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Abstract—Prediction and control of spreading processes in social networks (SNs) are closely tied to the underlying connectivity patterns.

Contrary to most existing efforts that exclusively focus on positive social user interactions, the impact of contagion processes on the

temporal evolution of signed SNs (SSNs) with distinctive friendly (positive) and hostile (negative) relationships yet, remains largely

unexplored. In this paper, we study the interplay between social link polarity and propagation of viral phenomena coupled with user

alertness. In particular, we propose a novel energy model built on Heider’s balance theory that relates the stochastic susceptible-alert-

infected-susceptible epidemic dynamical model with the structural balance of SSNs to substantiate the trade-off between social tension

and epidemic spread. Moreover, the role of hostile social links in the formation of disjoint friendly clusters of alerted and infected users is

analyzed. Using three real-world SSN datasets, we further present a time-efficient algorithm to expedite the energy computation in our

Monte-Carlo simulation method and show compelling insights on the effectiveness and rationality of user awareness and initial network

settings in reaching structurally balanced local and global network energy states.

Index Terms—Signed networks, epidemic process, balance theory, awareness, continuous-time Markov chain, energy function.

✦

1 INTRODUCTION

QUANTITATIVE analysis of epidemic processes such as in-
fectious diseases, malware codes, andrumors spreading

over physical and online social networks (SNs) has stimulated
intense research activities [1], [2]. Owing to the pervasive use
of social media and the abundance of data extracted from sev-
eral such networks, which for long were merely unavailable,
the theoretical perception of epidemic dynamics driven by
nodal interactions has refined substantially in recent years
[3], [4]. While the vast majority of research has scrutinized
only positive social relationships, user pairs may also signify
enmity or distrust as perceived in reality. Subsequently, a user
may decisively decline to interact with a hostile contact and
avoid involvement in further spread of the viral process [5].
Accounting for heterogeneous social interactions is thus, cru-
cial in characterizing social link valence evolution under the
influence of individual user’s attitudes towards viral spread.

Unlike conventional networks, signed SNs (SSNs) evolve
based on the structural balance theory, pioneered by Heider
[6], where the relationship between any two users in a triad (3-
clique) can be impacted by the third user [7]. That is to say, the
theory posits that if “the friend of my friend is my friend” and
“the friend of my enemy is my enemy”, then the resulting triad
will be balancedandwill constitute an oddnumberof friendly
links. Evidently, SSNs converge tostructurally balancedstates
with minimum social tension by flipping the link polarity to
maximize the number of balanced triads [8].
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In the jargon of networked epidemics, a handful of works
focusonedgesignreconfigurationundertheeffectofevolving
user states. The conditions to attain opinion convergence in
generic SNs are obtained in [9] using monotone dynamical
systems. Further extended in [10], Shi et al. analyze the
asymptotic user state evolution affected by deterministic
weights on pairwise interactions by formulating a relative-
state-flipping model for consensus dynamics in random SSNs
and prove the conditions leading to almost sure convergence
and divergence. Their analysis assumes that the initial net-
work structure is always balanced which in truth, may not
always be the case. Saeedian et al. [11] study the non-trivial
coupled dynamics over a complete signed graph using an
energy function. The authors adopt the susceptible-infected
(SI) epidemic model to study the local and global energy
minima of the system irrespective of the possibility of re-
covery to susceptibility or epidemic alertness. Lee et al. [12]
then introduce an adaptive susceptible-infected-susceptible
(SIS) model to reinforce transitivity by rewiring the links be-
tween susceptible and infected nodes rather than their signs.
Though insightful, the emergent behaviors of the parallel pro-
cesses in [12] are limited to the population level and do not ad-
dress the microscopic dynamics inherent in user interactions.
Zhang et al. [13] present an approximation algorithm for the
minimum partial positive influence seeding problem in viral
marketing. Moreover, Li et al. [14] propose a non-stochastic
computational model for maximizing polarity-related linear
influence diffusion in SNs. However, neither [13] nor [14]
subsume Heider’s theory in the network structural evolution.

Thus far, there exists no work that investigates the intrigu-
ing co-evolution of generic SN structures and epidemic dy-
namics of a reversible process in conjunction with user alert-
ness. Absent in classical epidemic models, awareness towards
viral processes is an intrinsic human response that plays the
role of a natural immunization strategy. Such change in hu-
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Fig. 1. Schematic of the SAIS spreading model over an SN with positive
(solid) and negative (dashed) social relationships.

man behavior can be induced by learning about the contagion
spread from others without having to encounter it firsthand.
This hence, results in a coupled situation where an infectious
person and information about its presence spread simultane-
ously when humans react to the presence of the infection. In
fact, raising awareness is a widely-practiced control strategy
in dynamical systems as it alters the progression of the viral
spread [15], [16]. Besides the analytical merits, such a refined
projection model may serve beneficial to network adminis-
trators, social influencers, and decision makers in devising
optimal resource allocation policies. In view of this research
gap, the main contributions of this work are as follows:

• Inspired by Heider’s balance theory, a novel energy-
based framework is proposed to jointly minimize the
number of unbalanced triads that contribute to the so-
cial tension while mitigating the viral spreadin SNs. To
capture users’ response to such processes, we formu-
late the susceptible-alert-infected-susceptible (SAIS)
epidemic model [15] as a continuous-time Markov
chain (CTMC) and derive the stationary probabilities
to investigate the virtues of promoting awareness on
the network structural evolution.

• By incorporating a tuning parameter, we then analyze
cases for which the initial fraction of positive links and
the initially infected users induce natural immunization
by segregating the alerted and infected users into two
clusters interconnected via unfriendly links.

• Our model is evaluated on three real SSN datasets by
employing a time-efficient Monte Carlo simulation
method under different parametric settings.

2 THE COUPLED NETWORK MODEL

In this section, we first formulate the stochastic SAIS model
re-purposed for general spreading processes in our analysis.
The proposed energy model is then detailed subsequently.

2.1 Stochastic Epidemic Model Description

We consider an undirected SSN, represented by the graph
Gt = (V , Et), with a set V = {1, 2, . . . , n} of n users that form
friendly (1), hostile (−1), or no (0) social links. The link po-
larity of user pair (i, j)∈Et at any given time t is denoted by
Ai,j(t)∈{−1, 0, 1} [11]. For epidemic spreading over Gt, the
SAIS model in Fig. 1 is used, where each user is in the suscepti-
ble (S), alert (A), or infected (I) state at time t. User i is said to be
susceptible if he/she is completely unaware of the spreading
process. Since these processes do not propagate over negative
links in SNs [17], a susceptible user gets infected with rate
β∈R

+ times the number of its infected friendly contacts [15].
A user aware of the process however, is less likely to get
infected, with a lower infection rate 0≤βa<β, as compared
to a susceptible user. Unlike the irreversible SI model in [11],
a susceptible user becomes aware of the process with rate

: Susceptible (S) : Alert (A) : Infected (I) / : +/−

Fig. 2. All possible pairwise links in the SAIS spreading model. The
edges enclosed in boxes are the only two transmissible configurations.

κ ∈ R
+ times the number of direct infected friends and all

infected users may eventually recover back to susceptibility
with rate δ ∈R

+. For all i∈V , the network state can thus, be
expressed formally as the CTMC {Xi(t); t≥0}, where:

Xi(t) =







1; if user i is susceptible at time t,
0; if user i is alert at time t,
−1; if user i is infected at time t.

(1)

Using (1), we now can define the probability of user i being
in one of the three epidemic states as Si(t) = Pr[Xi(t) = 1],
Ai(t) = Pr[Xi(t) = 0], and Ii(t) = Pr[Xi(t) =−1] such that
for 1 ≤ i ≤ n, Si(t) +Ai(t) + Ii(t) = 1 always holds.

2.2 Pairwise Spreading Energy Function

We now delineate the sign evolution of user interactions in the
context of energy. Given the three epidemic states (S, A, I)
and binary link signs (−,+), there exist 12 distinct user pair
configurations as shown in Fig. 2. We characterize the viral
potency by mapping each user pair configuration (i, j), where
i, j ∈ V , to the energy landscape as follows:

Ep
i,j(t),











Ai,j(t)

(

Xi(t)−Xj(t)
)

2

4 ; if |Xi+Xj|mod2=0,

Ai,j(t)
1−Xi(t)−Xj(t)

2 ; otherwise.

(2)

Based on the functional value of (2), the configurations
depicted in Fig. 2 can be classified as follows:

• Balanced edges: As long as configurations S − I and
A−I do not flip their edge signs while evolving, the
users i and j are in a balanced social relationship and
do not engage in the propagation process [11]. There-
fore, they exhibit a pairwise energy of Ep

i,j(t) = −1.
• Unbalanced edges: Cases in which a susceptible or alert

user is in a friendly relationship with an infected user
are socially unstable and are bound to change with
time. In our model, S + I and A + I serve as feasible
links for epidemic spread and thus, the users are in an
unbalanced state with pairwise energy of Ep

i,j(t) = 1.
• Neutral edges: Irrespective of the edge sign, configura-

tionsS±S, I± I,A±A, andS±Ado not contribute to
the spreading process, and thus, exhibit zero pairwise
energy, i.e.,Ep

i,j(t) = 0.

Accordingly, the total pairwise spreading energy of net-
work Gt, denoted byEp(Gt), can be computed as:

Ep(Gt) =
1
(

n

2

)

∑

i,j
i6=j

Ep
i,j(t). (3)

2.3 Triad Structural Energy Function

Along with the users’ epidemic states, edge sign evolution is
also driven by Heider’s structural balance criterion. A triad of
users in Gt, denoted by (i, j, k), is said to be balanced if the
product ofAi,j(t)·Aj,k(t)·Ak,i(t) is positive. In other words,
an unbalanced triad will always have an odd number of neg-
ative edges. Hence, network Gt is fully balanced only if all
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SIS (Benchmark)
SAIS

Fig. 3. All possible balanced triads in the SAIS and the SIS models.

the constituent triads are balanced. Conforming to Heider’s
balance theory, the structural status of any triad (i, j, k) can be
mapped to the energy landscape as below [6]:

EN

i,j,k(t),−Ai,j(t) · Aj,k(t) · Ak,i(t). (4)

With (4) in place, the energy contribution of any balanced
(unbalanced) triad in Gt is EN

i,j,k(t)=−1 (EN

i,j,k(t)=1). Fig. 3
showcases all the balanced triads for the SAIS and the SIS
(baseline) models. To converge towards lower energy states
(which corresponds to more social stability), users in unbal-
anced triads tend to flip their link signs which in turn, affects
the configuration of other triads that share common edges
with them. Consequently, the total normalized energy of Gt,
denoted by E△(Gt), is as follows, where −1≤E△(Gt)≤1:

E△(Gt) =
1
(

n
3

)

∑

i,j,k
i6=j 6=k

EN

i,j,k(t) , (5)

Users in triads decide on whether or not to alter their relation-
ships only if the total triad energy of the resulting network is
further reduced. Apparently, SNs that manifest triad energy
values closer to −1 tend to be socially more stable and thus,
pragmatically justified.

2.4 Weighted Network Energy Function

We now define the total energy of networkGt , given byE(Gt),
as the weighted sum of the overall pairwise and triad energy
functions derived in (3) and (5), respectively:

E(Gt) = α · E△(Gt) + (1− α) · Ep(Gt) , (6)

where α(0≤α≤1) is the tuning parameter used to adjust the
energy trade-off between the epidemic spread (α=0) and the
structural balance (α=1) in the network. Hence, if Gt is fully
balanced (fully unbalanced), then E(Gt) = −1 (E(Gt) = 1),
which is more likely to be achieved in smaller graphs. Note
that for some fixedα value, attaining the global (local) energy
minimum state in which Gt is fully (or nearly) balanced de-
pends on the initial fractions of infected users (0 ≤ ρ0 ≤ 1)
and friendly links (0 ≤ r0 ≤ 1) [11].

3 STEADY-STATE PROBABILITY DISTRIBUTION

Assuming that only one event is triggered in each time step,
∆t≪1, i.e., either the epidemic state of exactly one user pair
(i, j) changes or the edge sign is flipped, the rules defining the
user pair transitions are shown in Fig. 4. The balanced edges
S−I and A−I transition to S−S and A−S, respectively, with
probability δ ·∆t or change toS+I andA+I, respectively, with
probability 1−δ ·∆t. For unbalanced edges, S+I changes to
S−I with probability 1− δ ·∆t− (β + κ) ·∆t · (1− 2δ ·∆t)
or switches to states A+I, I+I, or S+S with probabilities
κ ·∆t(1−δ ·∆t),β ·∆t(1−δ ·∆t), and δ ·∆t(1−(β+κ) ·∆t),

(a)
1

(g)
1

(b)
1

(h)
1

(c)
1−2·δ ·∆t(1−δ ·∆t)

δ ·∆t(1−δ ·∆t)

(i)
1−2·δ ·∆t

δ ·∆t

(d)
1−κ·∆t(1−βa ·∆t)

κ·∆t(1−βa ·∆t)

(j)
1−δ ·∆t

δ ·∆t

(e)

1−δ·∆t−(β+κ)·∆t(1−2·δ·∆t)

κ·∆t(1−δ ·∆t)

β ·∆t(1−δ ·∆t)

δ ·∆t(1−(β+κ)·∆t)

(k)
1−δ·∆t

δ ·∆t

(f)
1

(l)
1−δ·∆t−βa·∆t(1−2·δ·∆t)

βa ·∆t(1−δ ·∆t)

δ ·∆t(1−βa ·∆t)

Fig. 4. Transition probabilities for temporal evolution of states in Fig. 2.

respectively. Also, A+I switches to A−I, I+I, or A+I with
probabilities 1−δ ·∆t−βa ·∆t·(1−2δ ·∆t),βa ·∆t(1−δ ·∆t),
and δ ·∆t(1−βa ·∆t), respectively. Among the neutral edges,
S±S, A±A, and S−A flip their edge signs with probability 1
in each time step, S+A changes to either S−A or A+A with
probabilities 1−κ ·∆t · (1−βa ·∆t) andκ ·∆t · (1−βa ·∆t),
respectively. Finally, I± I changes to I∓ I with probabilities
1− 2δ ·∆t · (1− δ ·∆t) and 1− 2δ ·∆t, respectively, and to
S±Iwith probabilities δ ·∆t·(1−δ ·∆t)and δ ·∆t, respectively.

In general, given the pair (i, j), the tri-variate CTMC of the
form {Zi,j(t); t≥ 0}, where Zi,j(t) =

(

Xi(t), Xj(t),Ai,j(t)
)

,
defines these conditional transition probabilities as follows:

Pc,c′(∆t) , Pr
[

Zi,j(t+∆t) = c′
∣

∣Zi,j(t) = c
]

, (7)

where c = (x, y, z), c′ = (x′, y′, z′), and x, y, z, x′, y′, z′ ∈
{−1, 0, 1}. Based on (7), the stead-state probability distribu-
tion is derived in Theorem 1.

Theorem 1. Let
{

πx,y,z

∣

∣x, y, z ∈ {−1, 0, 1}
}

be the stationary
probabilities for the CTMC Zi,j(t) defined above, then we have
the following in steady-state:

(i) The fraction of susceptible users (s∞) is
∑

y,z π1,y,z .
(ii) The fraction of infected users (ρ∞) is

∑

y,z π−1,y,z .
(iii) The fraction of alerted users (a∞) is

∑

y,z π0,y,z .
(iv) The fraction of friendly links (r∞) is

∑

x,y πx,y,1.

Proof. We use (7) to obtain the elements of the infinitesimal
generator matrix Q = [qc,c′] of order 27 as follows:

qc,c′ =







lim
∆t→0

Pc,c′ (∆t)−1

∆t
; if c′ = c,

lim
∆t→0

Pc,c′(∆t); if c′ 6= c.
(8)

From (8), we now can obtain the stationary probabilities by
solving Π ·Q = 0 and Π · 1 = 1, where Π =

{

πx,y,z

∣

∣x, y, z ∈
{−1, 0, 1}

}

. Denoted by s∞ =
∑n

i=1 Si(∞)/|V|, the fraction
of susceptible users is computed as:

s∞ =
∑

y,z

π1,y,z.

Similarly, the steady-state probabilities for ρ∞, a∞, and r∞
can be obtained straightforwardly.
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Algorithm 1 Time-efficient Network Energy Calculation

Input: G0=(V,E0), α, ρ0, r0, β, βa, κ, and δ.
Output: Emin(G).

Initialization: ∀(i, j),Ai,j(0) ∈ E0 = −1, and e = 1.
1: Calculate E(G0) using (6).
2: e← E(G0).
3: for t← ∆t to T ·∆t do
4: Randomly select an edge (i, j) ∈ Et−∆t.
5: Change the state of edge (i, j) according to Fig. 4.
6: Update E(Gt) using (9), (11), and (12).
7: if E(Gt) == e then
8: e← E(Gt) with probability 0.5.
9: else if E(Gt) < e then

10: e← E(Gt)
11: return Emin(G)← e

4 MONTE CARLO METHOD

Starting from an initial network state at t=0, where a frac-
tion of users (ρ0) are randomly infected, we select an edge
(i, j) at random in each evolution step of the simulation and
change its state as in Fig. 4. Doing so affects the energy states of
all triads that share edge (i, j) in the long-term which succes-
sively, alters the total network energy state. Convergence to-
wards the new network structure transpires as long as the new
energy state decreases in each time step [11], i.e., this process
continues until the global minimum (E(Gt) =−1) or a local
(E(Gt)>−1) minimum energy state is reached. Computing
E(Gt) using (6) in each time step takes O

((

n

2

)

+
(

n

3

))

time.
To expedite the computation, we propose Algorithm 1 that
evaluates the energy difference of the selected edge between
consecutive time steps, t′ and t′′ (t′′= t′+∆t), inO(1) time as:

∆E(i, j) = α ·∆E△(i, j) + (1 − α) ·∆Ep(i, j) , (9)

where∆E△(i, j) is the difference in the triad energy, i.e.,

∆E△(i,j)=
1
(

n

3

)

∑

i′,j′,k′

(

EN

i′,j′,k′(t′′)−EN

i′,j′,k′(t′)
)

=
Ai,j(t

′)−Ai,j(t
′′)

(

n

3

)

∑

k′ 6=i,j

Ai,k′(t′) · Aj,k′(t′). (10)

If the state transition does not flip the edge sign, thenE△(Gt)
remains unaltered. Otherwise, flipping the edge sign implies
thatAi,j(t

′′)=−Ai,j(t
′), which further reduces (10) to:

{

−2Ai,j(t
′′)

(n3)

∑

k′ 6=i,j

Ai,k′(t′)·Aj,k′(t′); if Ai,j(t
′′)=−Ai,j(t

′),

0; if Ai,j(t
′′)=Ai,j(t

′).
(11)

Similarly,∆Ep(i, j) can be computed as follows:

∆Ep(i, j) =
1
(

n
2

)

(

Ep
i,j(t

′′)− Ep
i,j(t

′)
)

. (12)

5 SIMULATION RESULTS AND DISCUSSIONS

We evaluate the proposed energy framework with respect to
r0, ρ0, and α. For Case Study I, we generate a complete
network of |V|=180 users to entail the maximum number of
triads in our analysis. We then apply the bootstrap technique
to extract i.i.d. samples of smaller connected components of
size |V| from the Slashdot081106 (SL, |V|=747) [18] and the
Bitcoin-OTC (BC, |V|= 709) [18] datasets, and the entire US
Congress co-sponsorship (CS, |V| = 100, |Et| = 3696) [19]
dataset in Case Study II. To ensure better theoretical predic-
tions, all Monte Carlo simulation results are averaged over

0 100 200 300 400
0

0.2

0.4

0.6

0.8

 = 8,  = 0

 = 6,  = 2

 = 4,  = 4

 = 2,  = 6

 = 0,  = 8

(a) Susceptible density vs. time

0 100 200 300 400
0

0.2

0.4

0.6

0.8

(b) Alerted density vs. time

0 100 200 300 400
0.1

0.15

0.2

0.25

0.3

(c) Infected density vs. time

0 100 200 300 400
0.2

0.3

0.4

0.5

0.6

0.7

(d) No. of freindly links vs. time

Fig. 5. Time evolution of the proposed spreading model for different
(β, κ) values. The SIS baseline model is traced as (β = 8, κ = 0).

100 runs on a PC with 3.2GHz Intel Core i9-9900 CPU and
16GBRAM1.

5.1 Case Study I: Results

For the synthetic network, Fig. 5 plots the trajectories for
a viral outbreak under varying (β, κ) values with r0 = 0.25,
p0 = 0.15, α= 0.5, βa = 0.3β, and δ = 9 [15], [16]. As shown
in Fig. 5a, unlike the SIS baseline (κ=0), the susceptible frac-
tion under the SAIS model drops to zero with rate propor-
tional to κ. As a result, the users are either influenced by the
viral process or alerted thus making them less likely to fall
prey in the long run since βa ≪ β. The impact of κ on the
alerted and infected user densities are, respectively, shown in
Fig. 5b and Fig. 5c. For higherκvalues, a larger susceptible
fraction is made aware of the spread which, in turn, dimin-
ishes the size of the infected population. For instance, in con-
trast to the baseline, Fig. 5c vividly shows that the infected
cluster size decreases by nearly 14% when κ= 2. In spite of
setting β = 0, note that there exists a non-zero infected pop-
ulation in the network. This clearly implies that for smaller
values of r0, the proposed model partitions the network into
two distinct clusters: one comprising of alerted users and the
other containing infected users. While the users within each
cluster maintain a friendly relationship with each other, they
are hostile towards users in the other cluster. The virality of
the process however, dies out gradually with rise in r0 and
the two clusters eventually merge into a single cluster of
alert users. The impact of κ on the number of friendly links
is shown in Fig. 5d. Driven by the transitions given in Fig. 4,
such behavior is not far from expectation as users are inclined
to detach from friends influenced by the spreading phenom-
ena and instead, befriend those who are informed or share
common interests to attain social stability.

Fig. 6 shows how the control parameter α arbitrates the
epidemic spread and social tension trade-off for varying r0

1. GitHub repository: https://github.com/cnsl-nu/Co-evolution-of-
Viral-Processes-and-Structural-Stability-in-Signed-Social-Networks
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(a) ρ∞ vs. (α, r0) (b) E(G) vs. (α, r0)

Fig. 6. Impact of α and r0 on the steady-state infection density and the
network energy for p0=0.15, β=6, κ=4, βa=0.3β, and δ=9.

(a) ρ∞ vs. (ρ0, r0) (b) E(G) vs. (ρ0, r0)

Fig. 7. Impact of ρ0 and r0 on the steady-state infection density and the
network energy for α=0.5, β=6, κ=4, βa=0.3β, and δ=9.

values in steady-state. In Fig. 6a, we observe that the system
gravitates towards the jammed states (E(G) < −1), where
mitigating the epidemic is favored over attaining structural
balance, for lower (α, r0) values. As α and r0 goes beyond
0.5 however, it is evident in Fig. 6b that the network tends
towards the global minimum energy state to become struc-
turally robust at the expense of further epidemic spread. In-
terestingly, due to the reversible nature of the SAIS model, the
fully balanced complete network progresses to be infection-
free at α = r0 = 1 as all users eventually become aware of
the spread. Hence, the network tends to exploit the negative
links to naturally immunize the susceptible users by sepa-
rating them from the cluster of infected users. Therefore, for
any given setting, an optimal (α, r0) pair exists for which the
network would contain minimum number of infected users
in steady-state and yet, not necessarily be socially balanced.

The significance of ρ0 in the coupled evolution is shown
in Fig. 7. For 0≤ ρ0, r0 ≤ 0.5, Fig. 7a showcases the impact of
negative links in controlling the contagious spread. Further
increase inρ0 however, yields a fixed fraction of infected users
as most of the triads have evolved into a balanced state. Full
recovery is attained when ρ0 ≤ 0.5 and r0 > 0.5 due to the
small infection prevalence and the low infection rate relative
to κ and δ. Also, note that for low ρ0, the stationary infection
density (ρ∞) drops to zero, irrespective of r0. The process
diffuses at its maximum when ρ0 and r0 are both high. Fig. 7b
shows the trivial effect of ρ0 on the net network energy
for high r0, where the triad structural energy is dominant.
Aroundr0=0.5, the network struggles to become balanced as
flipping the edge sign conceivably creates more unbalanced
triads as compared to other values on the r0 spectrum. Fig. 8
showsEp(G) andE△(G) against r0 for different (β, κ) values
in steady-state. As seen in Fig. 8a, the minimum achievable
pairwise and triad energy values increase with κ for r0<0.6,
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Fig. 8. Minimum pairwise and triad energy for different (β, κ) values.
Here, p0 = 0.15, α = 0.5, βa = 0.3β, and δ = 9.

TABLE 1
Performance under network scalability for ρ0=0.15 and (β, κ)=(4, 4)

|V| Density ρ∞ a∞ r∞ |△B|

S
L

200 ≈ 4.37% 0.22 0.32 0.43 0.987

498 ≈ 1.20% 0.16 0.16 0.38 0.993

747 ≈ 1.10% 0.17 0.11 0.37 0.936

B
C

161 ≈ 4.25% 0.22 0.39 0.41 0.984

460 ≈ 1.46% 0.193 0.19 0.39 0.928

709 ≈ 0.93% 0.17 0.11 0.38 0.906

C
S 100 ≈ 74.67% 0.21 0.79 0.66 0.993

whereas the ρ∞ inversely drops. But for larger r0, the impact
of β and κ on the energy and ρ∞ is minimal. That is to say,
Ep(G) in Fig. 8a increases to zero as the number of infected
users becoming aware rapidly grows with increase in friendly
links. Contrarily, E△(G) in Fig. 8b falls to the global energy
minimum because the triads gradually evolve to become so-
cially stable as most users have already formed friendly links.

5.2 Case Study II: Results

We now assess our model using the real sparsely-connected
SL (≈ 1.10%), BC (≈ 0.93%), and the dense CS (≈ 74.67%)
SN datasets. The total number of triads existing in SL, BC, and
CS are 4268,1588, and 74140, respectively2. Table 1 compares
the impact of network scalability on the model performance.

Fig. 9 depicts the steady-state results of the datasets with
respect to generic β and κ values. Consistent with Fig. 6a and
Fig. 7a, we see in Fig. 9athatρ∞ reduces with rise in awareness
for ρ0 = 0.15, while it remains high and almost the same for
ρ0=0.75. As a resultant, the fraction of alerted users increases
with κ as shown in Fig. 9b. It is noteworthy that, irrespective
of ρ0, the gap in a∞ between CS and the other two datasets
gradually decreases. Despite the fewer nodes in CS, the plots
reveal the profound impact ofκ on the nodal states of densely
connected CS that contains more number of triads. Summing
up the infected and alerted fractions for each (β, κ) pair also
justifies the natural immunization induced by the formation
of two-cluster networks. Changes in β and κ however, do not
seem to influence the fraction of friendly links (r∞) in steady-
state. Though the epidemic state of nodes are decisive in link
sign evolution, we see that for all scenarios the ultimate num-
ber of friendly ties is almost the same. Upon reaching steady-
state, the fraction of balanced triads, denoted by |△B|, is close
to 100% in Fig. 9d, which indicates a balanced SN structure
in accordance with Heider’s balance theory. Furthermore, the
results empirically show that although the structural energy

2. In general, the sharp upper bound on the number of triads in a
graph with n nodes and m edges is n

6
(2m− n+ 1)3/2.
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Fig. 9. Experimental results on SL, BC, and CS for varying (β, κ) values. Here, r0 = 0.25, p0 = {0.15, 0.75}, α = 0.5, βa = 0.3β, and δ = 9.

of triads approach a global minimum,E(G)does not reach the
global energy minimum state. This is because the pairwise
energy tends towards a local energy minimum state when
α = 0.5. Also, since κ affects the pairwise spreading energy,
E(G) is slightly lower for higher κ rates as plotted in Fig. 9e.
Comparing the trends in both rows of Fig. 9, the results for
r∞ and |△B| are almost alike. With increase in κ, E(G) of CS
is higher by roughly 28% for ρ0 = 0.15 because of the larger
population of alerted users being intrinsically immunized as
compared to the setting with ρ0 = 0.75, where the impact of
increasing κ is relatively inconsequential.

6 CONCLUSION

In this paper, coupled dynamics of the SAIS epidemic model
and the structural evolution of SSNs was studied. Inspired by
Heider’s balance theory, a network energy framework was
formulated to capture the viral spreading via pairwise user in-
teractions in conjunction with social stability in triad config-
urations. The superiority of incorporating user awareness in
the classical SIS model was fully validated by the Monte Carlo
simulation results. Moreover, it was shown that a complete
SSN splits into two clusters of alerted and infected users upon
reaching a local energy minimum. The alerted cluster density
was also found to grow with increase in the initial number of
friendly links anda fully balancedSSN becomes infection-free
only when the triad energy is considered and all initial user
links are friendly. One interesting future work is to leverage
network centrality measures other than degree distribution in
probing the trade-off between opposing epidemics and social
stability in directed and composite SSNs. Better parameter
estimations based on network spectral analysis is also of value
in adopting effective control strategies.
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