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The d = 2 critical Ising model is described by an exactly solvable Conformal Field Theory (CFT). The de-
formation to d = 2 + ε is a relatively simple system at strong coupling outside of even dimensions. Using
novel numerical and analytical conformal bootstrap methods in Lorentzian signature, we show that the leading
corrections to the Ising data are more singular than ε. There must be infinitely many new states due to the
d-dependence of conformal symmetry. The linear independence of conformal blocks is central to this boot-
strap approach, which can be extended to more rigorous studies of non-positive systems, such as non-unitary,
defect/boundary and thermal CFTs.

INTRODUCTION

The d-dimensional Ising model is a fundamental model in
statistical physics and condensed matter physics. Historically,
it was proposed by Lenz to describe ferromagnetism and the
case of d = 1 was solved by Ising. This simple model dis-
plays rich physics and captures some main traits of phase tran-
sitions and many-body problems. At criticality, it belongs to
one of the simplest universality classes, characterized by the
global Z2 symmetry. For d > 4, the critical behaviour of the
Ising model is described by Landau’s mean-field theory [1], in
which fluctuations are neglected due to the averaging effects
of many adjacent spins. At lower d, fluctuations play a more
significant role. The mean-field description is not sufficient
for d ≤ 4 and the Ising critical exponents have non-trivial d-
dependence [2]. As a natural continuation of Landau’s the-
ory, Wilson and Fisher calculated the critical exponents in
d = 4 − ε dimensions using the perturbative ε expansion [4].
The ε expansion has proved to be a valuable tool in the studies
of critical phenomena [5, 6].

At d = 2, it is well-known that the Ising model is solv-
able since Onsager’s groundbreaking results [7]. The critical
behaviour is described by the fixed point of renormalization
group flows. In particular, scale invariance of the fixed point
is promoted to conformal invariance. As another natural con-
tinuation, it would be interesting to deform the 2d exact so-
lution to d = 2 + ε dimensions. The ε expansion usually
concerns weakly coupled systems [8–11], but the case here re-
mains strongly coupled [12], so the intriguing strong coupling
physics becomes more manifest. More recently, the ε = d− 2
expansion has also been used to study deconfined quantum
criticality [13, 14]. (See [15] for a numerical conformal boot-
strap study.) We notice a deceptively simple question:

Is the ε expansion of a strongly coupled system given by
integer power series?

In the standard ε expansion, the corrections to the d = 4
data can be computed order by order in ε, given by asymptotic
series [16]. It has been argued that they are integer power
series based on the Renormalization Group (RG) analysis in
the minimal subtraction scheme [17, 18]. Naively, one might
think that the ε = d−2 expansion should also be the case. For
instance, the scaling dimension of the lowest Z2-even operator

was assumed to receive integer power corrections in the study
of disorder effects in 2 + ε dimensions [19]. However, the
standard ε expansion is around a Gaussian theory. The weak
coupling techniques and arguments do not easily extend to
the strong coupling situation. For the O(n) model, Cardy and
Hamber performed an elegant analysis around n = d = 2
based on some analyticity assumptions on the RG equations
[20], but these results do not apply for d = 2 + ε with n < 2.

In this letter, we will study the d = 2 + ε Ising model us-
ing the conformal bootstrap. The conformal bootstrap pro-
gram aims to classify and solve CFTs by general principles
and consistency conditions [21, 22], without resorting to the
weak coupling expansion. For d = 2, conformal symmetry
becomes infinite-dimensional and this program can be carried
out rather successfully [23, 24]. The studies in d > 2 di-
mensions are more challenging as conformal symmetry is less
constraining. Nevertheless, considerable progress has been
achieved due to the seminal work [25], in which the unitar-
ity assumption and the crossing equations are formulated as
inequalities. This modern bootstrap approach has led to rig-
orous bounds on the space of unitary CFTs, such as the most
precise determinations of the d = 3 Ising critical exponents
[26–29]. We refer to [30–34] for useful reviews and lecture
notes.

The critical Ising model can be viewed as a continuous fam-
ily of Z2-covariant CFTs parametrized by d. The case of non-
integer d has also been studied by the unitary bootstrap meth-
ods in [35–37]. The bounds exhibit similar features as those
at d = 2, 3 and the results are consistent with the (4 − d) ex-
pansion. However, a subtlety is that the Wilson-Fisher fixed
point is non-unitary in non-integer dimensions, because the
spectrum contains descendant states of complex scaling di-
mensions [38]. It would be helpful to consider complemen-
tary approaches that are not based on unitarity, such as the
flow method [39] and the truncation method [40]. The trun-
cated bootstrap approach has been applied to the study of non-
positive problems [41–52]. In the original formulation [40],
the truncated problem is encoded in determinants. In [53],
we proposed some new ingredients, which we believe are im-
portant to a more systematic formulation. We emphasized the
essential role of linear independence and introduced the con-
cept of norm to the truncation approach. (See [54, 55] for
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the recent implementation using reinforcement-learning algo-
rithms.) We will apply these notions to the numerical boot-
strap study of the d = 2 + ε Ising CFT.

On the other hand, it was noticed in [37] that the tentative
spectrum from the unitary numerical approach exhibits a tran-
sition at d = 2 + ε with ε ∼ 0.2 small but finite. Such a
transition is expected since d = 2 is special. At d = 2, the
spectrum is organized into Virasoro multiplets and the corre-
sponding Regge trajectories have constant twists τ = ∆ − `
with integer spacing. At d = 3, the twist spectrum of the Ising
CFT is additive and the Regge trajectories have more interest-
ing dependence on spin. Infinitely many high spin operators
have twists asymptotic to the sum of two lower twists [56, 57].
For example, the Regge trajectories [σσ]n are associated with
the lowest Z2-odd scalar σ and they have twist accumulation
points at 2∆σ + 2n. We will discuss the location of the tran-
sition to the double-twist spectrum using analytic bootstrap
techniques.

To address our question, we will study the 4-point function
of the lowest Z2-odd scalar operator σ. We focus on the lead-
ing corrections and assume:

1. The critical Ising model is conformally invariant in d =
2 + ε dimensions with |ε| � 1.

2. The leading corrections to the 2d data are linear in ε:

∆σ = ∆(0)
σ + ε∆(1)

σ + . . . , (1)

∆i = ∆
(0)
i + ε∆

(1)
i + . . . , (2)

λi = λ
(0)
i + ε λ

(1)
i + . . . , (3)

where ∆i = ∆Oi and λi = λσσOi are the scaling di-
mension and OPE coefficient of Oi. The zeroth order
values can be derived from the exact solution at d = 2.
We will further assume that ∆

(1)
i , λ

(1)
i do not grow too

rapidly with ∆
(0)
i , so the conformal block summation is

convergent [58].

In the first assumption, scale invariance of the Ising fixed point
is enhanced to conformal invariance. There is ample evidence
for conformal invariance in d = 2, 3, 4− ε dimensions, so we
expect that this property extends to d = 2 + ε [59]. In the
second assumption, the leading corrections cannot be more
singular since they have positive integer powers. They can-
not start from second or higher orders in ε because the d-
dependence of conformal blocks leads to first-order terms in
the crossing equation.

Below we will examine if this is a consistent scenario. It
turns out that the assumptions 1 and 2 are not consistent, so
the corrections are expected to be more singular than ε1.

THE CROSSING EQUATION

We consider the 4-point function of the lowest Z2-odd op-
erator σ:

〈σ(x1)σ(x2)σ(x3)σ(x4)〉 =
G(z, z̄)

x2∆σ
12 x2∆σ

34

. (4)

The conformally invariant cross-ratios are

u = zz̄ =
x2

12 x
2
34

x2
13 x

2
24

, v = (1− z)(1− z̄) =
x2

14 x
2
23

x2
13 x

2
24

. (5)

The crossing equation for G(z, z̄) reads:

v∆σG(z, z̄) = u∆σG(1− z̄, 1− z) . (6)

In the ε = d− 2 expansion, we have

G(z, z̄) = G(0)(z, z̄) + εG(1)(z, z̄) + . . . , (7)

where the 2d solution reads

G(0)(z, z̄) =

√
1 +
√
u+
√
v√

2 v1/8
, (8)

and G(1)(z, z̄) can be written as convergent power series in
z, z̄ in the regime 0 ≤ z, z̄ < 1. After the conformal block
decomposition, the crossing equation becomes∑

i

λ2
i Fi(z, z̄) = 0 , (9)

where Fi(z, z̄) = v∆σG∆i,`i(z, z̄)− (z ↔ 1− z̄) and G∆i,`i

is the global conformal block for the conformal multiplet la-
belled by the primary operator Oi. To first order in ε, the
crossing equation reads∑

i

λ
(0)
i

(
λ

(0)
i ∆(1)

σ ∂∆σ + λ
(0)
i ∆

(1)
i ∂∆i

+ 2λ
(1)
i

)
Fi(z, z̄)

= (−1)
∑
i

λ2
i ∂dFi(z, z̄) , (10)

which will be written more compactly in (13). Note that the
derivative ∂d extracts the d-dependence of G∆,`. After tak-
ing the derivatives, we set {d,∆i, λi} → {2,∆(0)

i , λ
(0)
i }.

We do not make any assumptions about the signs of
{∆(1)

σ , ∆
(1)
i , λ

(1)
i }.

Although the left hand side of (10) involves an infinite num-
ber of free parameters, the building blocks are the simple 2d
conformal blocks [71]

Gd=2
∆,` (z, z̄) =

1

1 + δ`,0

(
k∆+`(z)k∆−`(z̄) + (z ↔ z̄)

)
, (11)

where kβ(x) = xβ/22F1(β/2, β/2, β, x) is the SL(2,R)
block with identical external scaling dimensions. Since each
term is multiplied by λ(0)

i , the intermediate states are the same
as those in 2d and their twists are given by

{τ (0)
i } = {4n, 4n+ 1} , (12)
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where n = 0, 1, 2, · · · but τ (0) 6= 5. Note that the twist-
5 trajectory and the twist-1 spin-2 state are absent in the 2d
intermediate spectrum of the σ × σ OPE. New states cannot
contribute to the OPE at order ε1 because their squared OPE
coefficients are at least of order ε2. This applies to both pri-
mary and descendant states [78]. Since the 2d Ising model is
unitary, we do not need to worry about potential cancellation
of finite mixed contributions. On the contrary, the right hand
side of (10) has no free parameter. We can compute the sum
based on the 2d data using the general d formula of conformal
blocks [79]. Then we take the d derivative and set d→ 2.

In the “bra-ket” notation, the crossing equation (10) reads

∆(1)
σ |∆σ〉+

∑
i

(
∆

(1)
i |∆i〉+ λ

(1)
i |λi〉

)
= −|d〉 , (13)

where |a〉 denotes the contribution generated by the change
in a. Our question in the introduction becomes: Do
|∆σ〉, |∆i〉, |λi〉 form a complete set of basis for |d〉? It turns
out that the answer is negative [80]! The target |d〉 does not
belong to the vector space spanned by {|∆σ〉, |∆i〉, |λi〉}.

Before analyzing the crossing equation (13), let us discuss
the building blocks |∆σ〉 , |λi〉, |∆i〉, |d〉. The first one can be
easily derived from (8). Then a global conformal block takes a
factorized form at d = 2, given in (11). (See [81] for a general
d generalization. ) According to the z dependence, we have∑

i

(
∆

(1)
i |∆i〉+ λ

(1)
i |λi〉

)
(14)

=
∑
β

v
1
8

(
Aβ(z̄)kβ(z) +Bβ(z̄)∂βkβ(z)

)
− (z ↔ 1− z̄) ,

where β ∈ {τ (0)} is defined in (12) andAβ(z̄), Bβ(z̄) encode
the dependence on z̄. We can use the general d formula in
[79] to compute numerically |d〉 order by order in z at any z̄
in [0, 1) [82]. The analytic computation of |d〉 based on [83]
is described in Supplemental Material.

NUMERICAL CONFORMAL BOOTSTRAP

Let us perform a numerical study of the crossing equation
(13), which has no solution if {|d〉, |∆σ〉, |∆i〉, |λi〉} are lin-
early independent. We can detect the linear independence by
a norm:

η =
∥∥∥|d〉+ ∆(1)

σ |∆σ〉+
∑
i

∆
(1)
i |∆i〉+

∑
i

λ
(1)
i |λi〉

∥∥∥ , (15)

which is the distance between the target point determined by
|d〉 and a point in the space spanned by |∆σ〉, |λi〉, |∆i〉. If
there exists at least one crossing solution, then we should find
ηmin = 0. We define the norm in terms of sampling points [84]

‖H‖ =
√
〈H|H〉 =

(
1

N

N∑
i=1

µ(zi, z̄i)
∣∣H(zi, z̄i)

∣∣2)1/2

, (16)

where the measure µ(z, z̄) will be specified later. The inner
product 〈H1|H2〉 is defined as a weighted sum of the prod-
uct H∗1H2. We consider the Lorentzian regime, so z, z̄ are

independent, real variables. We further concentrate on the re-
gion near the double-lightcone limit with 0 < z � 1 and
0 � z̄ < 1, which will also be studied analytically. We use
sampling rather than derivative equations because it is easier
to assign a proper measure µ(z, z̄).

In practice, we need to truncate the conformal block sum-
mation to a finite sum in the numerical studies. This is some-
times called OPE truncation [85]. Then we need to know if a
finite ηmin is due to the OPE truncation or absence of crossing
solution. Since we are sampling in a subregion, the prefac-
tor of ηmin is scheme-dependent and the finite ηmin becomes
smaller as we increase the truncation cutoff. To distinguish
between the two origins, we examine the dependence of ηmin
on the local sampling regions labelled by z0. If ηmin > 0 is
mainly due to the OPE truncation, then the functional form of
ηmin(z0) will change dramatically with the cutoff. Otherwise,
ηmin(z0) will only get a smaller prefactor as more intermedi-
ate states are introduced. Near the lightcone, we can readily
distinguish between them based on the scaling behaviour.

10-6 10-5 10-4 0.001 0.010
z0

10-20

10-18

10-16

10-14

10-12

10-10

ηmin

β=0

β=0,1

β=0,1,4

FIG. 1. Log-log plot of ηmin(z0) with a simple measure (17), where
z0 labels the sample region. The sampling points are at z, 1 − z̄ =
z0 × 10−k/10 with z 6= 1 − z̄ and k = 0, 1, 2, . . . , 10. The scal-
ing behaviour is not sensitive to the β truncation. A larger β cut-
off reduces the prefactor, but does not modify the leading scaling
behaviour. Therefore, a finite ηmin is mainly due to the absence of
crossing solution, not the β truncation.

Near the lightcone z = 0, we can truncate the sum (14) to
low β. But we will not truncate the spin sum, soAβ(z̄), Bβ(z̄)
in (14) remain arbitrary [89]. They will be evaluated near the
other lightcone z̄ = 1. In the η minimization, Aβ(z̄) and
Bβ(z̄) are approximated by truncated Taylor series about the
center of the sampling region. We use high order Taylor poly-
nomials to make the associated errors negligible. We can also
view Aβ(z̄), Bβ(z̄) at different z̄ as independent parameters,
but the results remain the same in the cases examined.

Now we discuss the choice of µ. A simple measure is

µsimple(z, z̄) = 1 . (17)

In Fig. 1, we show the dependence of ηmin on the sampling
region labelled by z0. One can notice the scaling behaviour

ηmin(z0) ∝ z0
α , (18)
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which becomes more precise at small z0. The exponent α is
about 1.13(1) in the regime 10−6 < z0 < 10−3, in which
|d〉 can be computed by a direct summation over spin. For
z0 < 10−6, we use the analytic expression of |d〉 in Supple-
mental Material to obtain a more precise value α ≈ 1.125.
These results imply that |d〉 contains a vector that scales as
λ1.125 under {z, 1 − z̄} → {λz, λ(1 − z̄)}. Furthermore, it
does not belong to the space spanned by {|∆σ〉 , |λi〉, |∆i〉},
so no crossing solution can be found. We will give an analytic
understanding of the linear independence later.

10-5 10-4 0.001 0.010
z0

10-10

10-6

0.01

100.00

ηmin

β=0,1

β=0,1,4

β=0,1,4,8

FIG. 2. Log-log plot of ηmin(z0) with a refined measure (19). Here
the measure depends on the cutoff β∗ = 1, 4, 8. The sampling points
are the same as those in Fig. 1. The scaling exponents decrease with
the β cutoff and become negative, so the β truncation is not the main
source and a finite ηmin is due to absence of crossing solution.

We can also consider a refined norm with a cutoff depen-
dent measure. Near the lightcone, the lowest β contribution
dominates the OPE truncation error, so we use

µrefined(z, z̄) =
∣∣zβ∗/2 − (1− z̄)β∗/2

∣∣−2
, (19)

where β∗ is the cutoff for the β summation in (14). If a
crossing solution exists, the exponents should always be pos-
itive because the OPE truncation errors are of higher order
in z, 1 − z̄ than µ−1/2

∗ . In Fig. 2, we compare the results
of different β∗. One can see that the exponent α decreases
with the cutoff β∗ and becomes negative, implying that the
OPE truncation is not the main origin of ηmin > 0. The
approximate values of the scaling exponents are 0.63(1), -
0.87(1), -2.87(1), where the latter two are consistent with
αrefined ≈ αsimple − β∗/2. A negative exponent also implies
a divergent ηmin in the double lightcone limit z, 1 − z̄ → 0,
providing a clear signature for absence of crossing solution.

The η minimization results have a geometric interpretation,
as it induces a special vector |N〉 orthogonal to the basis vec-
tors. The squared minimal distance η2

min is precisely the inner
product of |N〉 and |d〉. When ηmin > 0, there is no crossing
solution due to a finite distance between the target point and
the space spanned by the basis vectors.

ANALYTICAL CONFORMAL BOOTSTRAP

For a deeper understanding, let us study the crossing equa-
tion (13) in the analytic lightcone expansions. We will find
obstructions from both regular and bi-singular terms.

First, we discuss the inconsistency from regular terms. Near
the double lightcone limit, the target vector can be well ap-
proximated by

|d〉 =
z

4
√

2
− 3z(1− z̄) 1

8

16G
− (z ↔ 1− z̄) + . . . , (20)

where G = Γ(1/4)2 (2π)−3/2 is Gauss’s constant and . . . in-
dicates higher order terms. The scaling behaviour ηmin(z0) ∝
z1.125

0 in the numerical analysis is associated with the leading
regular term in (20):

z (1− z̄) 1
8 − z 1

8 (1− z̄) . (21)

In the lightcone limit z → 0, the exponents of z are asso-
ciated with the half twists of primary and descendant states
in the direct-channel OPE. In the double lightcone expansion,
we expect that the exponents of u, v are associated with in-
termediate twists [90]: v∆σG(z, z̄) =

∑
i,j ci,j u

τi/2 vτj/2,
such as (8). Since the double-twist trajectories [σσ]n are ab-
sent in 2d, the first term z (1− z̄)1/8 can only come from the
direct-channel contribution. One can show that the structure
of kβ(z) in (14) is inconsistent with the explicit expression of
|d〉, so the crossing equation (13) has no solution.

The d = 2 solution is very special. All the regular
terms have vanishing coefficients, so the double-twist trajec-
tories [σσ]n can be absent. At first order in ε = d − 2,
the d-dependence of conformal symmetry requires the pres-
ence of double twist states in the σ × σ OPE. From this
analytic perspective, the spectrum transition takes place at
d = 2 + 0+. Usually, the presence of double-twist states is
based on the assumption of a twist gap [56, 57], but here we
show that they are required by conformal symmetry even if
the twist gap vanishes. Furthermore, we expect the existence
of other double/multi-twist states, but the more complicated
ones should be suppressed by higher powers of ε.

Second, we consider the inconsistency associated with bi-
singular terms. The presence of double-twist trajectories is
not sufficient. Another obstruction to solving (13) is the large
spacing of the twist spectrum (12). We can simplify the anal-
ysis by focusing on the bi-singular terms. To match the power
laws in |d〉b.s., the functions Aβ(z̄), Bβ(z̄) in (14) should take
the form

∑∞
k=0

(
a0,k + a1,k log(1− z̄)

)
(1− z̄)k/2−1/8 , with

an,k replaced by bn,k for Bβ(z̄). We introduce log(1 − z̄)
because ∂βkβ(z) involves log z. The exponents take the
expected values and there is no double-twist exponents, so
naively we may try to solve the crossing equation order by or-
der. Let us count the total power of z, 1− z̄. For example, the
first line of eq.(10) in Supplemental Material contains terms
of order 1, 3/2. After solving the crossing equation to order
2, we substitute the solutions of an,k, bn,k into the 5/2 order
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equation. We find that the sum below has a fixed coefficient(
∆(1)
σ |∆σ〉+

∑
i

∆
(1)
i |∆i〉+

∑
i

λ
(1)
i |λi〉+ |d〉

)
b.s.

= −6
√

2

539

(
z (1− z̄)3/2 − z3/2 (1− z̄)

)
+ . . . , (22)

so the bi-singular part of the crossing equation (13) has no
solution beyond order 2. To construct a crossing solution, one
can reduce the spacing of the twist spectrum from 4 to 2, as in
the standard case of generalized free theory.

The d = 2 solution is possible because of the special struc-
ture of 2d conformal blocks. As 2d global conformal blocks
are invariant under ` → −`, the spectrum is symmetric in
twist ∆− ` and conformal spin ∆ + `. This explains the large
spacing in intermediate twist spectrum, which is dual to that
of 2` [91]. As only even spin states appear in the σ × σ OPE,
the 2d twist spacing is 4. This large spacing is inconsistent
with the general d structure of conformal blocks.

DISCUSSION

We have investigated the d = 2 + ε critical Ising model us-
ing novel numerical and analytical conformal bootstrap meth-
ods. Our analyses of the crossing equation (13) disprove the
naive expectation that the leading corrections are linear in ε.
The d-dependence of global conformal symmetry implies the
existence of new intermediate states, such as double twist tra-
jectories. But the intermediate spectrum is the same as the
d = 2 case at order ε if the naive expectation is correct. No
solution to the crossing equation can be found due to the linear
independence of conformal blocks. Since the obstructions are
related to the speciality of d = 2, we expect them to appear
also in other 2d CFTs.

A direct consequence is that the leading corrections to the
2d data should be more singular than ε1. The presence of εa

corrections with 0 < a < 1 will imply strong non-unitarity of
the Ising CFT below d = 2. This is consistent with the obser-
vation of two kinks in the d < 2 unitary bootstrap bounds in
[93]. The leading corrections may take the form of order ε1/k

with k = 2, 3, · · · . One can rule out the possibility that only
scaling dimensions receive ε1/k corrections by adding higher
β derivatives of kβ(z) to (14), then there should be infinitely
many new states. Similar to the XY model results in [94], the
simplest resolution could be that the leading corrections are
of order ε1/2. For d < 2, the scaling dimensions can be com-
plex conjugate pairs and the OPE coefficients of new states
can be imaginary numbers. For perturbative RG fixed points,
the ε1/2 behavior has also been found in the cases with two
marginal operators, such as the d = 4− ε random Ising model
[95]. In general, the square root behaviour can appear around
a bifurcation point at which two fixed points collide [96–99].

Although we show there are infinitely many new states, it is
still unclear if the low-lying scaling dimensions receive singu-
lar corrections. It may be helpful to learn from other analyti-
cal insights [61–70, 100–105]. It would also be fascinating to

study other strongly coupled CFTs in 2 + ε dimensions. For
more complex problems, it could be useful to assume a hier-
archical structure in operator product expansion [53, 106].

Many statistical physics models violate reflection positiv-
ity. Similarly, the boundary/defect bootstrap [107][42] [108–
111] and thermal bootstrap [112–114] problems do not obey
positivity constraints. In the usual numerical bootstrap, the
positivity constraints are crucial to the derivation of rigorous
bounds. Here we show that the inconsistent theory space can
be ruled out without using positivity. We plan to revisit the
non-positive bootstrap problems from the new perspective.

I would like to thank Hugh Osborn, Slava Rychkov, Ning
Su and other oganizers/participants of Bootstat 2021 for en-
lightening comments. I am particularly grateful to Slava
Rychkov for valuable comments on the draft. The Boot-
stat 2021 program took place at Institut Pascal at Université
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