tree. Notice that Lω 6= ∅ if
and only if h(T ) > ω.

Proposition 8.11. A subset W ⊂ Zω is equal to the set Lω of level ω
vertices in some additive tree T of Z type with h(T ) > ω if and only if
W is saturated by the end equivalence relation. That is, if s1, s2 ∈ Zω

are end equivalent, then s1 ∈ W if and only if s2 ∈ W .

Proof. If T is an additive tree on Z, then for k < ω, Lk = Zk. That
is, every finite sequence on Z of length k is a vertex of T with order
k. So if p1, p2 ∈ Zω+1 so that o(p1) = o(p2) = ω, then the associated
sequences in Zω are end equivalent if and only if there exist q1, q2 ∈ T
with o(q1), o(q2) < ω and p ∈ Zω+1 such that p1 = q1 + p, p2 = q2 + p.
Since q1, q2 ∈ T , additivity implies that p1 ∈ T ⇔ p ∈ T ⇔ p2 ∈ T .
Hence, W = Lω implies that the set is saturated by the end equivalence
relation.
For the converse, assume that W is saturated by the end equivalence

relation. We apply the inductive construction of Theorem 6.10. Ob-
serve first that the simple tree on Z, ω is an additive tree with height
the limit ordinal ω. Because W is saturated, it is translation invari-
ant in the sense of (6.32). So the construction of the Theorem 6.10
allows us to build an additive tree of Z type with height ω2 with
Lω = {p + x : o(p) < ω, x ∈ W}. Because W is saturated, this
set is equal to W .

�

Remark. Recall the shift map τ on Zω. A set W ⊂ Zω is invariant
in the sense of (6.32) precisely when it is τ invariant, i.e. s ∈ W =⇒
τ(s) ∈ W . The set is saturated by the end equivalence relation if and
only if s ∈ W ⇐⇒ τ(s) ∈ W .

An additive tree on the transitive LOTS Z is homogeneous by Propo-
sition 5.19. It follows that an end-equivalence saturated subsetW ⊂ Zω
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is always transitive. In fact we will prove below that it is doubly tran-
sitive. We begin by describing certain order preserving maps on Zω.

The Tree Automorphisms:

Because the only order preserving bijections of Z are translations,
and any tree automorphism f maps Sx bijectively onto Sf(x), we can
construct an arbitrary tree automorphism of Zω as follows. Choose for
each finite word w (including the empty word) m(w) ∈ Z. Define the
associated automorphism by

(8.30) f(x)i = xi +m(x0 . . . xi−1),

so that f(x)0 = x0 +m(∅).
Notice that, using pointwise addition, Zω is a group. Translation

by an element of the group is the special case when |w1| = |w2| =⇒
m(w1) = m(w2). Note that for the group Zω the level end equivalence
class of 0̄ (equals the end equivalence class of 0̄) is a subgroup and the
level end equivalence classes are exactly the cosets for this subgroup.
Hence, the set of level end equivalence classes has a group structure
induced by pointwise addition. Also it follows that any two level end
equivalence classes are isomorphic via a translation map.

Proposition 8.12. Let p, q ∈ Zω. There exists a tree automorphism f
of Zω such that f(p) = q and such that for every x 6= p in Zω, x and
f(x) are level end equivalent.

Proof. Given p ∈ Zω we choose m(p0 . . . pi−1) = qi − pi for i = 0, 1, . . .
and m(w) = 0 for all other finite words. Clearly, f(p) = q. If x 6= p,
then let k be the equality level for x and p. That is, xi = pi for all
i < k and xk 6= pk. We then have

(8.31) f(x)i =





qi for i < k,

xk − pk + qk for i = k,

xi for i > k.

Thus, x and f(x) are level end equivalent.
�

Corollary 8.13. If W ⊂ Zω is saturated by level end equivalence (and
so, a fortiori, if it is saturated by end equivalence), then the group of
tree automorphisms on Zω acts transitively on W .

Proof. If p, q ∈ W then by Proposition 8.12 there exists a tree auto-
morphism f such that f(p) = q and such that x and f(x) are level end
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equivalent for all x 6= p. It follows that for all x, x ∈ W if and only if
f(x) ∈ W .

�

Notice that if x, y, z ∈ Zω with x0 = 0, y0 = 1 and z0 = 2, then
there does not exist a tree automorphism f such that f(x) = x and
f(y) = z. So for double transitivity of a subset W of Zω we cannot hope
to use tree automorphisms. We require more general order preserving
bijections which do not preserve the tree structure.

The Reproduction Isomorphisms:

For a finite word w of length k, aw(z) = wz defines the canonical
order isomorphism from Zω onto {x ∈ Zω : xi = wi for i = 0, . . . k−1}.
That is, it is the canonical isomorphism from T to Tw where T is the
simple tree on Z, ω.
Furthermore, z and aw(z) are end equivalent in Zω. So if W ⊂ Zω

is end equivalence saturated, then aw is an isomorphism from W onto
the subset we denote wW , the copy of W with foot w.

The Lift Maps:

For x ∈ Zω with x 6= 0̄ let k∗(x) ∈ ω such that xk∗ 6= 0 and xi = 0
for all i < k∗. That is, k∗ is the equality level for the pair x, 0̄.
The lift maps are defined as follows:

ℓ+(x) =

{
0x if xk∗ < 0,

x otherwise.

ℓ−(x) =

{
0x if xk∗ > 0,

x otherwise.
.

(8.32)

Let (Zω)+ = {x ∈ Zω : x0 ≥ 0}, (Zω)− = {x ∈ Zω : x0 ≤ 0}, and for
W ⊂ Zω we let W± = W ∩ (Zω)±.

Proposition 8.14. ℓ+ is an order isomorphism from Zω onto (Zω)+
and ℓ− is an order isomorphism from Zω onto (Zω)−. Furthermore, x,
ℓ+(x) and ℓ−(x) are end equivalent for all x ∈ Zω.
If W ⊂ Zω is end equivalence saturated, then ℓ+ and ℓ− restrict to

isomorphisms from W to W+ and W−, respectively.

Proof. We will do the proof for ℓ+.
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It is clear that ℓ+ is a bijection from Zω to (Zω)+ and that x and
ℓ+(x) are end equivalent. We must prove that ℓ+ is order preserving.
We say that x is fixed when ℓ+(x) = x, and that x is lifted when

ℓ+(x) = 0x. So x is fixed when x = 0̄ or xk∗ > 0 and is lifted when
xk∗ < 0.
Assume x < y. We say that x and y are on the same side when they

are both fixed or both lifted. In that case it is clear that ℓ+(x) < ℓ+(y).
Let k be the equality level for x and y. That is, xi = yi for i < k

and xk < yk. If for some i < k, xi = yi 6= 0, then k∗(x) = k∗(y) and
xk∗ = yk∗. So in that case, x and y are on the same side.
Assume now that xi = yi = 0 for i < k. If xk < yk < 0, then

k∗(x) = k∗(y) = k and x and y are on the same side.
If yk > 0, then y is fixed. If x and y are not on the same side then

x is lifted. Hence, ℓ+(x)k = 0 < yk = ℓ+(y)k and so ℓ+(x) < ℓ+(y).
If xk < yk = 0, then x is lifted. If x and y are not on the same side,

then y is fixed. So either y = 0̄ or k∗(y) > k and yk∗ > 0. In either
case we have ℓ+(x)k+1 = xk < 0 ≤ yk+1 = ℓ(y)k+1. So in this case as
well, ℓ+(x) < ℓ+(y).
This completes the proof that ℓ+ is an order map.
Since x, ℓ+(x) and ℓ−(x) are all end equivalent, it follows that ℓ±

restricts to an isomorphism of W onto W±.
�

Theorem 8.15. If W is an end equivalence saturated subset of Zω,
then W is doubly transitive and so is an IHLOTS with completion R.

Proof. Using the reproduction isomorphisms we express various subsets
of Zω as patterns of copies of W . The decomposition W =

⋃
i∈Z iW

expresses W as a Z pattern of copies of W , i.e. shows that it is isomor-
phic to the lexicographic product Z ×W . Similarly, W+ =

⋃
i∈N iW

and W− =
⋃

i∈−N iW express W+ as an N pattern and W− as an N∗

pattern.
The isomorphism ℓ+ : W → W+ shows that W is isomorphic to an

N pattern of copies of W . Similarly, ℓ− shows that W is isomorphic to
an N∗ pattern of copies of W .
By replacing W by a translate given by x 7→ x − y + (−1) with

y ∈ W , we may assume that (−1) ∈ W . Since W is transitive, double

transitivity follows from transitivity of the interval {x ∈ W : (−1) <
x}, see Proposition 3.2 (d)(v).
If (−1)k is the word w of length k with wi = −1 for i = 0, . . . , k − 1

and so (−1)0 is the empty word, then we have the decomposition {x ∈
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W : (−1) < x} =
⋃

k∈N(−1)
kW+ with (−1)k+1W+ preceding (−1)kW+.

Each (−1)kW+ is isomorphic to W and so {x ∈ W : (−1) < x} is
isomorphic to an N∗ pattern of copies ofW which is, in turn, isomorphic
to W . Hence, {x ∈ W : (−1) < x} is transitive and so W is doubly
transitive.
For an alternative direct proof, we can instead begin with x < y ∈ W .

If the equality level is k then there is a word w of length k and x′, z′ ∈ W
such that x = wx′, y = wy′ and x′

0 < y′0. The interval (x, y) in W is
contained in wW and is isomorphic via aw to the interval (x′, y′) in W .
So we may assume that x0 < y0.
For k = 1, 2, . . . let Wk+ = {z ∈ W : xi = zi for i = 0, . . . , k − 1 and

xk < zk} so that Wk+
∼= W+

∼= W and let Wk− = {z ∈ W : yi = zi for
i = 0, . . . , k−1 and yk > zk} so that Wk−

∼= W−
∼= W . For x0 < n < y0

let Wn0 = nW .
This expresses the interval (x, y) in W as a Z pattern of copies of

W and so it is isomorphic to W . This directly shows that W is weakly
homogeneous. It follows from Proposition 3.3 that W is doubly tran-
sitive.
By Proposition 2.11 W is of countable type because Zω is. It then

follows from Proposition 3.8 that W is a HLOTS. Since it is a dense
subset of the IHLOTS Zω it is an IHLOTS with completion R.

�

Proposition 8.16. If X is a proper subset of R which is invariant
under the group of affine maps x 7→ q + 2n · x with q varying over Q
and n varying over Z, then X is an IHLOTS. If Q∩X = ∅, then X is
isomorphic to an end equivalence saturated subset W of Zω.

Proof. We apply the construction of Example 8.10.
Observe that tn is the restriction of an element of the group for

all n ∈ Z. The map x 7→ tn(x − n) for n ≤ x ≤ n + 1 defines an
isomorphism from X onto X ∩ (−1, 1). Invariance implies that X is
dense in R and so has completion R.
First assume that Q ∩ X = ∅. Let W = {s ∈ Zω : Is ⊂ X}.

That is, the point in the singleton set Is lies in X . If w is a finite
word, then tw(Is) = Iws. So the invariance assumption implies that
s ∈ W ⇔ ws ∈ W . That is, W is end equivalence saturated. From
the definition of the maps tn it is clear that the set of endpoints C is
contained in Q. Because X is disjoint from Q it follows that for every
x ∈ X ∩ (0, 1) there is a unique s ∈ W such that Is = {x}. Thus,
W ∼= X ∩ (0, 1) ∼= X . Hence, X is an IHLOTS by Theorem 8.15.
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If Q meets X then by invariance, Q ⊂ X and so the above result
applies to the complement R \X . By Proposition 3.8 X is an IHLOTS
because it complement is an IHLOTS.

�

8.5. The Tree Characterizations.

Theorem 8.17. For a LOTS X, the following are equivalent.

(i) X is a CHLOTS.
(ii) There exists an additive, Ω bounded tree T with S0 = Z and

h(T ) ≥ ω, and such that the completion of the branch space
X(T ) is isomorphic to X.

(iii) There exists an additive, Ω bounded tree T with S0 = Y , an
IHLOTS with completion R, such that the completion of the
branch space X(T ) is isomorphic to X.

(iv) There exists a reproductive, Ω bounded tree T with S0 an HLOTS,
and such that the completion of the branch space X(T ) is iso-
morphic to X.

Proof. (i) ⇒ (ii): This is Theorem 8.9 applied to our construction
above. Note that we require h(T ) ≥ ω because with h(T ) = 1 the
simple tree on Z has Z as branch space.
(ii) ⇒ (iii): If h(T ) = ω, then T is the simple tree on Z, ω and so

X ∼= R. As in Example 8.10 we can get R as the completion of the
simple tree on Q, ω, proving (iii) in this case. We can also use the
simple tree on Q, 1.
When h(T ) > ω and so h(T ) ≥ ω2, we use the Omega Thinning

Construction. By Proposition 6.28 the result is an additive tree of
type Lω. By Proposition 8.11 W = Lω is end equivalence saturated
and so by Theorem 8.15 W is an IHLOTS with completion R. Finally,
Corollary 6.25 implies that the X(ωT ) has the same completion as
X(T ) and the latter is assumed to be isomorphic to X .
(iii) ⇒ (iv): An additive tree is reproductive.
(iv) ⇒ (i): Theorem 5.23. �

Remark. For each of the trees described in (ii)-(iv), if α is a countable,
tail-like ordinal, then the truncation T α is a tree of the same sort, e.g.
additive or reproductive, and, in addition, with h(T α) = α. It follows

from the theorem together with Proposition 8.5 that each X̂(T α) is an
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R-bounded CHLOTS (In (iv) we must assume that S0 is R-bounded).

We have seen that if T is an Ω bounded, additive tree of Z type,
then the branch space X(T ) is order dense and transitive and it is a
dense subset of its completion which is the same as the completion of
its Omega thinned tree ωT . Furthermore, X(ωT ) is an IHLOTS and
so the completion is a CHLOTS. We do not know whether X(T ) itself,
though transitive and order dense, is necessarily doubly transitive and
so is a HLOTS.

From the theorem we see that via the inductive construction of The-
orem 6.10 we can obtain every CHLOTS. We review the construction
using alphabet language.
For γ a positive countable ordinal, let T (γ) be an additive tree of

height ωγ with L̃(γ) = L̃ωγ the set of branches of height ωγ. By addi-
tivity, we have, for T = T (γ), α = ωγ, L̃ = L̃(γ):

(8.33) T = {x|β : x ∈ L̃, β < α}.

We select A(γ) ⊂ L̃(γ) which is ± invariant in the sense that with
A = A(γ), α = ωγ, T = T (γ)

x ∈ A and β < α =⇒ τβ(x) ∈ A,

x ∈ A and p ∈ T =⇒ p+ x ∈ A.
(8.34)

If we say that x1, x2 ∈ L̃(γ) are end-equivalent when there exist β1, β2 <
ωγ such that τβ1(x1) = τβ2(x1), then A(γ) is ± invariant exactly when
it is saturated by the end-equivalence relation.
On the one hand, we let A(γ) be the set of vertices of T (γ + 1) of

order ωγ. On the other hand, we regard A(γ) as an alphabet and let
L̃(γ + 1) be all of the elements of Xωγ+1

= Xωγ ·ω which correspond to
infinite sequences on the alphabet A(γ). Then T = T (γ+1) is defined
by (8.33) with α = ωγ+1, L̃ = L̃(γ+1). It follows from ± invariance of

A(γ) that T (γ+1) is an additive tree of height ωγ+1 and with L̃(γ+1)
the set of branches of height ωγ+1. Furthermore, T (γ) = T (γ + 1)α

with α = ωγ.
A subset A(γ + 1) ⊂ L̃(γ + 1) is ± invariant exactly when it cor-

responds to a set of A(γ) sequences which is saturated by the end-
equivalence relation on sequences, i.e. the two versions of end-equivalence
agree.
Let γ be a limit ordinal. Assume that the additive trees T (δ) have

been defined for all δ < γ with T (δ1) = T (δ)α with α = ωδ1 whenever
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δ1 < δ < γ. Define

(8.35) T (γ) =
⋃

δ<γ

T (δ),

with L̃(γ) the branches of height ωγ.
The process stops at a countable ordinal γ if we choose A(γ) = ∅.

Otherwise, the process continues to γ = Ω = ωΩ and A(Ω) = ∅.
Having defined T (γ), A(γ) for all positive γ with ωγ ≤ h(T ), the

branch space is given by

(8.36) X(T ) =
⋃
{L̃(γ) \ A(γ) : ωγ ≤ h(T )}.

The resulting tree is Ω bounded when L̃(Ω) = ∅. As we saw when
we considered the height function in Section 6, we can assure an Ω
bounded result, by beginning with R an arbitrary Ω bounded subtree
of the simple tree of height Ω and only continuing the construction as
long as T (γ) remains a subset of R.

8.6. Trees of Convex Sets. A convex set J in an order dense LOTS
X is proper when it has more than one point and so is infinite. In
particular, a nonempty open convex set is proper.
Two convex sets J1, J2 in X overlap when J1 ∩ J2 is proper. If

two convex sets do not overlap, then either they are disjoint or their
intersection is a singleton consisting of a common endpoint.
We write J1 ≺ J2 when there exist a, b ∈ J◦

1 such that a < c < b for
all c ∈ J2 and so

(8.37) J2 ⊂ (a, b) ⊂ [a, b] ⊂ J◦
1 .

Here J and J◦ are the closure and interior, respectively, in the LOTS
X .
For A ⊂ X we let [A] denote the convex closure of A, i.e. the smallest

closed, convex set which contains A.

Lemma 8.18. Let J, J1, J2 be proper convex subsets of X an order
dense LOTS.

(a) The set J \ J◦ contains at most two points. The interior J◦ is
dense in J and so is itself a proper open convex set.

(b) J1 overlaps J2 if and only if J1 ∩ J◦
2 6= ∅.

(c) J1 ≺ J2 if and only if there exist a2 < a1 < b1 < b2 ∈ J1 such
that a1 < c < b1 for all c ∈ J2.

(d) If X is connected, then J1 ≺ J2 if and only if J2 ⊂ J◦
1 .
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Proof. (a): Let a ∈ J .
Case 1: ((−∞, a)∩J 6= ∅ and (a,∞)∩J 6= ∅.) There exist b1, c1 ∈ J

with b1 < a < c1. Choose b ∈ (b1, a), c ∈ (a, c1) and we have a, b, c ∈ J◦

with a ∈ (b, c).

Case 2: ((−∞, a)∩ J 6= ∅ and (a,∞)∩ J = ∅.) There exists b1 ∈ J
with b1 < a. Choose b ∈ (b1, a) and we have [b, a) ⊂ J◦ and a = supJ .

Case 3: ((−∞, a)∩ J = ∅ and (a,∞)∩ J 6= ∅.) There exists c such
that (a, c] ⊂ J◦ and a = infJ .

Since J is proper, one of these cases applies for every a ∈ J . So the
only points of J \ J◦ are the supremum and infimum of J if either of
these exists. So J◦ is infinite and dense in J .
(b): If J1∩J2 is proper, then by (a) (J1∩J2)

◦ is infinite. If J1∩J
◦
2 6= ∅,

then because J◦
1 is dense in J1, J

◦
1 ∩ J

◦
2 is a nonempty open convex set

and so it is infinite.
(c): If a2 < a1 < b1 < b2 ∈ J1 with a1 < c < b1 for all c ∈ J2, then

J2 ⊂ [a1, b1] and [a1, b1] ⊂ (a2, b2) ⊂ J◦
1 . If a ∈ (a2, a1) and b ∈ (b1, b2),

then a and b satisfy (8.37).
Conversely, if a and b satisfy (8.37), then [b,∞) ∩ J◦

1 is nonempty
and so by (b) it contains a nonempty open interval. Similarly for
(−∞, a] ∩ J◦

1 . Since these sets are infinite, we can choose the required
a1, a2, b1, b2.
(d): If X is connected, then with c1 = infJ2, c2 = supJ2, J2 =

[c1, c2]. Similarly, J◦
1 = (b1, b2). If J2 ⊂ J◦

1 , then we can choose a ∈
(b1, c1), b ∈ (c2, b2), and then a and b satisfy (8.37).

�

Let i : X1 → X2 be an order injection with X1 order dense and X2

connected. For J a bounded, proper convex set in X1 let [i](J) = [i(J)],
the convex closure of the image of J . Thus, [i](J) is the closed,
bounded, proper interval in X2 with endpoints the infimum and supre-
mum in X2 of i(J). In particular, if a < b ∈ X1, then [i]([a, b]) =
[i(a), i(b)].

Lemma 8.19. Let J1, J2 be bounded, proper convex subsets of X1 an
order dense LOTS and i : X1 → X2 be an order injection with X2

connected.

(a) J1 and J2 overlap in X1 if and only if [i](J1) and [i](J2) overlap
in X2.

(b) J1 ≺ J2 in X1 if and only if [i](J1) ≺ [i](J2) in X2.

Proof. Let [i](J1) = [a1, b1] and [i](J2) = [a2, b2].
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(a): [i](J1 ∩ J2) ⊂ [i](J1) ∩ [i](J2) = [max(a1, a2), min(b1, b2)]. So if
J1 and J2 overlap, then [i](J1)∩ [i](J2) is proper. On the other hand, if
[i](J1) and [i](J2) overlap, then max(a1, a2) < min(b1, b2). Choose c ∈
X2 between them. For ǫ = 1, 2, there exist i(uǫ) ∈ (aǫ, c)∩ i(Jǫ), i(vǫ) ∈
(c, bǫ)∩ i(Jǫ) by definition of the sup and inf. Let u = max(u1, u2), v =
min(v1, v2). So u, v ∈ [uǫ, vǫ] for ǫ = 1, 2, Thus, [u, v] ⊂ J1 ∩ J2.
(b): [i](J1) ≺ [i](J2) if and only if a1 < a2 < b2 < b1. We can choose

u1, u2, v1, v2 ∈ J1 with a1 < i(u2) < i(u1) < a2 and b2 < i(v1) < i(v2) <
b1. From Lemma 8.18 (c) it follows that J1 ≺ J2.
Conversely, if u2 < u1 < v1 < v2 ∈ J1 such that u1 < c < v1 for

all c ∈ J2, then [i](J2) ⊂ [i(u1), i(v1)] ⊂ (i(u2), v(v2)) ⊂ [i](J1)
◦ and so

[i](J1) ≺ [i](J2).
�

Remark. If i is the inclusion of X1 into its completion X2 = X̂1, then
[i](J) is the closure J of J in X2.

Definition 8.20. A collection T of proper convex subsets of an order
dense LOTS X is a tree of convex sets in X when it satisfies:

(i) X ∈ T with J ∈ T bounded when J 6= X.
(ii) If J1 and J2 are distinct elements of T, then J1 overlaps J2 if

and only if either J1 ≺ J2 or J2 ≺ J1.
(iii) With respect to the ordering ≺, T is a (not necessarily semi-

normal) tree.

The tree T has X as its root and every other vertex J of T is bounded
by (8.37) since X ≺ J . We do not assume that (ii) of Definition 5.1
holds, i.e. J ∈ T may have a single successor and we do not assume
that condition (iii) of Definition 5.1 holds.
For example, for the tree T constructed in the proof of Theorem 8.1,

the collection {Is : s ∈ T} is a tree of convex sets in the connected
LOTS [m,M ].

Proposition 8.21. If T1 is a tree of convex sets in an order dense
LOTS X1 and i : X1 → X2 is an order injection with X2 connected,
then T2 is a tree of closed intervals in X2 and f : T1 → T2 is a tree
isomorphism with

(8.38) f(J) =

{
X2 if J = X1,

[i](J) if o(J) > 0,

and T2 the image of f .
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Proof. This is clear from Lemma 8.19.
�

Theorem 8.22. If T is a normal tree of unbounded type with h(T ) a
limit ordinal, then T = {jp(X(Tp)) : p ∈ T} is a tree of clopen convex
sets in the branch space X(T ). The map j defined by j(p) = jp(X(Tp))

is a tree isomorphism from T to T. In addition, T̂ = {jp((Tp)) : p ∈ T}

is a tree of closed intervals in the completion X̂(T ), with the map f

given by f(jp(X(Tp))) = jp(X(Tp)) a tree isomorphism from T to T̂.

Proof. By Proposition 5.4 the branch space X(T ) is order complete.
By Proposition 5.5 (c) each jp(X(Tp)) is a clopen convex set in X(T )

with completion the open interval ĵp(X̂(Tp)) in X̂(T ). Since T is of
unbounded type, each jp(X(Tp)) is bounded for p 6= 0. By the Remark

following Lemma 8.19, the common closure of jp(X(Tp)) and ĵp(X̂(Tp))

in X̂(T ) is [i](jp(X(Tp))) where i is the inclusion of X(T ) into its
completion.
We check (i)-(iii) for T.
For the root 0, T0 = T and j0(X(T0)) = X(T ), verifying (i).
If p1 and p2 are distinct vertices of T , then p1 ≺ p2 implies Tp2 ⊂ Tp1

and there exist q1 < q2 < q3 ∈ Sp1 with either q2 = p2 or q2 ≺ p2. Let
a, b be branches through q1 and q3. Then (8.37) is satisfied showing
that jp1(X(Tp1)) ≺ jp2(X(Tp2)) since the convex sets are clopen.
On the other hand, if jp1(X(Tp1)) ∩ jp2(X(Tp2)) is nonempty and so

there exists a branch which contains both p1 and p2, then either p1 ≺ p2
or p2 ≺ p1.
This implies (ii) and shows that j : T → T is an order isomorphism.

Hence, T is a tree, verifying (iii).
Finally, the completion results follow from Proposition 8.21.

�

Now we apply these results to show that the branch space of an
Aronszajn tree is not R-bounded.

Theorem 8.23. Let α be a countable ordinal and let T be a tree of
convex sets in the connected LOTS Rα. If every level of T is countable,
then T is countable.

Proof. By applying Proposition 8.21 to i equal the identity map on Rα

we can assume that T is a tree of closed intervals in Rα. So for J ∈ T

with o(J) > 0, we have J = [a(J), b(J)] with a(J) < b(J) ∈ Rα.
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Since every level is countable, it suffices to prove that the height h(T)
is countable.
If x is a branch of T, then J 7→ a(J) is an embedding of the ordinal

h(x) into Rα. Since α is countable, Rα is first countable and so Ω
cannot be injected into Rα. It follows that h(x) is countable.
For J ∈ T, let ǫ(J) be the equality level for a(J) and b(J) so that

a(J)i = b(J)i for i < ǫ and a(J)ǫ < b(J)ǫ with ǫ = ǫ(J). Hence,
ǫ(J) < α.
We let r(J) ∈ Rǫ be the common restriction of a(J) and b(J) to ǫ

and we call r(J) the stem of J . We write span(J) = [a(J)ǫ, b(J)ǫ] so
that span(J)◦ = (a(J)ǫ, b(J)ǫ). These are proper intervals in R. Notice
that if q ∈ span(J)◦, then any c ∈ Rα with ci = a(J)i = b(J)i for i < ǫ
and cǫ = q satisfies a(J) < c < b(J) and so c ∈ J◦. For example,
q+ ∈ J◦.
Now we prove by induction that for every β < α, there exists ξβ < Ω

such that o(J) > ξβ implies ǫ(J) > β.
This is trivial for β = 0.
Define ρβ to be the smallest ordinal greater than ξγ for all γ < β.

Thus,

(8.39) ρβ = sup {ξγ : γ < β}+ 1

Now suppose r ∈ Rβ and there exists J ∈ T such that stem(J) = r.
Let J be an element of T with minimum order such that stem(J) = r.
If J1 ≺ J in T, then a(J1) < a(J) < b(J) < b(J1) and so ǫ(J1) ≤ ǫ(J).
Furthermore, ǫ(J1) = ǫ(J) would imply stem(J1) = stem(J) violating
the minimality condition on J . Hence, γ = ǫ(J1) < ǫ(J) = β. From
the inductive hypothesis it follows that o(J1) ≤ ξγ. Therefore,

(8.40) o(J) ≤ sup {o(J1) : J1 ≺ J}+1 ≤ sup {ξγ : γ < β}+1 = ρβ.

Because each level of T is countable, there are only countably many
J ∈ T with o(J) ≤ ρβ and so the set Aβ = {r ∈ Rβ : r = r(J) for some
J ∈ T} is countable.

Claim: For each r ∈ Aβ there are only countably many J ∈ T such
that r(J) = r.
Suppose instead that for some r ∈ Aβ there are uncountably many

such J . It follows that for some q ∈ Q there is an uncountable X ⊂ T

such that for J ∈ X r(J) = r and q ∈ span(J)◦. So q+ ∈ J◦ for
all J ∈ X. Thus, any two members of X overlap and so by condition
(ii) of Definition 8.20, any two are ≺ comparable. It follows that X

is contained in an uncountable branch of T which is, as we have seen
above, impossible. This proves the Claim.
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Now let ξβ ≥ ρβ and ξβ ≥ o(J) for all J such that r(J) = r for some
r ∈ Aβ.
If ǫ(J) = γ < β, then o(J) ≤ ξγ < ρβ ≤ ξβ.
If ǫ(J) = β, then r(J) ∈ Aβ and so o(J) ≤ ξβ.
This completes the inductive step.
The height of T is bounded by sup{ξβ : β < α} and so is countable.

�

Corollary 8.24. If T is an Aronszajn tree of unbounded type, then
X(T ) is not R-bounded.

Proof. Assume that T is a normal tree of unbounded type with height
a limit ordinal and that every level of T is countable. Suppose that
i : X(T )→ Rδ is an order injection with δ countable.
By Theorem 8.22, there is a tree T1 of convex sets in X(T ) which is

isomorphic with T itself. By Proposition 8.21 the injection i induces an
isomorphism of T1 onto a tree T2 of closed intervals in Rδ. By Theorem
8.23 the tree T2 is countable since every level is countable. This in turn
implies that T is countable and so with countable height.
However, an Aronszajn tree is uncountable with height Ω. �

9. HLOTS in R

9.1. Comparisons Along the Tower. We begin with a pair of useful
isomorphisms.
Recall that if X is an IHLOTS with completion F = X̂ , then by

Proposition 3.8(d), the complement F \X is an IHLOTS with the same
completion. Also if α is an infinite, tail-like ordinal then by Proposition
6.3, Xα is order isomorphic to a dense subset of Xα. If, in addition, α is
countable, then Xα and Xα are HLOTS by Corollary 6.2 and Theorem
4.2.

Lemma 9.1. Let X be a IHLOTS with completion the CHLOTS F
and let α be a countably infinite, tail-like ordinal. The complement

X̂α \Xα is an IHLOTS and the IHLOTS (X̂α \Xα)α has completion
isomorphic to Fα.

Proof. Let Y = F \ X be the complementary IHLOTS. Assume that
the interval J = [−1,+1] ⊂ F has been chosen so that −1,+1 ∈ Y .
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Let J(X) = X ∩ J = X ∩ J◦ and J(Y ) = Y ∩ J . Since X is a
HLOTS, X ∼= J(X) and so Xα ∼= J(X)α. By applying Proposition 5.9
to the simple tree, it is easy to see that the complement of J(X)α in
its completion can be identified with

Z = {z ∈ Jβ+1 : for some β < α

with z(j) ∈ J(X) for all j < β and z(β) ∈ J(Y )}
(9.1)

except that Z includes the endpoints m,M ∈ J1 with m(0) = −1 and
M(0) = +1. With Z◦ = Z \ {m,M} we apply Proposition 6.3 to the
HLOTS Z◦, to see that the completion of (Z◦)α is the same as the
completion of (Z◦)α. Since the distinguished closed bounded interval
in Z◦ is isomorphic to Z we can identify (Z◦)α with

(9.2) Z̃ = {x ∈ Zα : x(0) ∈ Z◦}.

We will show that Z̃ is order isomorphic to

D = {x ∈ Jα : x(0) 6= ±1 and γ(x) ∼= α}

where γ(x) = {i ∈ α : x(i) ∈ J(Y )}.
(9.3)

Since α is tail-like, D includes every x ∈ Jα such that x(0) 6= ±1 and
x(i) ∈ J(Y ) for sufficiently large i ∈ α. So D is dense in {x ∈ Jα :
x(0) 6= ±1} ∼= Fα.
Given x ∈ D let τx : α → γ(x) be the (unique) order isomorphism

which exists by definition of D.
Now we use a variation of the construction of (6.55).
If τ : α → α is an order injection, then we define τ̃ (0) = 0 and for

0 < i < α:

τ̃ (i) = sup{τ(j) + 1 : j < i} = min{k : k > τ(j) for all j < i},

So that τ̃ (i+ 1) = τ(i) + 1, and

τ̃ (i) = sup{τ(j) : j < i} for i a limit ordinal.

(9.4)

By induction, τ(i) ≥ i and so the image of τ is cofinal in α. From
Proposition 2.15(c) follows that {[τ̃(i), τ(i)] = [τ̃(i), τ̃ (i + 1)) : i < α}
is a α indexed partition of α by closed intervals. Following (2.7) we
can identify α with the associated sum:

(9.5)
∑

i<α

[τ̃ (i), τ̃(i+ 1)) ∼= α.

For each i ∈ α identify the interval [τ̃x(i), τ̃x(i + 1)) ⊂ α with the
ordinal β(x, i) + 1 = τ̃x(i + 1) \ τ̃x(i) which has its order type. The
restriction of x to this interval yields an element z(i) ∈ Z and i 7→ z(i)

defines the element of Z̃ which we associate with x. The procedure
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is order preserving and reversible and so defines the required isomor-
phism.

�

Lemma 9.2. Let F be a CHLOTS and {fn : F → F with n ∈
ω \1} be a sequence of order surjections. Let Y be the connected LOTS
which is the inverse limit of the special inverse system indexed by ω,
defined by the sequence {fn}. Thus, x ∈

∏
n∈ω F is in Y if and only

if fn+1(xn+1) = xn for all n ∈ ω.
Let α be a tail-like ordinal with α ≥ ωω. With J the distinguished

subinterval in F we let J0 = J and inductively define Jn+1 = (fn+1)
−1(Jn).

The points of Y whose nth coordinate lies in Jn for all n ∈ ω define a
compact interval JY of the connected LOTS Y and we use it to define
the product space Yα. Then:

(9.6) Yα
∼= Fα.

Proof. A point z ∈ Yα is indexed by the order space product α × ω
which is order isomorphic to the ordinal product ω · α,

z(i, n) ∈ X(i, n) =

{
F if i = 0

Jn if 0 < i < α.

with fn+1(z(i, n + 1)) = z(i, n) for (i, n) ∈ α× ω.

(9.7)

For (i, n) > (0, 0) in α × ω we let z(< (i, n)) denote the projection of
the point to the subproduct Π{X(j,m) : (j,m) < (i, n)} and let

I(z(< (i, n))) = {w(i, n) : w ∈ Yαwith w(< (i, n)) = z(< (i, n))}.

So that I(z(< (i, n))) =

{
J if n = 0

(fn)
−1(z(i, n− 1)) if n > 0.

(9.8)

Thus, each I(z(< (i, n))) is a closed bounded interval in X(i, n).
Now let

(9.9) γ(z) = {(0, 0)} ∪ {(i, n) : I(z(< (i, n))) is nontrivial}.

By (9.8) (i, 0) ∈ γ(z) for all z ∈ Yα. It follows that, identifying γ(z)
with the ordinal which is its order type,

(9.10) α ≤ γ(z) ≤ ω · α = α,

with the latter equation from α = ωρ with ρ ≥ ω so that 1 + ρ = ρ.
Let

(9.11) τz : α→ α× ω
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denote the unique order isomorphism onto γ(z).
Notice that z(< (i, n)) = w(< (i, n)) implies γ(z) and γ(w) agree

through (i, n) and

(9.12) τz(β) = τw(β) when τz(β) ≤ (i, n).

For (i, n) ∈ γ(z) choose gz(<(i,n)) : I(z(< (i, n))) → J an order
isomorphism which exists because F is a CHLOTS.
We now define for z ∈ Yα the associated point Q(z) ∈ Fα

(9.13) Q(z)β = gz(<(i,n))(z(i, n)) where (i, n) = τz(β).

If z < w in Yα and (i, n) is the smallest coordinate where z(i, n) 6=
w(i, n), then z(i, n) < w(i, n) and since both of these points are in
I(z(< (i, n))) = I(w(< (i, n))) it follows that (i, n) ∈ γ(z) ∩ γ(w).
With (i, n) = τz(β) = τw(β) we have Q(z)ǫ = Q(w)ǫ for all ǫ < β and
Q(z)β < Qw(β). Thus, Q is an order injection.
Conversely, given x ∈ Fα we inductively define the associated point

z ∈ Yα and the order injection τz . Begin with z(0, 0) = x0 and τz(0) =
(0, 0). Now for 0 < β < α we will define τz(β) = (i, n) and z(k,m) ∈
X(k,m) for all (k,m) ≤ (i, n) so that

(k,m) = τz(ǫ) for some 0 < ǫ ≤ β

⇐⇒ I(z(< (k,m))) is nontrivial.
(9.14)

Now assume that the definitions have been completed for all ǫ < β.

Case 1: If β is a limit ordinal, then let

τz(β) = sup {τz(ǫ) : ǫ < β} = (i, 0)

z(i, 0) = (gz(<(i,0)))
−1(xβ).

(9.15)

Notice that the only limit elements of α× ω are of the form (i, 0).

Case 2: If β = ǫ+1 and τz(ǫ) = (k,m), then by finite induction we
define for n = 0, 1, ...
(9.16)
{z(k,m+n+1)} = (fm+n+1)

−1(z(k,m+n)) = I(z(< (k,m+n+1)))

if the preimage is a singleton. There are two possibilities.
If this procedure stops for some finite n, then we define

τz(β) = (k,m+ n + 1)

z(k,m+ n+ 1) = (gz(<(k,m+n+1)))
−1(xβ).

(9.17)

If this procedure continues for all finite n, then we define

τz(β) = (k + 1, 0)

z(k + 1, 0) = (gz(<(k+1,0)))
−1(xβ).

(9.18)
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Notice that in both (9.17) and (9.18) 0 < β implies xβ ∈ J .
The order injection β 7→ τz(β) from α into α × ω ∼= α has a cofinal

image and so we obtain a point z ∈ Yα. Clearly, Q(z) = x and so Q is
the required order isomorphism.

�

For the special case where all of the maps fn are equal to a fixed
map f we can define on Y the shift automorphism and its inverse f∗
by

(9.19) τ(x)n = xn+1, f∗(x)n = f(xn)

From (2.26) it follows that these are order isomorphisms.
Now we apply these preliminary results. Recall that the size of X

lies between X1 and X2 if X1 injects into X and X injects into X2.

Theorem 9.3. Assume that F1 and F2 are CHLOTS

(a) If F1 and F2 have the same size and if α is a tail-like ordinal
with α ≥ ωω , then

(9.20) (F1)α ∼= (F2)α.

(b) If for some countable ordinal β, the size of F1 lies between F2

and (F2)β and if α is a sufficiently large countable tail-like or-
dinal, then the isomorphism of (9.20) holds. Specifically, for
ordinals i, j

if β · ωi = ωi and j ≥ (i+ ω)

then α = ωj implies (F1)α ∼= (F2)α.
(9.21)

Proof. (a): By Corollary 4.5 there exist continuous order surjections
g21 : F1 → F2 and g12 : F2 → F1. Let g1 = g12 ◦ g21 : F1 → F1 and
g2 = g21 ◦ g12 : F2 → F2. Let Y1 be the inverse limit of the special
inverse system indexed by ω with fn = g1 for all n ∈ ω and similarly
for Y2. By Lemma 9.2,

(9.22) (F1)α ∼= (Y1)α and (F2)α ∼= (Y2)α.

Now define the order surjection g̃21 : Y1 → Y2 to be a copy of g21 on
each coordinate, and similarly define g̃12 : Y2 → Y1. The compositions
each way are the shift automorphisms on the inverse limits. So we have
Y1
∼= Y2. Hence, (Y1)α ∼= (Y2)α which completes the required chain of

isomorphisms.
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(b): As in (2.12) β = ωk1 + ... + ωkN with k1 ≥ ... ≥ kN . If i is a
tail-like ordinal with i > k1, then

(9.23) ωi ≤ β · ωi ≤ ωk1+1 · ωi = ωk1+1+i = ωi.

Now from Proposition 4.7(c),(d) we have, with γ = ωi that

((F2)β)γ is at least as big as (F1)γ ,

(F1)γ is at least as big as (F2)γ ,

and ((F2)β)γ ∼= (F2)γ

(9.24)

since β · γ = γ. Thus, (F1)γ and (F2)γ have the same size.

Now let j̃ = j \ i so that i + j̃ = j. By assumption j̃ ≥ ω and so

α̃ = ωj̃ ≥ ωω. So by part (a) we have

(9.25) ((F2)γ)α̃ ∼= ((F1)γ)α̃.

Since α = γ · α̃ the result follows from Proposition 4.7(d) again.
�

Remark. The interest in part (a) of the theorem comes from the
fact that there exists CHLOTS F1 and F2 which are of the same size,
i.e. each can be order injected into the other, but which are not order
isomorphic, e.g. see Proposition 9.9 below.

Recall that a LOTS X is R-bounded when it admits an order injec-
tion into Rδ for some countable ordinal δ. Proposition 8.5 implies that
if X is an R-bounded HLOTS, then for any countable tail-like ordinal

β, X̂β is an R-bounded CHLOTS.

Corollary 9.4. If X is an R-bounded CHLOTS, then for α a suffi-
ciently large countable tail-like ordinal Xα

∼= Rα.

Proof. R injects into any CHLOTS and so ifX is an R-bounded CHLOTS,
it has size between that of R and that of Rδ for some countable δ. The
result follows from Theorem 9.3 (b).

�

If X is an IHLOTS with completion F , then the size of the comple-
tion of Xω lies between F and Fω. The first conjecture might be that
it is order isomorphic with Fω but we will now see that this is rarely
true. We will require some preliminary study of the completion of the
elements of the tower over X .
Let X be an IHLOTS with completion the CHLOTS F and let Y be

the complementary IHLOTS, i.e. Y = F \X . Assume −1 < +1 in X
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and that J is the interval [−1,+1] ⊂ F . Let α be a limit ordinal. We
can regard Xα as the branch space of the subtree T of the simple tree
on X,α with S0 = X but Sp

∼= J ∩ X instead of all of X . When we
apply Proposition 5.9 we can identify the completion with the branch
space of the tree completion T̂ . So we will use

X̂α = Xα ∪ Y 1 ∪

⋃

0<β<α

{x ∈ F β+1 : x(i) ∈





X for i = 0,

J ∩X for 0 < i < β,

J ∩ Y for i = β

}.
(9.26)

With these identifications the canonical projections for 0 < β ≤ α

πα
β : Xα → Xβ,

π̂α
β : X̂α → X̂β

(9.27)

are the obvious restriction maps. With β = 1 we identify the comple-

tion with F and so define π̂α : X̂α → F which we write as π̂ when the
subscript is unambiguous. We use it to define, for y ∈ F

(9.28) P (y) = {z ∈ X̂α : z(0) = y} = (π̂)−1(y).

Since π̂ is a continuous order surjection, P (y) is a nonempty compact

interval in X̂α for all y ∈ F .

We carry over the tree concept of height , defining for x ∈ X̂α

(9.29) h(x) =

{
α for x ∈ Xα

β + 1 for x ∈ F β+1.

We identify Y with the elements of height 1 by x 7→ x(0), so that

Y ⊂ X̂α.
If h(x) ≥ ǫ, then we will write x|ǫ for π̂α

ǫ (x), i.e. the restriction of
the map x to the subset ǫ of its domain. Clearly,

(9.30) h(x) > ǫ ⇐⇒ π̂α
ǫ (x) ∈ Xǫ.

Now suppose 0 < ǫ < α and w ∈ Xǫ. We define the compact

subinterval Jw ⊂ X̂α and the map π̂w : Jw → J by

Jw = (π̂α
ǫ )

−1(w) = {z ∈ X̂α : z|ǫ = w} = [w−, w+],

π̂w(z) = z(ǫ).
(9.31)

It is clear from description (9.26) that π̂w is an order surjection for all
w ∈ Xǫ. In particular, Jw is nontrivial. For w ∈ Xǫ, y ∈ J we extend
definition (9.28)

(9.32) Pw(y) = {z ∈ Jw : z(ǫ) = y} = (π̂w)
−1(y).
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As before each Pw(y) is a nonempty compact subinterval of Jw ⊂ X̂α.

Now assume that I = [x, y] is a nontrivial, closed interval in X̂α, so
that x < y. We denote by ǫ(I) the equality level of the pair x, y, i.e.
min {i : xi 6= yi}. With ǫ = ǫ(I) we have, for all z ∈ I

h(z) > ǫ,

x|ǫ = z|ǫ = y|ǫ, and

x(ǫ) ≤ z(ǫ) ≤ y(ǫ),

(9.33)

with at least one of the latter inequalities strict. We call the common
element of F ǫ the stem of I. From (9.30) we have

(9.34) stem(I) ∈ Xǫ(I).

Finally, we define

span(I) = [x(ǫ), y(ǫ)]

span◦(I) = (x(ǫ), y(ǫ)).
(9.35)

So that span(I) is a nontrivial, compact subinterval of F and is con-
tained in J when ǫ > 0. Its interior span◦(I) is nonempty.
The most important special case occurs when ǫ(I) = 0 in which case

stem(I) = ∅. Clearly, with I = [x, y]

ǫ(I) = 0 ⇐⇒ x(0) < y(0)

in which case

span(I) = [x(0), y(0)] = π̂(I)

(9.36)

Notice that (9.33) implies that

(9.37) Y ∩ I 6= ∅ ⇒ ǫ(I) = 0.

Lemma 9.5. Let I, I1, I2 be nontrivial, closed subintervals of X̂α.

(a) Given y ∈ F the compact interval P (y) is trivial, i.e. is a
singleton, if and only if y ∈ Y . Given ǫ > 0, w ∈ Xǫ and y ∈ J
the compact interval Pw(y) is trivial, i.e. is a singleton, if and
only if y ∈ Y ∩ J .

(b) If z ∈ X̂α with π̂α
ǫ(I)(z) = stem(I) , then h(z) > ǫ(I). If, in

addition, z(ǫ(I)) ∈ span◦(I) , then z ∈ I.
(c) If I1 and I2 are disjoint subintervals such that ǫ(I1) = ǫ(I2)

and stem(I1) = stem(I2), then span(I1) and span(I2) are non-
overlapping subintervals of F, i.e.

(9.38) span◦(I1) ∩ span◦(I2) = ∅
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Proof. (a): This is obvious from the identification (9.26).
(b): Let I = [x, y]. By (9.34) and (9.30) π̂α

ǫ(I)(z) = stem(I) implies

h(z) > ǫ(I) and x|ǫ = z|ǫ = y|ǫ. If, in addition, z ∈ span◦(I), then
x(ǫ) < z(ǫ) < y(ǫ) and so z ∈ (x, y).

(c): Obvious from (a) and (b).
�

Theorem 9.6. Let X be an IHLOTS with completion the CHLOTS
F and let Y be the complementary IHLOTS Y = F \ X. If for any

pair α and β of countable limit ordinals the completion X̂α is order
isomorphic to Fβ, then X is a first category subset of F . That is, Y
contains a dense Gδ subset of F .

Proof. Assume that f : X̂α → Fβ is an order surjection. By Proposition
2.3(a) f is continuous and topologically proper. We will show that if
Y does not contain a particular dense Gδ set which we will construct,
then f is not injective.
Using the projection πβ

i : Fβ → Fi for 0 < i < β we define, for each

y ∈ Y ⊂ X̂α

(9.39) Q(y, i) = (πβ
i ◦ f)

−1(πβ
i (f(y))) = f−1(Jf(y)|i),

where the latter equation uses a definition analogous to (9.31). For any

w ∈ Fi, Jw = (πβ
i )

−1(w) is a nontrivial, compact interval in Fβ and so

Q(y, i) is a nontrivial, compact interval in X̂α.
Clearly, for y1, y2 ∈ Y and i < β

Q(y1, i) ∩Q(y2, i) 6= ∅ ⇒

f(y1)|i = f(y2)|i ⇒

Q(y1, i) = Q(y2, i).

(9.40)

Because y ∈ Q(y, i), (9.37) implies ǫ(Q(y, i)) = 0 for all y ∈ Y and
0 < i < β. It follows from (9.36), (9.40) and Lemma 9.5(c) that distinct
members of the set of intervals

(9.41) Qi = {span(Q(y, i)) : y ∈ Y } = {π(Q(y, i)) : y ∈ Y }

are non-overlapping. Since y ∈ span(Q(y, i)) and Y is dense in X, Qi

has a dense union for each positive i < β. As each member of Qi is
nontrivial the open set

(9.42) Oi =
⋃
{span◦(Q(y, i)) : y ∈ Y }

is dense in F for each positive i < β.
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Since F is locally compact and β is countable, the Baire Category
Theorem implies that D = ∩Oi is a dense Gδ subset of F . If there
exists t ∈ X ∩D then by Lemma 9.5(a) the interval P (t) is nontrivial.
We will show that f is constant on P = P (t). It suffices to show that

πβ
i ◦ f is constant on P for each i < β .
Since t ∈ Oi there exists y ∈ Y such that t ∈ span◦(Q(y, i)). With

I = Q(y, i), ǫ(I) = 0, and stem(I) = ∅. If x ∈ P , then x(ǫ(I)) =
π̂(x) = t ∈ span◦(I). So Lemma 9.5(b) implies that x ∈ I. That is,

P ⊂ Q(y, i), and so πβ
i (f(x)) = πβ

i (f(y)) for all x ∈ P .
Thus, f can be injective only when D ⊂ Y .

�

9.2. IHLOTS in R. Now we consider examples which are constructed
from IHLOTS in R. First we will see that there are many such.

Proposition 9.7. Let G be the countable group of positive,affine trans-
formations of R with rational coefficients, i.e. of the form t 7→ at + b
with a, b ∈ Q and a > 0. If X is a nonempty, proper subset of R which
is invariant with respect to the action of G, then X is an IHLOTS. In
particular, any proper subfield of R is an IHLOTS as is its complement.

Proof. Assume first that X contains some rational number and so that
Q ⊂ X . Apply Lemma 5.22 with W = Q to see that X is a HLOTS. If
Q∩X = ∅, then the same result show that R\X is a HLOTS and so by
Proposition 3.8(d) X itself is a HLOTS. Since X and its complement
are clearly dense they are both IHLOTS with completion R. A subfield
of R contains Q and so is invariant under G.
Notice that this is a special case of Proposition 8.16.

�

We will use a bit of classical topology. A topological space X is called
a Polish space when it is a s second countable space which admits a
complete metric. so, of course, the complete metric space R is Polish.
It is a classical result of Alexandroff and Hausdorff, see [14] page 208,
that a Gδ subset of a complete metric space admits a complete metric.
Hence, a Gδ subset of a Polish space is Polish.
A Cantor set is a non-empty, zero-dimensional, compact, perfect

metric space. Any Cantor set is homeomorphic to the classical Cantor
Set in [0, 1].

Lemma 9.8. Let X be a nonempty Polish space.
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(a) If X has no isolated points, i.e. X is perfect, then X contains
a Cantor set and so is uncountable.

(b) If X0 = ∪{U : U is a countable, open subset of X}, then the
open set X0 is a countable Polish space. The complementary
closed set, X1 = X \ X0, is a Polish space with no isolated
points.

(c) The space X is perfect if and only if every nonempty open subset
is uncountable.

Proof. (a) Choose a complete metric and use the usual dichotomy pro-
cedure. With A0 = X , define for each word x ∈ {−1,+1}n+1 a closed
set Ax with a nonempty interior, of diameter at most 2−n such that
Ax,±1 ⊂ Int Ax. From the Cantor Intersection Theorem we obtain a
topological embedding of {−1,+1}ω into X .
(b) Because X has a countable base it follows that X0 is countable.

If x ∈ X1, then any neighborhood U of x in X is uncountable and so
U ∩ X1 = U \ X0 is uncountable. Any Gδ subset of a Polish space is
Polish.
(c) If X is a perfect Polish space, then every nonempty open subset

is a perfect Polish space which therefore contains a Cantor set by (a).
Thus, every nonempty open subset is uncountable. The converse is
obvious.

�

Proposition 9.9. Let X be an IHLOTS in R and let α be an infinite
tail-like ordinal. If X contains a Cantor set, then Xα, its completion

X̂α and Rα all have the same size. If, in addition, X is not a first
category subset of R, then no two of these HLOTS are homeomorphic
and so not order isomorphic. In particular, if X is the IHLOTS of

irrational numbers, i.e. X = I, then X̂α and Rα are CHLOTS of the
same size which are not homeomorphic and so not order isomorphic.

Proof. Xα is a subset of Rα and so by Proposition 4.7(b) X̂α injects
into Rα. We can assume that the Cantor set C is contained in the
distinguished interval J of X . The order isomorphism between Q and
the set of left end-points in C, excluding max C, shows that Q injects
into C and so by Proposition 4.7(b) again R injects into C. In fact, if

C̃ is the classical Cantor Set C with the right end-points and the min
removed, then the usual Cantor map from C onto [0, 1] restricts to an
order isomorphism from C̃ onto (0, 1).
By Proposition 4.7(c) Rα ⊂ Rα injects into Cα ⊂ Xα.
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If X is not of first category, then by Theorem 9.6 the CHLOTS X̂α

and Rα are not order isomorphic. If h : X̂α → Rα were a homeo-
morphism, then by Lemma 3.1 it be either an order isomorphism or
an order∗ isomorphism. Since R is symmetric, an order isomorphism
would then exist.
The IHLOTS Xα has dense holes and so is not locally compact as

are X̂α and Rα. So it is not homeomorphic to either of them.
The set of irrationals is not of first category by the Baire Category

Theorem and it contains a Cantor set by Lemma 9.8(a).
�

We call a subset A of a Polish space X a Mycielski set if it is a
countably infinite union of Cantor sets in X , see, e.g. [2].

Lemma 9.10. Let X be a Polish space.

(a) A countable union of Mycielski sets in X is a Mycielski set.
(b) The nonempty intersection of a Mycielski set and an open set

is a Mycielski set when it is nonempty.
(c) If A is a Mycielski set and B is a countable subset of the closure

of A in X, then A ∪B is a Mycielski set.

Proof. (a): Obvious.
(b): If A =

⋃
n Cn with Cn a Cantor set, and U is open, then A∩U =⋃

n(Cn ∩ U). Since Cn ∩ U is open in Cn it is, when nonempty, the
countable union of nonempty clopen subsets of Cn each of which is a
Cantor set.
(c): By (a) it suffices to show that A∪{x} is a Mycielski set when x

is a limit point of A. Let Un be the open ball of radius 2−n centered at
x. By (b), A∩Un is a Mycielski set and since x ∈ A each is nonempty.
If Cn is a Cantor set in A∩Un, then Cx = {x} ∪ (

⋃
n Cn) is a Cantor

set since it is closed, zero-dimensional and without isolated points. So
A ∪ {x} = A ∪ Cx is a Mycielski set.

�

Remark. If A is a Mycielski set and D is a countable set, then A \D
need not be a Mycielski set. If X is a Polish space and D, dense in X ,
is a countable union of closed nowhere dense subsets of X , then by the
Baire Category Theorem X \ D is a Gδ subset but not an Fσ subset
of X . In particular, if A is a Cantor set and D is a countable, dense
subset of A, then A \D is not σ-compact and so is not a Mycielski set.
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Theorem 9.11. Let X be a dense, proper subset of R and let Y =
R \X.

(a) The following conditions are equivalent.
(1) X is a Mycielski set in R.
(2) Y is a dense subset of R, X is an Fσ subset and every

nonempty open subset of X is uncountable.
(3) X is an uncountable Fσ subset of R which is a HLOTS.
(4) Y is a dense subset of R which is order isomorphic to Qω.

(b) If X1 is a dense Mycielski subset of R, then there exists f ∈
H+(R) such that f(X) = f(X1).

Proof. (a) (2)⇒ (1): Let X =
⋃

n An with each An closed in R. Let B
be a countable base for R. For each n and U ∈ B we use Lemma 9.8
to decompose U ∩An = B(U, n)∪C(U, n) with B(U, n) countable and
C(U, n) perfect or empty. The closure C̄(U, n) ⊂ An is perfect and is
nowhere dense because Y is dense. Thus, each nonempty C̄(U, n) is a
Cantor set. For each U U ∩X is uncountable and so some C̄(U, n) is
nonempty. Hence, X̃ =

⋃
U,n{C̄(U, n)} is a dense Mycielski set. Hence,

X = X̃ ∪ (
⋃

U,nB(U, n)) is a Mycielski set by Lemma 9.10(c).

(1)⇒ (4): If C is a Cantor set in R with min = a and max = b, then
we will call the components of the open set [a, b]\C the complementary
intervals for C. The LOTS of complementary intervals for C is order
isomorphic with Q.
We will repeatedly use the following:
Fact If ǫ > 0 and a < b ∈ X , then there exists a Cantor set

C ⊂ X with a = min C, b = max C, and such that the diameter of
each complementary subinterval is less than ǫ. We will call such a C
an X Cantor set for [a, b] with mesh less than ǫ.

Proof. : Choose f : Z → (a, b) an order injection with image ±cofinal
and such that for all i f(i + 1) − f(i) < ǫ/2. For each i use Lemma
9.10(b) to choose a Cantor set C(i) ⊂ X ∩ (f(i), f(i + 1)). Let C =
{a, b} ∪ (

⋃
i C(i)).

�

Now write X as the countable union of Cantor sets C(n) and proceed
inductively.
Because X is dense we can choose an order injection f : Z→ X with

image±cofinal in R and f(i+1)−f(i) < 1 for all i. For each i choose an
X Cantor set for [f(i), f(i+ 1)] which contains [f(i), f(i+ 1)] ∩ C(0).
Let A(0) be the closed set which is their union. Choose an order
isomorphism q 7→ J(q) from Q to the set of intervals complementary
to A(0) in R. We will call a closed subset A of R an extended Cantor
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set if A∩ [f(i), f(i+ 1)] is a Cantor set for all i ∈ Z. If A is a perfect,
closed subset of R with A(0) ⊂ A ⊂ X then A is an extended Cantor
set because Y is dense.
Assume that we have defined for i = 0, ..., n an extended Cantor set

A(i) and an order isomorphism from Qi to the set of complementary
intervals for A(i) such that for i = 1, ..., n and q0...qi ∈ Qi

(9.43) A(i− 1) ∪ C(i) ⊂ A(i) and J(q0...qi) ⊂ J(q0...qi−1).

Furthermore, the complementary intervals for A(i) have diameter at
most 2−i+1

For the next step, choose for eachA(n)-complementary interval J(q0...qn) =
(a, b) anX Cantor set for [a, b] which contains [a, b]∩C(n+1) and which
has mesh less than 2−n. Choose an order isomorphism q 7→ J(q0...qnq)
from Q to the set of complementary intervals. Let A(n + 1) be the
union of A(n) together with these newly constructed Cantor sets.
From the construction, X =

⋃
nA(n) and for x ∈ Qω the intersection

(9.44)
⋂
{J(x(0)...x(n)) : n ∈ ω} =

⋂
{J(x(0)...x(n)) : n ∈ ω}

is a single point of Y . If we denote this point g(x), then g : Qω → Y is
an order isomorphism.
(4) ⇒ (3) and (b): By Corollary 6.2 Qω is a HLOTS. From (4) it

follows that Y is a HLOTS and since Y is dense, it has completion R.
By Proposition 3.8(d), its complement X is a HLOTS as well.
If X1 as well as X satisfy condition (4), then there is an order isomor-

phism between the complements Y1 and Y because both are isomorphic
to Qω. The extension to the completion R restricts to an isomorphism
between X1 and X .
Since (1) implies (4) we can start with any dense Mycielski set X1.

The isomorphism shows that X is an uncountable Fσ.
(3) ⇒ (2): Since X is dense it has completion R and the comple-

mentary IHLOTS Y is dense as well because X is a proper subset of
R. Any open interval in X is order isomorphic to X itself and so is
uncountable.

�

Beginning with any Mycielski set or Cantor set in R we can close it
up under the action of the rational affine group described in Proposition
9.7. The resulting union is a dense Mycielski set and it is an IHLOTS
by Proposition 9.7. Once we know that any two dense Mycielski sets
in R are order isomorphic, as in Theorem 9.11 above, it becomes clear
that they are all IHLOTS.
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Corollary 9.12. If X is a dense, Mycielski subset of R, then X is an

IHLOTS and the completion X̂ω is order isomorphic to Rω.

Proof. By Theorem 9.11 Qω is isomorphic to Y , the complement of X

in R and with completion R. That is, Q̂ω \Qω ∼= X .

Lemma 9.1 implies that (Q̂ω \ Qω)ω has completion isomorphic to
Rω. So Xω has completion isomorphic to Rω. By Proposition 6.3 Xω

and Xω have isomorphic completions.
�

We saw in Proposition 8.5 that a tree ofQ type with countable height
has an R-bounded branch space. In Corollary 8.24 we saw that an
Aronszajn tree does not have an R-bounded branch space. Nonetheless,
it can happen that a tree with height Ω has an R-bounded branch space.

Example 9.13. There exists an Ω-bounded normal tree of Q type and
of height Ω whose branch space is R-bounded.

Proof. Let A be an Aronszajn tree of Q type, see Corollary 6.22. If α
is a countable limit ordinal then by Proposition 5.12 (a), the branch
space X(Aα) has completion isomorphic to R and so we can choose iα
an order injection from X(Aα) to (−1, 1) = J◦.
Let T ω+1 be the simple tree on Q, ω + 1 so that Lω = Qω.
Choose a surjection p → α(p) from the uncountable set Qω to the

set of infinite limit ordinals less than Ω.
We construct T so that for each p ∈ Qω, Tp

∼= Aα(p).
It follows that X(T ) is isomorphic to the sum

∑
p∈Qω X(Aα(p)).

Using the sum map
∑

p∈Qω iα(p) we obtain an injection from X(T ) into
Qω × J . From Theorem 9.11 we can embed Qω in R and so obtain an
order injection from X(T ) into R× J = R2 which injects into Rω.
It is clear that T has branches of arbitrarily large countable height,

but no uncountable branches. Thus, T is Ω-bounded and with height
Ω.

�

9.3. The Hart-van Mill Construction. We conclude by describing
the results of Hart and van Mill.
Let F be a perfect Polish space, i.e. one with no isolated points, and

so, by Lemma 9.8(c), every nonempty open subset of F is uncountable.
Following Hart and van Mill, we call Y ⊂ F a Bernstein subset, here-
after a B set, if Y meets every Cantor set in F , or, equivalently, if its
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complement X = F \ Y does not contain a Cantor set. (If, as in [1],
we consider the Furstenberg family generated by the Cantor sets of F ,
then the Bernstein sets are the members of the dual family.) We call Y
a Bi-Bernstein subset, hereafter a BB set, if both Y and its complement
X are Bernstein subsets.
We denote by c the cardinal number of R and so of every Cantor

set. Recall that a Gδ subset of R is a Polish space and so, if it is
uncountable, it contains a Cantor set by Lemma 9.8.

Lemma 9.14. Let F be a perfect Polish space.

(a) If U is an open subset of F and x ∈ U , then there exists a
Cantor set C such that x ∈ C and C ⊂ U .

(b) Assume that Y is a B set in F . If A is any uncountable, Gδ

subset of F , then Y ∩A has cardinality c. In particular, if A is
a dense Gδ subset of F , then Y ∩A is dense in F .

(c) If Y is a BB set in F , then the complement F \ Y is a BB set
in F .

(d) If Y1, Y2 are BB sets in F and Y1 ⊂ Y ⊂ Y2, then Y is a BB
set in F .

Proof. (a): Let U1, U2, ... be a sequence of open subsets of U , each
containing x and with diameter tending to zero. By Lemma 9.8(a)
each Un contains a Cantor set Cn. Let C = {x} ∪ (

⋃
{Cn}).

(b): Let C be a Cantor subset of A. There exists a homeomorphism
s : C × C → C where C × C has the usual product topology, ignoring
the order structure. For each x ∈ C, s(C × {x}) is a Cantor set which
meets Y . As x varies over C we obtain a pairwise disjoint family of
cardinality c which consists of nonempty subsets of Y ∩A. In particular,
if A is a dense Gδ and U is a nonempty open set, then Y meets A∩U .
(c) and (d) are obvious.

�

Of course, for us it is the special order results which are of impor-
tance. For A ⊂ R we define a subset of the AS double R′

(9.45) R ∨A′ = R× {−1} ∪ A× {+1}.

The gap pairs of R ∨A′ are x− < x+ for x ∈ A.

Lemma 9.15. Let X be a LOTS, Y be a B set in R and A ⊂ R disjoint
from Y .

(a) If f : Y → X is a order map, then the image f(Y ) is countable
or has cardinality c.
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(b) If f : R ∨ A′ → X is an order map such that f(Y × {−1}) is
countable, then Af = {t ∈ A : f(t−) < f(t+)} is countable and
the image f(R ∨A′) is countable.

Proof. (a): Let B = {x ∈ X : f−1(x) contains more than one point}.
For x ∈ B, f−1(x) is a nontrivial interval in Y and so B is countable
because Y is separable. For each x ∈ B let I(x) be the smallest closed
interval in R which contains f−1(x), i.e. the convex hull of the closure
in R. Let E1 be the countable set of endpoints of the intervals I(x) and
let E be the complement in R of union of the intervals I(x). Thus, E is
aGδ subset of R. If E is countable, then f(Y ) = B∪f(E1∩Y )∪f(E∩Y )
is countable. If E is uncountable, then by Lemma 9.14(b) E ∩ Y has
cardinality c. Since f is injective on E ∩ Y the image has cardinality
c.
(b): Identify R \A with the subset (R \A)×{−1} ⊂ R∨A′ so that

Y ⊂ R ∨ A′. For each x ∈ f(Y ) Y ∩ f−1(x) is a nonempty interval in

Y . Since Y is dense in R, the closure in R, Y ∩ f−1(x), is a nonempty
interval in R and its R interior is mapped by f to x. Notice that here
we use that f is order preserving rather than continuity of f , which is
not assumed.
Let F =

⋃
{Y ∩ f−1(x) : x ∈ f(Y )}, where the closure is again

taken in R. Thus, F is a countable union of closed intervals in R. Let
F1 be the countable collection of endpoints of these intervals and let
F2 = R \ F which is countable because it is a Gδ set disjoint from the

B set Y . If t ∈ Y ∩ f−1(x) \F1 for some x ∈ f(Y ), then f(t−) = x and
if, in addition, t ∈ A, then f(t+) = x. Hence, Af ∪ {t ∈ R : f(t−) 6∈
f(Y )}∪ {t ∈ A : f(t+) 6∈ f(Y )} ⊂ F1 ∪F2 and so is countable. Thus,
Af and the image of f are countable.

�

Example 9.16. Products Z×X and Q×X with X an IHLOTS.

If X is any IHLOTS, we can choose an order injection z : Z→ X̂ \X
which is ±cofinal in X̂ . Using this we see that Z×X ∼= X .
On the other hand, if X is an IHLOTS dense in R, then Q × X is

isomorphic to X̃ = ([0, 1] \ C) ∩X with C the Cantor Set in [0, 1].
If X is a dense Mycielski set, then ([0, 1] \C) ∩X is a Mycielski set

dense in [0, 1] \ C and hence in (0, 1). It then follows from Theorem
9.11 that X ∼= X̃ ∼= Q×X and so Q×X is an IHLOTS.
On the other hand, if X is a BB-set, and the pair a < b in X is

contained in a component of [0, 1] \C, then the interval (a, b) ∩ X̃ is a
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BB-set in the real interval (a, b). If a and b lie in different components of
[0, 1]\C, then the intersection of C and the real interval (a, b) contains

a Cantor set. Hence, (a, b)∩ X̃ is not a BB-set in (a, b). It follows that
Q×X ∼= X̃ is not doubly transitive.

Definition 9.17. Let V ⊂ R and H be a nonempty set of subsets of
R. We say that H is a Hart-van Mill collection with base set V when
the following conditions hold.

(i) Q ⊂ V .
(ii) Each Y ∈ H ∪ {V } is a BB set, that is G invariant, where G

is the countable group of positive, affine transformations of R
with rational coefficients.

(iii) The elements of H ∪ {V } are pairwise disjoint.
(iv) If Y ∈ H, then −Y = {−x : x ∈ Y } is an element of H distinct

from Y .
(v) If f : R → R is an order map and Y ∈ H is such that the

cardinality of f(Y ) \ Y is c, then the cardinality of f(Y )∩ V is
c.

By replacing V by V ∪ −V we may assume that V = −V .

Remark. If f : Y → R is an order map with Y ∈ H, then we can
extend f to R by defining f̂(t) = sup f((−∞, t] ∩ Y ). The order map

f̂ on R extends f and so f̂(Y ) = f(Y ). So we can apply condition (v)
even when f is only defined on Y .

If Y ∈ H, then we let X(Y ) = R \ Y . More generally, if J is a
nonempty subset of H we call X(J) = R \ ∪J the associated IHLOTS
for J. By Proposition 9.7 each X(J) is an IHLOTS containing Q with
completion R. In addition, V ⊂ X(J) ⊂ R \ Y for Y ∈ J implies that
X(J) is a BB set by Lemma 9.14 (c) and (d). We use [−1,+1] as the
distinguished interval in each X(J).

We will do some preliminary setup work which will be used twice. It
extends the notation of the proof of Theorem 9.6.
Assume that J, J1 are subsets of a Hart-van Mill collection H with

base set V , that Y ∈ J \ J1 and that α, β are infinite ordinals. Let
X = X(J), X1 = X(J1) be the associated IHLOTS so that

(9.46) Y ⊂ X1 \X and V ⊂ X ∩X1.

Assume that f : X̂α → (̂X1)β is a continuous order map.
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Since Y is contained in the complement of X , Y ⊂ X̂α consisting of
elements of height 1. Define for each i < β

(9.47) Yi =

{
Y for i = 0

{y ∈ Y : π̂β
i (f(y)) ∈ (X1)i} for i > 0

When 0 < i and y ∈ Yi let

(9.48) Q(y, i) = (π̂β
i ◦ f)

−1(π̂β
i (f(y))) = f−1(Jf(y)|i) ⊂ X̂α,

where the latter equation uses definition (9.31) above, which we now
recall:
For w ∈ (X1)i, we define the compact subinterval Jw ⊂ (̂X1)β and

the map π̂w : Jw → J by

Jw = (π̂β
ι )

−1(w) = {z ∈ (̂X1)β : z|i = w} = [w−, w+].

π̂w(z) = z(i).
(9.49)

As in proof of Theorem 9.6, for y1, y2 ∈ Yi

Q(y1, i) ∩Q(y2, i) 6= ∅ ⇒

f(y1)|i = f(y2)|i ⇒

Q(y1, i) = Q(y2, i).

(9.50)

Because y ∈ Q(y, i), (9.37) implies ǫ(Q(y, i)) = 0 for all y ∈ Yi and
0 < i < β. It follows from (9.36), (9.50) and Lemma 9.5(c) that distinct
members of the set of intervals

(9.51) Qi = {span(Q(y, i)) : y ∈ Yi} = {π̂(Q(y, i)) : y ∈ Yi}

are non-overlapping. Since y ∈ span(Q(y, i)), we have

Yi ∪ Oi ⊂
⋃

Qi with

Oi =
⋃
{span◦(Q(y, i)) : y ∈ Yi}

(9.52)

an open subset of R.

Lemma 9.18. Let 0 < i < β.

(a) Y ∩Oi ⊂ Yi.
(b) For all y ∈ Yi the closed interval Q(y, i) is nontrivial.
(c) The set Qi is countable.
(d) Oi is a dense subset of

⋃
Qi.

(e) Yi is dense in R if and only if Oi is.
(f) The image projection π̂(f(Y )) is a countable subset of R.

(g) If there exists D a dense subset of X̂α such that π̂(f(D)) is a

countable subset of R, then π̂ ◦ f is constant on X̂α.
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Proof. (a): If t ∈ Y ∩ span◦Q(y, i), then by Lemma 9.5(b) π̂−1(t) =
P (t) ⊂ Q(y, i). In particular, by (9.48) f(t) ∈ Jf(y)|i and so by (9.49)
f(t)|i = f(y)|i ∈ (X1)i which says that t ∈ Yi.

(b): Because f is continuous and X̂α is connected, its image F =

f(X̂α) is connected and so is convex in (̂X1)β. Let y ∈ Yi so that
f(y)|i ∈ (X1)i.

Case 1: Assume that there exist a, b ∈ F such that π̂β
i (a) < f(y)|i <

π̂β
i (b). As defined by (9.49) the compact interval Jf(y)|i = (π̂β

i )
−1(f(y)|i)

is nontrivial. It is entirely contained in the interval (a, b) and so in the
convex set F . Hence, the preimage Q(y, i) is nontrivial.

Case 2: Assume f(y)|i = max π̂β
i (F ). Let t ∈ Y ∩ [y,∞) which is

an infinite set because Y is unbounded. Since π̂β
i ◦ f is an order map

f(y)|i = π̂β
i (f(t)) and so t ∈ Q(y, i). By a similar argument Q(y, i) is

nontrivial when f(y)|i = min π̂β
i (F ).

(c): The intervals in Qi are non-overlapping and by (b) they are
nontrivial. Since R is separable, the set of intervals is countable.
(d): The interior of a nontrivial interval is dense in the interval.
(e): Since Y is a BB set it is dense in R and so Y ∩ Oi is dense in

Oi. From part (a) it follows that if Oi is dense in R, then Yi is. On the
other hand, Yi ⊂

⋃
Qi and so the union is dense in R when Yi is. From

part (d) it then follows that Oi is dense in R.
(f): Define the order map f̃ = π̂ ◦ f : Y → R. Notice that Y1 =

(f̃)−1(X1) and for y ∈ Y1 Q(y, 1) = (f̃)−1(f̃(y)). By (c) the set Q1 is

countable and so X1 ∩ f̃(Y ) is countable. By (9.46) this set contains

(Y ∪ V ) ∩ f̃(Y ). By condition (v) of the Hart-van Mill collection,

adjusted by the remark after Definition 9.17, it follows that f̃(Y ) \ Y
has cardinality less than c. Since Y ∩f̃(Y ) is countable, the image f̃(Y )

has cardinality less than c. So by Lemma 9.15(a), f̃(Y ) is countable.
(g): Assume that a, b ∈ D with π̂(f(a)) < π̂(f(b)). We can choose a

point x ∈ (X1 ∩ (π̂(f(a)), π̂(f(b))) \ π̂(f(D)) since the image is count-

able. The open interval (x−, x+) ⊂ (̂X1)β is disjoint from f(D). Be-

cause f is continuous and D is dense, (x−, x+) is disjoint from f(X̂α)
which is connected. This contradicts f(a) < x− < x+ < f(b). Hence,

π̂ ◦ f is constant on D and so on X̂α.
�
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Remark. It is, of course, part (f) which really uses the Hart-van Mill
properties.

In preparation for what follows we define F to be the set of order
maps from R to R, a pointwise closed semigroup of real functions.

Lemma 9.19. (a) Any f ∈ F has only countably many discontinuities.
(b) The set F has cardinality c.

Proof. Let D be a dense subset of R. For an order map g : D → R,
define g+, g− ∈ F by

g−(t) = sup{g(d) : d ∈ (−∞, t) ∩D},

g+(t) = inf{g(d) : d ∈ (t,∞) ∩D},
(9.53)

for all t ∈ R.
For any f : R→ R, f ∈ F if and only if g = f |D is an order map and

g− ≤ f ≤ g+. Furthermore, f is discontinuous at t if and only if g−(t) <
g+(t). By separability the family of nonempty intervals (g−(t), g+(t))
is countable and so f has at most countably many discontinuities. If
f is continuous, then it is uniquely determined by g. If not, then there
are c choices of f between g− and g+.
If D is countable, then there are c maps g from D to R.
It follows that the cardinality of F is c.

�

The amazing result of Hart and van Mill (1985) is the following.

Theorem 9.20. (a) There exists a Hart-van Mill collection H of
cardinality c.

(b) Let H be a Hart-van Mill collection with base set V . Let J

and J1 be subsets of H with associated complementary IHLOTS
X and X1, respectively. If J ⊂ J1, then X1 ⊂ X and so for

every ordinal α, (̂X1)α injects into X̂α. If J is not a subset of

J1, then (̂X1)ω does not inject into X̂ω. So if neither J nor J1

includes the other, then the CHLOTS X̂ω and (̂X1)ω are not
comparable with respect to size, i.e. neither injects into the
other. In particular, if for some Y ∈ J we have −Y 6∈ J , then

the CHLOTS X̂ω is not even comparable in size with its reverse
CHLOTS.

Proof. (a): Let G̃ denote the group of nonconstant affine transforma-
tions of R with rational coefficients, i.e. of the form t 7→ at + b with
a 6= 0 and a, b rational. It contains G as a subgroup of index two. If
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t ∈ I, the set of irrationals, then g 7→ g(t) is an injective map from G̃

to R. In particular, if t ∈ I, then the orbit sets Gt and −Gt = G(−t)
are disjoint.
For f ∈ F let S(f,A) = {t ∈ R : f(t) 6∈ At} for A = G or G̃.

Hart and van Mill call f singular if the set f(S(f,G)) has cardinality
c. Observe that for each g ∈ G the equation

(9.54) f(t) = −g(t)

has at most one solution since f is an order map and −g is a decreasing
function. It follows that the set S(f,G) \ S(f, G̃) is countable. So if f

is singular the set f(S(f, G̃)) has cardinality c.
Let F′ denote the set of singular functions in F. For example all

translations by elements of I lie in F′. So from Lemma 9.19 it follows
that the cardinality of F′ is c.
For each f ∈ F′ choose a set K(f) ⊂ S(f, G̃) such that f |K(f) is

injective and f(K(f)) = f(S(f, G̃)). That is, for each z ∈ f(S(f, G̃)),

we choose one point of (f |S(f, G̃))−1(z).
Let c denote the cardinal, i.e. the first ordinal with cardinality c

and let {fij : i, j < c} be a listing of F′ so that each function occurs
c times in each row and let {Cij : i, j < c} be a similar listing of the
Cantor sets in R.
We will find points x(ij, 0,±), x(ij, 1,±), y(ij, 0,±), y(ij, 1,±) in I

such that:

(1) x(ij, 0,+), −x(ij, 0,−) ∈ K(fij) and
y(ij, 0,+) = f(x(ij, 0,+)), y(ij, 0,−) = f(−x(ij, 0,−))
so that y(ij, 0,±) ∈ f(K(fij)) = S(fij, G̃).

(2) x(ij, 1,+), −x(ij, 1,−), y(ij, 1,±) ∈ Cij .
(3) If (i, j, α, ǫ) 6= (i′, j′, α′, ǫ′)

with i, j, i′, j′ ∈ c;α, α′ ∈ 2, ǫ, ǫ′ ∈ {+,−},
then the four orbit sets G̃(x(ij, α, ǫ)), G̃(x(i′j′, α′, ǫ′)),

G̃(y(ij, α, ǫ)), G̃(y(i′j′, α′, ǫ′)) are pairwise disjoint.

To construct these points we choose a bijection from the index set
c × c to c itself and so well-order the index set with order type the
cardinal c. For index ij we let H(ij) be the set of rationals together

with the G̃ orbit of all of the x and y points with index i′j′ preceding ij.
Thus, H(ij) has cardinality less than c. (Notice that for this reason the
lexicographic ordering on the product won’t work for our purposes).
Since Cij has cardinality c we can choose x(ij, 1,+),−x(ij, 1,−),

y(ij, 1,±) ∈ Cij \ H(ij) with distinct G̃ orbits and adjoin these four
orbits to H(ij) to define H(ij, 1). Since fij is singular the set K(fij)
is defined and has cardinality c and on it fij is injective. So we can
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choose x(ij, 0,+) ∈ K(fij) \ (H(ij, 1)∪ (fij)
−1(H(ij, 1)). By definition

the G̃ orbits of x(ij, 0,+) and y(ij, 0,+) = f(x(ij, 0,+)) are distinct.
Adjoin these two orbits to H(ij, 1) to define H(ij, 2). Finally, choose
−x(ij, 0,−) ∈ K(fij)\ (H(ij, 2)∪ (fij)

−1(H(ij, 2)) and let y(ij, 0,−) =

f(−x(ij, 0,−)). Notice that x(ij, 0,−) is in the G̃ orbit of −x(ij, 0,−)
but not in the G orbit since the point is irrational.
The members of family H = {Y ǫ

i : i ∈ c, ǫ ∈ {+,−, }} and the base
set V are given by

Y +
i = G · {x(ij, α, ǫ) : j ∈ c, α ∈ 2, ǫ ∈ {+,−}} for i ∈ c,

Y −
i = G · {−x(ij, α, ǫ) : j ∈ c, α ∈ 2, ǫ ∈ {+,−}} for i ∈ c,

V = G · ({1} ∪ {y(ij, α, ǫ) : i, j ∈ c, α ∈ 2, ǫ ∈ {+,−}}).

(9.55)

Clearly, Y −
i = −Y +

i and by condition (3) the indexed family H ∪ {V }
is pairwise disjoint. By condition (2) each member is a B set and so
by disjointness each is a BB set.
Finally, suppose that f ∈ F and that for some Y ∈ H the set f(Y )\Y

has cardinality c. Since Y is G invariant, {t ∈ Y : f(t) 6∈ Y } ⊂ S(f,G).
Hence, f is singular and so for each i ∈ c the set Z(f, i) = {j ∈ c :
f = fij} has cardinality c. If Y = Y ±

i , then {y(ij, 0,±) : j ∈ Z(f, i)}
is a subset of V ∩ f(Y ) of cardinality c. Thus, H is a Hart-van Mill
collection with base set V .
(b): If J ⊂ J1, then by definition X1 ⊂ X . So for every ordinal α,

(̂X1)α injects into X̂α by Proposition 4.7(b),(c).
Now assume that Y ∈ J \ J1.

Assuming that f : X̂ω → (̂X1)ω is a continuous order map, we will
show, following Hart and van Mill, that f is a constant. By Proposition

4.4 this exactly says that (̂X1)ω does not inject into X̂ω. We will apply
the preliminaries leading up to Lemma 9.18 with α = β = ω.
It suffices to show that each coordinate function fn is a constant.

We begin with f0 = π̂ ◦ f : X̂ω → R.
For 0 < n < ω let

(9.56) An = {w ∈ Xn : f0(w−) < f0(w+)}.

Observe that πn
m maps An into Am if 0 < m ≤ n, i.e. w ∈ An implies

w|m ∈ Am, because (w|m)− ≤ w− < w+ ≤ (w|m)+.
Since Y is dense in R it is easy to see from (9.26) that the closure Ȳ

in X̂ω satisfies

(9.57) Ȳ ∼= R ∨X ′

in the notation of (9.45).
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From Lemma 9.18(f), f0(Y ) is countable and so from Lemma 9.15(b)
f0(Y ) and A1 are countable sets.
Now for 0 < n < ω and w ∈ Xn let

(9.58) Y (w) = {z ∈ Jw : z(n) ∈ Y ∩ J}.

Recall that Jw is the interval [w−, w+] in X̂ω. We define the retrac-
tion r : R→ J by mapping (−∞,−1] to −1 and [+1,∞) to +1. Then

define the order surjection rw : X̂ω → Jw by

(9.59) rw(z)i =





wi for i < n

r(z0) for i = n

zi−n for i > n.

Apply Lemma 9.18(f) and then Lemma 9.15(b) to f0 ◦ rw and con-

clude that f0(Y (w)) and An+1 ∩ Jw are countable sets. Since An+1

projects to An it follows that An+1 =
⋃
{An+1 ∩ Jw : w ∈ An} and so

by induction An is countable for all 0 < n < ω. Define

Y (ω) = Y ∪
⋃
{Y (w) : w ∈ Xn for some 0 < n < ω}

Z = Y ∪
⋃
{Y (w) : w ∈ An for some 0 < n < ω}

(9.60)

where the closures are taken in X̂ω.
The image f0(Z) is countable. We now show that f0(Y (ω)) is a

subset of f0(Z) and so it is countable as well.
We show that f0(x) ∈ f0(Z) if x ∈ Y (w) with w ∈ Xn. If w ∈

An, then x ∈ Z. Let m = min{i : 0 < i ≤ n and w|i 6∈ Ai}. If
i = 1, then (w|i)−, (w|i)+ ∈ Y and if i > 1, then w|(i − 1) ∈ Ai−1

and (w|i)−, (w|i)+ ∈ Y (w|i− 1). Furthermore, f0 is constant on the
interval [(w|i)−, (w|i)+] which contains x. Thus, f0(x) = f0((w|i)−) ∈
f(Z).

Because Y (ω) is dense in X̂ω it follows from Lemma 9.18(g) that f0
is constant.
We complete the proof by using induction to show that fn is constant

for all n. If fi is a constant for all i < n then define f̃ : X̂ω → (̂X1)ω
by f̃(x)j = f(x)j+n, i.e. just forget the first n coordinates. Because f
is constant on the first n coordinates, this is a continuous order map.
By the above initial step result the f̃0 = fn is constant.

�

Remark. For every IHLOTS X ⊂ R the CHLOTS F = X̂ω has size
between R and Rω. It follows from Theorem 9.3(b) that with α a
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tail-like ordinal with α ≥ ωω·2, then

(9.61) Fα
∼= Rα.

In particular, for F = X̂(Y )ω with Y ∈ H, F is not symmetric but Fα

is symmetric.

Use the Axiom of Choice to select a subset H+ of H so that for all
Y ∈ H exactly one member of the pair {Y,−Y } lies in H+ and let H−

be the complement. For every A ⊂ H+ define J(A) = A∪ (H− \{−Y :
Y ∈ A}). If A1 6= A2, then neither of the two sets J(A1), J(A2) contains
the other. So from the Hart-van Mill Theorem 9.20 we obtain a family
of CHLOTS of cardinality 2c each with size between R and Rω no two
of which are comparable with respect to size.
Our final result combines the arguments of Hart and van Mill with

Theorem 9.6.

Theorem 9.21. Assume that H is a Hart-van Mill collection of subsets
of R. For distinct, nonempty subsets J, J1 of H let X = X(J) and
X1 = X(J1) be the associated IHLOTS. If α and β are countable limit

ordinals, then X̂α is not order isomorphic to (̂X1)β. In particular, if

for some Y ∈ J we have −Y 6∈ J, then X̂α is not symmetric.

Proof. Since the two subsets are distinct, we can assume that Y ∈ J\J1.

We will assume that f : X̂α → (̂X1)β is an order isomorphism and
derive a contradiction by showing that f is not injective. As before we
apply the preliminaries leading up to Lemma 9.18.
We prove by induction on i < β that the open set Oi is dense in R.

By Lemma 9.18(e) this is equivalent to Yi being dense in R.

Case 1: For the initial step, i = 1, we apply Lemma 9.18(f) to
see that π̂(f(Y )) is a countable subset of R. On R \X1 the map π̂ is
injective and we have assumed that f is injective. Hence, B∅ = {y ∈
Y : f(y)(0) 6∈ X1} is countable. By the Baire Category Theorem and
Lemma 9.14(b), Y1 = Y \B∅ is dense in R.
For the case i = j+1 with j > 0 we first fix y in the set Yj and prove

that Yi∩span
◦Q(y, j) is dense in span◦Q(y, j). It will, then follow that

Yi is dense in Oj which is dense in R by inductive hypothesis. Thus,
Yi is dense in R in this case.
To analyze Yj+1 ∩ span◦Q(y, j) we use a variation of the initial ar-

gument. Let r : X̂α → Q(y, j) be the canonical retraction. That is,
if Q(y, j) = [a, b] map (−∞, a] to a and [b.∞) to b. Define the order

injection sw : Jf(y)|j → ̂(X1)β\j by forgetting the coordinates in j. We
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apply Lemma 9.18(f) to sw ◦ f ◦ r. The analogue of π̂ ◦ f becomes, in
this case, π̂f(y)|j ◦ f ◦ r. Here π̂f(y)|j = π̂w of (9.49) with w = f(y)|j.
It follows that π̂f(y)|j(f(Y ∩ span◦Q(y, j))) is a countable subset of

J = [−1,+1]. On {z ∈ Jf(y)|j : z(j) 6∈ X1} the map π̂f(y)|j is in-
jective and we have assumed that f is injective. Hence, Bf(y)|j =
{t ∈ Y ∩ span◦Q(y, j) : f(t)(j) 6∈ X1} is countable. For all t ∈
Y ∩spanQ(y, j) we have f(t)|j = f(y)|j. Hence, Yj+1∩span

◦Q(y, j) =
Y ∩(span◦Q(y, j)\Bf(y)|j). As before the Baire Category Theorem and
Lemma 9.14(b) imply that Yj+1∩span

◦Q(y, j) is dense in span◦Q(y, j).

Case 2: When i is a limit ordinal Lemma 9.18(a) implies that

(9.62) Yi =
⋂
{Yj : j < i} ⊃ (

⋂
{Oj : j < i}) ∩ Y.

Because β is countable,
⋂
{Oj : j < i} is a Gδ set which is dense by

induction hypothesis and so the intersection with Y is dense by Lemma
9.14(b). Thus, Yi is dense in this case as well.

Having completed the induction we see, as in Case 1, that (
⋂
{Oj :

j < β}) ∩ X is dense in R. As in the final portion of the proof of
Theorem 9.6, if y is in this set, then P (y) is nontrivial and f is constant
on P (y). Hence, f is not injective, contradicting our initial assumption.

�

It follows from Corollary 9.4 that the tower {Fωγ} above each F =

X̂(J)α coincides at a sufficiently high level with the tower above R.
On the other hand, from Corollary 8.4 we immediately obtain the

following.

Theorem 9.22. Assume that H is a Hart-van Mill collection of subsets
of R. For not necessarily distinct, nonempty subsets J, J1 of H let
X = X(J) and X1 = X(J1) be the associated IHLOTS. If α, β are
infinite tail-like ordinals with α > ω · β, then there does not exist an

order injection from (̂X1)α into (̂X2)β.

Corollary 9.23. Assume that H is a Hart-van Mill collection of sub-
sets of R. For a subset J of H let X = X(J). The transfinite se-

quence of CHLOTS {(̂X)ωγ , 0 < γ < Ω} and the transfinite sequence

of CHLOTS Cantor Spaces {C((̂X)ωγ), 0 < γ < Ω} are nondecreasing
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in size. . Furthermore, if γ1 > 1 + γ2, then (̂X)ωγ1 is strictly big-

ger in size than (̂X)ωγ2 and C((̂X)ωγ1 ) is strictly bigger in size than

C((̂X)ωγ2 ).

Proof. This follows from Theorem 8.7 with δ = 1 and so with γ0 = 0.
�

Remark: If γ2 ≥ γ3 = ω, then 1 + γ2 = γ2. Hence, after the ωω level,
the members of the towers are strictly increasing in size.

Using a Hart-van Mill collection of cardinality c we obtain a collec-
tion of cardinality 2c consisting of CHLOTS with size between R and
Rω each forming the base of a tower of CHLOTS of height Ω. The
separate towers do not intersect by Theorem 9.21. These towers are
disjoint from the tower {Rα} over R as well by Theorem 9.6. The
corresponding Cantor Space towers do not intersect either by (4.37).

10. Zero Dimensional LOTS

If J is a nonempty, bounded, clopen convex subset of a complete
LOTS X , then y− = sup J is an element of J and y+ = inf (y−,∞) 6∈
J . So y− < y+ is a gap pair in X . Similarly, there is a gap pair
x− < x+ with x− 6∈ J and x+ =∈ J . Hence, J is the clopen interval
[x+, y−]. It follows that X is zero-dimensional, i.e. the clopen convex
sets form a base for X , if and only if X is gap pair dense that is,
for every x < y ∈ X there exists a gap pair z− < z+ ∈ X with
x ≤ z− < z+ ≤ y.
Assume that X is a perfect, complete LOTS, i.e. it has no isolated

points. We obtain the quotient space F by identifying each gap pair
with a single point. That is, we use the equivalence relation

(10.1) {(x, y) ∈ X ×X : x = y or {x, y} is a gap pair in X}.

On F there is a unique ordering so that π : X → F is an order
surjection which is continuous and topologically proper by Proposition
2.3(a). F is complete because X is and if π(x) < π(y) in F , then {x, y}
is not a gap pair and so the interval (x, y) is infinite. It follows that F
is order dense and so is connected. Let A ⊂ F consist of the classes of
the gap pairs. We call F the connected quotient of X and A the gap
pair set . If F has extrema, we let F ◦ denote F with the max and min
removed if they exist.
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Conversely, if F is a connected LOTS and A ⊂ F we extend 9.45 by
defining a subset of the AS double F ′

(10.2) F ∨A′ = F × {−1} ∪ A× {+1}.

The gap pairs of F ∨ A′ are a− < a+ for a ∈ A. It is clear that we
can identify F with the connected quotient of F ∨ A′ and A with its
gap pair set. On the other hand, if X is a perfect, complete LOTS
with connected quotient F and gap pair set A, then X is isomorphic
to F ∨A′.
In the case of the AS double F ′ itself the gap pair set A is all of F .

Proposition 10.1. Let X be a perfect, complete LOTS with connected
quotient F and gap pair set A.

(a) X is compact or first countable if and only if F satisfies the
corresponding property.

(b) The LOTS F ◦ is unbounded.
(c) X is gap pair dense if and only if A is dense in F . In that case

the inclusion of the dense set A into F is an embedding and A
is unbounded. The induced map from the completion Â to F is
an isomorphism onto F ◦.

(d) If f is an order automorphism of X, then there is a unique
order automorphism g of F such that π◦f = g◦π. The induced
automorphism satisfies g(A) = A. Conversely, if g is an order
automorphism of F such that g(A) = A, then it is induced from
a unique automorphism f of X.

Proof. (a): The compactness result is clear because π is topologically
proper. Every point of F (except the maximum if any) is the limit of a
decreasing sequence if and only if every point of X which is not a left
end-point is the limit of a decreasing sequence. Similarly for increas-
ing sequences, and these two observations yield the first countability
equivalence.
(b): No extreme point of X can be part of a gap pair because X has

no isolated points. So if we remove the max and min, if any, from X
and F , the resulting LOTS are unbounded.
(c): The density equivalence is clear and the embedding result follows

from Proposition 2.3(b).
An extreme point of X cannot be part of a gap pair because X has

no isolated points. It follows that the dense set A is contained in F ◦

and so is unbounded. Because F ◦ is connected and unbounded, it is
the completion of the dense subset A.
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(d): An automorphism f on X maps gap pairs to gap pairs and so
induces g. Conversely, given g, f can be regarded as the restriction to
F ∨ A′ of the automorphism g′ of F ′.

�

Definition 10.2. Let X be a perfect, complete, zero-dimensional LOTS.
We say that X satisfies the clopen interval condition when any two
bounded clopen intervals are isomorphic.

Theorem 10.3. Let X be a perfect, complete, zero-dimensional LOTS.

(a) X satisfies the clopen interval condition if and only if A is dou-
bly transitive.

(b) If X is first countable and σ-bounded, then it satisfies the clopen
interval condition if and only if A is a HLOTS in which case
F ◦ is a CHLOTS. In addition, X is then topologically homoge-
neous.

(c) If X is topologically homogeneous, then it is first countable.

Proof. (a): Let a < b, c < d in the gap pair set A. Because A is
unbounded we can choose e1 < min(a, c) < max(b, d) < e2 in A.
Assume X satisfies the clopen interval condition. Combine isomor-

phisms
(10.3)

[e1+, a−] ∼= [e1+, c−], [a+, b−] ∼= [c+, d−], [b+, e2−] ∼= [d+, e2−]

with the identity on (−∞, e1−]∪ [e2+,∞) to obtain an automorphism
f of X . By Proposition 10.1(d) f induces g on F which preserves A
and maps [a, b] to [c, d]. Hence, A is doubly transitive.
Conversely, assume that A is doubly transitive. There exists an au-

tomorphism h of A which maps [a, b] in A to [c, d] in A. The completion

ĥ is an automorphism of F ◦ which extends to an automorphism g of F
such that g(A) = A. By Proposition 10.1(d) again g is induced by an
automorphism f on X which clearly maps [a+, b−] to [c+, d−].
(b): If X is first countable and σ-bounded as well as complete, then

it is of countable type by Proposition 2.11(d) and so F and A are of
countable type by Proposition 2.11 (f) and (g). So A is an IHLOTS if
and only if it is doubly transitive by Proposition 3.8(a) in which case
the completion F ◦ is a CHLOTS by Proposition 3.8(c).
The topological homogeneity follows from the clopen interval condi-

tion with various cases. We provide just a sample.
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Suppose a ∈ A, b ∈ F ◦ \ A. Let e1, e2 ∈ A with e1 < a, b < e2.
Choose decreasing sequences {an} in A∩(a, e2) converging to a, {bn} in
A∩(b, e2) converging to b and an increasing sequence {cn} in A∩(e1, b)
converging to b. Define

• J0 = [e1+, a−], J1 = [a1+, e2−] and
Jk = [ak+, ak−1−] for k ≥ 2.
• K0 = [e1+, c1−] and K2k = [ck+, ck+1−] for k ≥ 1.
• K1 = [b1+, e2−] and K2k+1 = [bk+1+, bk−] for k ≥ 1.

Choose isomorphisms Jk
∼= Kk for k ≥ 0. Together these extend to a

homeomorphism of [e1+, e2−] which maps a+ to b. Use the identity
on the complementary set.
(c): A bounded sequence of distinct points in X converges to a

point by completeness. Topological homogeneity then implies that ev-
ery point x ∈ X is the limit of some sequence in X \ {x}. If x = a− is
a left endpoint, then such a sequence must consist of points below x.
By going to a subsequence we can assume the sequence {yn} converg-
ing to x is increasing. Thus, {(yn, a+)} is a neighborhood base for x.
By topological homogeneity it follows that every point has a countable
neighborhood base, i.e. X is first countable.

�

Remark: The topological homogeneity argument in (b) is due to Mau-
rice [16].

Corollary 10.4. If A is any doubly transitive LOTS with completion
F = Â, then X = F ∨A′ is a perfect, complete, zero-dimensional LOTS
which satisfies the clopen interval condition. Furthermore, if a < b ∈
A, then the interval [a+, b−], clopen in X, is a perfect, compact, zero-
dimensional LOTS which satisfies the clopen interval condition.

Proof. This is clear from Theorem 10.3 (a).
�

We turn now to trees of type 2 = {0, 1}. Any tree T of type 2 is
isomorphic with a subtree of the simple tree on 2, α where α = h(T )
and so we will restrict attention to such subtrees so that p ∈ T with
o(p) = β is an element of 2β. In particular, if T is normal with h(T ) a
limit ordinal, then the height of every branch is a limit ordinal and as
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in 6.29 we can identify the branch space X(T ) with

{x ∈ 2β : β is an infinite limit ordinal, x 6∈ T,

and x|ǫ ∈ T for all ǫ < β}.
(10.4)

For x, y ∈ X(T ) we have x < y if there exists ǫ = ǫ(x, y) < h(x), h(y)
such that xi = yi for all i < ǫ, xǫ = 0 and yǫ = 1.

Lemma 10.5. Let T be a normal tree of 2 type with height a limit
ordinal. The pair x < y ∈ X(T ) is a gap pair if and only if there exists
ǫ < h(x), h(y) such that

xi = yi for all i < ǫ, xǫ = 0, yǫ = 1, and

xj = 1 for all ǫ < j < h(x), yj = 0 for all ǫ < j < h(y).
(10.5)

Proof. It is clear that if x, y satisfy (10.5), then the interval (x, y) is
empty. On the other hand, if for some ǫ < j < h(x) xj = 0, then there
exists z ∈ X(T ) with zi = xi for i < j and zj = 1. So x < z < y.
Similarly, if for some ǫ < j < h(y) yj = 1 there exists z with x < z < y.

�

We say that a branch x eventually equals 0 if there exists β < h(x)
such that xi = 0 for all i ≥ β. In that case, we let β∗(x) be the
minimum of such ordinals β. Similarly, we say that x eventually equals
1 if there exists β < h(x) such that xi = 1 for all i ≥ β. In that case,
we let β∗(x) be the minimum of such ordinals β. From Lemma 10.5
we see that x < y is a gap pair if and only if x eventually equals 1, y
eventually equals 0 and β∗(x) = β∗(y) = ǫ + 1. Thus, x is a member
of a gap pair if and only if it eventually equals 0 or eventually equals
1 and, in addition, β∗(x) is a successor ordinal.
In particular, if we define 0̄, 1̄ ∈ 2h(T ) by 0̄i = 0, 1̄i = 1 for all i <

h(T ), then by normality and (10.4) there are unique ordinals γ0, γ1 ≤
h(T ) such that 0̄|γ0, 1̄|γ1 ∈ X(T ). Somewhat abusively, we will denote
these branches 0̄ and 1̄ so that h(0̄) = γ0, h(1̄) = γ1. It is clear that 0̄
is the minimum element of X(T ) and 1̄ is the maximum.

Theorem 10.6. If T is a normal tree of type 2 with height a limit ordi-
nal, then the branch space X(T ) is a perfect, compact, zero-dimensional
LOTS. If T is Ω-bounded, then X(T ) is first countable.

Proof. By Proposition 5.7 X(T ) is complete. Since 2 is bounded, X(T )
is bounded and so is compact. By Proposition 5.12 it is of countable
type, and so is first countable, if T is Ω-bounded. From (10.5) it is
clear that no left end-point is a right end-point and so there are no
isolated points.
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Now suppose that x < z < y in X(T ). With ǫ = ǫ(x, y) we have
that zi = xi = yi for all i < ǫ. Suppose that zǫ = 0. Since x < z,
there exists k with ǫ < k < h(x), h(z) such that xk = 0 and zk = 1.
Let w ∈ 2h(T ) with wi = zi for all i ≤ k and wj = 0 for all j > k. By
normality and (10.4) there is a limit ordinal γ with k < γ such that
w|γ ∈ X(T ). Thus, w|γ is a right end-point which lies between x and
y as does its associated left end-point. We proceed similarly if zǫ = 1.
Thus, X(T ) is gap pair dense and so is zero-dimensional.

�

Corollary 10.7. If α is a limit ordinal, then 2α is a perfect, compact,
zero-dimensional LOTS. If α is countable, then 2α is first countable.

Proof. Apply Theorem 10.6 to the 2, α simple tree.
�

Lemma 10.8. Let T be an additive tree of type 2 with height the tail-
like ordinal α. Assume that the branches 0̄, 1̄ ∈ X(T ) have height α.

(i) If x ∈ X(T ) eventually equals 0, then there is an isomorphism
from [x, 1̄] to X(T ) = [0̄, 1̄].

(ii) If x ∈ X(T ) eventually equals 1, then there is an isomorphism
from [0̄, x] to X(T ) = [0̄, 1̄].

Proof. Observe first that additivity implies that every branch which
eventually equals 0 or eventually equals 1 has height α.
Assume x eventually equals 0 and β = β∗(x). Let K = {β} ∪ {k :

xk = 0 and k < β} and let r be an isomorphism from the well-ordered
set K ⊂ α onto an ordinal γ + 1 ≤ β + 1 < α, so that r(β) = γ.
Define pβ = x|β and for k ∈ K with k < β, pki = xi for i < k and

pkk = 1. Thus, pk ∈ T for all k ∈ K with o(pβ) = β, o(pk) = k + 1 for
k < β. Notice that if β = γ + 1, then xγ = 1 by definition of β∗.
Define qβ = 0̄|r(β) and for k ∈ K with k < β, qki = 0 for i < r(k)

and qkr(k) = 1. Notice that r(β) < α = h(0̄). This is where we need

α = h(0̄). If, for example, it happened that h(0̄) < r(β), then we could
not define all the elements qk.
We show that

(10.6) [x, 1̄] =
⋃

k∈K

X(Tpk), and [0̄, 1̄] =
⋃

k∈K

X(Tqk).

Note first that x ∈ X(Tpβ). Now assume x < y, and let ǫ = ǫ(x, y).
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If ǫ ≥ β, then again y ∈ X(Tpβ). If ǫ < β, then xǫ = 0 and yǫ = 1.
So ǫ ∈ K and y ∈ Tpǫ .
Next 0̄ ∈ X(Tqβ). Now assume 0̄ < y and let ǫ = ǫ(0̄, y).
If ǫ ≥ r(β), then again y ∈ X(Tqβ). If ǫ < r(β), then yǫ = 1 and

ǫ = r(k) for some k ∈ K with k < β. So y ∈ X(Tqk).
Each of the unions in (10.6) is disjoint. The isomorphism is defined,

using additivity, by:

(10.7) pk + z 7→ qk + z for all k ∈ K, z ∈ X(T ).

The proof of (ii) is completely analogous.
�

Theorem 10.9. If T is an additive tree of type 2 with height the tail-
like ordinal α and the branches 0̄, 1̄ ∈ X(T ) have height α, then X(T )
is a compact, perfect, zero-dimensional LOTS which satisfies the clopen
interval condition.

Proof. Assume x < y ∈ X(T ) with x eventually equal to 0 and y
eventually equal to 1. We prove that the interval [x, y] is isomorphic
to X(T ). This includes the case when [x, y] is a clopen interval.
Let ǫ = ǫ(x, y) so that xǫ = 0 and yǫ = 1. Let a = x|(ǫ + 1), b =

y|(ǫ+ 1).
The truncations τǫ+1(x), τǫ+1(y) are, respectively, eventually equal to

0 and to 1. By Lemma 10.8 there are isomorphisms f0 : [τǫ+1(x), 1̄]→
[0̄, 1̄] and f1 : [0̄, τǫ+1y)]→ [0̄, 1̄].
Let 0, 1 denote the elements of level 1 of the tree. Define f : [x, y]→

X(T ) by

(10.8) f(z) =

{
0 + f0(τǫ+1(z)) if zǫ = 0,

1 + f1(τǫ+1(z)) if zǫ = 1.

Notice that for z ∈ [x, y] if zǫ = 0, then z|(ǫ+1) = a and if zǫ = 1 then
z|(ǫ + 1) = b. The result follows because T is the disjoint union of T0

and T1.
�

As a corollary we obtain the following extension of a theorem of
Maurice [15], who proved the result when α is countable.

Corollary 10.10. If α is an infinite tail-like ordinal, then 2α is a
compact, perfect, symmetric, zero-dimensional LOTS which satisfies
the clopen interval condition.
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Proof. Apply Theorem 10.9 to the 2, α simple tree. Interchanging 0
and 1, we obtain an order* automorphism of 2α and so it is symmetric.

�

In general if α is a limit ordinal, let πα : 2α → Fα be the projection
to the connected quotient of the zero-dimensional LOTS 2α. As in
Corollary 10.10 2α is symmetric and so the quotient Fα is symmetric
as well.

Theorem 10.11. If α > β are limit ordinals, then 2α is bigger than 2β

and Fα is bigger than Fβ. In particular, 2α and 2β are not isomorphic.
The connected quotients Fα and Fβ are not homeomorphic.

Proof. From the order surjection πα we obtain an order injection iα :
Fα → 2α. Explicitly we map each a ∈ A to the left end-point a− of
the pair. This induces the injection i′α : F ′

α → (2α)′ = 2α+1.
Assume that h : 2β → 2α is an order injection. If a < b in 2β

and h(a) < h(b) is a gap pair in 2α, then a < b is a gap pair in 2β.
Otherwise, there exists c with a < c < b and so h(a) < h(c) < h(b). It
follows that the order map πα ◦ h ◦ iβ : Fβ → Fα is injective.
Now choose z ∈ 2α\β with z not eventually equal to 0 or eventually

equal to 1. Let z0 = 0 + z, z1 = 1 + z, with 0, 1 here regarded as
elements of order 1 in the simple tree. Since α > β, α \ β is a limit
ordinal and so z0, z1 ∈ 2α\β with neither eventually equal to 0 or 1.
Define the order injection f : (2β)′ → 2α by

(10.9) f(a−) = a+ z0, and f(a+) = a+ z1.

By the choice of z it follows that the image of f is disjoint from all of
the gap pairs in 2α. Hence, πα ◦ f : (2β)′ → Fα is injective.
Because 2β and Fβ are compact LOTS both are order simple by

Corollary 4.11.
From the projection πα

β : 2α → 2β we obtain an order injection

h : 2β → 2α and as noted above, πα ◦ h ◦ iβ : Fβ → Fα is an order
injection. Thus, 2α is at least as big as 2β and Fα is at least as big as
Fβ.
If there were an order injection q : 2α → 2β, then q ◦ f : (2β)′ → 2β

would be an order injection, violating the order simplicity of 2β.
If there were an order injection q : Fα → Fβ, then q ◦ (πα ◦ f) ◦ i

′
β :

(Fβ)
′ → Fβ would be an order injection, violating the order simplicity

of Fβ.
In particular, we see that 2α is not isomorphic to 2β and Fα not iso-

morphic to Fβ. By Lemma 3.1 a homeomorphism between connected
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LOTS is either an order isomorphism or an order* isomorphism. Since
Fα is symmetric, an order* isomorphism would yield an order isomor-
phism. Thus Fα not homeomorphic to Fβ.

�

Remarks: For α and β countable, Maurice [15] proved that 2α is not
isomorphic to 2β.
The zero-dimensional LOTS 2ω is isomorphic to the Cantor Set and

the connected quotient Fω is isomorphic to the unit interval in R.
Hence, 2ω embeds in Fω and, in particular, 2ω and Fω have the same
size.

11. Appendix: Treybig’s Homogeneity Theorem

In this Appendix we present the proof of Treybig’s Homogeneity
Theorem 3.5.

Let X be a LOTS and H+(X) be the group of order automorphisms.

Lemma 11.1. If f1, f2 ∈ H+(X) and for some a ∈ X, f1(a) = f2(a)

then f3 ∈ H+(X) where f3(x) =

{
f1(x) for x ≤ a,

f2(x) for x ≥ a.

Proof. Let g = f−1
2 ◦ f1 ∈ H+ so that g(a) = a. Hence x ≥ a ⇔

g(x) ≥ a. So g′ defined to be g on (−∞, a] and the identity on [a,∞)
is in H+ and f3 = f2 ◦ g

′.
�

Lemma 11.2. If f1, f2 ∈ H+(X) and for some a ∈ X, f1(a) > f2(a),
then there exists f3 ∈ H+(X) which equals f1 on an open interval
containing a and such that f3(x) ≥ f2(x) for all x.

Proof. As before let g = f−1
2 ◦ f1 ∈ H+ so that g(a) > a. Inductively,

k 7→ gk(a) defines an increasing bi-infinite sequence for k ∈ Z and
g(x) > x for all x ∈ J =

⋃
k∈Z[g

k(a), gk+1(a)] =
⋃

k∈Z(g
k−1(a), gk+1(a)).

So J is an open convex set which contains a and g(J) = J . Points above
J are mapped above J and the points below J are mapped below J .
So g′ defined to be g on J and the identity otherwise is in H+. Let
f3 = f2 ◦ g

′.
�
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Lemma 11.3. Assume X is complete. If there exists a sequence {fn} ⊂
H+ which converges pointwise to the identity on X and such that
fn(x) < x for all x ∈ X and n ∈ N, then for each u ∈ X {fk

n(u) :
n ∈ N, k ∈ Z} is dense in X. In particular, X is separable.

Proof. If {fk
n(u)} were bounded below for some n then the infimum

would be a fixed point of fn, contradicting the assumption that fn(x) <
x for all x. Similarly, the sequence is not bounded above for any n.
Let a < b ∈ X . By pointwise convergence there exists n ∈ N such

that a < fn(b) < b.
Because the orbits are unbounded the set K = {f j

n(u) : j ∈ Z and
f j
n(u) < b} is nonempty. Let z be its supremum so that z ≤ b. There
exists j such that fn(z) < f j

n(u) ≤ z. If z ≤ a then z < f j−1
n (u) ≤

f−1
n (z) ≤ f−1

n (a) < b. That is, f j−1
n (u) ∈ K violating the definition of

z.
Since a < z there exists fk

n(u) ∈ K with a < fk
n(u). That is, fk

n(u)
is in the open interval (a, b). Density follows.

�

Remark: Completeness is needed. Let X = R × R which is not
complete and not separable. Let fn(x1, x2) = (x1, x2 −

1
n
).

For the transitive LOTS Z for each pair a, b ∈ Z there is a unique
element f ∈ H+(Z) such that f(a) = b. This translational uniqueness
does not occur for any nontrivial connected LOTS.

Proposition 11.4. If X is a nontrivial connected, transitive LOTS,
then it is not true that for every a, b ∈ X there is a unique element
f ∈ H+(X) such that f(a) = b.

Proof. Assume instead that translational uniqueness holds for X . This
implies that if f, g ∈ H+ and f(a) = g(a) for some a then f(x) = g(x)
for all x. It follows that if f(a) > g(a), then f(x) > g(x) for all x,
because if f(b) ≤ g(b) for some b then f(c) = g(c) for some c between
a and b, because X is connected.
Let {an} be an increasing sequence in X converging to a. Let fn ∈

H+ with fn(a) = an. Hence, for all x fn(x) < fn+1(x) < x = 1(x).
Where 1 ∈ H+ is the identity map.
Claim: For all x {fn(x)} converges to x.
If not, then there is some b such that c = sup{fn(b)} < b. Fix g ∈ H+

with g(b) = c. Since for all n, fn(b) < c = g(b) < 1(b), it follows that
fn(x) < g(x) < x for all x. Applied with x = a this contradicts the
convergence of {an = fn(a)} to a.
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Thus, {fn} converges to 1 pointwise.
From Lemma 11.3 it follows that X is separable and so, since it is

connected and unbounded, it is isomorphic to R. However, transla-
tional uniqueness clearly does not hold for R.

�

Corollary 11.5. If X is a nontrivial connected, transitive LOTS, then
one of the following holds.

(i) For all a ∈ X there exists f ∈ H+(X) and b ∈ X with a < b
such that f(x) = x for all x ≤ a and f(x) < x for all x ∈ (a, b].

(ii) For all a ∈ X there exists f ∈ H+(X) and b ∈ X with b < a
such that f(x) = x for all x ≥ a and f(x) > x for all x ∈ [b, a).

Proof. From Proposition 11.4 there exist f1, f2 ∈ H+ and s, t ∈ X such
that f1(t) = f2(t) and f1(s) > f2(s). Letting g = f−1

2 ◦ f1 we have
g(t) = t and g(s) > s.
Assume t < s. Let J be the connected component containing s of the

open set {x : g(x) > x} and let t1 be its infimum, i.e. its left endpoint.
Hence, t ≤ t1 and g(t1) = t1. Thus, g(x) > x for all x ∈ (t1, s] ⊂ J .
For any a ∈ X , let h ∈ H+ such that h(a) = t1 and let r = h−1 ◦g ◦h

so that r(a) = a and r(x) > x for all x ∈ (a, b] with b = h−1(s). We
can apply Lemma 11.1 to replace r by r′ which agrees with r on [a,∞)
and with the identity on (−∞, a].
Let f = r′−1.
This is case (i). We similarly obtain (ii) if s < t.

�

Lemma 11.6. Let X be a nontrivial connected, transitive LOTS and
let a, b, c ∈ X with a < b. For all x > c there exists y ∈ (c, x) and
f ∈ H+ mapping [a, b] to [c, y].

Proof. Let U be the set of x > c such that [a, b] can be mapped onto
[c, x] by a member of H+ and let V be the set of x < c such that [a, b]
can be similarly mapped onto [x, c]. Observe that by transitivity U
and V are nonempty. Let u = inf U and v = sup V . Our goal is to
prove u = c. Suppose instead that c < u.

Case 1: Assume that (i) of Corollary 11.5 holds. Choose w1 ∈
X, g ∈ H+ so that c < w1 < u and g(x) = x for x ∈ (−∞, w1] and
g(x) < x for x ∈ (w1, w2] with w1 < w2 < u. Choose w ∈ (w1, w2)
and k ∈ H+ such that k(w) = u. By Lemma 11.2 we can choose k
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so that k(x) ≥ x for all x ∈ X . Define u2 = k(w2) > k(w) = u and
u1 = k(w1) ≥ w1 > c. Hence, c < u1 < u < u2. Let f = k ◦ g ◦ k−1

so that f(x) = x for x ∈ (−∞, u1] and f(x) < x for x ∈ (u1, u2]. It
follows that for any y ∈ (u1, u2] the sequence fn(y) is decreasing with
limit u1.
There exists x0 ∈ (u, u2) and f0 ∈ H+ which maps [a, b] onto

[c, x0]. Clearly, fn ◦ f0 maps [a, b] onto [c, fn(x0)]. Because the se-
quence {fn(x0)} converges to u1, it follows that for sufficiently large n,
fn(x0) < u. This contradicts the definition of u.

Case 2: Assume that (ii) of Corollary 11.5 holds. From an argument
similar to the one for Case 1, it follows that v = c. Choose u1 ∈ (c, u)
and g ∈ H+ so that u1 = g(c). Hence, g−1(c) < c. Because v = c, there
exists h ∈ H+ mapping [a, b] onto [z, c] with z a point of (g−1(c), c).
Let u2 = g(z) so that c < u2 < u1 < u. g ◦ h maps [a, b] onto [u2, u1].
Let k ∈ H+ with k(a) = c. By definition of u, k(b) ≥ u. Since
k(a) < (g ◦ h)(a) and k(b) > (g ◦ h)(b), there exists t ∈ (a, b) such that
k(t) = (g ◦ h)(t). Apply Lemma 11.1 to define f to equal k on (−∞, t]
and equal to g ◦ h on [t,∞). Since f maps [a, b] onto [c, u1] we again
contradict the definition of u.

�

Now we complete the proof of Treybig’s Theorem.

Theorem 11.7. If X is a nontrivial connected, transitive LOTS, then
X is doubly transitive.

Proof. Given a < b and c < d. Choose g ∈ H+ with g(b) = d.

Case 1: g(a) ≤ c. There exists h mapping [a, b] to [c, e] with c <
e < d. Because g(a) ≤ c = h(a) and g(b) = d > e = h(b), there exists
t ∈ [a, b] such that g(t) = h(t). If f = h on (−∞, t] and f = g on
[t,∞) then f maps [a, b] to [c, d].

Case 2: g(a) > c. There exists h−1 mapping [c, d] onto [a, e] with
a < e < b. So h maps [a, e] onto [c, d]. Because h(a) = c < g(a) and
h(e) = d = g(b) > g(e), there exists t ∈ (a, e) such that h(t) = g(t).
For f use h on (−∞, t] and g on [t,∞) to map [a, b] to [c, d].

�
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