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Quantum many-body systems display rich
phase structure in their low-temperature equilib-
rium states1. However, much of nature is not
in thermal equilibrium. Remarkably, it was re-
cently predicted that out-of-equilibrium systems
can exhibit novel dynamical phases2–8 that may
otherwise be forbidden by equilibrium thermo-
dynamics, a paradigmatic example being the dis-
crete time crystal (DTC)7,9–14. Concretely, dy-
namical phases can be defined in periodically
driven many-body localized systems via the con-
cept of eigenstate order7,15,16. In eigenstate-
ordered phases, the entire many-body spectrum
exhibits quantum correlations and long-range or-
der, with characteristic signatures in late-time
dynamics from all initial states. It is, how-
ever, challenging to experimentally distinguish
such stable phases from transient phenomena,
wherein few select states can mask typical be-
havior. Here we implement a continuous fam-
ily of tunable CPHASE gates on an array of su-
perconducting qubits to experimentally observe
an eigenstate-ordered DTC. We demonstrate the
characteristic spatiotemporal response of a DTC
for generic initial states 7,9,10. Our work employs a
time-reversal protocol that discriminates external
decoherence from intrinsic thermalization, and
leverages quantum typicality to circumvent the
exponential cost of densely sampling the eigen-
spectrum. In addition, we locate the phase tran-
sition out of the DTC with an experimental finite-
size analysis. These results establish a scalable
approach to study non-equilibrium phases of mat-
ter on current quantum processors.

In an equilibrium setting, quantum phases of mat-
ter are classified by long-range order or broken sym-
metries in low-temperature states (Fig. 1a). The ex-
istence of ordered phases in periodically driven (Flo-
quet) systems, on the other hand, is counterintuitive:
Since energy is not conserved, one expects thermaliza-
tion to a featureless maximum-entropy state that is in-
compatible with quantum order. However, this heat
death is averted in the presence of many-body localiza-
tion (MBL), where strong disorder causes the emergence
of an extensive number of local conservation laws which
prevent thermalization17–22, making it possible to stabi-
lize intrinsically dynamical phases7.

Dynamics in a Floquet system is governed by a unitary
time evolution operator, whose eigenvalues lie on the unit
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FIG. 1. Order in eigenstates. a, Equilibrium phases
are characterized by long-range order in low-energy eigen-
states of time-independent Hamiltonians, e.g. an Ising fer-
romagnet with a pair of degenerate ground states that resem-
ble “Schrödinger cats” of polarized states. b, Floquet sys-
tems typically have no ordered states in the spectrum. c, In
MBL Floquet systems, every eigenstate can show order. In
MBL-DTC, every eigenstate resembles a long-range ordered
“Schrödinger cat” of a random configuration of spins and its
inversion, with even/odd superpositions split by π.

circle. While the entire Floquet spectrum is featureless
in a thermalizing phase (Fig. 1b), an MBL Floquet phase
can have an order parameter associated with each eigen-
state. As an example, in the spatiotemporally-ordered
MBL-DTC, the spectrum has a distinctive pattern of
pairing between “Schrödinger cat” states that are sep-
arated by an angle π (Fig. 1c)7,9,10. This pairing man-
ifests as a stable sub-harmonic response, wherein local
observables show period-doubled oscillations that sponta-
neously break the discrete time translation symmetry of
the drive for infinitely long times. The unique combina-
tion of spatial long-range order and time translation sym-
metry breaking in an isolated dissipation-free quantum
many-body system is the hallmark of the MBL-DTC.

Experimentally observing a non-equilibrium phase
such as the MBL-DTC is a challenge due to limited
programmability, coherence and size of Noisy Interme-
diate Scale Quantum (NISQ) hardware. Sub-harmonic
response, by itself, is not a unique attribute of the MBL-
DTC; rather, it is a feature of many dynamical phe-
nomena whose study has a rich history23,24 (See also
Ch. 8 in Ref.12). Most recently, interesting DTC-like
dynamical signatures have been observed in a range
of quantum platforms25–28. Such signatures, however,
are transient, arising from slow or prethermal dynam-
ics from special initial states12,29–32, and are separated
from the MBL-DTC by a spectral phase transition where
eigenstate order disappears. Thus, despite the recent
progress, observing an MBL-DTC remains an outstand-
ing challenge12,32.

Here we perform the following necessary benchmarks
for experimentally establishing an eigenstate-ordered
non-equilibrium phase of matter: (i) Drive parameters
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FIG. 2. Observing a many-body localized discrete time-crystal. a, Schematic of the experimental circuit composed
of t identical cycles of the unitary ÛF. The local polarization of each qubit, 〈Ẑ(t)〉, is measured at the end. In the following
panels, we investigate a number of disorder instances each with a different random bit-string initial state. b, Experimental
values of 〈Ẑ(t)〉 measured at qubit 11. Data are shown for five representative circuit instances deep in the thermal (g = 0.60)

and MBL-DTC (g = 0.97) phases. c, Autocorrelator A = 〈Ẑ(0)Ẑ(t)〉 at qubit 11, obtained from averaging the results of 36

circuit instances. For the same circuit instances, the average autocorrelator at the output of ÛECHO = (Û†F)tÛ tF is also measured

and its square root, A0, is shown alongside A for comparison. d, Top panels: The ratio A/A0 obtained from panel c. Bottom
panels: A/A0 as a function of t and qubit location.

are varied in order to demonstrate stability of the phase
in an extended parameter region and across disorder real-
izations; The limitations of (ii) finite size and (iii) finite
coherence time are addressed, respectively, by varying
the number of qubits in the system and by separating
effects of extrinsic decoherence from intrinsic thermaliza-
tion; (iv) The existence of eigenstate order across the en-
tire spectrum is established. The flexibility of our quan-
tum processor, combined with the scalable experimental
protocols devised in the following, allows us to fulfill these
criteria and observe time-crystalline eigenstate order.

The experiment is conducted on an open-ended, linear
chain of L = 20 superconducting transmon qubits (Q1

through Q20) that are isolated from a two-dimensional
grid. We drive the qubits via a time-periodic (Floquet)

circuit Û tF with t identical cycles (Fig. 2a) of ÛF:

ÛF = e−
i
2

∑
i hiẐi︸ ︷︷ ︸

longitudinal fields

e−
i
4

∑
i φiẐiẐi+1︸ ︷︷ ︸

Ising interaction

e−
i
2πg

∑
i X̂i︸ ︷︷ ︸

x rotation by πg

(1)

where X̂i and Ẑi are Pauli operators. Each φi (hi) is
sampled randomly from [−1.5π,−0.5π] ([−π, π]) for ev-

ery realization of the circuit. Overall, ÛF implements an
interacting Ising model that is periodically “kicked” by a
transverse pulse that rotates all qubits by πg about the x
axis. In this work, g is tuned within the range [0.5, 1.0] to

explore the DTC phase and its transition into a thermal
phase. At g = 1, the model implements a π pulse which
exactly flips all qubits (in the z basis) and returns them
to the initial state over two periods. A key signature of
the DTC is the presence of robust period doubling, i.e.
extending over a finite extent in parameter space, even
as g is tuned away from 1. Strong Ising interactions,
which produce long-range spatial order, are essential for
this robustness7,10. This is in contrast to a system of
decoupled qubits (φ = 0) which rotate by a continuously
varying angle πg every period instead of being locked
at period doubling. Prior theoretical work32 has shown
that model (1) is expected to be in an MBL DTC phase
in the range g > gc, and transition to a thermal phase at
a critical value gc ≈ 0.84.

Achieving MBL in this model for g ∼ 1 requires disor-
der in the two-qubit interaction, φi, which is even under
Ising symmetry12,32,

∏
i X̂i, a condition that was not met

by some past DTC experiments26,27. Ising-odd terms,
i.e. hi, are approximately dynamically decoupled by the
x pulses over two periods, thereby lowering their effective
disorder strength and hindering localization (in the ab-
sence of independent disorder in the φi). Utilizing newly
developed CPHASE gates (see SM for details) with con-
tinuously tunable conditional phases allows us to engi-
neer strong disorder in φi to fulfill this key requirement.
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FIG. 3. Observing eigenstate order and distinguishing it from transient phenomena. a, Site- and disorder-averaged
autocorrelators [A] measured with g = 0.94. In the left panel (MBL-DTC), each data set is averaged over 24 disorder instances of
φi and hi, with the initial state fixed at one of the following: Néel: |01〉⊗10, Polarized: |0〉⊗20, Random: |00111000010011001111〉.
In the right panel (thermalizing), the same values of hi and initial states are used but φi = −0.4. b, Histograms of |[A]|, from
500 random bit-string initial states, averaged over cycles 30 and 31 and the same disorder instances as in panel a. σ/µ, where σ
(µ) is the standard deviation (mean) of |[A]|, is also listed. Location of the polarized (Néel) state is indicated by a purple (red)
arrow. Inset: same collection of |[A]| plotted over the energies of the bit-string states, calculated from the effective Hamiltonian

Ĥeff approximating the drive (see text). Dashed lines show averaged values within energy windows separated by 0.2. c, 〈Ẑ(t)〉
for two bit-string initial states that differ only at Q11. Top panel shows a single circuit instance with disordered φi and bottom
panel shows an instance with uniform φi = −0.4. d, Left and middle panels: Relative difference between the two signals ζr

as a function of t and qubit location, averaged over time windows of 10 cycles and over 64 disorder instances for ÛF and 81
instances for Û ′F . Right panel: Qubit dependence of ζr, averaged from t = 51 to t = 60.

We first measure the hallmark of an MBL-DTC: the
persistent oscillation of local qubit polarizations 〈Ẑ(t)〉
at a period twice that of ÛF, irrespective of the initial
state7,9,12,32. This subharmonic response is probed using
a collection of random bit-string states, e.g. |01011...〉
where 0(1) denotes a single-qubit ground(excited) state
in the z basis. For each bit-string state, we generate a
random instance of ÛF, and then measure 〈Ẑ(t)〉 every

cycle. Figure 2b shows 〈Ẑ(t)〉 in a few different instances
for a qubit near the center of the chain, Q11, measured
with g = 0.60 and g = 0.97. The former is deep in
the thermal phase and indeed we observe rapid decay of
〈Ẑ(t)〉 toward 0 within 10 cycles for each instance. In

contrast, for g = 0.97, 〈Ẑ(t)〉 shows large period-doubled
oscillations persisting to over 100 cycles, suggestive of an
MBL-DTC phase. The disorder averaged autocorrelator,

A = 〈Ẑ(0)Ẑ(t)〉, shows similar features (Fig. 2c).

We note that the data for g = 0.97 is modulated by a
gradually decaying envelope, which may arise from either
external decoherence or slow internal thermalization25,30.
To establish DTC, additional measurements are needed
to distinguish between these two mechanisms. This is

achieved via an “echo” circuit ÛECHO = (Û†F )tÛ tF which
reverses the time evolution after t steps. Deviations of

ÛECHO from the identity operation are purely due to de-
coherence, and can be quantified via decay of the auto-

correlator A0 ≡ (〈ẐÛ†ECHOẐÛECHO〉)1/2 (the square root

accounts for the fact that ÛECHO acts twice as long as
Û tF ). A similar time-reversal technique was recently used
in the study of out-of-time-ordered commutators in ther-
malizing random circuits33.

Comparison between the disorder averaged A0 and A
reveals qualitatively different behaviors in the two phases
(Fig. 2c). In the thermal phase g = 0.60, A approaches
0 much more quickly than A0 does, indicating that the
observed decay of A is mostly induced by intrinsic ther-
malization. In the MBL-DTC phase g = 0.97, A0 nearly
coincides with the envelope of A, suggesting that decay
of the latter is primarily induced by decoherence. The
reference signal A0 may be used to normalize A and re-
veal its ideal behavior: A/A0, shown in the upper panels
of Fig. 2d, decays rapidly for g = 0.60 but retains near-
maximal amplitudes for g = 0.97. Similar contrast be-
tween the two phases is seen in the error-mitigated auto-
correlators A/A0 for all qubits (bottom panel of Fig. 2d).
The observation of a stable noise-corrected sub-harmonic
response is suggestive of an MBL-DTC phase.

We now turn to a systematic analysis of the next re-
quirement necessary to establish an MBL-DTC: namely
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FIG. 4. Probing average spectral response via quan-
tum typicality. a, Schematic for measuring the auto-
correlator, Aψ = 〈ψ| Ẑ(0)Ẑ(t) |ψ〉, on Q11, of a scrambled
quantum state |ψ〉. |ψ〉 is created by passing a bit-string state

through a scrambling circuit, ÛS. An ancilla qubit Qa pre-
pared in |+X〉 interacts with one of the qubits (Q11) via a CZ

gate before and after Û tF. The x-axis projection of Qa, 〈X̂〉a,

is measured at the end. b, ÛS contains K layers of CZ gates
interleaved with random single-qubit rotations, Ri,k, around
a random axis along the equatorial plane of the Bloch sphere
by an angle ∈ [0.4π, 0.6π]. c, Upper panel: Aψ for a single

disorder instance with K = 20 cycles in ÛS. The square-root
of the autocorrelator obtained by replacing Û tF with ÛECHO,
Aψ,0, is also shown. Bottom panel: Normalized autocorrela-
tor, Aψ/Aψ,0, as a function of t. d, Histograms of |Aψ| from
a single disorder instance, averaged over cycles 30 and 31.
Each histogram corresponds to a different number of scram-
bling cycles, K, and includes data from 500 random initial
bit-string states fed through the scrambling circuit.

the presence of eigenstate order across the entire spec-
trum which, in turn, implies that sub-harmonic response
should not be strongly affected by the choice of initial
states. In contrast, various prethermal mechanisms in
driven systems predict strong dependence of the ther-
malization rate on the initial state, e.g. through its quan-
tum numbers27,31 or its energy under an effective time-
independent Hamiltonian Ĥeff

29,34,35 that approximately
governs the dynamics for small system sizes and/or finite
times. To elucidate this aspect of the MBL-DTC phase,
we analyze in detail the distribution of autocorrelator
values over initial bit-string states.

We begin by examining the position- and disorder-
averaged autocorrelator [A] over three representative bit-
string initial states, shown in the left panel of Fig 3a.
The square brackets indicate averaging over qubits in the
chain (excluding the edge qubits Q1, Q20, which may be

affected by the presence of edge modes independent of
the bulk DTC response36). The three time traces are
nearly indistinguishable. This behavior is in clear con-
trast with a model without eigenstate order, implemented
by a family of drives Û ′F where the φi angles are set to a
uniform value37, φi = −0.4. Without disorder in the φi,
the drive Û ′F is not asymptotically localized but exhibits

transient DTC-like behavior. Here, [A] for Û ′F (disorder
averaged over random hi only), shown in the right panel
of Fig 3a, reveals markedly different decay rates for the
three states. The random bit-string state, in particular,
decays faster than the polarized or Néel states.

A more comprehensive analysis, presented in Fig. 3b,
is based on sampling the absolute values of [A] for 500
random initial bit-string states (averaged over cycles 30

and 31). For the MBL-DTC ÛF , the histogram is tight,
with a relative standard deviation (ratio of standard de-
viation to mean, σ/µ) of 0.038. Here the non-zero value
of σ likely stems from finite experimental accuracy and
number of disorder instances, as analysis in the SM shows
that [A] is independent of the initial state. In contrast,

the Û ′F model shows a broader distribution with a much
lower mean, and with σ/µ = 0.129. Moreover, the his-
togram is asymmetrical, with outliers at high [A] includ-
ing the polarized and Néel states (51% and 88% higher
than the mean, respectively). These two states are spe-
cial because they are low temperature states that sit near
the edge of the spectrum of Ĥeff (see SM). Plotting the
autocorrelator [A] against the energy of each bitstring

under Ĥeff, in the inset of Fig. 3b, reveals a clear corre-
lation. No such correlation is present in the MBL model.

Independent confirmation of MBL as the mechanism
underlying the stability of DTC is achieved by character-
izing the propagation of correlations. In MBL dynamics,
local perturbations spread only logarithmically in time19,
as opposed to algebraic (∼ tα) spreading in thermalizing
dynamics. We prepare two initial bitstring states differ-
ing by only a single bit-flip at Q11 and measure 〈Ẑ(t)〉
for each site in both states (Fig. 3c). It can be seen that
the difference in the two signals, ζ1 and ζ2, decays rapidly
with the distance from Q11 for disordered φi and becomes
undetectable at Q14. On the other hand, for uniform
φi = −0.4, ζ1 and ζ2 have a much more pronounced dif-
ference which remains significant at Q14. This difference
is further elucidated by the ratio ζr = |ζ1−ζ2|/(|ζ1|+|ζ2|),
shown in Fig. 3d. Physically, ζr corresponds to the rela-
tive change in local polarization as a result of the bit flip,
and is inherently robust against qubit decoherence (see
SM). We observe that up to t = 100, ζr remains sharply
peaked around the initial perturbation (Q11) for disor-
dered φi. In contrast, a propagating light cone is visible
for φi = −0.4, with the perturbation reaching all qubits
across the chain as t increases. The spatial profiles of ζr
at t = 51 to t = 60 (right panel of Fig. 3d) show that
ζr is much sharper for disordered φi. This slow prop-
agation provides strong indication of MBL and another
experimental means of distinguishing eigenstate-ordered
phases from transient phenomena.
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Our measurement of [A] for 500 initial states in Fig. 3d
provides clear evidence of initial state independence.
Still, a direct sampling of states is practically limited to
small fractions of the computational basis (0.05% in this
case) and would suffer from the exponential growth of
the Hilbert space on larger systems. A more scalable al-
ternative is to use random, highly entangled states to di-
rectly measure spectrally-averaged quantities (quantum
typicality38–40). The autocorrelator A averaged over all
2L bitstrings agrees, up to an error exponentially small
in L, with Aψ = 〈ψ| Ẑ(0)Ẑ(t) |ψ〉, where |ψ〉 is a typical
Haar-random many-body state in the Hilbert space of L
qubits. We prepare such a state by evolving a bitstring
with a random circuit ÛS of variable depth K (Fig. 4b),
and couple an ancilla qubit to the system to measure
the two-time operator Ẑ(0)Ẑ(t) (Fig. 4a). Experimen-
tal results for the error-mitigated, spectrally averaged
signal Aψ/Aψ,0 on qubit Q11 (Fig. 4c) show behavior
consistent with a stable MBL-DTC. The effect of the
state-preparation circuit ÛS is illustrated by the depen-
dence of the relative standard deviation σ/µ for Aψ on
K. As shown in Fig. 4d, σ/µ steadily decreases as K
increases, reducing from a value of 0.062 at K = 0 to a
value of 0.015 at K = 20. This is consistent with the
fact that |ψ〉 becomes closer to a Haar-random state as
K increases. We use a single disorder instance to study
the convergence of the quantum typicality protocol be-
cause disorder averaging independently leads to narrow
distributions even for K = 0 (Fig. 3b).

The scaling with L of the spectrally-averaged autocor-
relator, at a time t ∼ poly(L), provides a sharp diag-
nostic: this saturates to a finite value in the MBL-DTC,
while it scales to zero with increasing L in transient cases
(where, for instance, a vanishing fraction of the spectrum

of an appropriate Ĥeff shows order). While the averaged
autocorrelator may be unduly affected by outlier states
and/or long (but O(1)) thermalization times at small sys-
tem sizes and times (thereby making the complementary
bitstring analysis of Fig. 3 essential), the polynomial scal-
ing of this protocol establishes a proof of principle for
efficiently verifying the presence or absence of an MBL
DTC in a range of models as quantum processors scale
up in size to surpass the limits of classical simulation41.

Finally, we systematically vary g in small increments
and obtain an experimental finite-size analysis to estab-
lish the extent of the MBL phase and the transition out
of it. Sharply defining phases of matter, whether in or
out of equilibrium, requires a limit of large system size.
Thus it is important to examine the stability of the MBL-
DTC and thermalizing regimes observed in our finite-size
quantum processor as the size of the system is increased.
To address this, we measure an Edwards-Anderson spin
glass order parameter42,43,

χSG =
1

L− 2

∑
i6=j

′
〈ẐiẐj〉

2
(2)

(the primed sum excludes edge qubits Q1, QL), as a func-
tion of time. This quantity measures the persistence of
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FIG. 5. Estimating phase-transition by varying system
size. Spin-glass order parameter χSG as a function of g for dif-
ferent chain lengths L, measured between t = 51 and t = 60.
Every data point is averaged over 40 disorder instances. To
construct χSG, we sample 40000 bit-strings at the output of
Û tF for each cycle and disorder instance. To address the in-
homogeneity of qubit coherence, smaller qubit chains are also
averaged over different possible combinations of qubits. For
example, L = 12 is averaged over 12-qubit chains made from
Q1 through Q12, Q3 through Q15 etc. Error bars correspond
to statistical errors (estimated by resampling data from the
40 disorder instances via the jackknife method). Contribution
of hardware (e.g. gate) errors to χSG is not included in the
error bars. Inset shows the size-dependence of χSG for two
different values of g.

random (“glassy”) spatial patterns in the initial bitstring
state: at late times, it vanishes with increasing L in the
thermalizing phase g < gc, while it is extensive in the
MBL-DTC g > gc. As a result, it is expected to show a
finite-size crossing at g ' gc (though the precise location
is subject to strong finite-size and finite-time drifts44,45).
Experimentally, χSG is constructed from bit-string sam-
ples obtained by jointly reading out all qubits and then
averaged over cycles and disorder instances (Fig. 5). The
size of the qubit chain is varied by restricting the drive
ÛF to contiguous subsets of 8, 12, and 16 qubits (as well
as the entire 20-qubit chain). We observe increasing (de-
creasing) trends in χSG vs L when g is above (below) a
critical value gc. The data indicate 0.83 . gc . 0.88,
consistent with numerical simulations (see SM).

In conclusion, we have demonstrated the possibility of
engineering and characterizing non-equilibrium phases of
matter on a quantum processor, providing direct experi-
mental observation of an eigenstate-ordered MBL-DTC.
The scalability of our protocols sets a blueprint for future
studies of non-equilibrium phases and phase transitions
on complex quantum systems beyond classical simulabil-
ity. The efficient verification of eigenstate order can in-
spire a general strategy for establishing whether a desired
property, such as a particular phase, is in fact present in
a quantum processor.
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pansion to obtain Ĥeff is a reasonable approximation (see
SM).

[38] Sandu Popescu, Anthony J. Short, and Andreas Win-
ter, “Entanglement and the foundations of statistical me-
chanics,” Nature Physics 2, 754–758 (2006).

[39] Sheldon Goldstein, Joel L. Lebowitz, Roderich Tumulka,
and Nino Zangh̀ı, “Canonical typicality,” Phys. Rev.
Lett. 96, 050403 (2006).

[40] Jonas Richter and Arijeet Pal, “Simulating hydrodynam-
ics on noisy intermediate-scale quantum devices with ran-
dom circuits,” Phys. Rev. Lett. 126, 230501 (2021).

[41] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
R. Barends, R. Biswas, S. Boixo, F. G. S. L. Bran-

http://dx.doi.org/10.1103/PhysRevLett.116.250401
http://dx.doi.org/ 10.1103/PhysRevX.6.041070
http://dx.doi.org/ 10.1103/PhysRevX.6.041070
http://dx.doi.org/10.1103/PhysRevLett.117.090402
http://dx.doi.org/10.1103/PhysRevB.94.085112
http://dx.doi.org/10.1103/PhysRevB.94.085112
http://dx.doi.org/10.1088/1361-6633/aa8b38
http://dx.doi.org/10.1088/1361-6633/aa8b38
https://arxiv.org/abs/1910.10745
https://arxiv.org/abs/1910.10745
http://dx.doi.org/10.1103/PhysRevLett.111.070402
http://dx.doi.org/10.1103/PhysRevLett.111.070402
http://arxiv.org/abs/1306.6275
http://dx.doi.org/10.1103/physrevlett.114.251603
http://dx.doi.org/10.1103/physrevlett.114.251603
http://link.aps.org/doi/10.1103/PhysRevB.88.014206
http://link.aps.org/doi/10.1103/PhysRevX.4.011052
http://dx.doi.org/https://doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/https://doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726
http://dx.doi.org/ 10.1103/RevModPhys.91.021001
http://dx.doi.org/ 10.1103/RevModPhys.91.021001
http://dx.doi.org/ 10.1103/physrevlett.114.140401
http://dx.doi.org/ 10.1103/physrevlett.114.140401
http://dx.doi.org/ 10.1103/physrevlett.115.030402
http://dx.doi.org/ 10.1103/physrevlett.115.030402
http://www.jstor.org/stable/107936
http://www.jstor.org/stable/107936
http://dx.doi.org/10.1063/PT.3.4019
http://arxiv.org/abs/1811.08179
http://arxiv.org/abs/1811.08179
http://dx.doi.org/ 10.1038/nature21426
http://dx.doi.org/10.1038/nature21413
http://dx.doi.org/10.1038/nature21413
http://dx.doi.org/10.1103/PhysRevLett.120.180603
http://dx.doi.org/10.1103/PhysRevLett.120.180603
http://dx.doi.org/ 10.1103/PhysRevLett.120.180602
http://dx.doi.org/ 10.1103/PhysRevLett.120.180602
http://dx.doi.org/10.1103/PhysRevX.7.011026
http://dx.doi.org/10.1103/PhysRevX.7.011026
http://dx.doi.org/10.1103/PhysRevLett.119.010602
http://dx.doi.org/ 10.1103/PhysRevX.10.021046
http://arxiv.org/abs/2007.11602
http://arxiv.org/abs/2101.08870
http://arxiv.org/abs/2101.08870
http://dx.doi.org/10.1103/PhysRevB.95.014112
http://dx.doi.org/10.1088/1361-6455/aabcdf
http://dx.doi.org/10.1088/1361-6455/aabcdf
http://arxiv.org/abs/2105.13766
http://arxiv.org/abs/2105.13766
http://dx.doi.org/ 10.1038/nphys444
http://dx.doi.org/10.1103/PhysRevLett.96.050403
http://dx.doi.org/10.1103/PhysRevLett.96.050403
http://dx.doi.org/10.1103/PhysRevLett.126.230501


8

dao, D. A. Buell, et al., “Quantum supremacy using a
programmable superconducting processor,” Nature 574,
505–510 (2019).

[42] S F Edwards and P W Anderson, “Theory of spin
glasses,” Journal of Physics F: Metal Physics 5, 965–974
(1975).

[43] Jonas A. Kjäll, Jens H. Bardarson, and Frank Pollmann,
“Many-body localization in a disordered quantum ising
chain,” Phys. Rev. Lett. 113, 107204 (2014).

[44] Arijeet Pal and David A. Huse, “Many-body localization
phase transition,” Phys. Rev. B 82, 174411 (2010).

[45] D.A. Abanin, J.H. Bardarson, G. De Tomasi,
S. Gopalakrishnan, V. Khemani, S.A. Parameswaran,
F. Pollmann, A.C. Potter, M. Serbyn, and R. Vasseur,
“Distinguishing localization from chaos: Challenges
in finite-size systems,” Annals of Physics 427, 168415
(2021).

[46] B. Foxen, C. Neill, A. Dunsworth, P. Roushan, B. Chiaro,
A. Megrant, J. Kelly, Z. Chen, K. Satzinger, R. Barends,
et al. (Google AI Quantum), “Demonstrating a continu-
ous set of two-qubit gates for near-term quantum algo-
rithms,” Phys. Rev. Lett. 125, 120504 (2020).

[47] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon,
Joseph C. Bardin, Rami Barends, Andreas Bengtsson,
Sergio Boixo, Michael Broughton, Bob B. Buckley, et al.,
“Observation of separated dynamics of charge and spin
in the fermi-hubbard model,” (2020), arXiv:2010.07965
[quant-ph].

[48] C. Neill, T. McCourt, X. Mi, Z. Jiang, M. Y. Niu,
W. Mruczkiewicz, I. Aleiner, F. Arute, K. Arya, J. Ata-
laya, et al., “Accurately computing the electronic prop-
erties of a quantum ring,” Nature 594, 508–512 (2021).

[49] This is true up to single-qubit Z rotations on the edge
qubits, if the chain has open boundary conditions. These
could be cancelled by considering the evolution over 4
periods, with minor changes to the result (a cancellation
of terms near the edges). For the sake of simplicity we
will neglect this effect here.

[50] Christian Bartsch and Jochen Gemmer, “Dynamical typ-
icality of quantum expectation values,” Phys. Rev. Lett.
102, 110403 (2009).

[51] Jean Dalibard, Yvan Castin, and Klaus Mølmer, “Wave-
function approach to dissipative processes in quantum
optics,” Phys. Rev. Lett. 68, 580–583 (1992).

http://dx.doi.org/10.1088/0305-4608/5/5/017
http://dx.doi.org/10.1088/0305-4608/5/5/017
http://dx.doi.org/10.1103/PhysRevLett.113.107204
http://dx.doi.org/ 10.1103/PhysRevB.82.174411
http://dx.doi.org/ https://doi.org/10.1016/j.aop.2021.168415
http://dx.doi.org/ https://doi.org/10.1016/j.aop.2021.168415
http://arxiv.org/abs/2010.07965
http://arxiv.org/abs/2010.07965
http://dx.doi.org/ 10.1103/PhysRevLett.102.110403
http://dx.doi.org/ 10.1103/PhysRevLett.102.110403
http://dx.doi.org/ 10.1103/PhysRevLett.68.580


9

Supplementary Materials for “Observation of Time-Crystalline
Eigenstate Order on a Quantum Processor”

I. CPHASE GATE IMPLEMENTATION AND
ERROR BENCHMARKING

An essential building block for the quantum circuits
used to observe many-body localized DTC is the two-

qubit gate ZZ(φ) = e−i
φ
4 ẐaẐb , which belongs to the more

general family of Fermionic Simulation (FSIM) gates hav-

ing the unitary form ÛFSIM
41:


1 0 0 0
0 ei(∆++∆−) cos θ −iei(∆+−∆−,off) sin θ 0
0 −iei(∆++∆−,off) sin θ ei(∆+−∆−) cos θ 0
0 0 0 ei(2∆+−φ)

 .

(3)
Here θ is the two-qubit iSWAP angle and ∆+, ∆− and
∆−,off are phases that can be freely adjusted by single-
qubit Z-rotations. In this parametrized representation,
ZZ(φ) = ÛFSIM(θ = 0,∆− = 0,∆−,off = 0, φ = 2∆+),
which is equivalent to a CPHASE gate with conditional-
phase φ and a single-qubit rotation Z(φ2 ) acting on each
qubit. Precise single-qubit Z-control has already been
demonstrated in our previous work33. Here, we focus on
implementing CPHASE gates with a variable φ.

The qubits used in our experiment are superconduct-
ing transmon qubits with both tunable frequencies and
tunable inter-qubit couplings. Due to the existence of
higher states, a natural way to realize a CPHASE gate
is to bring the |11〉 and |02〉 states of two coupled qubits
close to resonance diabatically, allow the qubits to in-
teract for a duration ∼ 1√

8g2+ε2
, before turning off the

inter-qubit coupling and ramping the qubits back to their
idle configurations. Here |0〉 and |1〉 are the ground and
excited states of each qubit, |2〉 is a leakage state out-
side the computational space, g denotes the inter-qubit
coupling (between the |10〉 and |01〉 states) and ε is the
detuning between the |11〉 and |02〉 states during inter-
action. A schematic for the flux pulses to realize the
CPHASE gate is shown in Fig. 6a.

Figure 6b shows simulated values of leakage, namely
the probability of one qubit residing in |2〉 after the
CPHASE gate, as a function of ε and maximum value
of g during interaction, gmax. A narrow arc-like region,
corresponding to a contour 8g2

max + ε2 = constant, can
be seen from the simulation. The values of gmax and φ
along this contour are shown in the upper panel of Fig. 6c,
where we see a full range of φ ∈ [−2π, 0] can be achieved
for absolute detuning values of |ε|/2π < 100 MHz. Since
the |01〉 and |10〉 states are detuned by ∼200 MHz, their
interaction remains dispersive during the CPHASE gate
and therefore ensures a small iSWAP angle θ (we confirm
this experimentally in the next section).

Experimentally, the leakage-minimizing value of gmax
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FIG. 6. Implementing CPHASE gates with tunable
transmon qubits. a, Schematic of flux pulses used to real-
ize a CPHASE gate. The frequencies of two coupled trans-
mons, ω10, a and ω10, b, are displaced from their idle positions
into a configuration wherein ω10, b is detuned from ω21, a by
an amount ε. At the same time, a flux pulse on the cou-
pler turns on an inter-qubit coupling g > 0 with a maximum
value of gmax for a fixed duration of ∼18 ns. b, Simulated
values of leakage, P2, as a function of ε and gmax, using typ-
ical device parameters and pulse shapes. c, The values of
gmax and conditional-phase φ at the locations of minimum
leakage, plotted for different values of ε. Upper panel shows
simulated results and lower panel shows representative experi-
mental values obtained from one pair of qubits. d, Pauli error
rates for each neighboring pair of qubits in the 20-qubit chain
used by the experiment, obtained from parallel XEB. Each er-
ror rate includes contributions from two random single-qubit
gates (π/2 rotations around a random axis along the equato-
rial plane of the Bloch sphere) and a CPHASE gate. Data are
shown for 24 disorder instances, with each instance including
a different random set of φi across the qubit chain. Red dots
show the average error of each qubit pair.

is detected for a discrete set of ε via |2〉 state readout
and the corresponding φ is then calibrated using unitary
tomography46. A polynomial fit is then performed to
infer values of ε and gmax for intermediate values of φ,
thereby achieving a continuous family of CPHASE gates
with fully tunable φ. Example experimental calibration
data for ε, gmax and φ are included in the bottom panel
of Fig. 6c. Excellent agreement with numerical results is
found. The discrepancy in values of ε likely arises from
deviation between the actual pulse shapes on the quan-
tum processor and those used in the numerical simula-
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tion.
To estimate the errors of typical CPHASE gates, we

perform cross-entropy benchmarking (XEB) similar to
previous works33,41. Here the gates are characterized
in parallel and therefore include errors arising from any
cross-talk effects. The XEB results for 24 random combi-
nations of φi across the 20-qubit chain used in the main
text are shown in Fig 6d, where we have used the so-
called “cycle” Pauli error as the metric. A cycle Pauli
error includes errors from two single-qubit gates and a
single CPHASE gate. In computing the XEB fidelities,
we have also assumed the CPHASE gate with the cali-
brated φ as the ideal gate33. As such, the Pauli errors
include contributions from both incoherent effects such
as qubit relaxation and dephasing, as well as coherent
effects such as any mis-calibration in φ and residual val-
ues of θ. The error rates are observed to be relatively
dependent on φ, a likely consequence of changes in co-
herent and incoherent errors when the pulse parameters
are varied. Overall, we observe an average error rate of
0.011, comparable to gates used in our past works33,41.

II. FLOQUET CALIBRATION OF CPHASE
GATES

After basic pulse-level calibration of CPHASE gates,
the ZZ(φ) gate is then calibrated using the technique
of Floquet calibration47,48. Floquet calibration utilizes
periodic circuits which selectively amplify different pa-
rameters within ÛFSIM, allowing for sensitive detection
and rectification of small coherent errors for such quan-
tum gates. Our past works have primarily focused on
calibrating the iSWAP-like family of gates, where θ � φ.
For ZZ gates, the opposite limit φ � θ is true and the
optimal calibration circuits are in some cases different
from our previous works. In this section, we present the
gate sequences and example calibration results for the
ZZ gates. For a detailed description of the underlying
theory of Floquet calibration, the reader is directed to
our previous publications47,48.

A. Calibration of ∆+, ∆− and φ

The calibration circuits for ∆− are illustrated in
Fig. 7a and comprise two Ramsey-like measurements:
Each qubit is separately initialized along the x-axis of the
Bloch sphere, |X〉. A total number of d FSIM gates are
then applied, which in general rotate the excited qubit
around the z-axis of the Bloch sphere due to non-zero
single-qubit phases within the uncalibrated ÛFSIM. At
the end of the sequence, a Z gate with a rotation angle
ξ is applied to the excited qubit, followed by a

√
Y gate.

The resulting |1〉 state population, P1, is then measured.
Example data for P1 of each qubit are shown in the bot-
tom panel of Fig. 7a, which are fitted to a cosine function
P1 = B0 + B1 cos(ξ + ξ0) where B0, B1 and ξ0 are fit-
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FIG. 7. Floquet calibration of single-qubit and con-
ditional phases for CPHASE-like gates. a, Top panel:
Gate sequences for calibrating the ∆− angle of the FSIM. Bot-
tom panel: Example experimental data for P1,a and P1,b (|1〉
state population for qubits Qa and Qb, respectively) as func-
tions of ξ. The circuit depth is fixed at d = 8. Solid black lines
show fits to a cosine function for each qubit, which allow ∆−
to be extracted. b, Top panel: Gate sequences for calibrating
∆+ and φ. For each of the 4 gate sequences, the 〈X̂〉 and 〈Ŷ 〉
projections of the Bloch vector for a given qubit are measured

at the end, from which an angle α = tan−1
(
〈Ŷ 〉 / 〈X̂〉

)
is

computed. Bottom panel: Example experimentally obtained
phase sums (α1 + α2) and differences (α4 - α3) as functions
of d, number of cycles in the Floquet gate sequences. Solid
black lines show linear fits, the slopes of which determine φ
and ∆+. c, Experimentally measured φ for each neighboring
pair of qubits in the 20-qubit chain. Results from 40 disor-
der instances are plotted. The blue and red connected dots
indicate the values of two particular instances, while all other
instances are shown as disconnected purple dots. Dashed lines
corresponding to φ = −0.5π and φ = −1.5π. d, Experimental
measurements of φ when a target value is set at −0.4 (dashed
line) for all nearest-neighbor pairs. An average deviation of
0.0085 rad is found between the target and measured values
of φ.

ting parameters. The value of ∆− is then equal to ξa−ξb
2d ,

where ξa (ξb) is the fitted ξ0 for Qa (Qb). This equiva-
lence may be understood through the fact that 2∆− is
the difference in the degree of local Z rotations under-
gone by each qubit after the application of one FSIM gate
between them.

The phases ∆+ and φ are calibrated using four periodic
circuits sharing a similar structure, as indicated in the
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FIG. 8. Floquet calibration of small iSWAP angles. a,
Top: Periodic circuit for calibrating θ: Each cycle includes
an FSIM gate, followed by two single-qubit rotations Rπ(−ψ)
and Rπ(ψ+π/2). After d cycles, the excited state population
P1 of Qb is measured. Bottom: Example experimental data
at a fixed depth d = 17, showing P1 as a function of ψ. Solid
black line shows fit to a sinusoidal function, the amplitude of
which determines the value of θ. b, Experimentally measured
θ for each neighboring pair of qubits in the 20-qubit chain.
Results from 40 disorder instances are plotted as blue dots,
and the average value for each qubit pair is plotted as red
dots. Overall, θ has a mean value of 0.022 rad and a standard
deviation 0.014 across all qubit pairs and disorder instances.

top panel of Fig. 7b. For ∆+, we again separately prepare
each qubit in the |X〉 state while leaving the other qubit
in |0〉. The FSIM gate is then applied d times. At the
end of the sequence, two tomographic measurements are
performed on the excited qubit to determine the angle

of its Bloch vector, α = tan−1
(
〈Ŷ 〉 / 〈X̂〉

)
. The total

accumulated phase α1 + α2, where α1 (α2) is α for Qa

(Qb), is equivalent to 2d∆+. This equivalence arises from
the fact that 2∆+ physically corresponds to the sum of
the degrees of local Z rotations on both qubits after the
application of one FSIM gate.

The conditional-phase φ is calibrated by preparing one
qubit (Qa) in |X〉 and comparing α when the other qubit
(Qb) is initialized in either the |0〉 or the |1〉 state. A
non-zero φ will cause the two angles, α3 and α4, to differ
by an amount α4 − α3 = −dφ46. Example experimental
values of α1 +α2 and α4−α3 as a function of d are shown
in the bottom panel of Fig. 7b. The slopes of both data
sets allow ∆+ and φ to be extracted, which are seen to
be very close to the target condition 2∆+ = φ. Figure 7c
shows experimentally calibrated values of φ across the
20-qubit chain, for a total of 40 disorder instances. It
can be seen that φ falls within the intended range of
[−0.5π,−1.5π]. Figure 7d shows the calibrated values of
φ when each φi has a target value of −0.4. Comparing
the measured values of φ with the target value, we find
a small control error of 0.0085 rad for φ.

B. Calibration of θ

For iSWAP-like gates within the FSIM family, the
iSWAP angle θ can be accurately calibrated by setting
∆− = 0 and applying FSIM gates in succession, which
leads to population transfer between the two qubits (ini-
tialized in |10〉) with a period of πθ . Discrete fourier trans-
form of qubit populations therefore allow θ to be deter-
mined with very high precision48. However, CPHASE-
like gates typically have small iSWAP angles and such a
technique is no longer as effective, since the period for one
population transfer can be very long and the calibration
data are complicated by noise effects.

To circumvent such a problem, we have designed a
new gate sequence for calibrating small values of θ: Let
us consider the composite unitary ÛCOM = ÛFSIMXaYb

where Xa and Yb are X and Y π-rotations of Qa and Qb,
respectively. ÛCOM has the following matrix form:

0 0 0 −i
0 −e−i∆−,off sin θ i cos θ 0
0 −i cos θ ei∆−,off sin θ 0

ie−iφ 0 0 0

 . (4)

Here we have set ∆− and ∆+ to 0 for simplicity (non-
zero values of these phases will not affect the calibra-
tion scheme discussed below). With simple algebra, it
can be seen that for qubits initialized in the |10〉 state,

the excited state population of Qb after applying ÛCOM

d times (d being odd) is bounded by two values: For
∆−,off = 0, P1 = cos2 θ ≈ 1 for small values of θ. For
∆−,off = π

2 , P1 = cos2(dθ). The difference between these

two values is cos2 θ − cos2(dθ) which is approximately
sin2(dθ) for θ ≈ 0. As such, varying ∆−,off and measuring
the peak-to-peak amplitude of P1 allows determination
of θ. Compared to the fourier-transform technique, the
method here requires relatively short circuit depth, as a
iSWAP angle of 0.02 rad would yield a peak-to-peak am-
plitude of 0.1 in P1 for d = 17, which can be resolved with
a relatively small number of single-shot measurements.

The experimental Floquet circuit for calibrating θ is
shown in the upper panel of Fig. 8a. Here, we have
injected a variational angle ψ into the single-qubit π-
rotations. Varying ψ effectively changes χ of the FSIM
gate. The experimental calibration data for a given pair
of qubits are shown in the bottom panel of Fig. 8a, where
we see oscillations of P1 as a function of ψ. Fitting the
data to a sinusoidal function allows a peak-to-peak am-
plitude of 0.22 to be determined, which corresponds to a
iSWAP angle of θ = 0.029 rad.

The iSWAP angles for all qubit pairs of the 20-qubit
chain are shown in Fig. 8b, where we have included data
for 40 disorder instances in φ. A small average value of
0.022 rad is found for the qubit chain, with the fluctu-
ation between disorder instances understood as a result
of different detunings between the |01〉 and |10〉 states
during the flux pulses of different gates.
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III. DERIVATION OF EFFECTIVE
HAMILTONIANS

The bit-string energies shown in the inset to Fig. 3b
are based on effective Hamiltonians Ĥeff that, in certain
limits, approximate the effect of the unitary circuit over

two periods, Û2
F ≈ e−2iĤeff . Here we derive the relevant

Ĥeff operators for the models in Fig. 3b.

A. Uniform φi = −0.4

For the model with uniform CPHASE angles φi ≡ φ̄ =
−0.4 and random single-qubit Z rotation angles hi ∈
[−π, π], a period of the time evolution is represented by

Û ′F = Ûz[φ̄,h]Ûx[π − 2ε] (5)

with

Ûx[θ] = e−i
θ
2

∑
n X̂n ,

Ûz[φ̄,h] = e−i
∑
n(φ̄/4)ẐnẐn+1+(hn/2)Ẑn .

We have also defined the detuning ε = π
2 (1 − g); in the

following we take ε� 1, i.e. g close to 1. The evolution
over two periods is given by

(Û ′F )2 = Ûz[φ̄,h]Ûx[π − 2ε]Ûz[φ̄,h]Ûx[π − 2ε]

= Ûz[φ̄,h]Ûx[−2ε]Ûz[φ̄,−h]Ûx[−2ε] (6)

where we have used the comutation properties of the
perfect π pulse Ûx[π] =

∏
n X̂n. Next, we note that

Ûz[φ̄,−h] = Ûz[φ̄, 0]Ûz[0,h]†; acting by conjugation with

Ûz[0,h] on Ûx[−2ε] gives

(Û ′F )2 = Ûz[φ̄, 0]eiε
∑
n cos(hn)X̂n+sin(hn)ŶnÛz[φ̄, 0]Ûx[−2ε] .

(7)

The effective Hamiltonian Ĥeff, satisfying (Û ′F )2 ≈
e−2iĤeff , is then given to leading order in ε, |φ̄/4| � 1
via the Baker-Campbell-Hausdorff (BCH) formula:

Ĥeff =
∑
n

ε

2
[(1 + cos(hn))X̂n + sin(hn)Ŷn]+

+
φ̄

4
ẐnẐn+1 . (8)

Thus, for any bit-string s ∈ {0, 1}L, the energy of the as-
sociated computational basis state |s〉 = |s1〉 |s2〉 · · · |sL〉
is

Es = 〈s| Ĥeff |s〉 =
φ̄

4

∑
n

(−1)sn+sn+1 , (9)

which simply counts the number of “domain walls” (i.e.
bonds where si 6= si+1) in s. Thus the polarized and
staggered bit-strings (having 0 and L−1 “domain walls”,

respectively) lie near the edges of the spectrum in all
realizations.

We note that, strictly speaking, a prethermal DTC re-
quires Ĥeff to have a symmetry breaking transition at a
finite critical temperature Tc. In this case, ordered initial
states at temperatures T < Tc show long-lived oscilla-
tions with an amplitude that depends on the equilibrium
value of the (symmetry breaking) order parameter at
temperature T 29. As short-ranged models in one dimen-
sion (such as the one under consideration) cannot have
order at finite temperature, this model is not prethermal
in the sense we just described. However, thermal correla-
tion lengths may still exceed the size of the system when
the latter is small enough. This allows low-temperature
states of Ĥeff to show long-lived oscillations with a fi-
nite amplitude, even if the equilibrium order parameter
is asymptotically zero for such states.

B. Disordered φi ∈ [−1.5π,−0.5π]

In the MBL DTC drive ÛF we set the average
CPHASE angle to φ̄ = −π, which (being ∼ 10 times
larger than in the previous case) breaks the final step in
the derivation of Eq. (8). We can however use another
approach, valid if φi = −π + δφi, with |δφi| sufficiently
small. In Eq. (7) we replace φ̄ by π+δφ, and noting that

Ûz[π, 0] = Ûz[−π, 0]49 we have

Û2
F = Ûz[δφ, 0]eiε

∑
n(cos(hn)Ŷn−sin(hn)X̂n)(Ẑn−1+Ẑn+1)

× Ûz[δφ, 0]Ûx[−2ε] . (10)

If ε, |δφi| � 1, leading-order BCH yields

Ĥeff =
∑
n

ε

2
[X̂n + cos(hn)Ŷn(Ẑn−1 + Ẑn+1)]

+
δφn

4
ẐnẐn+1 −

ε

2
sin(hn)X̂n(Ẑn−1 + Ẑn+1) (11)

The energy of a bit-string state |s〉 is

Es = 〈s|H(0)
F |s〉 =

∑
n

δφn
4

(−1)sn+sn+1 . (12)

Unlike the result in Eq. (9), this does not single out spe-
cial bit-strings. More specifically, under disorder averag-
ing all bit-strings have the same energy: Es = 0.

In our model, the |δφi| angles are not small (they vary
in [−0.5π, 0.5π]) so all orders in BCH should be included
for an accurate result – the above is only meant to be
a qualitative approximation. Nevertheless, the indepen-
dence of (disorder-averaged) quantities from the choice
of bit-string can be proven exactly for this model.

All bit-string states are obtained as |s〉 = X̂s |0〉,
where |0〉 = |00 . . . 00〉 is the polarized state and X̂s =∏
i:si=1 X̂i flips the qubits where si = 1. We will show

that all bit-string states give rise to the same dynamics
as the polarized one, up to a change in the realization of
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disorder. Indeed, the change of basis that maps |s〉 to |0〉
acts on ÛF as

X̂sÛF X̂s = Ûz[φ
′,h′]Ûx[πg] (13)

where φ′i = (−1)si+si+1φi and h′i = (−1)sihi. φ′ and
h′ almost define another valid realization of disorder, ex-
cept that wherever si 6= si+1, we have φ′i ∈ [0.5π, 1.5π]
(as opposed to φi ∈ [−1.5π,−0.5π]). This can be reme-
died by setting φ′′i = φ′i − 2π ∈ [−1.5π,−0.5π], and

noting that e−i
π
2 ẐiẐi+1 ∝ e−i

π
2 Ẑie−i

π
2 Ẑi+1 , so that the

excess 2π CPHASE angle can be transferred to single-
qubit rotations: Ûz[φ

′,h′] ∝ Ûz[φ
′′,h′′], where h′′i = h′i

if si−1 = si+1, or h′i + π otherwise. Thus the dynam-
ics of bit-string |s〉 under disorder realization (φ,h) is
mapped to the dynamics of |0〉 under a different real-
ization (φ′′,h′′). Further, the mapping between realiza-
tions conserves the (uniform) measure over the intervals
φi ∈ [−1.5π,−0.5π], hi ∈ [−π, π]. Thus after averaging
over disorder, all bit-strings are equivalent to each other.

IV. ECHO CIRCUIT FOR NOISE MITIGATION

The “echo” circuit ÛECHO used to define the normal-
ization A0 in Fig. 2c and Fig. 4d of the main text consists
of t steps of forward time evolution under ÛF and t steps

for “backward” time evolution under Û†F . In the absence
of noise, the two cancel exactly. Thus deviations from
this outcome quantify the impact of noise.

A. Circuit inversion

Our device allows the calibration of a continuous fam-
ily of CPHASE angles on each bond and their use during
a single circuit run. Thus it is possible to concatenate

the forward and backward time evolutions Û tF and (Û†F )t

directly. However, the two-qubit gates in Û†F would have

in general different fidelity than those in ÛF . As a re-
sult, the decoherence during ÛECHO would differ from
that during ÛF .

To circumvent this, we effectively invert the circuit ÛF
without changing the two-qubit gates, thus keeping the
fidelity unchanged during the backward time evolution.
The key idea is to apply X rotations on even qubits,

P̂π,e ≡
∏L/2
n=1 X̂2n, before and after each period of the

circuit that is to be inverted. Indeed conjugating ÛF by
P̂π,e changes the sign of all φn CPHASE angles. It also
changes the sign of single-qubit Z rotation angles hn on
even sites. The sign of remaining hn fields and of g, as
well as the relative order of the X and Z parts of the
drive, can be changed at the level of single-qubit gates,
with minor effects on fidelity.

In practice, after t cycles of ÛF , we apply the single-
qubit rotations P̂π,e only once, and then switch to a uni-

tary V̂F which has the same 2-qubit gates as ÛF but dif-

ferent single-qubit gates chosen so that P̂π,eV̂F P̂π,e = Û†F

(as explained above). Finally we measure in the compu-
tational basis and flip the logical value of all bits at even
positions (this is equivalent to acting with P̂π,e at the
final time but avoids any fidelity losses). This way, we
manage to effectively invert the circuit without altering
two-qubit gate fidelities.

B. Measuring the effect of decoherence

Let us model noise as a single-qubit channel

Ep =

(
1− 4p

3

)
I +

4p

3
D (14)

where I is the identity channel (I(ρ̂) = ρ̂), D is the
single-qubit erasure channel (D(ρ̂) ∝ I), and p denotes
the error rate. We assume the noise acts symmetri-
cally before and after each iteration of the unitary circuit
(while realistically noise acts during the entire evolution,
this is a good approximation as long as p� 1). Then the
time evolution of the system over a period is described
by a quantum channel

ρ̂ 7→ E⊗Lp/2 ◦ UF ◦ E
⊗L
p/2(ρ̂) ≡ Φ(ρ̂) (15)

where UF (ρ̂) = ÛF ρ̂Û
†
F . Similarly the inverted time evo-

lution is given by

ρ̂ 7→ E⊗Lp/2 ◦ U
†
F ◦ E

⊗L
p/2(ρ̂) ≡ Φ†(ρ̂) (16)

where U†F (ρ̂) = Û†F ρ̂ÛF , and the last equality holds be-
cause Ep is self-adjoint. The entire echo circuit sequence
is thus described by the channel (Φ†)t ◦ Φt. The expec-

tation value of Ẑi after the circuit is given by

〈Ẑi〉echo
s ≡ Tr

(
Ẑi(Φ

†)t ◦ Φt(|s〉 〈s|)
)

(17)

The temporal autocorrelator between Ẑi before and after
the echo circuit is simply (−1)si〈Ẑi〉echo

s . Averaging over
all bit-strings yields

A2
0 ≡

1

2L

∑
s

(−1)si〈Ẑi〉echo
s

=
1

2L

∑
s

Tr
[
Ẑi(Φ

†)t ◦ Φt(Ẑi |s〉 〈s|)
]

=
1

2L
Tr
[
(Φt(Ẑi))

2
]

= ‖Φt(Ẑi)‖2/‖Ẑi‖2 , (18)

where we have used the definition of adjoint channel,
(V̂ ,Φ(Ŵ )) = (Φ†(V̂ ), Ŵ ), relative to the trace inner

product (V̂ , Ŵ ) = Tr(V̂ †Ŵ ). Thus from the protocol
outlined above one extracts the decay of operator norm
‖Ẑi(t)‖ ∼ A0‖Ẑi(0)‖ which is the leading effect of deco-
herence. The ratio A/A0 in Fig. 7d thus gives the overlap
between normalized operators,

A

A0
=

(
Ẑi(0)

‖Ẑi(0)‖

∣∣∣∣ Ẑi(t)‖Ẑi(t)‖

)
. (19)
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V. SPECTRAL AVERAGES VIA QUANTUM
TYPICALITY

Quantum typicality38,39,50 states that, for any observ-
able Ô in a Hilbert space of dimension 2L, the expecta-
tion value 〈Ô〉ψ on a random state ψ sampled from the
unitarily invariant (Haar) measure obeys these statistical
properties:

Eψ〈Ô〉ψ = 〈Ô〉∞ (20)

Varψ〈Ô〉ψ =
1

2L + 1

(
〈Ô2〉∞ − 〈Ô〉2∞

)
(21)

where 〈Ô〉∞ ≡ 2−LTr(Ô) denotes the expectation value
on the infinite-temperature state. Thus for large L, the
matrix element 〈Ô〉ψ is distributed as a Gaussian cen-
tered at the infinite-temperature value with an extremely
narrow standard deviation, ' 2−L/2, which enables the
measurement of spectrally-averaged quantities with ex-
ponentially high accuracy from a single pure state.

A. Scrambling circuit and approach to typicality

In the main text we report data on spectrally-averaged
autocorrelators 〈Ẑi(0)Ẑi(t)〉∞ obtained with a method

based on the idea above, i.e by evaluating 〈Ẑi(0)Ẑi(t)〉ψ
on a state |ψ〉 which is close to typical random states in
the Hilbert space. In order to prepare a random state
|ψ〉, we start with a bit-string state and evolve it via a

scrambling circuit ÛS , as also proposed in Ref.40. This
consists of K layers of CZ gates (CPHASE with angle
φ = π) and random single-qubit gates (rotations around a
random direction on the XY plane by an angle θ sampled
uniformly in [0.4π, 0.6π]). The single-qubit gates vary

randomly in both space and time, so that ÛS is not a
Floquet circuit. After a number of layers K = O(L) (we
neglect decoherence for now), the prepared state |ψ〉 =

ÛS |s〉 behaves like typical random vectors in the Hilbert

space, so that 〈ψ| Ô |ψ〉 = 〈Ô〉∞+ δ, where the error δ (a
random variable dependent on the choice of bit-string s
and of scrambling circuit ÛS) has zero mean and variance
∼ 2−min(L,cK) for some constant c > 0, i.e., the variance
shrinks with increasing K as the state becomes gradually
more random, until it saturates to the quantum typicality
result Eq. (21). In Fig. 9a we show the results of exact
numerical simulations that confirm this picture. For this
family of random circuits, we find c ' 0.36 (from a fit to
the data in the inset to Fig. 9a).

B. Ancilla protocol

To measure two-time correlators 〈ψ| Ẑi(0)Ẑi(t) |ψ〉 in
the “pseudorandom states” |ψ〉 defined above, we use an
interferometric protocol similar to the one employed in
Ref.33. We introduce an ancilla qubit initialized in state
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FIG. 9. Simulation of quantum typicality protocol. a,
Cumulative distribution of autocorrelators A from a set of
2000 bit-string states pre-processed by a depth-K random
circuit ÛS as described in the text, for variable K. We set
g = 0.94 (MBL DTC phase). The realization of disorder is
fixed and A is computed at time t = 30 on qubit Q11 in
a chain of L = 20 qubits. Inset: relative standard deviation
σ/µ decreases exponentially inK and approaches the random-

state variance (< 2−L/2) after depth K ' L. b, Same plot
for noisy simulations (depolarizing noise, error rate p = 0.5%
per 2-qubit gate, exact density matrix simulations) of qubit
Q7 in a chain of L = 12 qubits, where we include all 4096
bit-string states. Inset: relative standard deviation σ/µ. σ
decreases indefinitely with K due to decoherence, while µ is
not affected.

|+X〉 = (|0〉 + |1〉)/
√

2 alongside the system qubits Q1,
. . . QL which are initialized in a bit-string state |s〉. We

evolve the system qubits with the scrambling circuit ÛS
for depth K, obtaining a joint state |ψ〉sys |+X〉a. Then
we apply a CZ gate between the ancilla and system qubit
i, so that the state “branches” into the superposition

1√
2

(
|ψ〉sys |0〉a + Ẑi |ψ〉sys |1〉a

)
(22)

We then evolve the system under the Floquet drive ÛF
for t periods and again apply a CZ between the ancilla
and system qubit i, which gives

1√
2

(
Û tF |ψ〉sys |0〉a + ẐiÛ

t
F Ẑi |ψ〉sys |1〉a

)
(23)

Finally, we measure the ancilla in the X basis. The ex-
pectation value of the measurement is

〈X̂a〉 =
1

2
〈ψ| Û−tF ẐiÛ

t
F Ẑi |ψ〉+ c.c.

= Re 〈ψ| Ẑi(t)Ẑi(0) |ψ〉
' 〈Ẑi(0)Ẑi(t)〉∞ (24)

where the last line follows from quantum typicality if
|ψ〉 is random. On a sufficiently large system, and for
large enough K (number of scrambling cycles), this pro-
tocol gives the spectrum-averaged temporal autocorrela-
tor from a single measurement.
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C. Effect of noise during the scrambling circuit

The above discussion neglects decoherence and treats
the states during the protocol as pure. Since K must
grow with L for the protocol to succeed, it is especially
important to understand whether noise during the ran-
dom state preparation process has a negative impact on
the result.

One can repeat the previous discussion with quantum
channels instead of unitary operators: the system starts
in pure state |s〉〈s|sys |+X〉〈+X|a and evolves under the

scrambling dynamics into ρ̂sys |+X〉〈+X|a, where ρ̂ =
ΦS(|s〉〈s|) and ΦS is a quantum channel representing the

noisy version of the scrambling circuit ÛS (we neglect
decoherence on the ancilla qubit). The protocol then
proceeds analogously to the noiseless case and yields the
final state

ρ̂′sys,a =
1

2

[
Φt(ρ̂)sys |0〉〈0|a + (ẐiΦ

t(Ẑiρ̂))sys |1〉〈0|a

+ (Φt(ρ̂Ẑi)Ẑi)sys |0〉〈1|a
+ (ẐiΦ

t(Ẑiρ̂Ẑi)Ẑi)sys |1〉〈1|a
]

(25)

where Φ is the noisy version of the Floquet evolution ÛF .
The expectation of X̂a on this state is

〈X̂a〉 =
1

2
Tr
[
ẐiΦ

t(Ẑiρ̂) + Φt(ρ̂Ẑi)Ẑi

]
=

1

2
Tr[{Ẑi(t), Ẑi(0)}ρ̂] (26)

where we have defined Ẑi(t) = (Φ†)t[Ẑi] as the

Heisenberg-picture evolution of Ẑi with noise.

To see that Eq. (26) approximates the infinite-

temperature expectation value 〈Ẑi(0)Ẑi(t)〉∞, we observe
that under a random unitary circuit, noise can be approx-
imated by a global depolarizing channel41: ΦS(|s〉 〈s|) ≈
fKÛS |s〉 〈s| Û†S + (1 − fK)Î/2L, i.e. a sum of the ideal

evolution under ÛS and the fully mixed state Î/2L (Î is
the identity matrix), parametrized by a fidelity f < 1.

However both the ideal scrambled state ÛS |s〉 and the

fully-mixed state Î/2L accurately reproduce the infinite-
temperature expectation value. Thus decoherence dur-
ing the random state preparation process may in fact
be helpful, rather than harmful (as long as the circuit

ÛS is temporally random, so as to avoid any nontrivial
steady states). This is confirmed by the results of ex-
act density matrix simulations of L = 12 qubits in the
presence of depolarizing noise, in Fig. 9b. The variance
between bit-string states falls exponentially in K (depth

of ÛS) even below the ideal quantum typicality limit of
Eq. (21). The subsequent decay is purely due to deco-
herence: the scrambled state ΦS(ρ̂) asymptotically ap-

proaches the fully mixed state Î/2L as the noisy circuit
is made deeper.
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FIG. 10. Numerical simulations of spin glass order pa-
rameter. a, Ideal (noiseless) dynamics. χSG averaged over
even times between t = 50 and t = 60, over initial bit-string
states and over realizations of disorder. At least 4000 real-
izations are averaged at sizes L = 12 and 16, at least 300 at
L = 20. Inset: same data on a linear scale. b, Noisy dy-
namics (exact density matrix simulations). Noise is modeled
by single-qubit depolarizing channels with Pauli error rate
p = 0.5% after each 2-qubit gate. χSG is averaged over even
times between t = 50 and t = 60, over initial bit-string states,
and over realizations of disorder. At least 1000 realizations
are used at sizes L = 8 and 10, at least 100 at L = 12. Inset:
same data on a linear scale.
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FIG. 11. Numerical simulations of correlation mea-
surements. Noiseless simulation of the experiment in Fig. 3d
of the main text. Here we simulate the fractional change in
〈Ẑ(t)〉, ζr (see definition in main text), due to a single bit-
flip at Q11 in initial condition. The simulation is averaged
over 1000 disorder instances for both φi ∈ [−1.5π,−0.5π] and
φi = −0.4.

VI. NUMERICAL RESULTS ON SPIN GLASS
ORDER PARAMETER

Here we show results of numerical simulations of the
spin glass order parameter used to perform a finite-size
analysis of the phases in the main text. We define the
order parameter as

χSG =
1

L− 2

∑
i 6=j

′〈ẐiẐj〉2 (27)

where the primed sum excludes the edges (qubits Q1 and
QL) in order to remove the effects of edge modes from
bulk physics. In a phase with glassy order all the ex-
pectation values 〈ẐiẐj〉 are finite and χSG is extensive
(∼ L). Otherwise, all expectation values asymptotically
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vanish and χSG/L→ 0.
In Fig. 10a we show results of numerical simulations of

χSG in the absence of noise, at times t between 50 and
60 cycles, as the length of the qubit chain is scaled from
L = 12 to L = 20. A finite-size crossing is visible near
g ' 0.83, separating a side of parameter space (at larger
g) where χSG grows with L, indicative of the MBL-DTC
phase, from one (at smaller g) where χSG decreases with
L, indicative of a thermalizing phase. We also note that
the finite-size crossing in these data slowly drifts towards
higher g as t increases (not shown), as expected from slow
thermalization on the ergodic side near the transition.

Repeating the same analysis in the presence of noise
yields the data in Fig. 10b. We model noise as a single-
qubit depolarizing channel with Pauli error rate p = 0.5%
acting on both qubits after each 2-qubit gate. Simula-
tions are carried out by exact evolution of the density
matrix, which is memory-intensive and limits the avail-
able system sizes to L ≤ 12 within reasonable computa-
tional resources. (We use this method rather than quan-
tum trajectories51 because the latter method is impracti-
cal for this calculation: as χSG is a nonlinear function of
the state, each expectation 〈ẐiẐj〉 must be averaged over
trajectories separately for each disorder realization). We
still find a finite-size crossing, though at a considerably
higher value of g ' 0.90. We note that the noisy simu-
lations in Fig. 10b do not include the effects of read-out
error and that the depolarizing noise model is not guar-

anteed to be a quantitatively accurate approximation in
these structured circuits. Even so, the experimental es-
timate of the phase transition point 0.84 . gc . 0.88 is
reasonably close to the numerical ones, gc ' 0.83 (with-
out noise) and gc ' 0.90 (with noise).

VII. NUMERICAL RESULTS OF
CORRELATION MEASUREMENTS

The noiseless simulation of the experiment in
Fig. 3d of the main text is shown in Fig. 11.
Here we generate a total of 1000 disorder instances
for both φi ∈ [−1.5π,−0.5π] and φi = −0.4.

The values of 〈Ẑ(t)〉 are simulated with the two
initial conditions |00000000000000000000〉 (ζ1) and
|00000000001000000000〉 (ζ2), and the ratio ζr is com-
puted using the same method as the main text.

It is seen that the ratio ζr from the noise simulation is
quite similar to the experimentally measured values, de-
spite no active error-mitigation for this particular quan-
tity. This is likely attributed to the fact that decoherence
introduces a damping factor that is approximately the
same for both the nominator (|ζ1 − ζ2|) and denomina-
tor (|ζ1|+ |ζ2|) used to compute ζr. Consequently, their
effects are canceled out after dividing the two quantities.
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