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Atypical eigenstates in the form of quantum scars and fragmentation of Hilbert space due to
conservation laws provide obstructions to thermalization in the absence of disorder. In certain mod-
els with dipole and U(1) conservation, the fragmentation results in subdiffusive transport. In this
paper we study the interplay between scarring and weak fragmentation giving rise to anomalous
hydrodynamics in a class of one-dimensional spin-1 frustration-free projector Hamiltonians, known
as deformed Motzkin chain. The ground states and low-lying excitations of these chains exhibit
large entanglement and critical slowdown. We show that at high energies the particular form of the
projectors causes the emergence of disjoint Krylov subspaces for open boundary conditions, with an
exact quantum scar being embedded in each subspace, leading to slow growth of entanglement and
localized dynamics for specific out-of-equilibrium initial states. Furthermore, focusing on infinite
temperature, we unveil that spin transport is subdiffusive, which we corroborate by simulations
of constrained stochastic cellular automaton circuits. Compared to dipole moment conserving sys-
tems, the deformed Motzkin chain appears to belong to a different universality class with distinct
dynamical transport exponent and only polynomially many Krylov subspaces.

Introduction.– Unraveling the intricate dynamics of
isolated many-body quantum systems has attracted a
vast amount of interest in recent years [1–5]. In this
context, transport processes represent arguably one of
the most generic nonequilibrium situations and the com-
mon expectation is that hydrodynamics emerges natu-
rally from the underlying unitary time evolution [6, 7].
The emergence of a variety of universal hydrodynamics
and their relevance to transport coefficients are actively
pursued theoretically with potential for utility in near-
term quantum devices [6–9]. Enormous experimental
efforts have been undertaken to study quantum trans-
port in various platforms, including mesoscopic and solid-
state settings as well as cold-atom quantum simulators
(see e.g., [10–14]), remarkably allowing to observe even
anomalous types of hydrodynamics [15, 16].

While most quantum systems relax to thermal equi-
librium, as explained by the eigenstate thermalization
hypothesis (ETH) [17–19] and numerically confirmed for
a variety of models (e.g., [3, 20–28]), several counterex-
amples to this paradigm have been identified, with inte-
grable and many-body localized systems being prime ex-
amples [29–31]. Moreover, studies of the so-called PXP
model revealed that also weaker violations of the ETH are
possible, where rare nonthermal states coexist with ther-
mal eigenstates at the same energy density [32, 33], now
usually referred to as quantum many-body scars [33–39].
By now, quantum scars have been found in various mod-
els [33–53], and tailored embedding procedures further
allow to place nonthermal eigenstates into the spectrum
of chaotic many-body Hamiltonians [54, 55].

Building on insights from fractonic systems [56–58], the
phenomenon of Hilbert-space fragmentation provides yet
another mechanism to break ergodicity [59–62]. Hilbert-
space fragmentation occurs, for instance, in locally inter-
acting models which in addition to a U(1) charge also
conserve the associated dipole moment, though other

possibilities have been discussed as well [63–67]. In such
cases, the Hilbert space splits into exponentially many
disconnected blocks, often referred to as Krylov sub-
spaces, despite states in different subspaces having the
same symmetries. While some subspaces might be in-
tegrable or localized, others can be chaotic [62, 64, 68].
Even within the thermalizing regimes of such models,
the constraints on excitations, e.g., higher-order conser-
vation laws, have implications on the dynamics and lead
to subdiffusive transport [69–76], reminiscent of disor-
dered models close to the many-body localization tran-
sition [77–79]. The class of frustration-free Hamiltoni-
ans considered in this Letter similarly exhibits disjoint
Krylov subspaces and subdiffusive hydrodynamics. The
underlying mechanisms, however, will be distinct from
those of the models mentioned above.

Another motivation for this paper is given by recent
work on quantum many-body scars and Hilbert-space
fragmentation in Fredkin chains [80]. The Fredkin model
is a spin-1/2 chain, where the Hamiltonian is a sum over
projectors and can be rewritten in the form of a dressed
Heisenberg chain [81], bearing resemblance to other ki-
netically constrained models [82–84]. While the model
is nonintegrable in general, its degenerate ground-state
manifold is known analytically [81]. In particular, as
shown in [80], the degenerate states can be moved to the
center of the spectrum by generalizing the model [85, 86],
with each state belonging to a different Krylov subspace.

Here, we consider a closely related class of models,
known as deformed Motzkin chain [87–93]. While the
ground-state properties of Motzkin chains have been ex-
plored in a series of works [87–96], much less is known
about the nature of thermalization and nonequilibrium
dynamics. In this work, we show that the particular form
of the Hamiltonian leads to an intriguing interplay of dis-
connected Krylov subspaces and exact quantum many-
body scars, similar to [80]. As a main result, we unveil
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(L, 0)
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FIG. 1. Identification of |1〉, |−1〉, |0〉 as |u〉, |d〉, |0〉, corre-
sponding to up, down, and horizontal moves on a plane. (a)
Local updates induced by the projectors of Hν . [(b),(c)] For
OBC, the Hilbert space splits into Krylov subspaces labeled
by Nd and Nu. Panel (b) shows example configuration with
Nd = Nu = 0. Paired spins are indicated by arcs. Panel (c)
shows a configuration with Nd = Nu = 1. The area A deter-
mines the weight of the basis state within |Sν〉, see Eq. (3).

that the Motzkin chain exhibits subdiffusive hydrody-
namics at infinite temperature, which we corroborate by
simulations of suitable stochastic cellular automaton cir-
cuits [69, 71, 72, 97, 98]. Furthermore, we demonstrate
that the scarred eigenstates lead to localized dynamics for
specific out-of-equilibrium states and parameter regimes.

The model.– We consider a class of spin-1 projector
Hamiltonians, Hν =

∑
` Π`,`+1(ν), known as deformed

Motzkin chain [87–96],

Π`,`+1(ν) = c1 |Dν〉〈Dν |+c2 |Uν〉〈Uν |+c3 |Vν〉〈Vν | , (1)

where c1, c2 and c3 are real-valued coefficients, ν ≥ 0
is a deformation parameter, and the terms |·〉 〈·| are
given by |D〉 = (|0d〉 − ν |d0〉)/

√
1 + ν2, |U〉 = (|u0〉 −

ν |0u〉)/
√

1 + ν2, |V 〉 = (|ud〉 − ν |00〉)/
√

1 + ν2 and
should be understood as acting on two neighboring sites
` and `+1. We adopt the convention to denote the three
eigenstates of a local spin-1 operator Sz` as |u〉 ≡ |+1〉,
|d〉 ≡ |−1〉 and |0〉, where |u〉 (“up”), |d〉 (“down”), and
|0〉 are interpreted as the moves (x, y) → (x + 1, y + 1),
(x, y) → (x + 1, y − 1), and (x, y) → (x + 1, y) on a
two-dimensional plane [89], see Fig. 1. The terms |·〉 〈·|
in Eq. (1) have eigenvalues 0 and 1 such that Hν has
a positive-semidefinite spectrum if all ci ≥ 0. Hν has
a U(1) symmetry, such that Sz =

∑
` S

z
` is conserved.

Written in terms of usual spin-1 operators, Hν takes on
a bilinear-biquadratic form [91, 94, 95].

For a spin configuration on L sites, the identification
of spins as moves leads to a “random walk”. In the
Sz = 0 sector, these walks start at (0, 0) and end at
(L, 0), see Figs. 1 (b) and (c). For open boundary condi-
tions (OBC), an important concept is then the distinction
between paired and unpaired moves [87]. An up move is
called unpaired if there is no matching down move further
to the right in the chain, and a down move is unpaired if
there is no matching up move further to the left. Given a
configuration with no unpaired moves, the height profile
never crosses the horizon [Fig. 1 (b)]. Such walks in the

(a) (b)

0

5

−0.5 0.5

S
|n
〉

En/L

Nd = Nu = 0
1
2
3
4
5

0

5

0 2 4 6

S
|S

ν
〉,

S
|n
〉

LA

Nd = Nu = 0
1
2
3
4

FIG. 2. (a) Eigenstate entanglement S|n〉 for OBC, L = 10,
and ν = 1, labeled according to their Krylov subspace. (b)
S|Sν〉 (filled, solid) at ν = 1 versus subsystem size LA for
L = 12 and different Kdu with Nd = Nu. As a comparison,
the entanglement S|n〉 (open, dashed) of an eigenstate directly
adjacent to |Sν〉 is shown. We have c1 = c3 = 1, and c2 = −1.

upper half-plane are referred to as Motzkin paths, giving
rise to the name of the model.
Disconnected Krylov subspaces.– In the case of OBC,

the Hilbert space of Hν splits into Krylov subspaces due
to the interplay of the boundary conditions and the ac-
tion of the projectors on neighboring spins, cf. Fig. 1 (a).
The subspaces can be understood as equivalence classes,
where each spin configuration is equivalent to a specific
root state |ψdu〉 [87]. Given an arbitrary configuration,
|ψdu〉 can be defined as follows. First, identify pairs of
up and down spins, where the spins forming a pair do
not have to be nearest neighbors, cf. Figs. 1 (b) and (c).
Secondly, flip both spins to the |0〉 state and move the
zeros to the center, which eventually yields [87],

|ψdu〉 = |dd · · · dd︸ ︷︷ ︸
Nd

00 · · · 00︸ ︷︷ ︸
L−Nd−Nu

uu · · ·uu︸ ︷︷ ︸
Nu

〉 , (2)

where Nd and Nu denote the numbers of unpaired
down or up moves. Given |ψdu〉, its corresponding
Krylov subspace Kdu = K(Hν , |ψdu〉) follows as Kdu =
span{|ψdu〉 ,Hν |ψdu〉 ,H2

ν |ψdu〉 , . . . }. In particular, two
spin configurations which correspond to different |ψdu〉
cannot be transformed into each other by the action of
Hν . As an example, consider |ψ1〉 = |u · · ·ud · · · d〉 and
|ψ2〉 = |d · · · du · · ·u〉, which both have Sz = 0. However,
while |ψ1〉 belongs to K00 (i.e., it is equivalent to |0 · · · 0〉),
|ψ2〉 belongs to KL/2L/2. In fact, |ψ2〉 is an exact eigen-
state of Hν , i.e., it spans a subspace of dimension one.
Apparently the degree of “Hilbert-space fragmentation”
in the Motzkin chain is weaker compared to, e.g., mod-
els with charge and dipole conservation, which exhibit
exponentially many subspaces [59–61]. For instance, in
the Sz = 0 sector, there are only L/2 + 1 separate Kdu
labeled by 0 ≤ Nd = Nu ≤ L/2, i.e., the total number of
subspaces grows only polynomially with L. An expres-
sion for the dimension Ddu of each Kdu can be derived
combinatorially [99]. In particular, for Kdu with small
Nd +Nu, Ddu is expected to grow exponentially with L.
At the same time, for any finite L, there always exist Kdu
with Ddu = 1 (namely when Nd + Nu = L), as well as
small subspaces with Ddu ∝ L.
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For subspaces with large Ddu, thermalization is ex-
pected to occur. This is visualized in Fig. 2 (a) in
terms of the eigenstate entanglement entropy S|n〉 =
−Tr[ρA ln ρA], where ρA = TrB{|n〉 〈n|} is the reduced
density matrix for a half-chain bipartition. While the
overall distribution of S|n〉 is rather broad, it looks ther-
mal when focusing on individual Kdu with small Nd, Nu.
At the same time, the low values of S|n〉 in the center of
the spectrum mostly belong to Kdu with large Nd, Nu,
where the maximally achievable entanglement is limited
due to small Ddu. Moreover, as shown in [100], individ-
ual Kdu indeed exhibit chaotic energy-level statistics and
most eigenstates follow the ETH.

Exact quantum many-body scars.– Despite Hν being
nonintegrable and chaotic, a number of eigenstates |Sν〉
can be constructed combinatorially [87–89]. In this con-
text, the key quantity is the area Ak enclosed by the
height profile of a given spin configuration |k〉, where ar-
eas below the horizon contribute negatively, cf. Figs. 1 (b)
and (c). Within each Kdu, |Sν〉 is then given by the area-
weighted superposition [87–89] (see also [100]),

|Sν〉 =
1√
M ′ν

Ddu∑
k=1

νAk |k〉 =
1√
Mν

Ddu∑
k=1

ν−Pk |k〉 , (3)

where the sum runs over all Ddu basis states |k〉, P =∑L
`=1 `S

z
` is the dipole operator with Pk = 〈k| P |k〉, and

M ′ν and Mν ensure normalization. The states |Sν〉 have
exactly zero energy as they are annihilated by all pro-
jectors in Eq. (1) [87–89]. According to Eq. (3), |Sν〉 is
dominated by |k〉 with large positive Pk if ν < 1. In con-
trast, for ν > 1, |k〉 with large negative Pk dominate. At
ν = 1, |Sν〉 is an equal-weight superposition of all states
in Kdu, reminiscent of the Rokhsar-Kivelson ground state
in quantum dimer models [107].

By choosing suitable ci in Eq. (1), the |Sν〉 can be
shifted close to the center of the spectrum [108], where
they act as quantum many-body scars due to their
subvolume-law entanglement [87–89], similar to other ex-
amples of frustration-free ground states being embedded
by deforming the underlying model [43–45]. The nonther-
mal nature of the |Sν〉 is emphasized in Fig. 2 (b), where
S|Sν〉 is shown versus subsystem size LA for different Kdu.
In particular, S|Sν〉 is compared to the entanglement of an
eigenstate directly adjacent to |Sν〉, demonstrating that
typical eigenstates are extensively entangled whereas |Sν〉
is not. As shown in [100], |Sν〉 also violates the ETH by
yielding atypical expectation values for local operators.

While the construction of Kdu as in Eq. (2) does not
apply to periodic boundary conditions (PBC), we note
that quantum scars appear to exist also for PBC [100].

Anomalous hydrodynamics.– We probe the transport
properties of Hν in terms of the infinite-temperature cor-
relation function C(r, t),

C(r, t) = Tr[Sz`+r(t)S
z
` ]/3L , (4)
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FIG. 3. (a) C(0, t) for PBC (solid) and OBC (dashed) at

ν = 1 and L = 14, 16, 18. A power law ∝ t−1/z with z = 5/2
is shown for comparison (dotted). The inset shows data for

L = 10 up to longer times. (b) C(r, t)t1/z versus r/t1/z at
fixed times. We have c1 = c3 = 1 and c2 = −1 in all cases. (c)
Exemplary time step in the cellular automaton (CA) circuit,
consisting of two layers of two-site updates. Given a particular
configuration of two sites, one of the updates D, U , or V is
chosen, while with probability 1/2, we instead apply D̄, Ū ,
or V̄ , leaving the spin configuration unchanged (see [100] for
more details). [(d),(e)] Analogous data as in panels (a) and
(b), but now obtained by CA circuits for larger L.

where Sz`+r(t) = eiHtSz`+re
−iHt, and r is the distance be-

tween the two sites [109]. In case of diffusion, C(r, t)
takes on a Gaussian shape with a standard deviation
σ(t) ∝ t1/z with z = 2 [6, 110]. Correspondingly, the
autocorrelation function C(r = 0, t) acquires a hydro-
dynamic tail, C(0, t) ∝ t−1/z. For a thermalizing sys-
tem, one expects a uniform distribution at long times,
C(r, t → ∞) → Ceq, where Ceq = C(0, 0)/L [6]. We
exploit quantum typicality [100, 111, 112] to simulate
C(r, t) for spin-1 systems up to L = 18, beyond the range
of full exact diagonalization. Focusing on ν = 1, we find
that C(0, t) ∝ t−1/z with z ≈ 5/2 (similar to [76]), sug-
gesting that spin transport in the Motzkin chain is not
diffusive but subdiffusive instead, both for PBC and OBC
[Fig. 3 (a)]. In the latter case, the power law persists
on a shorter time scale as C(0, t) saturates to a higher
long-time value C(0, t → ∞) > Ceq [inset of Fig. 3 (a)]
due to the disjoint Kdu. We expect this difference be-
tween PBC and OBC to disappear in the thermodynamic
limit L → ∞, where the exponentially large Kdu domi-
nate. Subdiffusive spin transport is further substantiated
in Fig. 3 (b), where the correlations C(r, t) for different
t nicely collapse onto each other if the data and r are
rescaled with t1/z. We note that the observed value of z
is distinct from that found in dipole-conserving systems,
where z = 4 [60, 71].

Intuitively, the occurrence of subdiffusion can be un-
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time t
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c3 = 0
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FIG. 4. (a) C(0, t) at ν = 0.5, 2 for c1 = c3 = 1, c2 = −1.
A power law ∝ t−0.4 is shown for comparison. (b) C(0, t) at
ν = 1 for c3 = −1, 0, 1 and c1 = c2 = 1. We have L = 16 and
PBC in all cases.

derstood by considering the updates of local spin config-
urations induced by Hν , cf. Fig. 1 (a). As there are no
matrix elements connecting |du〉 ↔ |00〉 or |du〉 ↔ |ud〉,
configurations |du〉 act as bottlenecks. Particularly, ex-
tended regions of the form |· · · ddduuu · · ·〉 will slow down
the dynamics. This argument can also be stated more
formally by inspecting the spin-current operator of Hν ,
see [100]. While we cannot provide a full hydrodynamic
theory, we here proceed by constructing a stochastic cel-
lular automaton (CA) circuit, see Fig. 3 (c) and [100],
which mimics the terms appearing inHν and allows to ac-
cess large systems and long times [69, 71, 72, 97, 98]. The
so-obtained data for L ≤ 103 and t ≤ 106 in Figs. 3 (d)
and (e) corroborate our findings of anomalous hydrody-
namics with z ≈ 5/2 at infinite temperature. (Our CA
data for large L and long t is also consistent with z ≈ 8/3
[113].) Putting these results into perspective, we note
that subdiffusive dynamics in Motzkin chains [92, 94, 95]
(and related Fredkin models [114]) has been observed be-
fore at low temperatures by analyzing the scaling of low-
lying energy gaps, where a slightly larger z was found. In
this context, we note that the dynamical exponent z in
certain constrained chaotic models consisting of Floquet
random unitary circuits can be related to the scaling of
the low energy gap of Rokhsar-Kivelson type Hamilto-
nians using classical Markov circuits [75, 113, 115, 116],
which has partially motivated our usage of CA circuits.

While we have focused on ν = 1 in Fig. 3, we stress
that the occurrence of high-temperature subdiffusion
seems robust for a wider range of parameters. This is
demonstrated in Fig. 4, where C(0, t) ∝ t−1/z both for
ν = 0.5, 2, as well as for ν = 1 but different choices of ci.
Only for c3 = 0, the decay of C(0, t) appears to be differ-
ent, which can be explained by the fact that Hν becomes
integrable in this limit [117].

As an aside, we note that the anomalous transport
properties of Hν also reflect themselves in an unusual
growth of Rényi entropies Sα(t) = ln Tr[ραA]/(1 − α),
ρA = TrB |ψ(t)〉 〈ψ(t)|, which were argued to grow sub-
ballistically for α > 1 [118, 119], see [100] for details.

Initial-state dependence.– While C(r, t) represents a
high-temperature average, studying quantum quenches

0

1

0 100

(a)

0

6

0 100

(b)

−1

1

1 16

(
) ν = 1

1 16

(d) ν = 2

L(
t)

time t

ν = 0.5
ν = 1
ν = 2

S
1
(t
)

time t

〈S
z ℓ
(t
)〉

site ℓ

(l − L/2)/t0.4

site ℓ

t = 1
t = 50
t = 100
t = 150

FIG. 5. Dynamics of domain-wall state for L = 16 and
OBC. [(a),(b)] L(t) = |〈ψ(t)|ψ〉|2 and S1(t) for ν = 0.5, 1, 2.
[(c),(d)] 〈Sz` (t)〉 at fixed t for ν = 1, 2. Inset in (c) shows
data at t = 50, 100, 150 versus (`− L/2)/t0.4.

with individual out-of-equilibrium states reveals the im-
pact of the quantum scar |Sν〉 on the dynamics. In par-
ticular, given its construction in Eq. (3), the dynamics
can be tuned between different regimes depending on the
deformation parameter ν. We here exemplify this fact by
considering a domain wall |ψ〉 = |u . . . ud . . . d〉, which is a
natural initial condition for quench dynamics [120–123].
While |ψ〉 has zero energy density, 〈ψ|Hν |ψ〉 /L → 0,
such that thermalization is expected, we note that in the
picture of random-walks on a plane (Fig. 1), |ψ〉 maxi-
mizes the area A. According to the construction of |Sν〉
in Eq. (3), |ψ〉 therefore contributes dominantly to |Sν〉 if
ν > 1 (here |〈ψ|Sν〉|2 ≈ 0.64 for ν = 2 and L = 16 [124],
in contrast to |〈ψ|Sν〉|2 = 1/D2

du for ν = 1). As a con-
sequence, we find that L(t) = | 〈ψ(t)|ψ〉 |2 decays quickly
for ν = 0.5, 1, while L(t) oscillates around a finite value
for ν = 2 [Fig. 5 (a)]. Likewise, the growth of the von
Neumann entropy S1(t) [126] is significantly slower for
ν = 2 [Fig. 5 (b)]. As shown in [100], there also exist
initial states where dynamics is instead slower for ν < 1
and faster for ν > 1.

By tuning ν and thereby controlling its overlap with
|Sν〉, it is thus possible to obstruct thermalization of
|ψ〉. This is emphasized even more in Figs. 5 (c) and
(d), where the spin profiles 〈S`(t)〉 = 〈ψ(t)|Sz` |ψ(t)〉 are
shown at fixed times for ν = 1 and ν = 2. In particular,
for ν = 2, 〈S`(t)〉 is found to remain localized even at long
times. In contrast, for ν = 1, |ψ〉 is not dominated by
|Sν〉 such that the domain wall melts away, albeit 〈S`(t)〉
is still rather inhomogeneous even at t = 150. In fact, the
profiles for different t approximately collapse onto a sin-
gle curve when plotted against (l−L/2)/t1/z [inset of Fig.
5 (c)], i.e., consistent with the anomalous transport dis-
cussed above. We note that similar parameter-dependent
melting of domain-wall states is known for other classes
of models as well [120, 123].

Conclusion & Outlook.– To summarize, we have stud-
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ied a class of frustration-free Hamiltonians, where dis-
joint Krylov subspaces, anomalous hydrodynamics, and
exact quantum many-body scars occur simultaneously.
Compared to dipole-conserving or other fractonic models,
the Motzkin chain appears to lie in a different “universal-
ity class” featuring a distinct dynamical transport expo-
nent z ≈ 5/2 at infinite temperature and Hilbert-space
fragmentation with only polynomially many subspaces.
The quantum scars |Sν〉 are similar to other embeddings
of frustration-free ground states by deforming the under-
lying model [43–45]. Moreover, a similar construction
of exact scars in individual Krylov subspaces has been
recently presented for related Fredkin chains [80].

Regarding prospective directions of research, we note
that while at present an analytical expression is known
only for the states |Sν〉, the data in Fig. 2 suggest thatHν
hosts other low-entangled eigenstates beyond |Sν〉. Ap-
proximating further nonthermal eigenstates, e.g., by de-
vising a spectrum generating algebra [127–130] acting on
|Sν〉, might thus be an interesting attempt. Another ex-
tension is to study hydrodynamics at finite temperatures
to connect our high-temperature results to the subdiffu-
sive scaling of low-energy excitations [94, 95], as well as to
consider transport beyond half-filling, where CA circuits
have already proven helpful [72]. Finally, the stability
of the |Sν〉 and, particularly, the persistence of anoma-
lous hydrodynamics upon adding different perturbations
to Hν is an open question.
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Greiner, V. Vuletić, and M. D. Lukin, Probing many-
body dynamics on a 51-atom quantum simulator, Nature
551, 579 (2017).

[33] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn,
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SUPPLEMENTAL MATERIAL

Krylov-space restricted thermalization

Periodic versus open boundary conditions

As discussed in the main text, the choice of OBC causes
the emergence of disjoint Krylov subspaces Kdu. This
fact can be exemplified by contrasting the entanglement
entropies S|n〉 of eigenstates of Hν for PBC and OBC. In
the case of PBC [Fig. S1 (a)], we find that S|n〉 behaves
as one would expect for a nonintegrable and thermalizing
system, i.e., S|n〉 takes on extensive values in the center
of the spectrum which are similar to those of random
states, while the entanglement towards the edges of the
spectrum is lower. Interestingly, a degenerate set of zero-
energy eigenstates, well separated from the band of ther-
mal states, can be identified as well. Thus, similar to the
states |Sν〉 discussed in the main text, scarred eigenstates
also exist for PBC. Specifically, since lattice momentum
κ is a good quantum number for PBC, these quantum
scars then belong to sectors with different κ [S1]. In con-
trast, in the case of OBC [Fig. S1 (b)], the distribution
of S|n〉 is rather broad due to the disjoint Kdu. Note that
the data in Fig. S1 (b) was already shown in Fig. 2 (a) of
the main text. In Fig. S1 (b) we now additionally high-
light the comparatively low entanglement of the quantum
many-body scars |Sν〉 belonging to different Kdu.

Level-spacing distribution

As the Hilbert space splits into Krylov spaces with a
fixed number of unpaired spins Nd, Nu, chaos and ther-
malization has to be studied within each such subspace.
A common diagnostic is the distribution P (∆) of adja-
cent level spacings ∆n = En+1 − En. In Fig. S2 (a),
P (∆) is shown for a fixed system size L = 12 in the
largest Krylov subspace with Nd = Nu = 1. For all val-

0

5

−0.7 0.7

(a) PBC

−0.7 0.7

(b) OBC

S
|n
〉

En/L En/L

|Sν〉

FIG. S1. Eigenstate entanglement for (a) PBC and (b) OBC
in the Sz = 0 sector. The horizontal dashed line in (a) indi-
cates the entanglement of a random state. In (b), the exact
quantum scars |Sν〉 belonging to different Krylov subspaces
are indicated by symbols. We have L = 10, c1 = c3 = 1, and
c2 = −1 in all cases.

ues of ν considered here, we find that P (∆) accurately
follows a Wigner-Dyson distribution, indicating the onset
of quantum chaos [S2].

To study the statistics of energy levels for a wider range
of ν and Nd, Fig. S2 (b) shows the mean ratio 〈r〉 of
adjacent level spacings [S3],

〈r〉 =
1

N

∑
n

min{∆n,∆n+1}
max{∆n,∆n+1}

, (S1)

where the averaging is here performed over roughly
N = 2Ddu/3 of the eigenstates around the center of
each Krylov space. For chaotic models, one expects
〈r〉 to be similar to the ratio of a random matrix, e.g.,
drawn from the Gaussian orthogonal ensemble (GOE),
〈r〉GOE ≈ 0.53. In contrast, for integrable or many-
body localized models, the level spacing is Poissonian
with 〈r〉 ≈ 0.39 [S2].

As shown in Fig. S2 (b), we find 〈r〉 ≈ 0.53 for almost
the whole range of ν ≤ 2 considered here (the agreement
is slightly better for Krylov spaces with a larger dimen-
sion Ddu). Only if ν becomes too small, deviations from
the random-matrix value appear, which can be explained
by Hν becoming entirely diagonal for ν → 0 with a
highly degenerate spectrum. We have spot-checked that
〈r〉 ≈ 0.53 also holds for the largest Krylov spaces in sec-
tors with Sz 6= 0 (not shown here). Since the dimensions
Ddu of Krylov spaces with large Nd, Nu become too small
to obtain good statistics, we refrain from searching in
more detail for Kdu that might exhibit Poissonian statis-
tics. We note, however, that subspaces with large Nd, Nu
can indeed exhibit peculiar behavior. For instance, the
subspace with Nd = Nu = 4, depicted in Fig. 2 (a) of
the main text, features a degenerate set of zero-energy
eigenstates in addition to the exact state |Sν〉.

0

1

0 4

(a) Nd = 1

0.39

0.53

0.2 2

(b)

Poisson

GOE

P
(∆

)

∆

ν = 0.5
ν = 1
ν = 2
GOE

〈r
〉

ν

Nd = 0
Nd = 1
Nd = 2
Nd = 3

FIG. S2. (a) Distribution P (∆) of energy gaps in the Krylov
space with Nd = Nu = 1 for ν = 0.5, 1, 2. The dashed
curve indicates the quantum-chaotic Wigner-Dyson distribu-
tion. Note that the correct extraction of P (∆) requires an
unfolding of the spectrum. (b) 〈r〉 versus ν for Krylov spaces
with different Nd = Nu. The dashed horizontal lines indi-
cates the GOE and the Poissonian value respectively. We
have L = 12, c1 = c3 = 1, and c2 = −1 in all cases.
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2
〉
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S
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+
1
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L = 12

〈S
+ L 2

S
− L 2
+
1
〉

|Sν〉

〈S
z L
/
2
〉

〈S
z L
/
2
〉

En/L

〈S
+ L 2

S
− L 2
+
1
〉

En/L

FIG. S3. Eigenstate expectation values 〈·〉 = 〈n| · |n〉 versus
energy density for the two operators SzL/2 (left column) and

S+
L/2S

−
L/2+1 (right column). Data is shown for ν = 0.5, 1, 2

(top to bottom) and two different system sizes L = 10, 12 in
the Krylov space with Nd = Nu = 0. The expectation values
with respect to the exact scar eigenstate |Sν〉 are highlighted
by an asterisk. The insets show the variances of the 〈n| · |n〉,
evaluated within a narrow energy window in the center of
the spectrum (excluding the scar |Sν〉), versus system sizes
L = 8, 10, 12. For all cases considered, the variances decrease
approximately exponentially with L.

Validity of eigenstate thermalization hypothesis (ETH)

According to the ETH, the diagonal matrix elements
of physical operators written in the eigenbasis of chaotic
Hamiltonians should be a smooth function of energy [S2].
In Fig. S3, we test the ETH for two local operators de-
fined in the center of the chain,

O1 = SzL/2, O2 = S+
L/2S

−
L/2+1 . (S2)

Focusing on the Krylov space with Nd = Nu = 0,
Figs. S3 (a)-(f) show the “cloud” of diagonal elements
〈n|O1/2|n〉 for three different values of the deformation
parameter ν = 0.5, 1, 2, and two different system sizes
L = 10, 12. Generally, the 〈n|O1/2|n〉 behave consistent
with other known examples in the literature [S2], i.e.,
the distributions are relatively broad at the edges of the
spectrum, while they narrow down in the center. Espe-
cially for O1, we find that the distribution of the 〈n|O1|n〉
notably depends on ν, with a broader distribution for
ν = 2 and a narrower distribution for ν = 0.5. While it
is hard to see from the bare distributions in Fig. S3, we
have checked that the variances of the 〈n|O1/2|n〉 actually
decrease approximately exponentially with increasing L
for all ν (see insets in Fig. S3 and caption for descrip-
tion). Thus, we expect that in the thermodynamic limit
L→∞, the overwhelming majority of eigenstates of Hν
follows the ETH.

0

2

0 100

(a)

0 100

(b)

∆
S
z
(t
)

time t

ν = 0.5
ν = 1
ν = 2 〈(S

z L 2

−
S
z L 2
+
1
)(
t)
〉

time t

FIG. S4. (a) Magnetization difference ∆Sz(t) [Eq. (S3)] be-
tween the two halves of the chain. (b) Magnetization differ-
ence 〈SzL/2(t)〉 − 〈SzL/2+1(t)〉 between the two central lattice
sites. Note that the curve for ν = 2 in (b) is very similar to
the Loschmidt echo L(t) in Fig. 5. We have L = 16 in all
cases.

In Fig. S3, we additionally highlight the expectation
value 〈Sν |O1/2|Sν〉 with respect to the exact eigenstate
|Sν〉. In the case of O1, we find 〈Sν |O1|Sν〉 ≈ 0 for
ν = 0.5, 1 such that |Sν〉 is indistinguishable from the
thermal eigenstates in its vicinity. Interestingly, for ν = 2
[Fig. S3 (e)], |Sν〉 yields a nonzero value of O1, which also
reflects itself in the quench dynamics of the domain-wall
state at ν = 2 (Fig. 5 of main text). In contrast, in the
case of O2 [Figs. S3 (b),(d),(f)], we find 〈n|O2|n〉 ≈ 0
for most |n〉, while the exact state |Sν〉 yields a nonzero
expectation value which is a clear outlier well separated
from the bulk of the thermal states, demonstrating the
embedding of a quantum many-body scar into the spec-
trum of Hν .

Additional data on domain-wall melting

Let us present additional data on the melting of
domain-wall initial states considered in Fig. 5 of the
main text. Figure S4 (a) shows the magnetization dif-
ference ∆Sz(t) between the two halves of the system for
ν = 0.5, 1, 2,

∆Sz(t) =
2

L

L/2∑
`=1

(
〈Sz` (t)〉 − 〈SzL/2+`(t)〉

)
. (S3)

Consistent with the earlier data shown in Figs. 5 (c) and
(d), ∆Sz(t) continues to decay for ν = 0.5, 1 even at long
times t = 100, while the dynamics is very slow for ν = 2.
Moreover, Fig. S4 (b) shows the magnetization difference
only between the two central sites of the lattice. We find
that 〈SzL/2(t)〉 − 〈SzL/2+1(t)〉 decays almost to zero for

ν = 0.5, 1 (i.e., the spin profile becomes smooth in the
center), whereas a finite magnetization jump remains in
the case of ν = 2. In this context, it is also instructive to
compare the curve of 〈SzL/2(t)〉 − 〈SzL/2+1(t)〉 for ν = 2

in Fig. S4 (b) to the decay of the Loschmidt echo L(t) in
Fig. 5 (a) of the main text. Quite remarkably, one finds
that the two curves are very similar to each other, even
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FIG. S5. (a) S∞(t) and (b) S1(t) for chains with PBC and dif-
ferent L, obtained by averaging over multiple product states
in the Sz = 0 sector. Power laws are shown for comparison.

on the level of individual (finite-size) fluctuations. This
observation is in good agreement with a typicality-based
framework developed in [S4], which predicts that the dy-
namics of observables is closely related to L(t) in situa-
tions where one eigenstate (here the exact state |Sν〉) is
macroscopically populated.

Entanglement growth

To complement the analysis of anomalous hydrody-
namics from the main text, we here study the Rényi en-
tropies Sα(t) = ln Tr[ραA]/(1−α), ρA = TrB |ψ(t)〉 〈ψ(t)|,
which were argued to grow subballistically for α > 1
[S5, S6]. Focusing on the extremal case S∞(t) =
− lnλmax, where λmax is the largest eigenvalue of ρA,
Hν indeed yields a rather unusual build-up of entangle-
ment with S∞(t) ∝ t2 at short times (similar to strongly
coupled holographic systems [S7]) and S∞(t) ∝ t0.8 at
larger t, see Fig. S5 (a). While S∞(t) thus neither
grows diffusive [S5, S6], nor agrees with the conjecture
Sα>1(t) ∝ t1/z [S5, S8, S9], we note that models with
spin S ≥ 1 might exhibit subtleties [S8, S9]. In this
context, let us stress that a numerical analysis is compli-
cated due to finite-size effects such that potential changes
in the growth rate at later times cannot be accessed. In
contrast to S∞(t), the von Neumann entropy S1(t) ∝ t
[Fig. S5 (b)] scales linearly as expected.

Quench dynamics for another initial state

In the main text, we have exemplified the impact of
the scar |Sν〉 on the dynamics by considering a domain-
wall initial state |u · · ·ud · · · d〉, which can be tuned be-
tween a localized and a delocalized regime depending
on the choice of ν. Let us here present additional
data for another initial state, namely a Néel-like state
|ψ〉 = |udud · · · 〉 which likewise belongs to the Krylov
space K00. In contrast to the domain wall, which maxi-
mizes the area A, the Néel state yields a much smaller A.
As a consequence, in contrast to Fig. 5 in the main text,
the overlap between |Sν〉 and |ψ〉 is now enhanced for
ν < 1, leading to slower thermalization for ν < 1. This

0
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0 50

(a)

0

6

0 50

(b)

L(
t)

time t
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ν = 1
ν = 2

S
1
(t
)

time t

0 30
time t

1

14

s

i

t

e

ℓ

(
) ν = 0.5

0 30
time t

(d) ν = 1

0 30
time t

−1

0

1

(e) ν = 2

FIG. S6. [(a),(b)] L(t) = | 〈ψ(t)|ψ〉 |2 and entanglement
S1(t) = Tr[ρA(t) ln ρA(t)] for the initial state |udud · · ·〉. [(c)-
(e)] Color plot of 〈ψ(t)|S` |ψ(t)〉 for ν = 0.5, 1, 2. We have
L = 14, c1 = c3 = 1, and c2 = −1 in all cases.

is demonstrated in Fig. S6, where L(t) = | 〈ψ(t)|ψ〉 |2
quickly decays for ν = 1, 2, while revivals are present for
ν = 0.5 [Fig. S6 (a)], accompanied by a faster growth
of entanglement for ν ≥ 1 [Fig. S6 (b)]. Likewise, the
· · ·ud · · · pattern remains more stable for ν = 0.5 [Fig.
S6 (c)], while fast bulk thermalization occurs for ν = 1, 2
[Figs. S6 (d) and (e)].

Construction of |Sν〉

According to Eq. (3) in the main text, the exact eigen-
state |Sν〉 is given by the area-weighted superposition of
all basis states in a given Krylov space. While we refer to
Refs. [S10–S12] for details on |Sν〉 indeed being an eigen-
state of Hν , let us here derive the second part of Eq. (3),
i.e., relating the area of a given spin configuration to its
dipole moment (see also [S13]). To this end, we introduce
the height h` of a spin configuration at position `,

h` =
∑̀
l=1

Szl , (S4)

where we define h0 = 0. Using this, the area Ak =
〈k| A |k〉 of a spin configuration follows as,

A =

L∑
`=1

(h` + h`−1)/2 (S5)

=

L∑
`=1

(∑̀
l=1

Szl +

`−1∑
l=1

Szl

)
/2 (S6)

= Sz/2 +

L∑
`=1

`−1∑
l=1

Szl (S7)

= Sz/2 +

L∑
`=1

(L− `)Sz` (S8)

= (2L+ 1)Sz/2− P , (S9)
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where Sz =
∑L
`=1 S

z
` and P is the dipole operator. Since

the |Sν〉 are defined within a sector with fixed magneti-
zation Sz, 〈k|Sz |k〉 will be independent of the specific
basis state |k〉 such that the first term on the right hand
side of Eq. (S9) can be dropped. It then follows that,

|Sν〉 =
1√
M ′ν

∑
k

νAk |k〉 =
1√
Mν

∑
k

ν−Pk |k〉 . (S10)

where M ′ν =
∑
k ν

2Ak and Mν =
∑
k ν
−2Pk .

Dynamical quantum typicality

The correlation function C(r, t) in Eq. (4) can be effi-
ciently calculated by means of the concept of dynamical
quantum typicality (DQT) [S14, S15]. To this end, let
|R〉 =

∑
k ck |k〉 be a Haar-random state drawn from

the full Hilbert space, i.e., in practice the sum runs over
the 3L computational basis states |k〉 and the real and
imaginary parts of the complex coefficients ck are drawn
from a Gaussian distribution with zero mean. We assume∑
k |ck|2 = 1. According to DQT, C(r, t) can then be

approximated as (see also [S16, S17] for detailed deriva-
tions),

C(r, t) = 〈R`(t)|Sz`+r |R`(t)〉+ ε(|R〉) , (S11)

where |R`〉 =
√
Sz` + 1 |R〉 and |R`(t)〉 = e−iHt |R`〉.

Importantly, the statistical error of the approximation in
Eq. (S11) scales as ε(|R〉) ∝ 1/

√
3L [S14, S15], and can

therefore be neglected already for intermediate system
sizes. Thus, the correlation function C(r, t) is faithfully
approximated by the expectation value of Sz`+r within the
random state |R`(t)〉. Since the time evolution of |R`(t)〉
can be evaluated efficiently by standard sparse-matrix
techniques [S18], C(r, t) can be simulated for system sizes
beyond the range of ED.

Details on stochastic cellular automaton dynamics

In order to substantiate our direct simulations of the
transport properties of the Motzkin chain Hν (i.e., as
obtained under full quantum evolution on system sizes
L ≤ 18), we have constructed a stochastic cellular au-
tomaton (CA) circuit (or Markov chain) [S19–S23]. The
CA circuit is constructed in such a way, that it mimics
the terms appearing in Hν [Fig. 1 (a)]. It is composed
of two-site updates U which map product states from
the 3L-dimensional computational basis to other prod-
uct states (e.g., U |0du00d · · ·〉 → |d00u0d · · ·〉), i.e., no
entanglement is created when the initial state of the cir-
cuit is itself a member of the computational basis. As
a consequence, classical simulations of large system sizes
and long time scales are possible [S19–S23]. and

In Fig. 3 of the main text, a single exemplary time
step of the stochastic automaton evolution is illustrated.
Starting with an arbitrary configuration in the compu-
tational basis, we consider three different types of local
updates, named D, U , and V [in accordance with the
projectors in Eq. (1)]. Given a configuration of the two
neighboring spins, the appropriate local update is cho-
sen, where D acts as |0d〉 ↔ |d0〉, U acts as |0u〉 ↔ |u0〉,
and V acts as |00〉 ↔ |ud〉, i.e., these updates correspond
to the off-diagonal terms of Hν . However, with a proba-
bility of 1/2 (hence stochastic circuit), the updates D, U ,
or V are replaced by D̄, Ū , V̄ , which act as the identity,
such that the local configuration remains unchanged (see
gray gates in Fig. 3), i.e., these cases correspond to the
diagonal terms of Hν . Likewise, if the two-site configu-
ration is given by |dd〉, |uu〉, or |du〉, no local update is
performed as Hν does not contain corresponding terms
(such a case is not shown in Fig. 3). A full time step in
the circuit then consists of two layers of local two-site up-
dates, where the local unitary transformations first act
on all even bonds and subsequently on all odd bonds.
Moreover, the infinite-temperature spin-spin correlation
function C(r, t) in Eq. (4) is obtained by averaging the
classical quantity Sz`+r(t)S

z
` (0) over sufficiently many ini-

tial spin configurations.

Derivation of spin-current operator

Let us derive the expression for the spin-current op-
erator of the Motzkin chain. Inspecting the Hamilto-
nian in Eq. (1), the relevant contributions to spin trans-
port are given by the off-diagonal terms c1ν(− |0d〉 〈d0|−
|d0〉 〈0d|)/(1 + ν2), c2ν(− |0u〉 〈u0| − |u0〉 〈0u|)/(1 + ν2),
and c3ν(− |00〉 〈ud|− |ud〉 〈00|)/(1+ν2), while the diago-
nal terms can be ignored. It is further helpful to rewrite
the above expressions in terms of spin-1 operators. For
example, one finds [S24],

|0d〉 〈d0| = S+
1 S

z
1S

z
2S
−
2 , (S12)

and the other off-diagonal terms have similar represen-
tations that we here omit for brevity. The spin cur-
rent now follows from the lattice continuity equation
d
dtS

z
` = i[Hν , Sz` ] = j`−1 − j` [S25]. Note that the com-

mutator is non-vanishing only for the local terms of Hν
acting on sites ` − 1, ` and `, ` + 1. Using the identity
[S±` , S

z
`′ ] = ∓S±` δ``′ and carrying out some straightfor-

ward manipulations, one finds that j =
∑
` j` with,

j` =
iν

1 + ν2
[
(c3S

z
`S

+
` − c1S+

` S
z
` )Sz`+1S

−
`+1 (S13)

+ S−` S
z
` (c2S

z
`+1S

+
`+1 − c3S+

`+1S
z
`+1)

+ Sz` (c1S
−
` S

+
`+1 − c2S+

` S
−
`+1)Sz`+1

]
.

At ν = ci = 1, the local terms in Eq. (S13) can be
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substantially simplified and take on the form,

j` =
i

2

[
S+
` S

z
`+1S

−
`+1 + S−` S

z
`S

+
`+1 (S14)

+ Sz` (S−` S
+
`+1 − S+

` S
−
`+1)Sz`+1

]
,

where we again exploited the commutator relations of S±`
and Sz` . It is insightful to contrast Eq. (S14) with the spin
current of a more common spin-1 model, e.g, the Heisen-
berg chain, HHeis =

∑
` S` · S`+1, for which the current

has the well-known form jHeis = i
2

∑
`(S

+
` S
−
`+1−S−` S+

`+1)
[S25]. Comparing jHeis to Eq. (S14), j is essentially a
dressed version of jHeis, which formalizes that some con-
figurations do not contribute to the transport of spin in
the Motzkin chain.
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Sub-ballistic Growth of Rényi Entropies due to Diffu-
sion, Phys. Rev. Lett. 122, 250602 (2019).

[S6] Y. Huang, Dynamics of Rényi entanglement entropy in
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