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NUMBER OF VISITS IN ARBITRARY SETS FOR ¢-MIXING
DYNAMICS

SANDRO GALLO, NICOLAI HAYDN, AND SANDRO VAIENTI

ABSTRACT. It is well-known that, for sufficiently mixing dynamical systems, the number
of visits to balls and cylinders of vanishing measure is approximately Poisson compound
distributed in the Kac scaling. Here we extend this kind of results when the target set
is an arbitrary set with vanishing measure in the case of ¢-mixing systems. The error of
approximation in total variation is derived using Stein-Chen method. An important part
of the paper is dedicated to examples to illustrate the assumptions, as well as applications
to temporal synchronisation of g-measures.

CONTENTS
1. Introduction
2. Main results
2.1. Distribution of the number of visits in a fixed set U
2.2.  Asymptotic distribution of the number of visits in a nested sequence {U,, },,>1
3. Discussion of the results
3.1. Concerning the assumptions
3.2. Interpretation of the compound Poisson distribution
3.3. Relation to the extremal index in extreme value theory
3.4. Example 1: the House of cards process
3.5. Return and entry times
3.6. Example 2: Regenerative processes
3.7. Number of visits around a point
4. The case of g-measures
4.1. Visits close to a periodic point
4.2. Existence of the extremal index
4.3. The Furstenberg & Furstenberg example
4.4. Temporal synchronisation for g-measures
5. Discussion on synchronisation
5.1.  Synchronisation of (un)coupled map lattices: geometric approach
5.2. Geometric vs. symbolic: an explicit example
5.3.  Synchronisation of Markov chains
6. Proofs of general theorems
6.1. Stein-Chen method
6.2. Proof of Theorem
6.3. Proof of Theorem [
6.4. Proof of Theorem
7. Proofs of the results of Sections [3] and @
References

Date: November 26, 2021.

SEEREEEEEEEEEEEIEEEEEE =SS S =S



2 SANDRO GALLO, NICOLAI HAYDN, AND SANDRO VAIENTI

1. INTRODUCTION

The recurrence in small sets, which could be seen alternatively as a rare or extreme
event, turned out to have very rich probabilistic features and established itself as a major
statistical property of dynamical systems. We consider in this paper the general situation of
a measurable deterministic dynamical system and try to characterise the distribution of the
number of visits to sets whose measure will tend to zero. Since the probability to visit the
set coincides with its measure for ergodic systems, one should normalise the length of the
trajectory with the measure of the set, in order to get meaningful asymptotic distributions.
We called it, in the paper, the Kac’s scaling. If the system looses memory fast enough in
the future, which is achieved with relatively strong mixing properties, the number of visits
of a trajectory of length n tends to follow a binomial distribution B(n,p,), where p,, is the
measure of the small set. Kac’s scaling requires that the product np,, equals asymptotically
the constant ¢ and therefore one gets a Poisson law of parameter ¢ in the limit of large n
for the number of visits up to time p%‘ The implementation of this heuristic argument for
a given measure preserving dynamical system, requires not only mixing properties, as we
said above, but also some control on the nature of the small sets. When the map acts on
a metric space, the small set is usually taken as a ball around a given point z and with
radius shrinking to zero. The nature of the point z could change the limit distribution.
Suppose in fact that z is a periodic point; even if the system is mixing, the orbits starting or
passing close to z tend to sojourn for a longer time in the small set. This produces an effect
of clusterization which will alter the Poisson law into a more general compound Poisson
distribution.

The aim of the present paper is to obtain such results for measurable dynamical systems
and for a wide class of small sets. The latter are obtained by fixing an initial measurable
generating partition and by taking its backward (and eventually forward for invertible sys-
tems), join. An arbitrary countable disjoint union of elements of the join of order n will
be a small set U,. We will also assume that the sequence {U,},>1 is nested and that it
converges to a set of measure zero. The asymptotic distribution of successive visits to U,
will be assured by requiring that the invariant measure is ¢, or ¥»—mixing with respect to
the initial partition.

First of all we proceed to adapt the Stein-Chen method |Chen & Barbour| (2005)); [Barbour
et al.[(1992)); Stein! (1986); [Roos et al|(1994) to compare a given probability measure, in our
case the distribution of the number W,, of visits to a set, to a compound Poisson distribution.
This will give us an error for the total variation distance between the two distribution. Any
compound Poisson distribution depends upon a set of parameters A\;,[ > 1. It has been shown
in Haydn & Vaienti| (2020)), that those parameters are related to another sequence oy, > 1,
(see Section which quantify the distribution of higher order returns. Whenever the limits
defining the «; exist and the latter verify a summable condition, the error term given by the
Stein-Chen method will go to zero, and therefore we recover the expected convergence to a
compound Poisson law: this is the content of the main result, Theorem [} Applications to
concrete examples basically require to check two conditions on the system: (i) first of all the
¢, or ¥—mixing property, which enters the estimate of the error in the Stein-Chen approach;
(ii) secondly the existence and summability of the «;, which instead depend on the system
and on the choice of the nested sequence of small sets U,,. A similar program was carried
over in|Haydn & Vaienti (2020)), with a few substantial differences which in particular imply
that the examples given in the present paper cannot be covered by the theory developed in
Haydn & Vaienti| (2020). The latter targets C? local diffeomorphisms on smooth manifolds
and satisfying a few geometrical and metric conditions, among which the most relevant are:
a) local hyperbolicity and distortion; b) the annulus-type condition which allows to control
the relative measure of the neighborhoods of the small sets; and finally c) the decay of
correlations which is stated in terms of Lipschitz against L° norms. The technique of the
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proof of [Haydn & Vaienti| (2020) was different from the Stein-Chen’ used here and it had a
more geometric flavour, adapted to differentiable dynamical systems. In particular it was
possible to handle partially hyperbolic maps and synchronisation of coupled map lattices. In
the latter case and for the invariant absolutely continuous measure, it has been established
that the returns to the diagonal is compound Poisson distributed where the coefficients are
given by certain integrals along the diagonal. This example is reconsidered in this paper
and compared with a different way to collect points close to each other in the attempt to
synchronise two or more trajectories. In the spirit of the present paper, a neighborhood
of the diagonal will be constructed with the elements of the join partition of increasing
order, also called cylinders. As we said above, cylinders and union of cylinders will be our
small sets. If the dynamical system is encoded in a symbolic space, we could transport our
theory in the domain of symbolic dynamics and cover new panels of examples which are
unattainable with the previous geometric approach. Among the applications investigated in
the paper, we quote here the House of cards process, for which the distribution of the number
of visits to runs of length above a given threshold is found to be Pélya-Aeppli, and a class
of (not necessarily Markovian) regenerative processes for which we compute explicitly the
parameters of the compound Poisson distribution. In particular we exhibit the existence of
the quantity a; which takes on a particular role in extreme value theory, where it coincides
with the extremal index.

An important part of the paper is dedicated to g-measures (see Section . These are
equilibrium states with normalized potentials of the form ¢ = log g, where g is the g-function
Keane, (1972)). These objects form the counterpart, in the dynamical system setting, of the
(possibly long memory) stochastic processes. For this class of models, we give mild sufficient
conditions (strict positivity and summable variation), allowing us to apply our theorem for
the number of visits in cylinders around periodic points. It has been recently shown |Abadi
et al.|(2015) that for a particular class of g-measures called renewal measures, it is possible to
show that the limit defining the extremal index does not exist even though the measure is ¢-
mixing and this was due to an essential discontinuity of g in a given point. Here we will prove
that uniform continuity is enough for the existence of the extremal index and, by discussing
an example due to Furstenberg and Furstenberg, that the lack of continuity of g does not
prevent the existence of the parameter, leading to a Polya-Aeppli distribution around any
periodic point. We will then consider a decreasing cover by cylinders of the diagonal in
the m-dimensional product space where a given g-measure is seen as the coupling of the m
coordinates g-measures. This will allow us to study the synchronisation of the coordinates,
what we called temporal synchronisation for g-measures. In the general case where the
coordinate g-measures are not independent, we will show the converge to a Pélya-Aeppli
distribution whose parameter is related to the topological pressure of a given potential,
see Theorem [I2] It is interesting to observe that whenever the coordinate g-measures are
independent (the uncoupling case), the previous parameter can be expressed in terms of the
Renyi entropy of order m — 1. We also address the more general question of the interaction
of possibly distinct g-measures and we propose two ways to construct such an interaction.

Finally, in a discussion section on synchronisation, we highlight a difference between the
geometric approach of Haydn & Vaienti| (2020) and the symbolic approach of the present
work. In a simple example of two uncoupled identical deterministic dynamical systems, we
show that the asymptotic distribution of synchronisations is Polya-Aeppli when we target
the diagonal by cylinder sets (symbolic approach) but it is not Pdlya-Aeppli when we target
the diagonal by tubular neighbourhoods (geometric approach). We conclude the discussion
by considering yet another situation, of two uncoupled copies of the same Markov chain
on [0,1], with strong ergodicity conditions. We show that the asymptotic synchronisation
always follows a pure Poisson distribution, meaning that there is no clustering phenomenon
in that setting.
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We previously compared our achievements with the results obtained in the paper
; several other contributions deserve to be quoted and we will give here a
brief survey of them. We should first remind the seminal papers by Pitskel| (1991) and Hirata]
who showed that generic points have, in the limit, Poisson distributed return times
if one uses cylinder neighbourhoods, while at periodic points the return times distribution
has a point mass at the origin which corresponds to the periodicity of the point. This
dichotomy inspired and originated several successive works: it was proved in
for ¢-mixing systems in the symbolic setting, and in Haydn & Vaienti (2009) for more
general classes of dynamical systems with various kind of mixing properties. The latter
paper derived also the error terms for the convergence to the limiting compound Poissonian
distribution. The extension to t-mixing shifts was given in [Kifer & Rapaport| (2014); for
¢-mixing systems a recent contribution is provided in [Kifer & Yang| (2018). The Chen-Stein
method, which is at the base of the actual work, was firstly used in [Haydn & Psiloyenis|
for ¢-mixing measures and cylinder sets. A complementary approach to the statistics
of the number of visits, has been developed in the framework of extreme value theory, where
it is more often called point process, or particular kinds of it as the marked point process
associated to extremal observations corresponding to exceedances of high thresholds. See
for instance [Freitas et al.| (2013|2018, 2020) for applications to deterministic and random
dynamical systems, and the book Lucarini et al. (2016)) for a panorama and an account on
extreme value theory and point processes applied to dynamical systems. The distribution
of the number of visits to vanishing balls has been studied for systems modeled by a Young
tower: in [Chazottes & Collet| (2013)) for the Hénon attractor, in [Péne & Saussol (2016) for
some nonuniformly hyperbolic invertible dynamical systems, in|[Haydn & Wasilewska/ (2016))
and Haydn & Yang| (2017)) for polynomially decaying correlations. Recurrence in billiards
provided recently several new contributions; for planar billiards in [Péne & Saussol| (2010)
and [Freitas et al| (2014); in [Péne & Saussol| (2020)) the spatio-temporal Poisson processes
was obtained from recording not only the successive times of visits to a set, but also the
positions.

The paper is structured as follows. We directly state the main results in Section [2] and
follow with a discussion concerning assumptions and examples in Section [3] Next, Section [4]
specializes to the case of g-measures. We provide one further discussion on synchronization
in Section [5} and conclude with Sections [f] and [7] containing the proofs of all the results.

2. MAIN RESULTS

Let T be a measurable map on a measure space {2 and p a T-invariant measure on 2.
Moreover let A be a countable measurable partition on €2 and denote by A" = \/;L;O1 T-1A
be the joins of A. In the two-sided case when the map T is invertible then the n'" join is
A" = \/"71 T-7A. We assume that A is generating, that is A consists of singletons.

j=—n+1
For every measurable set U we will denote by puy with p(U) > 0 the measure conditioned
on (the points starting in) U, that is uy(4) = “(;{834). As usual, for any collection of sets

B we denote by o(B) the smallest o-algebra generated by 5.

2.1. Distribution of the number of visits in a fixed set U. Initially, our interest will
be to characterise the distribution of the number of visits to sets with small measure. To
this end, we define for any fixed set U and for any ¢ > 0 the N-valued random variable

t/pn(U) _
W= Y lyoT, (1)
=0

which counts the number of visits to U in the Kac’s scaling ¢/u(U). Although W depends
on t and U, we do not explicit this dependence in the notation for the sake of simplicity.
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Our first theorem gives an upper bound on the total variation distanmﬂ between pu(W € -)
and a compound Poisson distribution o with parameters tAp, ¢ > 1, that is, a probability
distribution with generating function

on(2) = edrza (1), (2)

Naturally, the parameters 5%,2 > 1 will depend on the dynamic.

We stand in the world of ¢-mixing measures.

Definition 1. We say a T-invariant probability measure p on € is left ¢-mixing with respect
to the partition A if there exists a decreasing sequence ¢(k) \, 0 so that for every n,m > 1,
Ueco(A™) and V € o(U,_; A™):

w(UNT—=kY)

———— — u(V)| < ¢(k). 3

O )| < 0w @
Stmilarly we say p is right ¢-mixing if under the same conditions

wUNT V)

—————= —u(U)]| < ¢(k). 4

O )] < o) 0

For any ¢ > 1 and any 1 < K < i, the variable counting the number of visits to U at a
distance less or equal to K around 7 is

i+K
Z = 3" 1yt
j=i—K
For z € 2 denote by A;(x) the the unique atom of A7 which contains z. More generally for
a set U C Q we put for its outer j-cylinder approximation of U (j > 1)

U? = A;(U) = U 4 (5)
A€ Ai  ANU#£Z
Similarly for U C Q and and integer then, for j < n, we also define the n-right j-cylinder
approximation by:
Ul =T~ =D A, (T U) = T~ U A. (6)
AEAT ANT— iU AL
In the case when U € o(A™) (union of n-cylinders) then we shall write below U7 for UJ
(In Remark 5 we will give an example of a null set whose n-right j-cylinder approximation

is the entire space for all j < n/2.) We are now ready to state our first main result where
we denote by ¢'(£) = 3277, ¢(j) the tail sum of ¢.

Theorem 2. Let p be a T-invariant probability measure on Q which is right ¢-mizing with
¢ summable. Then there exists a constant Cy so that, for any measurable set U € o(A"™),
any t >0 and any K < t/u(U), we have

n

+AuU) + oM (EK/2)+ > u(U7) ],
i=K/2
(7)

(U7 as defined in (B))) where Dk y is the compound Poisson distribution with parameters
tA\(K,U), £ > 1, where

. 1 ,
M(K.U) = ;B (]1Z§K>:E|]1U 0Tt = 1) , Vi> K. (8)

~ . #(a—n)
We-)- < Cht f K——
W € )pruliy <ot inf | K

IThe total variation between two probability distributions P and @ on some measurable space (2, F) is
defined as [|P(-) — Q()|| = suppe £ [P(B) — Q(B)|.
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If we assume left ¢-mizing instead of right ¢-mizing, the same statement holds after replacing
the j-cylinder approzimations U’ by the n-right j-cylinder approzimations U’ (as defined in

©) of U € a(A™).

We now consider the case in which we have a stronger kind of mixing called t-mixing.

Definition 3. We say a T-invariant probability measure p on 2 is -mixing with respect
to the partition A if there exists a decreasing sequence (k) N\, 0 so that for every n,m > 1,
Ueo(A™) andV € o(U o _y A™):
w(UNT~"FV)
n(U)pu(V)

This stronger assumption naturally yields a stronger result.

— 1| < (k).

Theorem 4. Let p be a T-invariant probability measure on 0 which is ¥-mixing where
P(j) = 0 as j — oo. Then there exists a constant C| so that, for any measurable set
Ueoa(A™), anyt >0 and any K < t/u(U), one has

n

We)—n < Cit inf A — Ap(U uhl, (o
[14( )= rulley <Gt it O(A = n) £ A )+sz:/2u( ) (9)

where Uy y is the compound Poisson distribution with parameters t;\g(K, U),L > 1 given

by .

By symmetry of -mizing, the same inequality holds with U7 instead of U7 on the RHS.

2.2. Asymptotic distribution of the number of visits in a nested sequence {U,, },>1.
Now we will consider nested sequences of measurable sets U; D Uz D ... satisfying u(U, ) —
0. We will denote by I" the limiting null-set. Our interest is to study the convergence in

distribution of
t/pu(Un)

W, = Z 1y, oT"
i=0

as n diverges, for any ¢ > 0.

Naturally, it is expected that, if in the Poisson compound approximations of the preceding
theorems the involved parameters converge and we can further control the error terms,
then we would have a Poisson compound distribution in the limit, parametrised by the
limiting parameters. The statement of such a result needs some more definitions on the
entry/return time probabilities and the corresponding limiting quantities.

For a subset U C Q we define the first entry/return time 7y by 7y(x) = min{j >
1 : Tz € U}. Similarly we get higher order returns by defining recursively 75 (x) =
o+ (T (x)) with 7} = 7. We also write 79 = 0 on U.

We now come back to our nested sequence of sets U,,n > 1 and define (provided the
limits exist) for k, L,n > 1

ar(L,Uy) := pu, (T(I}:l <L< T[’}n)
ar(L) := lim ag(L,U,)

n—oo

ap = lim ag(L). (10)
L—o0

As promised, using Theorems[2]and[4] and under proper further assumptions, we establish
that the limiting distribution of the number of visits to the U,,’s is asymptotically compound
Poisson.

Theorem 5. Consider a nested sequence of sets U, € o(A™),n > 1, converging to a null-set
T'. Suppose the T-invariant probability measure | satisfies:

(1) either -mizing, or right ¢-mizing with ¢ summable,
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(2) there exists a vanishing sequence of positive real numbers ay, k > 1 such that >, p(UL) <

a for all sufficiently large n’s,
(3) >pe i k*ap < oo (and naturally that the oy, k > 1, exist, see (10)).

Then, for every E C Ny one has
w(W, € E) — p(E)
as n — 0o, where ¥ is the compound Poisson distribution with parameters tAs, £ > 1 and
Mo = O — Qg1

If in assumption (1) we rather assume left ¢-mizing with ¢ summable, then we have to
change US to U} in (2), and the same statement applies .

3. DISCUSSION OF THE RESULTS

In this section, we list a series of remarks concerning the results presented in the previous
section, together with some example illustrating these remarks.

3.1. Concerning the assumptions. Here we discuss the assumptions of the above theo-
rems.

e It is classical in recurrence theory for dynamical systems to require some mixing
conditions on the dynamic. Here we have two alternative assumptions which are
not included one in the other. For Theorem [f] for instance, we need either that
the measure be ¥-mixing, or we require right (or left) ¢-mixing with polynomially
decaying ¢. The difference between assuming right or left ¢-mixing is made in
order to handle the case of invertible maps (see Remark [5| where, after the proof
of Theorem 2| this is explained). Plenty of examples satisfying these assumptions
can be found in the literature (Bradley, 2005, 2007)). We will give some examples in
Sections 3.7 and [

e The assumption (2) of Theorem [5is necessary in our setting because in general, the
U,’s may be large unions of cylinders whose measures have to be controlled. It is
clear that in the case where I is a point, then our mixing assumptions automatically
imply that u(U,) decays exponentially fast and thus satisfies the assumptions.

If U,, is the outer n-cylinder approximation of I, then UJ = U, for any j < n and
the condition simplifies to >_ -, u(U;) — 0.

e Finally, we need that the s exist and decay sufficiently fast so that Y -, Koy, <
co. As we will explain, the existence/computation of the parameters ay,k > 1 is
not obvious in general, it is not granted by our mixing assumptions, and can only
be, at most, guaranteed case by case.

3.2. Interpretation of the compound Poisson distribution. The definition of the
Poisson compound distribution is not the most common in the literature. Let us explain
that it indeed coincides with the classical definition. Put r := Ze tS\g and Ay = tj\g/r.
(Proposition |§| below will give conditions under which we have that A\, = ay — ayq1.) With
these quantities, we have

901;(2) = ezkzl tj‘k(QZk_l) _ erzkzl )\k(GZk—l) _ er(zkzl )\k_ezk_l) .

We recognise the moment generating function of the random variable Z = ZZJ\LI X; in which
N ~ Poisson(r) and X;,7 > 1 are i.i.d. integer valued r.v’s with distribution

_ e 0> 1
Zk Ak
When A\; = X and A\, = 0, & > 2, we obtain the straight Poisson distribution with

parameter t.

Px(£) =\
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We can now make the relation with our results concerning the count of limiting returns
to sets with small measure. The interpretation of the Poisson random variable N is that
it gives the distribution of clusters which occur on a large timescale as suggested by Kac’s
formula. And the number of returns in each cluster is given by the i.i.d. random variables
X;’s. These returns are on a fixed timescale and nearly independent of the size of the return
set as its measure is shrunk to zero.

An important non-trivial compound Poisson distribution is the Pdlya-Aeppli distribution
which happens when the X;’s are geometrically distributed with parameter 1 — p, that is
Px(k)=(1—p)ptk>1

For instance, when \; = (1—p)2p*~*, the compound Poisson distribution with parameters
the, 0> 1, is Pélya-Aeppli since A\, = (1 — p)p*~!. In this particular case we have moreover
that N ~ Poisson(¢(1 — p)). This specific case will be called “Pélya-Aeppli distribution with
parameter t(1 — p) ”. This means in explicit form that

k 24
o)) =0y (BT U e

- S
W J!

2

Several asymptotic distributions will appear along the paper, Pélya-Aeppli or not, de-
pending of the examples (and the setting).

3.3. Relation to the extremal index in extreme value theory. Assuming that the
ak,k > 1 exist and vanish as k diverges, we have that Ze 5\@ = Zg(ag — au41) telescopes
to ay. This quantity, oy = limg o0 limy, o0 py, (K < 7p,), is called the extremal index
and has a particular importance in extreme value theory (Freitas et al.,[2013). Under some
circumstances (Abadi et al.,[2020)), it is equal to the inverse of the mean cluster size. Indeed,
according to Section [3.2] the expected cluster size is given by

Zf S\g :ZEKS‘Z:ZZO%
2k Ak

« «
P 1 1

It is explained in [Haydn & Vaienti| (2020) (see for instance Theorem 2 and Remark 2 therein
or see Proposition |§| below) that, if >, k> ,o, ar < oo (so in particular oy, exists and
vanishes as k diverges), then ), ay = 1 and we obtain the desired result a% for the mean
size of a cluster.

An important issue however is to know, for given dynamical systems, whether or not the
limits appearing in all these quantities actually exist. We will investigate this question in
Subsections [3.6] and [3.4] on some examples, and in Section [ for the case of g-measures.

3.4. Example 1: the House of cards process. The house of cards process is a Markov
chain on A = {0,1,2,...} with transition matrix ) parametrized by a sequence of [0, 1] real
numbers r;,¢ > 0:
SN i if  j=0
Q(“){ 1—r; if j=i+1. (11)

It has a stationary version if and only if 3,5, H;;})(l — r;j) < oo, which is the condition
ensuring that the expecting distance between two consecutive occurrences of a 0 is finite. In
this case, the row vector 7 satisfying 7Q) = 7 is

k—1

(k) =m(0) [T(1 =)
i=0

where
1

w(0) = 1 .
L+ [L=o(X—1y)
For the stationary version of this Markov chain, we want to study the asymptotic distri-
bution of the number of visits to runs of length n above a threshold I > 1.
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We will use the stochastic process notation involving random variables, but in order to
relate to the framework of Section we could let 1 denote the measure on A" associated to
the stationary process. This measure is o-invariant, where o is the shift operator o : AN ¢
defined through (o(x)); = w441 for any * = (zoz171...) € AN. We are interested in
studying the statistics of visits of this symbolic system in U,, = U, (1) = (i, o ~*[l, +00) as
n diverges for some fixed [ > 1.

Let {X;}i>0 be a stationary House of Cards Markov chain. By the Markov property,
successive visits to 0 parse the process into independent blocks. Let us denote

T :=inf{k >1: X} =0},

and for any ¢ > 0

i+k—1
(k) =P(T =k Xo=i)=rix [[ Q-7

j=i

the probability that the time elapsed until the next 0, starting with Xy = ¢, be equal to k.
Recalling the definition of ay(L,U,), we have

Ozk+1(L, Un> > I[’D(T = k‘|X0 >n+ l)P(XZ <n,i=1,...,L— k|X0 = 0)7
and

Oék+1(L, Un) < ]P(T = k|X0 >n+ l)]P)(XZ <n,i=1,... ,L — k|X0 = O)
+P(T < k| Xo >n+)P(T > n|Xo =0).
Naturally, T and X; being a.s. finite, we have that, as n diverges, P(X; <n,i=1,...,L —

k| Xo = 0) converges to 1 and P(T" > n|Xy = 0) converges to 0. We will prove below that, if
7 = Too € (0,1), then for any £ > 1 and any [ > 1

B P(T = k| X > n+ 1) = roo (1 — 700)" (12)
and therefore

pyr = 1im Hm gy (L,Up) = lim Pr(T = k| Xo € Un) = roo(1 = Too )"

exists and decays exponentially fast in k, which grants Condition (3) of theorem

Moreover, under the assumption r; — 7o € (0,1) we have that the Markov chain is
Doeblin, and thus automatically exponentially (right) ¢-mixing (Bradley, [2005). This grants
condition (1) of Theorem Moreover, in our case, we have U} = U; = {X; > l,i =
0,...,5— 1}, thus

Jj+n—1
u(U3) = ZW(H)P(T > j|Xo =n) = 7(0) Z H (1—7)
= n>l i=0

which is summable in j since for any ¢ > 0, r; > ro — € for large enough i’s, granting
Condition (2) of Theorem

Thus if r; = 7o € (0,1), we can apply Theorem [5] which gives us that the number of
visits to U, is, asymptotically, Pélya-Aeppli distributed with parameter ¢(1—r4,). According
to Subsection the corresponding extremal index is 1/7.
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It only remains to prove the convergence . Let us compute
Y isnn P(T = k| Xo = i) (i)
Zi2n+l (i)

Sz itk [Lo (L= r)m(i)
N Zizn-i-l 7 (i)

S immi ik L (1= r)m(0) TT5Zg (1 — 75)

Yisn i T(O0) [[o(1 = 7))

B DinikrtTi Hé‘;%)(l =)

= i—1
Zian Hj:o(l - Tj)

P(T =k|Xo>n+1) =

By Stolz-Cesaro

n+l+k—1
Tn . 1—r1r;
limP(T = k| Xo > n + 1) = lim “*’CEJZ:? (1—75)
' " [[Z (A—rj)
ntltk—1
=lmrgne J] (0=rp) =re(l =)
j=n+l

as we said.

3.5. Return and entry times. An important task, in order to apply Theorem [5] is to
prove that the involved limiting quantities exist and to compute the sequence ek > 1 (or,
equivalently, \r, k > 1, see Subsection , parameter of the asymptotic compound Poisson
distribution. Here we give some alternative ways to prove these facts, by defining other
quantities related to Ay, k > 1, which are eventually easier to handle.

Let us define a¢ (K, Uy,) := pu, (7'15:1 < K) and assume that é&,(K) = lim, 0 o, (Té;l <
K) exist for K large enough. Since {Tétl < K} C {rf, < K} we get that ay(K) > diy1(K)
for all £ and in particular &; (K) = 1. By monotonicity the limits &, = limg o é¢(K) exist
and satisfy &1 = 1 and &y > Gy4q for any ¢ > 1. Now assume that moreover the limits
py) = lim,, o pu, (7-6;1 = i) of the conditional size of the level sets of the ¢! return time

Tf]n exist for i > 0 (clearly pgz) =0 for i < ¢—2). According to Lemma 1 in|Haydn & Vaienti

(2020) one has, for £ > 2,
dz = Zpge)

We also have, by definition, that ay = &y — Gpy1,¢ > 1. So the existence of the ay’s is
granted once the &,’s exist, moreover, according to what we just said

ar =Y (" = pY), e >2.
This relation also holds for £ = 1. To see this, first recall that

a1 = lim lim py, (K <71y0,)
K—ocon—o0 ’ ’

and observe that p(()l) =1 and pgl) = 0,7 > 1. It follows that we can write Zi(pgl) fp?)) =

].721])52) = 176&2 = Q.
Finally, we state without proof the following result which was proven in [Haydn & Vaienti
(2020), and which gives an important characterization of Ay under some conditions.
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Proposition 6 (Haydn & Vaienti| (2020))). Let U, C Q2 be a nested sequence so that 1(Uy,) —
0 as n — oo. Assume that the limits Gp(L) = lim, o &¢(L,U,,) exist for £ = 1,2,... and
L large enough. Assume ), &y < oo, then

A — Qg1
o

A =
where ai = Qg — Gry1. In particular the limit defining Ay exists.

3.6. Example 2: Regenerative processes. We recall that a a stochastic process {X;};>0
is a regenerative process if there exist random times 77 < T» < ... such that the sigma fields
J(X;:“*l),n > 1 are iid. and independent of o(X2' ™). So the model is completely
defined if we specify the distribution of XOT 1= and X:,ijfl. Here we consider a particular
case in which these vectors belong to |J,c 4 Uj>; a* where a¥ denotes the vector (a,...,a)
of k times the same symbol a concatenated, and A C N. In other words, the independent
blocks are filled up with only one symbol as follows

X =Xo...Xo Xr, ... X7
——

e

Xp ...

n

X

Wt

Ty times T, — T} times Ty41 — Ty times
Specifically, we consider that for any a € A and k > 1
P(Xp " = a") = p(a)qa(k)

where ) p(a) =1 and, forany a € A, Y, qu(k) = 1. A way to interpret the above formula
is in a two-steps procedure. First we choose the symbol X7, = a independently of everything,
with probability p(a), and next, we choose the size k of the block, with probability g, (k).
This is a particular instance of Semi-Markov process (Janssen & Mancay, [2006; |Cinlar, 2013)).
In particular, it is well-known that there exists a stationary version of the process if and
only if the expectation of the blocks is finite, that is

v= Z pla)ve = Z p(a) Z kgq (k) < 0o

acA acA k>1

where v, is the expectation of the blocks of symbols a. Another known fact is that, for the
process to be stationary, the distribution of XOT 1= must be

P(Xg ' =d") =pla)ga(k) , a€ Ak>1

where

pla) = P(@)ra and  qq(k) = M

We want to study the distribution of the number of visits to states larger or equals to n
when n gets large (we assume that A is countably infinite).

As for the House of Cards Markov chain, we can relate to the framework of Section [2] by
considering the symbolic measures space (AY, B, i, o), and this time, we consider the nested
sets U,, = [n,+00),n > 1.

The regenerative structure was also present in the House of Cards Markov chain, since
visits to 0 cut the realisation into independent blocks. However, regenerative processes need
not be Markovian. The first step, if we want to use Theorem [5]is to investigate the mixing
properties of this model.

Proposition 7. For the regenerative process described above, inequality holds for
¢(k) = 2sup Z da ().
a€A Tk
The proof of this proposition is not difficult but since we did not find it in the literature,
we do it in Section [1
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An interesting case is the Smith ezample, in which g,(a + 1) = 1 =1 — ¢,(1). This
example was used by Haydn & Vaienti (2020) as a case in which Proposition |§| cannot be
used, because they proved that & = % for any k. In any case, we cannot use Proposition
neither, and thus we cannot conclude on the statistics of this model here.

To simplify the presentation, suppose now that g, (1) = ¢(I) for any I > 1 independently
of a, in which case g, = ¢ for any a also. According to Proposition |f|, Condition (1) of
Theorem [5] is granted if the probability distribution ¢ has first moment.

On the other hand, it is not too complicated to see that ay(L,U,) (see (10)) is close to
the probability that the starting block, which is a block of a symbol in U, (since we are
conditioned on starting in U,,), equals k. Indeed, using a similar reasoning as the one used
for the house of cards Markov chain (Haydn & Vaienti, 2020, Section 8.2), we get

from which it follows that
2k )
ap =q(k) = S~
2 ka(k)
since in the present case g, (k) = g(k) for any k. So condition (3) of Theorem [f]is granted if

we assume that ¢ has finite second moment, that is, > k%q(k) < oo. This in turns is granted
if ¢ has third moment, since (we put v, = v for any a)

SR = - SRS ) < 13 () = 3 Ka(k) < oo
k k k

1>k k >k

In order to ensure condition (2), we will assume that n ), p(i) — 0 as n diverges, which
is the case for instance if the probability distribution p(a),a € A has first moment. Then,
since in our case U}, = U, for any i < n, we have for any 1 < K and sufficiently large n

pU) < np(U,) =ny p(i) < K Y p(i).

n
i=K i>n i>K

Thus taking ay =k >, p(j), the assumption (2) of Theorem 5 also holds.

We conclude that, if p(a), a € A has first moment and ¢(k), k¥ > 1 has third moment, then
the number of visits to U, is, asymptotically compound Poisson with parameter tA, k > 1
where

5 = 1)
> ka(k)

As explained in Subsection a1 = Y, A, which in this case gives 1/ 3", kq(k). Thus
the extremal index is 1/aq =), kq(k) which is the expected block size.

3.7. Number of visits around a point. Determining the limiting distribution of the
number of visits when the limiting target set is a point and the nested sequence of sets
is a sequence of cylinders containing the point is a classical question in the literature of
recurrence theory (Haydn) 2013). It is however a nice way to illustrate Theorem

Suppose that the mixing conditions of Theorem [5| are satisfied by the dynamic under
consideration. Fix a point z € Q and for any n > 1 consider the n-cylinder A, (x), that is,
the unique atom of A" containing z € . In the notation of the previous section, we let
U, = An(z) (that is I' = {z}), and we ask what is the asymptotic distribution of visits to
U,,n > 1. It is well-known that in this case there is a dichotomy according to whether x is
aperiodic, in which case we have a Poisson distribution, or periodic, in which case we have a
Polya-Aeppli distribution instead. Illustrating how to use our results in this simple example
will be the opportunity to clarify technical details concerning notation and some involved
limiting quantities.
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Initially, for any measurable set U C 2 we write 7(U) = inf ey v (y) for the period of U.
In other words, UNT U = @ for j=1,...,7(U) =1 and UNT"WU # @. The proof of
the following lemma is direct and can be found for instance in |Haydn & Vaienti (2020).

Lemma 8. Let A be a (finite) generating partition of Q. Then the sequence 7(A,(x)),
n=1,2,... is bounded if and only if © is a periodic point.

We start with the case where x is a periodic point, with minimal period m, say. Let
us compute the values Ag. For n large enough one has 7(A4,(x)) = 7oc = m and therefore
Ap (@) {74, (2) = m} = Ap(x)NT ™™ Ap () = Apym(x). Moreover pl(.é) = lim,, 00 MA”(QJ)(TIZ%Z) =
i) =0 for i < m.

Assume the limit

0= p® = iy M Anim(@))
R W)

exists, then one also has more generally

(13)

— lim N(An+(l—1)m(x)) _ -1
Peenm = B8 T uAa @)

All other values of pl@ are zero, that is pl@ =0if¢ # ({—1)m. Thus &, = péﬁll)m =pt!

and consequently
ap =y — by = (1—p)p~"

which is a geometric distribution and in particular implies that ", k2, < 0o, meaning that
condition (3) of Theorem |5} Moreover, in the present case, we have Uf = U, for any i < n,
and since our mixing assumptions imply that the measure of cylinders decays exponentially
fast in n, it follows that Assumption (2) of Theorem [5| is automatically granted. So by
Theorem [5} we conclude that the random variable W has Pélya-Aeppli distribution with
parameter ¢(1 — p) (see Subsection [3.2).

We now consider the case of a non-periodic point . In this case, the increasing sequence
7(An(x)) goes to infinite as n — co. Note that g, (2)(Ta, () < K) = 0 for all n large
enough so that K < 7(A,(z)). Hence Go(K) = 0 for all K which implies that o = 0
and consequently &, = 0 for all /£ > 2. Consequently in this case the extremal index is
ap =1—ay =1and ap =0,k > 2 so that 5\1 =1 and S\k = 0,k > 2 and therefore W is
Poisson(t) distributed.

4. THE CASE OF g-MEASURES
Let A={1,2,..., M} be a finite alphabet and
Sp={re AV By 4, =1, Vi>1} Cc¥:= A"

where B is an aperiodic and irreducible M x M matrix of 0’s and 1’s. Let F denote the
Borel o-algebra of ¥ 5. For any finite string af (shorthand notation for (aq,...a,),a; € A)
of symbols of A, we let [a]] := {x € Xp : 2; = a;,i = 1,...,n} denotes the corresponding
cylinder set. The Borel o-algebra F is generated by the cylinder sets. The shift operator
o : Xp O defined through (o(z)); = x;41 for any x = (x12923...) € Lp is called sub-shift
of finite type.

A measurable function g : X5 — [0, 1] satisfying

S o) = glaz) =1 (14)
yio(y)=z acA
for any x € Xp is called a g-function. Let £, be the associated transfer operator given by

Lof(x)= Y gw)f(y) = _ glax)f(ax),

yio(y)=z acA
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for functions f : ¥ — R, where ax is the concatenation of the symbol a with the sequence
x (if admissible). A g-measure is a probability measure satisfying Lip=p (Keane, [1972)
where L} is the dual of £,. This is equivalent (Ledrappier, (1974) to u being o-invariant and
satisfying

By (Liq|F5%) (2) = g(ao(z)),
for any a € A and p-almost every z € Yg. Yet another equivalent way is to define p is
through the variational principle,

| € argmax {h,, + /loggdl/ (v s a—invariant}

where h, denotes the Kolmogorov-Sinai entropy. The maximum of the quantity above
is called the topological pressure of logg and denoted P(logg). It turns out that, since
> yo(y)—e 9(y) = 1, we have P(logg) = 0.

All the above can be stated in the framework of equilibrium states for a real function ¢ on
3.p. This can be done simply by substituting g by e?, except for the restriction which
is put in the g-measure context to give a stochastic process flavour. We refer to |Ledrappier
(1974); [Walters| (1975)) for the proofs of all the above equivalences and further details on the
variational principle for generic potentials and g-functions.

An important characterisation of the regularity of g is its variation of order k > 1

vary g := sup{lg(z) — g(y)| : 27 = y1’}. (15)
The convergence varg g — 0 is equivalent to uniform continuity in the product topology. In
this case, £ = p has at least one solution (Keane, [1972). Under the stronger assumption
that ), varyg < oo and g > 0, there is a unique g-measure specified by g (Ledrappier,
1974) and it enjoys ¥-mixing (Walters, [1975| see the proof of Theorem 3.2 therein).

4.1. Visits close to a periodic point. In Subsection we considered the case of visits
around a point through cylinders. Concerning periodic points of minimal period m, the
existence of the limit " @)
@) s H{An+m (T

pi= pgn) = nh_{go m (16)
was assumed in order to conclude the asymptotic distribution of the number of visits close to
the point. Here we consider this question in the case of g-measures. We have the following
proposition.

Proposition 9. Consider a g-measure p and a point x € Xp of prime period m > 1. If g is
continuous at the set of points {o*(x),i = 0,...,m—1}, then the limiting parameter p defined
through exists and is given by H;igl g(ai(x)). So in particular, if vary g vanishes, the
limiting parameter exists for any periodic point. If moreover ), varyg < oo and g > 0,
the limiting distribution of the number of visits around x has Pélya-Aeppli distribution with
parameter t(1 — p).

Remark 1. Let us mention that the existence of the limit was proven and computed for
Aziom A by |Pitskel (1991)).

Let us now consider a specific class of g-measures, called renewal measures. Consider the
space ¥ = {0, 1} and for any z € ¥ let x(z) := inf{n > 0 : 2,41 = 1} count the number
of 0 until the first occurrence of a 1 in z. Now take a sequence of [0, 1]-valued real numbers
¢i,i > 0 and define the function g by g(1z) = g (). A g-measure corresponding to g exists
under some technical assumptions on the sequence ¢;,7 > 1, which are automatically granted
if we assume that g; > € for any 7 > 1.

Proposition 10. Consider a renewal measure with sequence of parameters {g;}i>1 which
satisfies q; € [e,1 — €] for some € > 0. Then, for any periodic point x # 0°°, the limit
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p defined by exists and the limiting distribution of the number of visits around x has
Pdélya-Aeppli distribution with parameter t(1 — p).
The same occurs for visits around 0%° if, and only if, q;,1 > 1 converge.

The main interest of this example lays in the fact that it is ¢-mixing.

4.2. Existence of the extremal index. Due to its relation to the so-called extremal
index, the question of (non-)existence of the limit was investigated recently in |Abadi
et al.| (2019b)). According to Proposition |§|, vanishing variation guarantees existence of the
extremal index at any periodic point. So if we want to characterise systems for which the
extremal index does not exist, we have to get out of the classical setting of g-measures in
which g is assumed uniformly continuous. This is what we discuss now.

First, let us observe that Theorem 3.2 of |Abadi et al.| (2015]) completely solved the ques-
tion of the existence (and computation) of the limiting parameters in the case of renewal
measures. Something interesting which is shown therein is that the renewal measure pro-
vides a simple situation in which p does not exist although the measure enjoys good mixing.
This is the case if we take g.(;) = €1 if x(x) is odd and g(x) = e otherwise: the limit

%:)D does not exist (see also Proposition |10|above). With this choice of parameters,
the measure is ¢-mixing with exponentially decaying rate ¢, but we easily see that g has a
discontinuity (with respect to the product topology) at the point 0°°.

The first information we get from this example is that good mixing properties are not
enough to ensure existence of the extremal index, and that this existence is perhaps related
to the continuity properties of the g-function. Technically, the discontinuity of g at 0> is an
essential discontinuity, borrowing the terminology used in the context of statistical physics
(Fernandez, 2005)). This is a discontinuity which cannot be removed by changing function g
on a null i-measure subset of ¥ (Ferreira et al.l 2020]).

More generally, for a g-measure p with g-function g, the non-existence of the limit
lim,, u([a}])/p([a?]) implies that g has an essential discontinuity at y5°, but the con-
verse is not necessarily true. So even when we focus on the easier case of points of period
1, the non-existence of the extremal index implies on an essential discontinuity of g at a*°,
but the converse is not true in general. This non-equivalence is spectacularly clear with the

following example.

4.3. The Furstenberg & Furstenberg example. As far as we know, the following ex-
ample is due to [Furstenberg & Furstenberg (1960) (see Chapter 3.12 therein). On AN =
{—1,+1}", take the product measure y with marginal u([+1]) = ¢ = 1 — u([~1]). Next,
consider the function IT : {—1,+1} — {—1, +1} defined through (Il(z)); = x;z;41, the
product of two consecutive coordinates. The measure v := p o II"! has a g-function which
is essentially discontinuous everywhere (Verbitskiy, 2015; [Ferreira et al., [2020). Let us now
write down its g-function g*.
For any fixed j € N, when the limit exists, let

o o
d(z$°) = lim #l<isnm 1}

n—00 n

denote the asymptotic density of —1 in the sequence z7° with z; € {-1,41},% > j. For
any fixed y € {—1,+1}" the preimage set II"!(y) contains two elements, that we denote by
xt(y) for the one starting by +1 and =~ (y) for the one starting by —1. Now, let

G={ye{-1,+1}" :d(a"(y)) = c or d(z™(y)) = €}

Then by the law of large numbers for the product measure u, we have that v(G) = 1. It is
proved in |[Ferreira et al.| (2020) that for any y € G,

v([1y3)) e it dz(y)=c
() %{ 1—c if dzt(y) =

(17)
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This defines g*(1o(y)) for y € G by the Martingale Theorem. For y € G°, g*(1o(y)) may be
defined arbitrarily, as this set has null v-measure and the choice will not affect the conclusion
of everywhere essential discontinuity.

The following simple result proves that, despite of the terrible (dis)continuity properties
of g*, the limiting quantities needed to apply our theorems exist.

Proposition 11. Consider the measure v with g-function g* as defined above, with € # 1/2.
Then, for any periodic point x of prime period m > 1, the limiting quantity p defined by
(13) exists and the limiting distribution of the number of visits around x has Pdélya-Aeppli
distribution with parameter t(1 — p).

To conclude on this example, we observe that the value p is explicitly computed in the
proof of the proposition (see (32)).

4.4. Temporal synchronisation for g-measures. Consider m g-measures fiy, ..., fi;; on
3B, respectively with functions g1, .. ., gm, and define the product measure i = 1 ®. .. Q i,
on = X7 or even X™. Let 6 : Q O be the shift map on the product space. For any n > 1,
Sn = Upean A™ is the n-cylinder neighbourhood of the diagonal A = {(z,...,2) : €
Yp} C X (see Figure [2f for a picture with m = 2). Observe that
6718, = {(zW, ..., z™): xl(l) .. wi}li_l = xgj) . xff_?_i_l,j =2,...,m},

that is, a visit in .S, can be interpreted as a synchronisation lasting n time units of the
symbols of the dynamical systems, therefore justifying the name “temporal synchronisation”.

A natural first problem is, in the above “uncoupled”, or “non-interacting” setting (/i is
the product measure), to study the distribution of the number the visits to S,, as n diverges,
that is, visits to longer and longer synchronised pieces of orbits. However, it would be even
more interesting to study the same question for interacting g-measures. In full generality, for
any m > 2, any g-measure on the product space Q = (A™)Y can be considered the coupling
of the m coordinates g-measures. That is, we see Q as ©™ instead of seeing it as (A™)N. In
other words, in this general setting, we are studying the synchronisation of the coordinates.

Theorem [12] below is stated with this abstract approach because it is more general, and
next, Corollary [I3] will specialise to the non-interacting case. Finally, we will rapidly discuss
two explicit ways to make g-measures interact.

Let W,, count the number of synchronisations on the Kac scaling

t/f1(Sn) ‘
Wn = Z ﬂsn 06",
=0

Theorem 12. As before let B be irreducible and aperiodic. Then

(1) On the product space Q@ = X™, for some m > 2, let fi be a &-invariant §-measure.

Assume that § > 0 has summable variation.
Then we have that

(S, N6=1S,)

f1(Sn)

exists and p(W,, € -) converges to a Pdlya-Aeppli distribution with parameter t(1—p).
(2) On the product space Q = X%, for some m > 2, let i be a &-invariant §-measure.

Assume that the function ¢ : g — R has exponentially decaying variations, where

g*(z) = g(z,z,..., ).

Then, (W, € ) converges to a Pdlya-Aeppli distribution with parameter t(1 — p)

p:=lim
n

where p = eP(o89%) 1 with P(log g®) being the topological pressure of log g*.

Remark 2. In the particular case in which § only depends on the two first coordinates, fi
is a Markov chain with matriz Q(a,b) := §(x) for any x € ™ such that x1 = b and z2 = a.
In this case, P(logg®) is log p where p is the largest positive eigenvalue of the matriz Q™.
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We have the following direct corollary of item (2) of the preceding theorem.

Corollary 13. On the subshift space X, consider m > 2 independent g-measures pi;,i =
1,...,m, with g-functions ¢ satisfying g > 0 and having exponentially vanishing varia-
tion.

Then, (W, € -) converges to a Pdlya-Aeppli distribution with parameter t(1 — p) where

p= O logg(i)), with P(Y";log gV) being the topological pressure of 3 i~ log g¥).

The proof of this corollary is direct as, in the uncoupled case, §(x1,za,...,2m) =
[T~ 99 (z;) and therefore § inherits the regularity and mixing properties of the ¢(*)’s.

Remark 3. The Rényi entropy of order q € R is defined as the limit

_ : 1 n1\q+1
Ru(g) = = lim — log > p([=1])
[=1]
when it exists. Proposition 7 in|Abadi et al.| (2019a) states that it exists and equals _ P(U+a)logg)
as long as g is continuous. So in the case of the synchronization of m independent copies of

the same g-measure, Corollary[I13 states that the parameter of the Pélya-Aeppli asymptotic
distribution is —(m — 1)R,(m — 1).

Remark 4. In the particular case in which ¢ ,i = 1,...,m only depend on the two first
coordinates, u™,i =1,...,m are Markov chains with matrices Q¥ (a,b) := gD (x) for any
x such that ©1 = b and x2 = a. In this case, P(};logg¥) is log p where p is the largest
positive eigenvalue of the matriz Q* defined through Q*(a,b) = [\, Q™ (a,b).

As an example, consider m = 2 with A = {0,1} and take Q1 (0,0) = 0.2, QM (1,1) = 0.7
Q@ (0,0) = 0.8, Q) (1,1) = 0.9. Then, we have Q*(0,0) = 0.16 = Q*(0,1), Q*(1,0)
0.03, Q2(1,1) = 0.63, and in particular p = %.

)

Theorem is abstract because it is not stated in terms of the interaction of (possibly
distinct) given g-measures. The natural question now is how to make g-measures interact?
A direct application of the coupled map lattice approach used for instance in [Faranda et al.
(2018); Haydn & Vaienti| (2020) (see also Subsection [5.1] below) does not seem to make much
sense in the setting of g-measures. An observation at this point is that we prefer to use the
terminology “interacting g-measures” instead of “coupled g-measures”; because the second
one has a precise definition in stochastic processes, which does not necessarily corresponds
to what we want here.

We consider two ways. The first way to make g-measures interact is through a coupling of
their g-functions, coupling in the sense of stochastic processes as we now explain. Suppose
we have m > 2 possibly distinct g-functions g™, ..., g™ on %, and use the notation
Tp = (xx(1),...,z(m)) € A™ k> 1, and & = (#122...). Then, a g-function § on X is
said to be a coupling g-function of the ¢(¥)’s if, for any k = 1,...,m, any a € A and any
(Zafs...)

> 9@ = gW(aza(k)zs(k) . ..).
Z1:x1(k)=a
The g-measure i associated to § is then automatically a coupling of the g-measures pu(*)
associated to gt*), k = 1,...,m, in the sense that the k' marginal of /i is equally distributed
to ) for any k. An example is given in Subsection m

A second way to make g-measures interact is, given m > 2 possibly distinct g-functions
g, ..., g™ to construct a g-function on the product space ™ parametrized by a tuning
parameter 7 € [0, 1] indicating the strength of the interaction, that is, having the property
that, when v = 0, § = [, g™, which corresponds to the non-interacting case. The
resulting § needs not to be a coupling of the ¢(*)’s in the stochastic process meaning. We
give a simple example in Subsection [£.4.2]
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In order to simplify the presentation, we will restrict ourselves to the case where the ¢(9’s
depend only on the two first coordinates and will construct §’s having the same property.
This means that instead of specifying g-functions g, we will specify matrices ). Moreover,
we assume that the Qs and Q have only strictly positive entry, ensuring that we are in
force of all the conditions of Theorem item (2).

Observe finally that, also according to Theorem we only have to define the coupling
§ on A, which means that we only have to define Q.

4.4.1. Ezxample 1: the maximal coupling. The mazimal coupling is a classical coupling in
the theory of stochastic processes, but is less known in dynamical systems. We refer to
Bressaud et al.| (1999) for a complete definition, here we only define the coupling on A,
which is sufficient for our purposes. We start with matrices Q9 i = 1,...,m, then the
maximal coupling is defined on the diagonal as

Qmax((a, ... a),(b(1),...,b(m))) := inf{Q(a, b(i)),i =1,...,m}.
So, taking m = 2 and coming back to the matrices used in Remark ] we obtain
8.x(0,0) = 0.2,0%..(0,1) = 0.2,0%..(1,0) = 0.1,Q%..(1,1) = 0.7 and therefore, ac-
cording to Theorem and Remark 2] we have asymptotically Polya-Aeppli distributed
synchronzations with parameter ppa.x = pmax, the largest eigenvalue of QA This gives

max*
Pmax = (9+2‘g§), strictly larger than the value p = 16/25 obtained in the uncoupled case

considered in Remark [

The terminology mazimal comes from the fact that Qmax puts as much probability as pos-
sible on the diagonal, that is, as much probability of agreement as possible in one step, still
keeping the marginals equal to Q¥ i = 1,...,m. So it is natural that the synchronizations
last longer than in the uncoupled case, and this is what pyax > p means.

4.4.2. Example 2: parametrized coupling. Let Q1) and Q@ be two stochastic matrices on
A = {0,1} and define transition probabilities ¢V, ¢® : A% x A — [0,1] through

g ((a(1),a(2)),1) = (1 = y)QM (a(1),1) + ya(2)
¢ ((a(1),a(2)),1) = (1 = 71)QP(a(2),1) + va(1).
Naturally, we put ¢ ((a(1),a(2)),0) =1 — ¢®((a(1),a(2)),1).

Now, define
Q4((a(1), a(2)), (b(1),b(2))) = ¢ ((a(1), a(2)),b(1))a® ((a(1), a(2)),b(2)).
Observe that QAV is indeed a stochastic matrix on A%, and that when v = 0, we get

Qo((a(1), a(2)), (5(1),5(2))) = QW(a(1), b(1)Q(a(2), b(2)) as we wanted.

As an example, consider the matrices used in Remark 4l According to Theorem [12] and
Remark we have asymptotically Polya-Aeppli with parameter p., = P08 Q) which equals
the largest eigenvalue of Qﬁ. This yields

1
Py = 305 (79 42y 41992 + /2401 + 7996 + 300672 — 760475 + 420174) .

So we notice that the interacting parameter v modifies in a non-trivial way the parameter
of the asymptotic distribution. Actually, in the present case, synchronisation increases as
the parameter v increases. (Observe that when v = 0, we retrieve 16/25, as in the non-
interacting case, which is natural.)

The original inspiration here is as a toy model for two interacting neurons, in which
the value 1 means that the neuron is spiking, and 0 means it is resting. We assume that
each neuron, when they don’t interact (v = 0), has a spiking dynamic given by the QW
i = 1,2. When they interact (y > 0), the probability that a neuron spikes will depend not
only on whether or not it just spiked, but also on whether or not the other neuron just
spiked, this is what ¢(¥) models. More precisely, it models the effect of excitatory neurons,
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since the probability of spiking for one neuron increases when the other neuron has spiked:
¢V ((a(1),1),1) > QW (a(1),1). Next, given the past, we assume that the probability of
spiking for each neuron is independent, this is why C% is the product ¢ ¢(?.

Naturally, this model is very simple and does not represent correctly the complexity
of a system of interacting neurons, however, it retains some features of a recent model
introduced by |Galves & Locherbach| (2013). Their model is not markovian, and include
several physiological considerations, and it is a natural and interesting problem to analyse
the synchonisation properties in their setting, using Theorem

5. DISCUSSION ON SYNCHRONISATION

The present paper is mainly concerned with the symbolic setting of deterministic dynami-
cal systems. In the present section we make a small digression to discuss the difference, with
regard to asymptotic synchronisation, between three situations: (1) the geometric approach
of deterministic dynamical systems, (2) the symbolic approach of deterministic dynamical
systems, and (3) Markov chain, a particular case of random dynamical systems.

We start this section by making a rapid overview of what is known in the geometric
setting. The first application of recurrence type argument, like those used in this paper,
to synchronisation was given in section 4 of the article Keller & Liverani| (2009)), where the
authors explicitly computed a first order formula for the leading eigenvalue of the perturbed
transfer operator, the perturbation being the small neighborhood around the diagonal. It
was successively shown by Keller| (2012) that such a perturbative formula was intimately
related to the extremal index. This spectral approach to extreme value theory was developed
in [Faranda et al.| (2018), which showed that the probability of the appearance of synchro-
nization in chaotic coupled map lattices was related to the distribution of the maximum
of a certain observable evaluated along almost all orbits. The statistics of the number of
visits was proven in Haydn & Vaienti| (2020)), with a technique different from the spectral
approach: we recall it in the next subsection and then, by considering a very simple example
in Section we will exhibit clearly how different can be this approach from the symbolic
approach developed in Section [£.4 We remind that an alternate probabilistic approach
in a coupled maps setting is proposed in |Carney et al| (2021). We conclude with Section
[5-3] considering the case of continuous state Markov chains, a third situation, in which yet
another behaviour is displayed.

5.1. Synchronisation of (un)coupled map lattices: geometric approach. We shall
consider coupled map lattices over uniformly expanding interval maps. Let T be a piecewise
continuous map on the unit interval I = [0, 1] which is uniformly expanding, i.e. satisfies
inf |[DT| > 1. We also assume that T~! has only finitely many branches. Then we define
the coupled map 7" on Q = I"™, for some integer m > 2 by

j=1

for & € Q, where M is an m X m stochastic matrix and v € [0,1] is a coupling constant.
The uncoupled case corresponds to v = 0 in which case T is the product of m copies of T.
For v > 0 small, we put

S, ={7e [0, : |z; —z;| <v,KV¥ij} (19)

for a tubular neighbourhood of the diagonal T (see Figure [l| for a picture with m = 2).
Then we define as before dp41 = limg o0 lim, 0 dx41(K, S,) for the parameters of the
limiting compound Poisson distribution which describes the sychronisation effect in the
neighbourhood of the diagonal T'.

It has been previously shown by Haydn & Vaienti (2020) that if T is a piece-wise uniformly
expanding map of the unit interval with finitely many branches satisfying a mild geometric
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condition along the diagonal and if u is an equilibrium state for a sufficiently regular potential
function on §2 then the compound Poisson parameters are given by

s ! M@
A (1 — )k(m=1) f] h((z)™) dx/; |DT* ()1 d (20)

where h : Q — RT is the density function of p and ()™ denotes the set of points on the
diagonal.

Obtaining explicit results is still a complicated problem for coupled map lattices. So we
now turn our attention to the case of uncoupled map lattices, that is, to the case where
v = 0. Such a situation was first investigated by |Coelho & Collet| (1994). They proved
that, for an absolutely continuous measure of a piecewise expanding and smooth map of the
circle, the asymptotic distribution of synchronisation is compound Poisson, and identified
the limiting parameters &y, k > 1.

So let us see how looks like in the uncoupled case (we consider here the case m = 2 to
simplify) in the setting of interval transformations. Consider a partition A = {Iy,..., I/} of
I:=10,1) and a piecewise linear Markov transformation 7" which is continuous, monotone
and uniformly expanding on each of the sub intervals I;, that is infy, |T7| > 1 for any
i=1,..., M, where T; =T on I;. Define the stochastic M x M matrix @ by

0 iLNT(L)=o
Qi,j _{ ! !

o if I; C T(T;).

We know in this case that the invariant density h which satisfies Lh = h, where L is the
transfer operator, is piecewise constant. Thus put h; = h(x) for « € I; and consider the row
vector h = (h1,...,hprr). Then h@ = h.

According to|[Faranda et al.| (2018)) and Haydn & Vaienti (2020), we then have to compute

h(z)
g TG
h J; h3(x)dx
For any (a1,...,ax) € {1,..., M}* we use the notation x € La,,....ay) for Tz el,,i=

1,...,k and let
AR = {(ar,...,ax) €{1,...., M} : Quyarsy > 0,i=1,...,k—1}.
If (ai,...,ax) € AF then, using the chain rule,
k k
IDT*(2)| = | [[ PT(T" ') = [[ IPTw,|, Vo € Ia,....a0)
i=1 i=1
while on the other hand

1

Mg, o)) = —F—
( (a1, k)) H,]::l ‘DTai

We can now compute

h?(z) o Mas,....an))

e =Y
k ai k
IDTR@) e T DT

and
/Ifﬂ(x) do = ST AT

For instance, consider the case of T'(z) = 3zmod 1. Then we have h; = 1 and |DT;| = 3
2

for ¢« = 1,2,3, and thus f%dw = 37% while [, h*(z)dz = 1. We therefore obtain

Gri1 = 37%, which means that the random variable W has Pélya-Aeppli distribution with

parameter t(1—1/3) (see Subsection|3.2)). A natural conjecture (having also in view Theorem
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112) would be that this is the case for any uncoupled (sufficiently mixing) dynamical systems.
However, as we show below, this is not necessarily the case.

5.2. Geometric vs. symbolic: an explicit example. As is probably clear by now, we
call geometric approach when we measure the synchronisation through visits to S,,v > 0
(see ), thin strips around the diagonal, as pictured in Figure On the other hand,
the symbolic approach, when we measure synchronisation through visits to cylinder sets
covering the diagonal, is pictured in Figure [2]

I

ot 0 - :
‘ . R
0 1 0 I Yo o
FiIGure 1. A strip S, FIGURE 2. The set
around the diagonal I' in Sy = Ugea2(A x A)
[0,1)2. where the partition

A= {[07 %)a [%7 %)7 [%’ 1)}

Here we show that both approaches yield different classes of distributions in general
(although both compound Poisson), by mean of a simple example. Consider the following
map T on the unit interval I:

3x iteel, :=1[0,1/3)
T(x)=<5/3—2x ifxely:=][1/3,2/3) (22)
243z ifzel;=[2/3,1).

It is a piecewise linear Markov transformation with

Q=

Wi O wl=

SN STt o
O | 0 | =

5.2.1. Geometric approach. We know (Haydn & Vaienti, [2020; Faranda et al.;[2018) that the
asymptotic distribution of synchronisation is Poisson compound. We now calculate explicitly
the parameters dg41,k > 1 using which, in matricial form, gives

h?(x) AM(ay,.ian)) : A
Y = Z p2 k)] h? H QQY = Tra,ce(thk)
k al k ay @i, Qi41
DT ()] (a1,...,ar)EAF Hi:l | DT, (a1,..,ax) i=1
where v"* = (h?...h2) and @ is the matrix with entries Q” = f] The corresponding

piecewise constant density with respect to Lebesgue is the row vector . = (3/5 6/5 6/5), and
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we then obtain v" = (9/25 36/25 36/25). With this example we get (using Mathematica
online) that Trace(v"Q*) equals
273k=13272k [(3\/145 — 23)(17 — V145)% + (23 + 3v/145) (17 + V/145)%]
25v/145

and
/iﬂ(z) dv =Y hINI;) = 27/25.
1 i
This yields
. 273k=13272k [(3\/145 — 23)(17 — V/145)% + (23 + 3v/145)(17 + v/145)*]|

ap =
i 27y/145
which does not correspond to a geometric distribution and we do not have Pélya-Aeppli
asymptotic distribution of synchronisation in a strip around the diagonal.

5.2.2. Symbolic approach. We can use Theorem [12| doing g(z) =: Q; ; for any z such that
x1 = 4,29 = j (i.e. g(x) depends only on the first two coordinates z1,x2). According to
Remark [4] we conclude that synchronisation distribution for cylinder neighbourhoods of the
diagonal converges to Pdlya-Aeppli with the parameter ¢(1— p), where p, the largest positive

eigenvalue of Q, equals 7—12(17 + +/145) for this specific example.

5.3. Synchronisation of Markov chains. Let us in this section consider the quintessential
random dynamical systems which are Markov chains. In fact a random transformation can
in a simple way lead to a Markov chain in the following way (see for instance Bahsoun
et al| (2014)). Take {wk}ren, a sequence of i.i.d. random variables with values in some £
that carries the probability measure 6. We associate to each w €  a map T, and the
iteration of the unperturbed map T"(x), will be replaced by the composition of random
maps 1, , o---0o1T,,. These random transformations generate a stationary Markov chain
{Z,}n>0 with transition probabilities, for any n > 1:

P(Zpi1 € A|Zy =) = /Q 14(T,(z)) dO(w),

where A is a measurable set in some M and T, is a map from M to M.

We therefore consider such a Markov chain {X,,},,>0, stationary, with continuous state
space I C R and transition probabilities p(x, A) = P(X,,+1 € A|X,, = z) for measurable sets
A. If the transition kernel has a density p(zx,y), that is if p(z,dy) = p(x,y) dy, then

I[D(XnJrl S A|Xn = iU) = / P(CE,?J) dy.
A

The invariant measure P is then given by the transition probabilities p and an initial prob-
ability measure p. That is P(Xo € A) = [, dp(y) and

dP(zo, 1,22, ..., 2n) = dp(x0)p(xo, dx1)p(21, dT2) - + - P(TY1, dTy).

The probability measure p on I is invariant under the map 7" which is given by Tu(A) =
J;p(x, A)dpu(z), for all A measurable, and is the annealed invariant measure on I. The
Markov chain satisfies the Doeblin condition if there exists a probabiltiy measure v and an
n € (0,1) so that p(x, A) > (1 — n)v(A) for all measurable A. If p satisfies this condition
then in the total variation norm ||p™(z,-) — p(-)|lrv < 2n™ uniformly in z.

We can now associate to {X,, },,>0 another independent copy {Y,, },>0 and ask the distri-
bution of the first synchronisation time of the two chains. The Markov chain (X,,,Y;,) € I X1,
n € Ny, has transition probabilities p2((z,v), (4, B)) = p(z, A)p(y, B), A, B measurable. Let
us denote by T the product map on I x I and by Py = P®P its invariant probability measure.
By using the procedure of section [5.1} we are led to consider the direct product of these two
chains and look at the couples of points which stay close to each other up to time n — 1. Let
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us therefore set As := {(x,y) € I = I x I, |z —y| < ¢} for a neighbourhood of the diagonal
inlxI.

Specifically, we will show that for Markov chains whose densities are bounded above and
away from 0, the limiting distribution (as § — 0) of return times to A is Poissonian, which
means that orbits don’t cluster over time and that there is no sychronisation effect.

In order to get a limiting compound Poisson distribution as § — 0 we want to use
Theorem 3 of Haydn & Vaienti| (2020)). For that purpose let us put X; = 1a; o Ti i =
0,1,2,...,and Wt = Z?:a X;. For simplicity we put 20 = 25, where N = t/P5(A;) (take
integer part) where ¢ > 0 is a parameter. We cut the time interval N into blocks of length
2K + 1 for some large K (K << N) and put 3 = E?fof{i. If we put N' = N/(2K 4+ 1)
(assuming it being an integer) then 20 = ZnNzlgl 307m2K+1)  We now choose a gap v << N’
(v > 2) and want to estimate the quantities
g—1

(PQ <3 —uA mAI(QKJrl) —g— u)

Ri= sup ~(2K+1)
u=1

0<y<M<N'
0<g<N’'—y—1/2

“Py(3 = u)P, (Qﬂﬁfﬁfﬂ;) =4q- “)) ‘

¥
Ry =) Pa(3>1A30TKT >0,
j=1
If we denote by © the compound binomial distribution measure where the binomial part
has values p = P3(3 > 1) and N’ = N/(2K + 1) and the compound part has probabilities
M(K,6) = Pa(3 = £)/p, then, by Theorem 3 of [Haydn & Vaienti (2020), there exists a
constant ¢, independent of K and ~y, such that

P20 = k) — 5({k})] < c12(N'(R1 4 Ra) + vP2(X0 = 1)).

(Please note that Theorem 3 in the paper from 2020 which we use here contains a typo
in the lower summation limit of j in the expression for Ro: As we put it here the lower
summation limit must be j = 1 and not j = 2 as printed there.) The proof of the following
lemma is given at the end of the present section.

Lemma 14. For any K' < K there exists a constant cy so that

/

K
N'(Ry +Ra) < caKyPa(8s) + 0" + .

If we put v = Py(As)~# for some B € (0,1) then
Po(W = k) — v¥({k}) + O™ + K'/K)

as 0 — 0, where ¥ is the compound Poisson distribution with parameters t\,(K) with

L Py(3>1)
M) = )

assuming the limits exist. Now put e.g. K’ = K and let K go to infinity. Then
v converges to a compound Poisson distribution v with parameters t\,, where A\, =

limg 00 A¢(K) assuming the limits exist. Thus
Py (W = k) — v({k}).

What we showed above is that, if the transition probabilities are given by a density p(z, y)
satisfying the Doeblin condition (that is, if we assume that p is also bounded away from 0),
then 2 converges in distribution to a compound Poisson distribution v. In order to show
that v is in fact a straight Poisson distribution we want to show that &; = 0, which implies
by monotonicity that &, = 0 for all £ > 2. To that end, we shall further assume that the
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transition probabilities p(x,y) are bounded above by some constant K. If p(x,y) < K for
all z,y, we also get p"(x,y) < K for all z,y and thus

Po(As N T "As) = /lAg (0, 90)Las (Tn, yn) dp(z0) dp(yo)p" (0, Tn)P" (Yo, Yn) Ty dyn
KPy(As)m(As),

IN

where m is the Lebesgue measure on I x I, . Thus
Py (A(; n Uilz(l TﬁnAg)
Py (As)
as 0 — 0 (since m(Ay) < 20) for all K. Thus &y = 0 for all £ > 2 which implies that v is
Poisson with parameter t.
Let us remark that the double limit first 6 — 0 and then K — oo can be synchronised
by going along a sequence K5 — 0o as § approaches 0 in such a way that Ks;Ps(As) — 0 as

d — 0. This was shown in (Yang] [2021, Proposition 6.2).
We conclude the section with the proof of the lemma.

ao (K, 8) = < 2KKm(As) — 0

Proof of Lemma[14 In order to estimate R; and the terms of Ry for j > 2 we use the
Doeblin condition and the consequential exponential convergence to the initial distribution
to obtain:

Py(3>1,3077CK+) > 1) = /1321(20,...,ZQK)11321(23,...,Z;K)

dp2(z0)p2(2,’07 dZ]_) . 'pQ(ZQK—lv dZQK)
p§ VI o, daf)pa (26, d21) -+ po(hie 1, )

< Po(3 > 1)(Pa(3 > 1) + 270 DCKAD),

where z; = (x;,y;) and ps = p x p. Consequently

R, < ZPQ(S > 1)77(1’71)(2K+1) <Py(3 > 1)77(771)(2K+1)_
J=v
For the estimate of Ro we consider the case j = 1 separately, choose K’ < K and put

3= X, 3 =3-3 = foO_K,_l X;. Then, similarly as above, we obtain

Po(3” > 1,30 72K+ > 1) < Py(3" > 1)(192(3 > 1)+ 277K’) .

Since
Py(3 21,301 > 1) <Py(3" 2 1,30 T 2 1) + Po(3' 2 1)
we obtain
.
Ry < Py(3"> 1)(%(3 >1)+ 277”) +Py(3 = 1) +2) Py(3 > 1)pl-DEEFL,
j=2
For the final estimate we use that N’ = %ﬂ < % = m and Py(3 > 1) < (2K +
1)P2(A5)a
Py(3' > 1) < K'Py(As). Then as K’ < K
t 4
N'Ri+Ra) S 55,08, <3K2]P’2(A5)2 + KPy(As)n 0 VK 4 2K Py ()™ + K’]PQ(A(;))
2(As

/

S KPy(85) + 007 4 4

which implies the statement as K’ < (y — 1) K. i
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6. PROOFS OF GENERAL THEOREMS

Before we come to the proofs of Theorems [2| [] and [§] we start this section with an
important subsection which describes rapidly the classical Stein-Chen method, used to prove
Theorem [

6.1. Stein-Chen method. We will use the Stein-Chen method as described in [Roos et al.
(1994) to estimate how close a given probability measure v is to a compound Poisson dis-
tribution 7 for parameters t\,, £ = 1,2,..., which satisfy ) , A\, < oco. On the space
F ={f : Ng = R} of functions on the non-negative integers, the Stein operator . : F — F
is defined by

FLg(k) = kg(k) =Y tlhg(k +0).
=1

For a given set £ C Ny one wants to find f so that
Lf=1g —v(E)

where 7 is the compound Poisson distribution with parameters t\,. This last identity is the
Stein equation. Proposition 1 of [Barbour et al| (1992)) states that for given F C Ny the
solution f satisfies f(k) < 1.

Indeed if [ . f di = 0 for all bounded functions f on N, then

0 ny Vo({k})

> (kf(k) - Ztmf(k + ﬂ)) v({k})

k =1

Zf ( ({F}) - Ztﬁ;\eﬂ({k—ﬁ})>

{=1

kol

implies
k ~
kio({k}) = > thi({k — ¢})
=1
for every k. From this we conclude that 7 has the generating function

5(2) = eXpZtS\g(ezz -1
¢

which equals exp [ (e** — 1) dp(x) = exp(p,(z) — L) where p = 3, thede, L = 3, th
and ¢,(2) = >, tAre** is the generating function for the measure p. This implies that 7 is
compound Poisson with parameters tA,.

6.2. Proof of Theorem [2l We are now ready to prove our first main result.

Proof of Theorem[3 Let i be the compound Poisson distribution for th, £ € N as defined in
the statement of the theorem. For £ C Ny let again f be the solution of the Stein equation
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Zf =1 — (E). Then for a probability measure v on Ny we have
I/(E)—i)(E) = /]].Edlj—/]].EdD
/(]lE —o(E))dv

/ (Wf(W) — iwxzf(w w)) dv(k).

{=1

For some fixed set U C 2 and ¢ > 0, recall the definition of the random variable W and
put v(-) = u(W € -). We have

W(W € B) — 5(E) = /yf dv = B[W (W] = S HAE[F(W + 0] (23)
=1

Now let K and A be (later taken to be large) numbers so that K << A << t/u(U) and let
us establish the following notation (with the obvious restrictions i—j > 0 and i+j < ¢t/u(U)):

(i) Close range interactions: Z; = Zf:_K Ii+;. (The purpose of the double sided sum

centred at 7 is to cover both cases, when T is non-invertible as well as the case when
T is invertible.) Observe that was denoted Zi(K) in the beginning of the paper but we
will omit the upper script to avoid overloaded notation.

(ii) The gap terms

K+A K+A

- _ + _

Vi= Y L, Vit= > Iy
j=K+1 j=K+1

and V; =V, + V, for the entire gap.

(iii) The principal terms:

Yo=Y iy, YiT= ) Ly,

I>K+A J>K+A
and Y; =Y, +Y;* for the entire principle term. We reforce that these summands are
restricted by ¢ —j > 0 and ¢ + j < t/u(U), and are therefore not infinite.

In this way we decomposed W as W = Z; + V; + Y, for every i =1,..., N.
Now observe that, by translation invariance for any i € (K, N — K)

) ; t/n(U)
tthg = tE(Lg,=¢|l; = 1) = ——E(L;15,—) = Z E(I;1z,—0).
w(U) P
Thus
) t/u(U)
HNEF(W +0) = > E(Ilz,—0)Ef(W +0).
=0

On the other hand we can naturally write

WIW) =3 Lf(W).
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With this in hand, coming back to we have

t/pn(U)
w(W e E)—p(E) = E:( Zﬁﬂﬂze (W+@0
=0
t/u(U)

= ¥ (ZEIILZl_Zf ZEIILZ —JE (WM)])

i=0
t/u(U)

= Z (ZE[IiILZ,;_zf(Yi + Vi +4)] ZEI 1z,—E (W+€)]> .
7

i=0
We now split the error term on the right hand side into three parts as follows:

t/u(U)

E:}: Lilg,—of(Yi+ Vi + 0] —E[LLz,—of(Y; + 0)])

t/u(U)

+§:§: Lilg,—of (Y + 0)] — E[L;1z,—/E[f(Y; + 0)])

t/u(U)

+f§:§: (L1, —E[f(Yi + 0)] — E[;15,—E[f (W + £)])
:A+B+G

We now proceed to show that each of the three terms can be upper bounded in order to
give the bound stated by Theorem

(i) For the first term we write A =5, , A; ¢ where

|[Aiel = [E[Lilz=e(f(Yi+Vi+£)— f(Yi+0)]
< N F B[z, Vi).
Note that
2K+1
> E(Lilz—Vi") = E(lilz=V;")
=1
< E(LV;")
2n K+A
< > p@PATVU) + Y WUNT)
j=K+1 j=2n+1

where we recall that Uf = A,(U) = UAeAl,AmU7éz A is the outer ¢-approximation of
U (¢ < n). Therefore by the right ¢-mixing property (see )

2n K+A
> E(Lilz=V;") SM(U)( Do WU + 60201+ Y [M(U)+¢(j—n)]) (24)

¢ j=K+1 j=2n+1
<uU) | D wU) + Ap(U Z (j
j=K/2 j=K/2

One can also show that

Y EUilz=Vi) =Y E(llz=V;").

L L
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Putting the above together we obtain (¢! is the tail sum of ¢)

t/u(U) n
Al < Y alfIwU) |Au) + ¢ (K/2)+ Y u(U?)
i=0 j=K/2

n

= ool f'llt | An(U) + M (K/2) + Y n(U?)

j=K/2

On the other hand, we have ||f'|| = O(1) since by Theorem 4 in [Barbour et al| (1992)

[fYi+Vitl) = fYi+ 0| <cs =0(1).

1
Yi+ 4

n

A] < eacst | Ap(T) + OH K/ + S (U] (25)
j=K/2
(ii) We now estimate B. We get

DD flat+0) (E(ilzi=cly,=a) — E(lilz,=0)E(1ly,=))

B =
1 ¢ a=0
N
- S Y fa+0 Y (E(Iillzi:g]lyfza, Tys_gi) = E(I7,—0)E(Ly - _,- 11Yi+:a+)) :
i,4 a=0 a—+at=a

as a < N. We want to sort the terms by their sign so that every level we have only
two terms to which we can apply the mixing property. Put

ot = €amat (i50) = 50 (BTl =Ly, Tys_or) = Bz E(Ly -, Tys_oi))

and then |B; | = B;, + B;,, where

B;’,_é = Z |f(a+0)] Z (E(Ii]lzﬁé]ly;:m ]1Yi+=a+) - EU@'RZFUE@Y[:K]le=a+)>

a”+at=
Ea_ ,a+ =+1

and

==t Y (Bilzzelyy Vyiogr) ~ BEA2=0B(ly -, Tyi_,s))
a a +at=a ' ’ ' /
6 — a+ =—1
Let us begin estimating B ;0> the case of B, will be done below. We partition the
sum over a into segments of exponentlal progression. For that purpose let us put, using
=1/uU)

gm(0) = |, e et 0]

which by Proposition 1 of Barbour et al| (1992) satisfies g,, < ¢42™/N for some
constant cs. We now get

Ilg N 2—mtIN_1

B;,re < ng Z Z (E(Iﬂlzi:ﬂn*:a* 11@*:a—a—)
m=0  a=2-mN 4 g
Ea*,a+:+1
“E(Ii12,=0B(Ly—_, Ty _ay))
BN o 2 MmN -1
< Z Capr ; (E(Ii]lzi:e]ly;:a— Lyt (@) = E(ilz=0)E(ly-_,- 1y;m(a—)))
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where the set

Vi@ = U {Y;" =a"}
27" N—a" <at<2 mtIN_a~
6a*,a"’=+1

= {27"N—a <YY" <27™MN—a" e, o+ = +1}
cuts out slices of exponential progression. By the mixing property
E(l 7oty Tyr o)) = E(llzoily—, B, ()
+(9*(E(Ii]lzizglyi_:a,)¢(A —n))
= P(Y; =a )E(Lilz,=)P(V;,(a7))
+O*(P(Y; = a” )PV, (a7))$(A —n))
+(’)*(E(Ii]lzl:g]ln7:a,)¢(A —n))

where the symbol O* indicates an error term where the implied constant is 1 (i.e. if

G = O*(e) then |G| < ¢). Also
P(Y;” = a_)P(y:m(a_)) = E(]lyrza, ]lyffm(a‘)) +O*(PY; =a” )p(2A —n)).
Thus, for m =0,1,2,...,1g N,

27N
> ’E(Iiﬂzi:eﬂyi—:a—ly; (@) ~EUilz,=0)E(ly-_,-1y+ ;)
Pa— ,m k1 i,m
2-mHIN 1
< oa-n) Y (PO =0 PO + BTl gmdy )+ E(Lig,—)P(Y,
a—=0
2-mHIN_1
< 3¢(A-n) > E(Iilz,=lyt (o))
a—=0

< 3¢(A - n)IED(ZZ = E, Iz = 1)

and
lg N

B;fe < 2¢e50(A —n) mzz:o N < 2¢50(A —n).

Similarly one estimates the negative term B, , which yields the estimate B; , < csp(A—
n). Along the way one uses the set

Vimla™) = U {Y;" =a"},
27" N—a" <at<2 mtIN_a~
Ea* ,a+=71

where we note that
Vim(@ ) UV (a7)={27"N —a” <Y;' <27™"'N —a"}.

Consequently

B <Y S (B, + By < W
=0 /

(iii) In order to estimate C' we proceed in a similar way as in part (ii). Indeed one has

E(f(Yi+0) = fW+ )| < If'IEUL + Zi + Vi) < ez Ap(U).

(26)

/ilzlc;) Z ¢(A = n)E(Lilz,=) <
7
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Thus

IC1 <Y e Ap(U)EIilz,—0) < terAE(Iilz,51) < estAp(U). (27)
i 4

Combining (25)), and we finally achieve that, for any K < A < t/u(U)

lW(W € E) —o(E)| < Cit KM+AH(U)+¢1(K/2)+ zn: p(U) |,
nw(U) iR

for some C > cac3 + ¢6 + cg thus proving in the right ¢-mixing case.
To get the corresponding conclusion in the left ¢-mixing case notice that in the estimates
of A; , and A we have to replace U7 by U’ and obtain that the estimate is modified to

n

|A| < cacst | Ap(U) + ¢ (K/2) + > w(U)

j=K/2

The estimates that lead to the bound of the term B will be the same although the order of
splitting and combining terms is the reverse. |

Remark 5. The only part of the proof of Theorem[q where right ¢-mizing property is required
is for the estimate of A, (specifically display ) Suppose we are in the invertible case
and Q) is a shift space with map T = o the left shift map. If we were to use the left p-mizing
property then the sets U would have to be replaced by the set Ul = U_(”_i)AZ-(J"_iU), Now
we can take the sets U to be n-approximation of an unstable leaf T' through a point x € )
eg. T ={yeQ:y =ux;Vi<0}. Obviously T is a nullset but in this case we get that
Ul = Q the entire space whenever i < n/2. The right ¢-mizing property avoids this problem.
This also explains how the proof has to be changed if we assume left ¢p-mizing instead of
right ¢o-mizing: the only difference is in display where we have to use UV/? instead of
Uiz,

6.3. Proof of Theorem [4, This proof is similar to the one of Theorem [2| but allows for
some simplifications which we outline below.

Proof of Theorem[j] As above let 7 be the compound Poisson distribution for the, £ € N as
defined in the statement of the corollary and the preceeding theorem. Also we let E C Ny
and f the solution of the Stein equation . f = 15 — v(E).

For K << A < t/p(U) we denote as above by Z; the close range interactions, by VijE the
gap terms and by Yii the two halves of the principal terms.

As in the proof of the theorem we split the error into three parts:

w(WeE)—(E)=A+B+C,

where A and C' cover short term gap interactions in the dependent and independent case
and B is the error that comes from the principal term with long range interactions. We now
proceed to show that each of the three terms can be upper bounded in order to give the
stated bounded.

(i) For the first term we write A =3_, , 4; , where

[Ai el = [E[LiLz,=e(f(Yi + Vi + 0) = f(Yi + O] < | f'|E[L:12,=¢Vi].
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The )-mixing property then yields (U* = A,(U))

2n K+A
S E(Llz—Vi) < > wUAnTU)+ Y w(UNTU)
¢ j=K+1 j=2n+1
2n K+A
< @) [ DD W@ +9G/2)+ D wU)A+ G —n)
j=K+1 j=2n+1
< pU) |2 ) W) +28uU)

i=K/2

for K large enough, and similarly for the left part of the gap V;~. Thus, since ||f'|| =
O(1) by Theorem 4 in Barbour et al|(1992),

n

Al< et | S w@)+20u0)

j=K/2

(ii) We now estimate B which we split as before
B=> 2 B
it
|Bie| = B, + Bl s> where for e = +1, —1:

Bi, =Y Ifato) Y (E(Ii]lzizg]lnf:a,]lyf:ﬁ)—E(Ii]lzizg)IE(]lY;:a,]lYi+=a+))
a a 4at=

€a—,at =€

with
€a- ot = €a- a+ (ir0) = sgn (E(Iinzi:ﬂr o Myrig) —E(Lilz—)E(Ly—_, - ]ly_+=a+)) .

Let us begin estimating B, ;0> the case of B, will be done below. We partition the
surn over a into segments of exponentlal progress1on For that purpose let us put, using
=1/u(U)
(0= max |f(a+0)

N2-m<g< N2—m

which by Proposition 1 of Barbour et al| (1992) satisfies g,, < ¢;2™/N for some
constant ¢;. We now get

lg N m 27N
,<e Z cl— 3 (E(Jiﬂzizgnyfza_ Tyt @) — Bl z—)E(ly-_,- ]ly?m<a—>))
a—=0

where as above

Vitnla™) = U {v;"=a*}
2"MmMN—a <at<2 T IN_a~
€a—,at=+1

= {27"N—a <Y <27™MN—a" e o+ = +1}
cuts out slices of exponential progression. By the 1-mixing property
E(Idz=ly- o lys ) = E(lilz—ely_, B, (a7)(1 + 0 ((A — n)
= P(Y; =a )E(Lilz,=0)P(Vif,,(a7)(1+ 0" ($(A —n)))
= E(lilz=0)E(ly-_,- ]lyf,m(a’))(l + O*(Y(A —n)))
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where the symbol O* indicates an error term where the implied constant is 1 (i.e. if
G = O*(¢) then |G| < ¢). Thus

lgN 2m 2 m+1N_1
e S ay N E(ly oLyt (o)) Eilz=0)Y(A = n)
m=0 a—=0 '
IgN 5
< e -n) MZO ~ E(ilz=0)

S 2011/}(A - n)E(Ii]]-Zizé)
and consequently

N 2K+1

1Bl <2e1(A = n) Y Y E(Iilz,—) < 2c19(A — n)NE(Lilz,>1) < 2csth(A — n).
=1 (=1

(iii) The estimate of the term C' is exactly the one from Theorem
€] < extAu(U).
Combining the estimates we end up with

WW e B)-p(B) < Cit _ inf | (A =n)+Au(U) + ‘Z w(U7)

for some constant C1. |

6.4. Proof of Theorem Recall that we start with a nested sequence of sets U,,,n > 1.
For K < t/u(U,) we define Z;" = ZgK:o Iiyj and Z; = ZJK:1 I;_;, where we assume that
i > K. Let us also define WF = ZZL:O Iy. In order to prove this result we first state the
following lemma taken from Haydn & Vaientil (2020).

Lemma 15. Assume that the limits ag, k > 1 (see ) exist and furthermore Y p- | k?ay, <
0o. Then for every n > 0 there exists an Lo so that for all L > Ly:

‘E(lzj:klz;:szli) - E(lzj:kllz;:sz'—ri) < nu(U)

for all n large enough (depending on L, ().

We are now ready to prove the theorem.

Proof of Theorem[5 For E C Ny and K < t/u(U,,)
\W(W,, € E) — #(E)| < |u(W,, € E) — g v, (E)| + |ik.v, (E) — 0(B)| (28)

where Uk y, is as in the statement of Theorem 2} In order to prove Theorem [f]it is therefore
enough to prove that both terms on the RHS converge to 0 as n — 0 and K — oco. We
proceed in two steps.

(1) We start proving that the second term on the RHS of (28) converges to 0. First
recall the definitions of ay (L, Uy,), ax (L) and «ay, given in and that of A\¢(K,U,)
given in . We have that 7 and Dk y, are Poisson compounds with parameters
N == o — apq and Me(K, Uy,) respectively. So what has to be proved is that,
provided «y, exists, we have ap — agr1 = Mg oo liMy 00 Ae(K, Uy, ), that is, the
convergence of the parameters of the involved Poisson compounds distributions.

Observe that ay(K,U) can be written as E(1z,—x|Ip). On the other hand, by
translation invariance, E(1z,=¢Io) = E(1 ,+_,I;) for any ¢ > 1. We therefore work
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on the later quantity. Consider the disjoint union

{ZF =k}n{l,=1} = G{Zj:k}ﬂ{Z{:é—k}ﬂ{Iizl}.
=k

By invariance, the expectations E(1,+_,1,-_, ,[/; = 1) are equal for all i. Let us
note that in the conditions of Theorem [5 we have >, ., k*aj < co. Thus we can
use Lemma [T5] which states that if n > 0, then for all K large enough

‘E(lzjzklzgzzfﬂi) - E(lzjzk/lzi*:uk/fi) < nu(U)
for k,k' =1,2...,¢. Hence, since Z; = Z; + Z;°
1 -
E(Lz oy —opli) = GEAzi=eLi) (1 + O() = A K, Un)p(U) (1 + O(n))
and therefore

E(Ly_y ) = Y By, 1) = (14 Om)u(U) S M(K. U,).
=k =k

According to what we said above, we therefore have

ar(K,U) = Bl _,ll)
. E(ﬂz;:kIO) . E(]lz,j:kli)
pwUn)  p(Un)

= (1L 0m) Y MK U).
=k

So in particular o (K, Uy,) — app1 (K, Up) = (1 4+ O(n)Ae(K,U,), valid for any
positive n — 0, thus provided the limit «y exists, we have limg lim,, :\k(K, U, =
O — Og41.

(2) In order to prove that the first term of the RHS of converges to 0 we naturally
use Theorem Let B € (0,1) and choose A = u(U,)™?, we get by that
lu(W,, € E) — bk, (E)| is bounded above by

,@ n .
%W(Un)lﬂwl(K/?H > ulUi)

j=K/2

Cit| K

where we recall that, by assumption, for any sufficiently large n’s, the fourth term is
bounded above by ag /3. The two first terms go to zero as n diverges with a suitable
choice of § < 1 so that g > % Then, taking K — oo we get by assumption that

akyo and ¢'(K/2) vanish as well (by summability of ¢). This concludes the proof
of the theorem. I

7. PROOFS OF THE RESULTS OF SECTIONS [3] AND [4]

Proof of Proposition[]. For any two measurable sets A € 0(Xo,...,X,_1)and B € o(X 5, _;)
with positive probability, let

dap(k) == |P(X € B|X € A) — P(X € B)|.
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Defining I(n) := inf{j > 1:T; > n} and using the regenerative property, we get

¢ap(k) =|> P(Tyn —n=1i,X € B|X € A)~P(X € B)

i>1
k
=Y P(Tyny —n=i,X €BX € A)+ > P(Tyn) —n=i,X € B)
i>k =1
~ S P(Tyy —n=i,X eB)‘
i>1

> P(Tyy—n=i, X €BIX€A) =Y P(Tyn —n=14,X €B)

i>k i>k

< [P(Tyny —n=1i,X € BIX € A) = P(Ty(n) —n=1,X € B)|
i>k

<Y (P(Tyny —n =il X € A) + P(Tyny —n = 1))
i>k

We now consider the particular case when {X € A} = ﬂ?;ol{XZ- = b;} for some string
bo, . ..,b,_1 of symbols of A. We get

$ap(k) <Y (P(Ty =i|Xo = by1) + P(Ty = 1))
i>k

-y <qbn1(z-> + Zﬁ(@%(@)

i>k

Proof of Proposition[4 In the symbolic setting, if = has prime period m, we can write
x = s*°, the concatenation of infinitely many times a fixed string s := s1...8,, in which
s; € Afori=1,...m. In this case, let k,, := [n/m] and r, :=n — mk,, then

Ap(z) = s™ s

T™n M Tn

Apym(z) = s* s Sr,+151

J

where we used the shorthand notation s] := s;...s; for i < j and where we also write sk

for the word s repeated k times. So

f(Anim(@) _ p(s™ 55 s s si)
p(An(2)) p([s* s17]) p([s* 51"])
with the convention that a§ = ) (to include the case r, = 0). The later ratio equals
pllsisy ™ sm st ) p((sy st sit ) pllsms™ si])
sy skt ]) (s skt ) pllstestt])
which can be re-written as
plzt ™) play ™) pllan™)
pllay ™) (25 7]) 7 (D)
(A tm ()

So, for lim, s A=) to exist, it is enough that the limits of the m terms which are
multiplied above, exist.

(29)
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But observe that, if  is a continuity point for g, then

varg = sup{|g(y) — 9(2)| : v,z € [zF]} = 0.

Thus we can write
et = [ ointy) = ples)lo(@) + 0* (s ) (30)

meaning that, for continuity points x, we have that u(z7])/u(z%) converges to g(x) as n
diverges

Coming back to (29)), due to the fact that g is continuous at z,0(z),...,0™ !(z), we
conclude that the product converges to H?l_ol g(oiz), concluding the proof of existence and
computation of p.

The existence of the limiting parameters is now proved, and according to the discussion of
Subsection the proof of the second statement follows automatically using our Theorem
Indeed, the assumptions of this theorem are granted since as we already said, under
summable variation, the measure is ¥-mixing, and moreover, the assumption that g > 0
implies that U7 = A;(z) has exponentially decaying measure in j since a simple argument
shows that p(A;(z)) < (supg)’. i

Proof of Proposition[I0 All the properties we use here, concerning the renewal measure, are
proved in/Abadi et al|(2015). First, the existence of the parameters follows from Theorem 3.2
therein. Under our conditions, the measure under study is left ¢-mixing with exponentially
decaying rate ¢. Since the map is not invertible, by Remark [5] we only need left ¢-mixing,
but in any case, the renewal measure is reversible, and therefore it enjoys both, left and
right ¢-mixing with the same rate. Finally, since p; € [e,1 — €], the same holds for g, which
automatically implies that UJ = Aj(x) has exponentially decaying measure in j as in the

preceding proof. |

Proof of Proposition[11] First of all, let us observe that the example is ¢-mixing as it is a
two-coordinates factor map of a product measure. So it satisfies condition (1) of Theorem
concerning the mixing properties. The measure of cylinders of size n decays exponentially
fast, so the second condition of Theorem [f is granted as well. It only remains to check the
third condition, but it holds if we are able to prove that the limit holds. This is what
we prove below.

Consider a point y € {—1, —i—l}N of prime period m > 1. By we have to compute the

limit of
vyt vy ™) vlym ™)

v(ly ™D (s ™) i)

Let us start computing (and prove it exists) the limit of

2

v(lys) " T

Observe that 27 (y5°) and = (y5°) are also periodic points. Let us denote by m’ their
common prime period. Denote by S,, the number of ones in

o (15%)2, 2T (133, -, T (U3 ) nre
(that is, of the n + 1 first coordinates of x*(y5°)). For technical matters, we will write n as
kn(2m' — 1) + r,, where ky, := |n/(2m’ — 1)] and r, is the remaining part, strictly smaller
than 2m’ — 1. Observe that, since 2m/ is a period of ¥ (y5°), we have S, = ky,Som/—1 + Rn
where R,, := S,, — knSom/—1 < Som/—1. Therefore
Sn _ an2m’71 + Rn S2m’71
n+1  k,2m' —1)+r,+1 "~ 2m' —1
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On the other hand, a simple calculation (see [Ferreira et al.| (2020))) gives that

. . 2(n+1)(5—22;)
V([lngrl]) (1 ) (176) + (175)
A2 Vo )
v(lyz ™)) 14 (1;)2(”“)(%—5?1)
We therefore have the following limits according to the values of € and %
n . Som/ _
v([1y5]) nce e H0<(3-6)(3— 5m7)
n — . 1 1 Som/ -1 (31)
v([y3]) 1—e if0>(2—e(d— 2my

(Obviously, lim % =1-lim ';(([Eyy%])) .) The same limiting value holds for
2 2

v([lyp ™)
T nFmy 1= 3,...,m.

vy
So let k be the number of +1’s in the period of y (which we recall is of size m). According
to we can thus conclude,

m— . S o
@ _ ) =m0 < (565~ ) -
m (1—ekem=k  if0> (% — e)(% _ gi:ﬁ,:f)

Proof of the first statement of Theorem[I3 For simplicity, we do the proof with m = 2, but
the general case follows identically. By assumption f is ¢-mixing and consequently the
conditions (1) and (2) of Theorem [5| are satisfied. So if we prove that éyy; exists for any
k and satisfies 44,41 = p* for some p € (0,1), then we prove at once that Theorem [5| holds
and that the asymptotic distribution is Polya-Aeppli as stated.

Write
~ kA ~ A ~ P A A kA4
G = Pizg 0~ "Sn) _ A(SnN6718) A(SnN 6718, NG 2Sn)  Al(Nig 0 "Sn)
1(Sn) A(Sy) (S, Né6-1S,) ﬂ(ﬂf;ol 5718,
which by translation invariance writes
ﬂ(Sn N a'_lsn) ,a(Sn N a'_lsn N &_QSn) ﬂ(ﬂf:o (AT_iSn)
i(6=1Sy) (6=18, NG=28,) O, 6-18,)
Now, for j =1,...,k and n large enough
ﬂ( i=0 &_isn) o a((z,y) 3x?+j = y?”) . .
N TR Contg _ oty - Unt
(i 078)  Al(w,y) ey =yy )
Let us assume for now that u, 1 = %’;;S”) converges, and let p denote the limit. Then

for any j > 1, up4; — p and the limit defining &1 exists and it equals p*. In other words,
provided the limit p exists we always have, in the limit, a Pdlya-Aeppli distribution with
parameter (1 — p), as stated by the theorem.
So it only remains to prove the existence of the limit p. Consider the projection operator
IT: % — {0,1}" defined through II(z,y) = 2 where z; = 1,,—,,. With this we now have to
check whether R i
Lk (L)

n poll=1([17])
exists. Using (Palmer et al., (1978 Proposition 5) we only have to prove that the measure
f1oII~1 has a continuous and strictly positive g-function. By assumption, § is strictly positive
and with summable variation. By Theorem 1.1 of |Verbitskiy| (2011)), we automatically have

= 1 Eon—1 (1] F3) (1)
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that 1 o II"! has an everywhere continuous and strictly positive g-function. This concludes
the proof of the theorem. |

Proof of the second statement of Theorem[I3 For simplicity, we do the proof with m = 2,
but the general case follows identically. For that reason let i be the § measure on Xp x Xp.
As above, the first two conditions of Theorem [5]are granted under our assumptions. We will
show that d exists by computing it, this will automatically grant &y, = p* and the third
condition of Theorem [5} and conclude our proof.

By conformality we have then for all finite words «, 8 that

Aola] x o[B]) = /[ e i),

In particular, if we put gi(x,y) = Hf;ol d(d7(z),07(y)), then for k-words o', o and n-words

B, 8" one has
ﬂ([a/ﬂ/] % [O//ﬂ”]) _ ﬂ([ﬂ/] % [5”])§k(0/[3/, O//ﬂu)eo(vi),
where v} = > i vy is the tailsum of v, = var, g and §(v',7") = SuP(, y)e[r)x () (T Y)-
By assumption fi is ¢-mixing and consequently the conditions of Theorem [5|are satisfied
if we prove that the following limit exists

~ k A—i
~ . M(ﬂ:o g 1Sn)

= 1 —_— = .
Ghtt nggo ﬂ(Sn)

Indeed
A()67°Sn) = (Snir)

= > ) ilaf] x [af])

ac Ak BEAn
= Y AAx[8) Y dklaB,aB)e).
BeA™ acAk

Since on the other hand fi(Sn) = 35—, A([8] x [B]) we get

o S A1) X B) Sacan (0B, a8)eO)
A > sean 118 X [B]) -

For any n > 1, let us define on g the measure

v= - 3 ] % B,

" yeAn

where 0, is a point mass at an arbitrarily chosen point z, € [y] C ¥p depending only on
the last symbol of 7 so that 2o, = o(2,) and Z,, = 3_,5,_,, 4([8] x [B]) is the normalising
factor. Acting on functions f: X p — R we define the transfer operator £ by

Lf(x) =" g*(az)f(ax),

acA
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where ¢® : Y5 — R is given by ¢ = §(y,y). Then for the action of £L¥ on v,, we get

Ay)
(o) (f) = / Z g (B2) £ (Be) dun(x)

= Z > i Bay)ly] x (V) £(Bay)
" |yl=n|8|=k

= = ] % o)) flaza)

" |a|=n+k

_  Zntk O(v),, ik (£),

n

NNN

where we used that by conformality
pllx b = [ ) diGew)
[B~]%[87]

which implies fi([y] x [v])g2 (Bz,) = a([By] x [87])eC@n) as gy = Px,. That is, we can
write
Uy = cn,keo(”’lﬂ)ﬁnfkl/k
where ¢, 1, is a normalising constant.
Now let v be the unique conformal measure for e~ £, where P is the pressure of log g
(on (¥p,0)). Evidently e ¥ Lr = v and there is an associated positive eigenfunction h so
that e =P Lh = h. For simplicity’s sake we assume the normalisation v(1) = v(h) = 1. Then

e PLf) = hw(f) + O(NY),
where A < 1 as L is quasi compact which is a consequence of exponentially decaying variation
of g®. Thus
e P (Lv)(f) = e P (L(S) = v (h)v(f) + O(X)

and consequently for every k and function f:

lim v,(f) = lim ¢, L™ k(f)eo('“’i)
= (RO,

In particular for the constant function f =1 one has 1 = limy,_e0 vn (1) = v (h)r(1)eC k)

which implies that v (h) = e©(%). If we let k — oo we obtain that v (k) — 1 which implies
that in fact v,, — v weakly.
Finally we obtain

k
Q1 —nh_{go Z / 95 (ax) dvy (x Z /g,~C ax) dv(z /£ x)dv(z

and consequently

Qgy1 = V(Ekl) = eFP
since £¥(1) = e*Fhu(1) + Ry, where Ry, is orthogonal to h, that is v(Ry) = 0. This implies
that the limiting distribution is Pélya-Aeppli since P = P(log g®) is negative which follows
from the fact that the pressure of § is zero on the system (¥%,4) and that the topological
entropy of & is positive by the ¥-mixing property.
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